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ABSTRACT 
Personal exposures to environmental stressors including extreme heat and air pollution vary widely depending on schedules 
and activities. This paper shares results of a city-scale project to build fixed indoor and outdoor sensor networks while also 
deploying mobile sensors. The network helps building occupants, building operators, and public officials to safely manage 
extreme heat and air pollution. The Exposure Duration Curve (EDC) concept is introduced to facilitate comparisons.  

INTRODUCTION 

Personal exposures to excess heat, cold, and air pollution can lead to adverse health outcomes, especially for vulnerable 
people experiencing prolonged exposures at high levels. Such health risks justify large-scale government regulation of air 
pollution, occupational health regulations targeting worker exposures to adverse thermal and air quality conditions, and 
stipulations that landlords provide habitable spaces for tenants. Designers of building mechanical systems focus much effort 
on meeting thermal comfort and ventilation standards. Green and healthy building certification systems incentivize better 
indoor environmental quality. Such protections can be costly, so it is worthwhile to ask how well efforts to improve ambient 
environmental conditions reduce personal exposures. 
People vary in the amounts of time they spend in different indoor and outdoor locations, so personal exposures to 
environmental stressors may show similar variation. For example, construction workers are likely to have more hours of 
outdoor exposure than accountants, and retirees may spend more time at home than working people. Knowing human time 
allocations and measuring conditions in typical locations such as outdoors and indoors, in workplaces, schools, shops, homes, 
and other frequently visited buildings, are prerequisites for estimating personal exposures. 
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This paper shares results of a field study of personal environmental exposures to summer heat stress and local air pollution in 
Elizabeth, NJ, USA, an environmental justice community surrounded by an international airport, a shipping port, a 
petrochemical refinery complex, and a major highway. The study employs three data collection systems: (1) a network of 
fixed outdoor sensors, (2) a network of fixed indoor sensors, and (3) mobile personal exposure monitors with geolocation 
capabilities carried by residents. The study tracks exposures of people residing in buildings operated by a public housing 
authority who have different daily schedules: elderly retirees, high-school children, and working-aged people. The three data 
streams quantify ambient outdoor and indoor conditions and personal exposures over time and allow comparisons of these 
metrics. 
Results confirm that personal exposures differ across people. Their schedules and activities play important roles. Most 
residents spend more than 90% of the day indoors. Outdoor conditions influence indoor conditions, but the influence is 
strongly mediated by HVAC system characteristics and by occupant behavior. These findings help occupants, building 
operators, building designers, and public officials to safely manage extreme heat and air pollution. 

LITERATURE REVIEW 

Among the most important population-level health concerns are those associated with the environments in which humans 
live. Thermal extremes and air pollution are known risk factors, the former associated with acute symptoms of heat stress and 
heat stroke, as well as contributing to mortality due to cardiovascular, respiratory, and cerebrovascular problems in exposed 
populations (CDC 2024), and the latter associated with asthma and cardiovascular disease, among others (Maji et al 2023). 
There is substantial evidence of excess morbidity and mortality associated with heat waves (Anderson and Bell 2011, Berko 
et al 2014) and air pollution episodes (Morawska et al 2021). Human activities are exacerbating these environmental health 
concerns by creating local urban heat islands and pollution hot spots, as well as global warming (Hayden et al 2023).    
Ambient Conditions. There is a substantial literature that uses remote sensing approaches and ground-based sensor networks 
to characterize urban heat islands and the spatial and temporal extent of heat waves (Cheval et al 2024) and air pollution 
levels (Tian et al 2023). Satellite imagery has allowed investigation of these phenomena at a global level and confirmed that 
the environmental stressors are prevalent in locations where people live and work. A sparse network of monitoring stations 
supports spatial interpolation of ambient stressor levels at intermediate locations and provides ground truthing for models 
built using various combinations of remote sensing evidence and locations of emissions sources.  However, the spatial 
resolution of these interpolation-based models is limited, with the USEPA AirNow network, for example, providing estimates 
of temperature and air pollutant levels for 5 km (3.1 mile) grid cells (EPA 2024a).   
Local Conditions. Urban planning and landscape architecture research often looks at a finer spatial grain to identify the 
effects of tree cover, land use, impervious surfaces, and urban design features on local temperature and air pollution levels 
(Kim and Brown 2021). These studies rely on air temperature and pollution measurement methods that include remote 
sensing, fixed sensors, and mobile sensors, and often collect field data on urban morphology, building geometries, canopy 
cover, and street canyons. The level of spatial resolution can be < 0.5 km (0.31 mile). At this scale, it is also possible to 
ascertain effects of socio-economic and demographic factors on environmental health (Harlan et al 2013).  
Indoor Conditions. ASHRAE has focused intensively on measuring indoor conditions to determine thermal comfort and 
healthy ventilation levels (ASHRAE 2021) and thereby improve system designs (ASHRAE 2022, ASHRAE 2023). Heating, 
ventilating, and air-conditioning systems equipped with air filtration technologies can dramatically moderate occupant 
exposures to temperature extremes and air pollution. Measurement and modeling of conditions and professional design and 
operating practices have advanced to achieve significant levels of protection in well-resourced buildings, although lower-
resourced buildings often lag far behind best practices.   
Personal Exposures. Outdoor ambient exposures only modestly correlate with personal exposures to temperature extremes 
(Bernhard et al 2015) and air pollution (Özkaynak et al 2013) due to variability in factors including personal activities, work 
schedules, indoor conditions, and local environments. The low correlations carry through to human health effects (Ejike et al 
2017). The COVID-19 pandemic also increased interest in personal environmental exposures. It is now possible to fill a 
knowledge gap in environmental exposure studies by directly measuring personal exposures using low-cost, portable sensors 
(Bernhard et al 2015, Hass and Ellis 2019, Runkle et al 2019). Metrics for assessing personal exposure data are now 
emerging, with innovators moving beyond measures of central tendency to highlight the intensity, duration, and frequency of 
exposure to environmental stressors (Hondula et al 2021, Lin et al 2018). 



The present study measures personal exposures in the context of measured indoor conditions, local conditions, and ambient 
conditions. It offers an exposure duration curve approach, discussed in the Data and Methods section, that unifies several of 
the personal exposure metrics within a common framework. It considers personal health impacts to be a result of ambient 
conditions and drivers, local conditions and drivers, indoor conditions and drivers, and personal time allocations, as 
summarized by us in Figure 1.  

                     

 

 
Figure 1 Source, exposure, and outcome continuum for environmental health stressors. 

DATA AND METHODS 

Archival and field data are brought together within a single data frame for this analysis. Ambient, city-average environmental 
conditions (hourly air temperature, relative humidity, wind direction, wind speed, precifipation) are measured at Newark 
International Airport (NWS 2024) and permanent monitoring sites in Elizabeth, NJ (hourly PM2.5) and Bayonne, NJ (hourly 
O3) (EPA 2024b) and archived by U.S. federal government agencies for public access. Local conditions (one-minute air 
temperature, relative humidity, O3, PM2.5, other criteria air pollutants) are measured by us using a newly installed network of 
12 community-level (but not regulatory-grade) sensors attached to buildings owned by the local public housing authority and 
accessed through a portal we have created. Indoor conditions (one-minute air temperature, relative humidity, PM2.5, VOC) 
are measured by us using newly installed consumer-grade sensors equipped with Wi-Fi or cellphone hotspots located in 16 
apartments and 3 offices at 3 sites owned and operated by the housing authority and accessed through a portal we have 
created. An outdoor model of the consumer grade sensor is located outdoors at each of the 3 buildings and their data are 
accessed through that same portal. Finally, personal exposure measurement (one-minute air temperature, relative humidity, 
PM2.5, VOC) is accomplished using two dozen consumer grade mobile sensors that pair via Bluetooth with the cellphone of 
the person carrying the sensor and periodically upload data and spatial coordinates to the cloud from which we can access 
and download the data. Technological specifications of the sensors used in this study are available from the authors. The 
human subjects components of this work were performed following approved Rutgers IRB protocol number Pro2022001227. 
Subjects were compensated for their participation. The data were assembled into a data frame that coordinates the time 
stamps and standardizes the time intervals of the observations, and adds variables to allow grouping by date, time, location, 



person, type of person (youth, senior, working age), and environmental condition level.   
This analysis employs some standard data visualization and summarization techniques including time series graphs and 
summary statistics, and statistical tests of significant difference. It innovates in presenting an Exposure Duration Curve 
(EDC) that portrays time series observations as a complementary cumulative probability distribution. Figure 2 illustrates the 
EDC concept, with the vertical axis showing the level of environmental exposure (e.g., air temperature in degrees C, or 
PM2.5 levels in micrograms/m3) and the horizontal axis showing the percent of a time period of interest (such as a 24-hour 
day) that the exposure level is exceeded. Thus, the points on the graph show the percent of the time period during which the 
exposure to an environmental stressor exceeds a specific level. For example, in Figure 2, the heat index on this late summer 
day exceeds 60 degrees F-equivalent (15˚ C) for fully 100% of the 24-hour time period, whereas it exceeds 100 F-equivalent 
(38˚ C) only 14% of the time. Duration curves are widely used in the electric power industry (Booth 1972), especially in 
renewable energy (Chaiamarit and Nuchprayun 2013) and demand-side management studies (Poulin et al 2008), to represent 
load thresholds that must be satisfied at different points in time. Their use has been extended to emissions duration curves 
that relate the timing and duration of energy demand to marginal greenhouse gas emissions (St-Jacques, Bucking and 
O’Brien 2024) and load and flow duration curves for water quality measurement (EPA 2007). This application to heat stress 
and air pollution exposure is novel as far as we can ascertain.  
Metrics that are derivable from an EDC include, following Hondula et al (2021): Mean Individually Experienced Heat Index 
(IEHI) and Maximum IEHI, which are intensity measures; Degree Hours Above a Threshhold (DHAT) and Percentage of 
Hours Above a Threshhold (PHAT), which are frequency and duration measures; and, following Lin et al (2018), Daily 
Exceedance Concentration Hours (DECH), a frequency and duration measure. Users can also derive otther statistical 
measures such as the median, minimum, and range from the EDC.   
 

 

 
Figure 2 Stylized exposure duration curve shown in relation to temporal exposure profile for Heat Index (degrees F). 

RESULTS 

Here, we analyze data gathered from the multiple sensor networks to highlight insights available from comparisons of several 
types. First are contemporaneous interpersonal comparisons, that is, comparisons of EDCs for four community members on 
the same day. Second are asynchronous intrapersonal comparisons that compare EDCs for the same person on two or more 
different days. Third are multi-scale comparisons across several levels of measurement (outdoors, indoors, personal). Only 
thermal comparisons are included due to space constraints. 
 
 



 

Figure 3 Contempraneous interpersonal comparisons of Heat Index EDCs for four community members. 

 

 
Figure 4 Asynchronous intrapersonal comparisons of EDCs for one community member (a Senior). 



 

Figure 5 Comparing EDCs for one community member (a senior) using outdoor, indoor, and personal mobile 
temperature/humidity sensors.  

DISCUSSION 

Figure 3 shows that different people based in the same housing complex on the same date have very different personal 
exposures to summer heat. Representative study participants, designated Researcher, Senior, Youth, and Staff, illustrate the 
range of results for one 24-hour summer day. The Researcher, who works in a mechanically cooled office and lives in a 
mechanically cooled house has the lowest exposure, with <5% of the day spent outdoors. The Senior also spends little time 
outdoors (10%) but their home has a higher cooling setpoint than that of the Researcher. The Youth experiences high but 
steady heat index levels reflecting relatively short trips outdoors while living and going to summer activities in rooms with 
high cooling setpoints. Staff of the housing complex have the most extreme heat exposures due to work tasks outdoors that 
represent much of the working day (>30% of the 24 hours). Figure 4 illustrates that any one person’s heat exposure can vary 
widely by date, as weather conditions and personal activities vary, even within one 3-day period. The person shown is an 
active Senior who gardens every day. Figure 5 shows that personal exposures lie mostly within an envelope established by 
indoor and outdoor conditions at a specific date and location. Outdoor thermal conditions vary substantially, as expected. 
Indoor conditions vary the least, as expected. Personal exposure reflects the relative amounts of time spent indoors and 
outdoors, although this person also visited a colder location (for shopping) that was neither home nor outside. The 
community member shown (a Senior who takes morning walks) spends about 10% of the day outdoors (mostly in early 
morning when it is cooler than indoors and more briefly in the afternoon when outdoors is warmer than indoors).    

This research is limited because it includes only data that are collected in one city for one summer for a small number of 
people. Additionally, the instruments have inherently different levels of accuracy and reliability, which limits their 
comparability. Hence, the paper relies on probabilistic data representations. Future research includes (1) testing the extent to 
which the personal exposure patterns of people cluster in systematic ways such as by occupation, age, income, building type, 
or location; (2) developing a “difference between EDCs” metric to quantify comparisons; and (3) comparing and possibly 
integrating EDCs that represent exposures to heat and air pollution.  



There are several implications of this research for engineering practice: system design and sizing criteria, building energy 
modeling, indoor air quality and ventilation standards, control system logics, public health protection, and occupant behavior 
considerations. An important threshold value for HVAC designers is the Cooling Design Condition that informs equipment 
sizing calculations. ASHRAE (2021, Ch. 14) specifies three threshold values for consideration: 0.4%, 1.0%, and 2.0% annual 
probability of exceedance for the Dry Bulb and Mean Coincident Wet Bulb temperatures. ASHRAE (2021, Ch. 14, Table 1) 
derives these values from long-term hourly weather data spanning the period 1994 to 2019. These thresholds can be 
approximated in Heat Index terms for Elizabeth, NJ, as follows, using methods in Rothfusz (1990) and Miers (1991): 0.4% 
condition is 97 degrees F-equivalent (36˚ C); 1.0% condition is 93 degrees F-equivalent (34˚ C); and the 2.0% condition is 90 
degrees F-equivalent (32˚ C). These design conditions are exceeded in the microclimate data collected during the current 
study. The EDC method can also inform building energy performance modeling by providing an empirical link to modeled 
Unmet Load hours during which systems fail to satisfy comfort conditions ASHRAE (2021, Ch. 19).  

CONCLUSION 

Personal exposure measurement reveals different aspects of the environmental exposure story than do indoor, local, or 
ambient measurements. The differences among them help explain why ambient environmental data often only weakly predict 
human health outcomes.  EDCs, introduced here, provide a succinct way to consider intensity, frequency, and duration of 
environmental exposures. The current application to summer thermal conditions could be generalized to include air pollutant 
exposures (such as O3, PM2.5).  

ACKNOWLEDGMENTS 

The authors thank their Groundwork Elizabeth partners Jackie Park Albaum, John Evangelista, and Jonathan Potter for 
convening study participants and focusing the research on community needs; Housing Authority of the City of Elizabeth 
(HACE) partners Catherine Hart and Michael Buckley for hosting the research activities at their sites; Mayor’s Youth 
Council members, HACE residents and HACE staff for participating in the research; and the National Science Foundation 
(Award 2322062) and U.S. Environmental Protection Agency (Award 96231600) for sponsoring the research.  

REFERENCES 

ASHRAE. 2021. ASHRAE Handbook—Fundamentals. Chapters 9-11, 14, 19. Atlanta: ASHRAE. 
ASHRAE. 2023. ANSI/ASHRAE Standard 55-2023: Thermal Environmental Conditions for Human Occupancy. Atlanta: 

ASHRAE. 
ASHRAE. 2022. ANSI/ASHRAE Standard 62.1-2022: Ventilation and Acceptable Indoor Air Quality. Atlanta: ASHRAE. 
Anderson, G.B. and M.L. Bell. 2011. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect 

Modification by Heat Wave Characteristics in 43 U.S. Communities, Environmental Health Perspectives 119:2 
https://doi.org/10.1289/ehp.1002313 

Berko, J., Ingram, D. D., Saha, S., & J.D. Parker. 2014. Deaths attributed to heat, cold, and other weather events in the United 
States, 2006–2010 (National Health Statistics Reports, Number 76). National Center for Health Statistics. 
www.cdc.gov/nchs/data/nhsr/nhsr076.pdf 

Bernhard, M.C., Kent, S.T., Sloan, M.E., Evans, M.B., McClure, L.A. and J.M. Gohlke. 2015. Measuring personal heat 
exposure in an urban and rural environment, Environmental Research 137: 410-418, 
https://doi.org/10.1016/j.envres.2014.11.002. 

Booth, R.R. 1972. Power System Simulation Model Based on Probability Analysis, IEEE Transactions on Power Apparatus 
and Systems PAS-91(1): 62-69, January, doi: 10.1109/TPAS.1972.293291 

Centers for Disease Control and Prevention (CDC), U.S. 2024. Heat & Health Tracker portal. Accessed on August 21, 2024 
at https://ephtracking.cdc.gov/Applications/heatTracker/.   

Chaiamarit, K. and S. Nuchprayoon. 2013. Modeling of renewable energy resources for generation reliability evaluation, 
Renewable and Sustainable Energy Reviews 26:34-41. https://doi.org/10.1016/j.rser.2013.05.052 

Cheval, S., Amihăesei, V-A., Chitu, Z., Dumitrescu, A., Falcescu, V., Irașoc, A., Micu, D.M., Mihulet, E., Ontel, I., 
Paraschiv, M-G., and N.C. Tudose. 2024. A systematic review of urban heat island and heat waves research (1991–
2022), Climate Risk Management 44:100603, https://doi.org/10.1016/j.crm.2024.100603. 

https://ephtracking.cdc.gov/Applications/heatTracker/


Ejike C, Wang L, Liu M, Wang W, Morishita M, Bard RL, Huang W, Harkema J, Rajagopalan S, and RD Brook. 2017. 
Personal-level exposure to environmental temperature is a superior predictor of endothelial-dependent vasodilatation 
than outdoor-ambient level. J Am Soc Hypertens. 2017 Nov;11(11):746-753.e1. doi: 10.1016/j.jash.2017.09.006.  

Environmental Protection Agency (EPA), U.S. 2024a. How are the map contours made? AirNow Knowledge Base article 
KB0010333. https://usepa.servicenowservices.com/airnow/en/how-are-the-map-contours-made-what-interpolation-
method-is-used?id=kb_article_view&sysparm_article=KB0010333 

Environmental Protection Agency (EPA), U.S. 2024b. AirNow portal, data for Elizabeth, NJ. Accessed on August 21, 2024 
at https://www.airnow.gov/?city=Elizabeth&state=NJ&country=USA.  

Environmental Protection Agency (EPA), U.S., Watershed branch, Office of Wetlands, Oceans and Watersheds. 2007. An 
Approach for Using Load Duration Curves in the Development of TMDLs, EPA 841-B-07-006, August 2007, 68 pp.   

Harlan, S.L., Declet-Barreto, J.H., Stefanov, W.L. and D.B. Petitti. 2013. Neighborhood Effects on Heat Deaths: Social and 
Environmental Predictors of Vulnerability in Maricopa County, Arizona, Environmental Health Perspectives 121:2 CID: 
https://doi.org/10.1289/ehp.1104625 

Hass, A.L., and K.N. Ellis. 2019. Using wearable sensors to assess how a heatwave affects individual heat exposure, 
perceptions, and adaption methods. Int J Biometeorol 63: 1585–1595. https://doi.org/10.1007/s00484-019-01770-6 

Hayden, M.H., P.J. Schramm, C.B. Beard, J.E. Bell, A.S. Bernstein, A. Bieniek-Tobasco, N. Cooley, M. Diuk-Wasser, 
Michael K. Dorsey, K.L. Ebi, K.C. Ernst, M.E. Gorris, P.D. Howe, A.S. Khan, C. Lefthand-Begay, J. Maldonado, S. 
Saha, F. Shafiei, A. Vaidyanathan, and O.V. Wilhelmi, 2023: Ch. 15. Human health. In: Fifth National Climate 
Assessment. Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, and T.K. Maycock, Eds. U.S. 
Global Change Research Program, Washington, DC, USA. https://doi.org/10.7930/NCA5.2023.CH15 

Hondula, D.M., Kuras, E.R., Betzel, S., Drake, L., Eneboe, J., Kaml, M., Munoz, M., Sevig, M., Singh, M., Ruddell, B.L., 
and S.L. Harlan. 2021. Novel metrics for relating personal heat exposure to social risk factors and outdoor ambient 
temperature, Environment International, 146: 106271, https://doi.org/10.1016/j.envint.2020.106271. 

Kim, S.W. and R.D. Brown. 2021. Urban heat island (UHI) variations within a city boundary: A systematic literature review, 
Renewable and Sustainable Energy Reviews 148: 111256, https://doi.org/10.1016/j.rser.2021.111256. 

Lin, H., Wang, X., Qian, Z., Guo, S., Yao, Z., Vaughn, M.G., Dong, G., Liu, T., Xiao, J., Li, X., Zeng, W., Xu, Y., and W. 
Ma. 2018. Daily exceedance concentration hours: A novel indicator to measure acute cardiovascular effects of PM2.5 in 
six Chinese subtropical cities, Environment International, 111:117-123, https://doi.org/10.1016/j.envint.2017.11.022. 

Maji, S., Ahmed, S., Kaur-Sidhu, M., Mor, S. and K. Ravindra. 2023. Health Risks of Major Air Pollutants, their Drivers and 
Mitigation Strategies: A Review, Air, Soil and Water Research 16. https://doi.org/10.1177/1178622123115 

Morawska, L., Zhu, T., Liu, N., Torkmahalleh, M.A., de Fatima Andrade, M., Barratt, B., Broomandi, P., Buonanno, G., 
Ceron, L.C.B., Chen, J., Cheng, Y., Evans, G., Gavidia, M., Guo, H., Hanigan, I., Hu, M., Jeong, C.H., Kelly, F., 
Gallardo, L., Kumar, P., Lyu, X., Mullins, B.J., Nordstrøm, C., Pereira, G., Querol, X., Roa, N.Y.R., Russell, A., 
Thompson, H., Wang, H., Wang, L., Wang, T., Wierzbicka, A., Xue, T. and C. Ye. 2021. The state of science on severe 
air pollution episodes: Quantitative and qualitative analysis, Environment International 156:106732, 
https://doi.org/10.1016/j.envint.2021.106732. 

Miers, B.T. 1991. On the Interrelation of Temperature, Pressure, Air Density, and Humidity. Report ASL-TR-0300. U.S 
Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM. Accessed on August 29, 2024 at 
https://apps.dtic.mil/sti/pdfs/ADA242356.pdf. Online calculator at https://www.1728.org/relhum.htm.   

National Weather Service (NWS), U.S. 2024. Weather observations for Newark International Airport. Accessed on August 
21, 2024 at https://forecast.weather.gov/data/obhistory/KEWR.html. 

Özkaynak, H., Baxter, L., Dionisio, K. et al. 2013. Air pollution exposure prediction approaches used in air pollution 
epidemiology studies. J Expo Sci Environ Epidemiol 23, 566–572. https://doi.org/10.1038/jes.2013.15 

Poulin, A., Dostie, M., Fournier, M. and S. Sansregret. 2008. Load duration curve: A tool for technico-economic analysis of 
energy solutions, Energy and Buildings 40(1):29-35. https://doi.org/10.1016/j.enbuild.2007.01.020. 

Rothfusz, L.P. 1990. The Heat Index “Equation.” Technical attachment SR 90-23, National Weather Service, Fort Worth TX.  
Runkle, J.D., Cui, C., Fuhrmann, C., Stevens, S., Del Pinal, J., and M.M. Sugg. 2019. Evaluation of wearable sensors for 

physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern U.S., Environment 
International, 129:229-238, https://doi.org/10.1016/j.envint.2019.05.026. 

Tian, Y., Duan, M., Cui, X., Zhao, Q., Tian, S., Lin, Y., and W. Wang. 2023. Advancing application of satellite remote 
sensing technologies for linking atmospheric and built environment to health. Frontiers in Public Health 11:1270033. 
https://doi.org/10.3389/fpubh.2023.1270033 

 

https://www.airnow.gov/?city=Elizabeth&state=NJ&country=USA
https://apps.dtic.mil/sti/pdfs/ADA242356.pdf
https://www.1728.org/relhum.htm
https://forecast.weather.gov/data/obhistory/KEWR.html

