2303.17708v4 [cs.SE] 2 Sep 2024

arxiv

Interoperability in Deep Learning: A User Survey and Failure
Analysis of ONNX Model Converters

Purvish Jajal
Purdue University
West Lafayette, USA

Wenxin Jiang
Purdue University
West Lafayette, USA

Arav Tewari
Purdue University
West Lafayette, USA

pjajal@purdue.edu jlang784@purdue.edu tewari6@purdue.edu
Erik Kocinare Joseph Woo Anusha Sarraf
Purdue University Purdue University Purdue University

West Lafayette, USA West Lafayette, USA West Lafayette, USA

ekocinar@purdue.edu

Yung-Hsiang Lu

Purdue University

woo56@purdue.edu

George K. Thiruvathukal
Loyola University Chicago

asarraf@purdue.edu

James C. Davis
Purdue University

West Lafayette, USA Chicago, USA West Lafayette, USA
yunglu@purdue.edu gkt@cs.luc.edu davisjam@purdue.edu
Abstract Keywords

Software engineers develop, fine-tune, and deploy deep learning (DL)
models using a variety of development frameworks and runtime en-
vironments. DL model converters move models between frameworks
and to runtime environments. Conversion errors compromise model
quality and disrupt deployment. However, the failure characteristics
of DL model converters are unknown, adding risk when using DL
interoperability technologies.

This paper analyzes failures in DL model converters. We survey
software engineers about DL interoperability tools, use cases, and
pain points (N=92). Then, we characterize failures in model convert-
ers associated with the main interoperability tool, ONNX (N=200
issues in PyTorch and TensorFlow). Finally, we formulate and test
two hypotheses about structural causes for the failures we studied.
We find that the node conversion stage of a model converter accounts
for ~75% of the defects, and that 33% of reported failure are related
to semantically incorrect models. The cause of semantically incor-
rect models is elusive, but models with behaviour inconsistencies
share operator sequences. Our results motivate future research on
making DL interoperability software simpler to maintain, extend,
and validate. Research into behavioural tolerances and architectural
coverage metrics could be fruitful.

CCS Concepts

« General and reference — Empirical studies; - Computing
methodologies — Machine learning; - Software and its engi-
neering — Software verification and validation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680374

ONNX, Machine learning, Deep neural networks, Interoperabilty,
Empirical software engineering, Failure analysis, User survey

ACM Reference Format:

Purvish Jajal, Wenxin Jiang, Arav Tewari, Erik Kocinare, Joseph Woo, Anusha
Sarraf, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2024.
Interoperability in Deep Learning: A User Survey and Failure Analysis
of ONNX Model Converters. In Proceedings of the 33rd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA °24), Sep-
tember 16—20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3650212.3680374

1 Introduction

Deep Learning (DL) achieves state-of-the-art performance in many
domains [27, 38]. Software engineers engage in many activities for
deep learning, including developing, re-using, fine-tuning, and de-
ploying DL models [4, 30, 33, 34]. They use tools at each stage: DL
frameworks for development (e.g., PyTorch [56]); DL model registries
for re-use (e.g., HuggingFace [18]), and DL compilers for deployment
platforms (e.g., TVM [11]). Preferably, these tools would be interop-
erable, so that DL models can move seamlessly from one to another.
Model conversion errors disrupt engineering workflows or compro-
mise the resulting models [55]. High-quality model converters are
crucial to the deep learning ecosystem.

Researchers have characterized failures in most of the DL ecosys-
tem, but not in model converters. As depicted in Figure 1, previous
works have considered DL development frameworks [32, 45, 46, 58,
65] and DL deployment compilers and runtimes [29, 63]. In con-
trast, prior research on DL model converters is limited to measuring
conversions of 5 DL models [55]. We lack systematic knowledge of
failure symptoms, causes, and patterns in DL model converters.

In this work, we analyze failures of DL model converters. We first
survey software engineers (N=92), focusing on their experiences
with DL interoperability tools, their use cases, and failure modes
encountered. Then we analyze failures in DL model converters to the
ONNXIR (Open Neural Network eXchange’s Intermediate Represen-
tation), the most prominent interoperability target for DL models. We

https://orcid.org/0000-0002-1199-6363
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0002-1512-858X
https://orcid.org/0009-0007-9151-5008
https://orcid.org/0009-0006-7686-4157
https://orcid.org/0009-0000-1384-1990
https://orcid.org/0000-0002-5491-7661
https://orcid.org/0000-0002-0452-5571
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3650212.3680374
https://doi.org/10.1145/3650212.3680374

ISSTA 24, September 16-20, 2024, Vienna, Austria

Model Conversion
(focus of our study)

Model Development
(focus of previous works)

Frameworks Common
i Converters Intermediary
O PyTorch @_,

ONNX

/| ma by <he ONNX =

VA RUNTIME L

Hardware

DL Compilers

Model Compilation (focus of previous works)

Figure 1: Paths from model development to deployment
on hardware. Model interoperability facilitates reuse across
frameworks and deployment environments [15]. (A) repre-
sents model conversion to a common intermediary. (B) repre-
sents compilation. (C) represents model deployment.(D) repre-
sents model conversion to a framework.

sample 200 closed GitHub issues (100 per converter) and determine
failure symptoms, causes, and locations. Finally, we examine two
possible root causes of model converter failures, testing hypotheses
about specification updates and model types.

Our survey results show that ONNX is the most popular inter-
operability tool. It is primarily utilized for model deployment and
framework conversion, with crashes and performance degradation
being the most reported problems. Our failure analysis found that:
common symptoms are crashes and incorrect model behaviors; com-
mon causes are incompatibility and type problems; and these issues
tend to occur in a converter’s graph translation and graph opti-
mization components. Most results were consistent between both
systems examined as well as with prior studies. Finally, in our root-
cause examination of why converters fail, we describe some model
characteristics that are correlated with converter failures.

Our contributions are:

e We survey 92 engineers and report common interoperability
tools, use-cases, and pain point (§4).

e We analyze failures in two DL model converters: PyTorch and
TensorFlow into ONNX. We taxonomize and measure the dis-
tribution of failure symptoms, causes, and locations (§5).

e We find that defective converter behavior is correlated with un-
usual models, but not with changes in the ONNX specification
nor with the use of individual model layers or sequences (§6).

Significance for software engineering: DL interoperability tools,
especially model converters, underpin many deployment pipelines.
We conducted the first systematic study of DL interoperability tools
and model converters through a user survey and failure analysis.
Understanding how and why these tools fail will help software en-
gineers make informed judgments about their robustness.

2 Background and Related Work

Here we define DL model converters via the concept of interoperabil-
ity, and discuss prior failure studies of DL ecosystem components.

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

Table 1: Stages of a DL model converter to the ONNX in-
termediate representation, based on torch.onnx, tf2onnx, and
mxnet . onnx.

Component Definition

Load Model

Framework representation — ONNX graph. Tracing used
for dynamic graphs (e.g., PyTorch).

Node conversion Graph nodes replaced by ONNX equivalents.
Optimization Nodes (e.g., operator fusion), dataflows (e.g., DCE).
Export Model serialized into protocol buffer (protobuf).

Validate Syntactic checks (compliance with spec) and semantic
checks (behavioral changes).

€)onnx

O PyTorch

input-tensor
depth:0 | (50 50)

e input: (50, 50)

depth:1 output: | 2x (50, 1)

VRN

output-tensor
(50, 1) I depth:0

ReduceMax

ArgMax

output-tensor
lepth:0

(50, 1)

Figure 2: PyTorch model converted to ONNX Intermediate
Representation. The PyTorch model calculates the per-row
maximum using torch.max. In ONNX, this uses the operators
ArgMax plus ReduceMax.

2.1 DL Model Conversion as Interoperability

In the context of DL, interoperability focuses on model reuse and
is defined as the ability of DL software to exchange DL models (i.e.,
deep neural networks/DNNs) [44]. Wegner describes two patterns
for interoperability: creating pairwise mappings between systems;
and introducing a common intermediary understood by all partici-
pants [69]. These patterns are illustrated in Figure 1 in the context
of DL. The two patterns trade-off customizability for scalability.

Two kinds of DL systems interoperate on DL models: frameworks
for DL model development, and runtimes for DL model deployment.
In the downward path of Figure 1, pairwise mappings occur in DL
compilers such as TVM [11], which map from framework represen-
tations into internal compiler representations for each supported
framework. Along the rightward path, common intermediaries such
as ONNX [1] and MMDnn [44] give standard representations for DL
models. In this pattern, each framework and runtime has a one- or
two-way adapter to the common intermediary.

DL Model Converters: Model converters fill a purpose similar to
compiler front-ends [42]. They transform a model from a DL frame-
work into a high-level IR representing the model’s computations and
control flow. Graph-level optimizations are applied before further
conversion to a low-level IR for hardware optimization and code
generation. Table 1 summarizes a typical design.

Figure 2 illustrates a model converted from PyTorch to ONNX.
Conversion is challenging, as noted by AirBus [25, 54] and oth-
ers [13], because it maps between graphs expressed with different
operators and different semantics. Model conversion can produce
models that are incompatible with runtimes or have different be-
haviours. For a compatibility issue, in PyTorch #78721 a converted

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

ONNX model had a type mismatch [66]. For a behavioral issue, in
PyTorch #74732 a converted ONNX model’s prediction changed [73].

After conversion to an IR, models can be rendered back to DL
frameworks or deployed to hardware. Framework-to-framework
conversion can bypass issues in model reengineering [33]. Deploy-
ment from an IR allows DL runtimes to optimize against the IR rather
than the many DL frameworks.

2.2 Failure Studies of DL Components

Software engineering failures inform development and maintenance 5,
6, 57]. Previous failure analyses of DL interoperability software fo-
cused on the “Development” and “Runtime” components of Figure 1.
Chen et al. studied 800 defects from 4 DL frameworks to obtain
testing guidelines [45]. Shen et al. studied DL compiler defects [63],
and others have tested DL compilers [43, 72]. Some of this work has
incidentally examined interoperability failures [43, 52]; for example,
Shen et al.’s study of DL compilers included “front ends” offering
interoperability through pairwise (DL framework specific) and com-
mon intermediary (ONNX) model loaders [63];

The two prior failure studies of DL model converters focused
on testing and fault localization. Openja et al. converted 5 popular
DL models [55]. They considered only the current state of model
converters, not past failures. Louloudakis et al. studied behavioral is-
sues resulting from framework-to-framework conversion [47]. They
found failures in 10 out of 36 conversions. They created a fault lo-
calization and repair pipeline to localize and fix discrepancies [48].

In light of this literature, the main contribution of our work is
the first systematic analysis of failures in DL model converters. As
a conceptual contribution, we frame DL model converters as a class
of interoperability software. We consider how and why they fail.

3 Research Questions & Study Design
Figure 3 shows our RQs (§3.1) and study design (§3.2), detailed next.

3.1 Research Questions

We summarize the related work in §2 as follows: The DL ecosystem is
growing more complex (§2.1), motivating a shift to common interme-
diaries such as ONNX. Analyzing failures in this emerging pattern
will inform ecosystem participants of risks and opportunities for
improvement. Prior work examined failures in DL frameworks and
runtimes, but has paid little attention to interoperability (§2.2).

Interoperability
Study (RQ1)
Survey Participants: 92
Failure Modes

‘ Interop. Tools ‘ Use Cases

Which tool to study?
|~ Does real failures match?
What scenario to study? ~ What failure to measure?

v
Failure Analysis (RQ2) Hypothesis Testing (RQ3 - RQ4)
Symptoms, causes, locations Opset, model type

torch.onnx tf2onnx
L f‘\ # failures

°y # failures
100/242 sampled

% #Real models: 1,605

100/327 sampled)(# Synthetic models: 3,544

Figure 3: Goal, research questions, methods, and data sources.

ISSTA 24, September 16-20, 2024, Vienna, Austria

Our study fills this knowledge gap by analyzing failures in DL
interoperability software. We specifically focus on ONNX, the lead-
ing DL interoperability framework. Our research proceeds in three
themes: (1) why and how engineers use interoperability tools; (2) a
failure analysis of the most popular interoperability tool; and (3) eval-
uating hypotheses about the root causes of failures.

Theme 1: Interoperability User Survey (§4)

RQ1 How and why do engineers use interoperability tools?
Theme 2: Failure Analysis (§5)

RQ2 What are the failure characteristics in DL interoperability

software — symptoms, causes, and locations?

Theme 3: Hypotheses on ONNX Failure Causes (§6)

RQ3 Does ONNX evolution affect converter failure rates?

RQ4 Do model types affect converter failure rates?

3.2 Study Design

Figure 3 relates research questions to methods. For RQ1 we use a user
survey (§4). The survey results inform the remainder of the work.
ForRQ2 (§5) and RQ3-4 (§6) we apply methods from mining software
repositories and software testing. We analyze GitHub issues (RQ2),
correlate issue frequency to ONNX versions (RQ3), and evaluate
ONNX on a range of model types (RQ4).

4 Theme 1: Interoperability Study

To understand the use of DL interoperability, we surveyed DL prac-
titioners on DL development and deployment practices. We selected
the survey methodology to gather insights across diverse practices
and experiences [16]. Our method is given in §4.1, results in §4.2.

4.1 Methodology

4.1.1 Instrument Design. We followed Kitchenham & Pfleeger’s
guidelines to develop our survey instrument [39]. Table 2 illustrates
the result. We asked general questions about DL interoperability,
and specific questions about ONNX (interview data [62] and GitHub
suggest it is most popular). We removed some demographic ques-
tions after the pilot study (e.g., ML/SE expertise, organization types)
to reduce survey time in order to increase response rates, as is rec-
ommended by survey guidelines such as [26]. The pruning removed
both demographic and technical questions, and reduced the survey
time from 15-20 minutes (with which we had a 1% response rate from
130 initial invitations) to 5-8 minutes (yielding a 4% response rate
from subsequent invitations). We made sure that we did not prune
too far, so that the collected demographic data (reported in Table
3) is consistent with prior empirical software engineering works
such as [17, 34, 51]. We iterated internally, piloting with 3 external
participants to check instrument clarity.

We sent the survey out in batches to allow for iteration. We ex-
amined the results halfway to determine whether the instrument
aligned with a larger sample of users’ behavior. We observed an
unexpectedly high incidence of one use case, and so in the second
half we added an open-ended question to clarify this use case.

4.1.2 Population and Sampling. With approval from our Institu-
tional Review Board (IRB), survey respondents were recruited from
Hugging Face users. The Hugging Face ecosystem is the primary
location for deep neural network-based model development and re-
use [34, 36], so its users are a suitable population for questions about

ISSTA 24, September 16-20, 2024, Vienna, Austria

Table 2: Survey excerpt. *“Shown to second half of participants.

Topic Example questions

Demographics (1) How long have you worked on ML/DL projects? (2)
What deployment environments are targeted?

Interoperability (1) What do you consider when choosing between de-

tool usage ploying from a DL framework vs. via a tool like ONNX?
(2) Do you use ONNX as part of your model develop-
ment and deployment process?

Use cases (1) For what purpose do you use interoperability tools?

(2*) If you use ONNX for framework-to-framework
conversion, please describe your use case further?

(1) Do you commonly encounter problems while work-
ing with ONNX models? (2) If you encounter such
problems, how do you address them?

Failure modes
(ONNX-
specific)

DL interoperability tools. To increase the likelihood of responses
from experienced software engineers, we collected email addresses
from users with PRO accounts (i.e., paid), and from accounts in orga-
nizations marked as company, community, and non-profit (excluding
types such as education). Participants received $10 gift cards.

We targeted a confidence level of 90% with a 10% margin of er-
ror. With an estimated Hugging Face user population of 1.2 mil-
lion [22, 24], a sample size of 69 respondents was needed. We sent
out surveys in batches until reaching our desired sample size. In total,
we distributed our survey to 228 PRO users and 1,985 organization
members. We received a total of 92 valid responses (4% response
rate). All questions were optional to improve the response rate, so
we do not have responses from all subjects on all questions.

Table 3 shows respondent demographic information.

Table 3: Participant demographics (N=92 but 3 skipped this).

Kind Distribution of Responses
<1yr.(8);1-2yr.(17);3-5yr. (32) ; >5 yr. (32)
<1yr. (4);1-2yr. (12);3-5 yr. (20) ; >5 yr. (53)

ML experience

SE experience

Org. size Small, < 50 employees (48) ; Medium, < 250 employ-
ees (17) ; Large, > 250 employees (24)

Deployment Web application (59) ; Cloud and data center (52) ; Desk-

environment top application (19) ; Mobile (14) ; IoT/embedded sys-

tems (14) ; Other (4)

4.1.3 Analysis. Most questions were closed-ended (multiple-choice,
checkbox). Qualitative analysis was needed for 3 open-ended ques-
tions, about use cases, model deployments, and interoperability
problems. Two authors reviewed the data and agreed that the re-
sponses to these questions were short and did not involve much
subjectivity. Therefore, all data were analyzed by one author.

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

4.2 RQ1:Engineers and Interoperability Tools

Finding 1. ONNX is the most popular interoperability tool, used
by approximately 42% of respondents. Meanwhile, 41% of respon-
dents do not use interoperability tools.

Finding 2. Model deployment and framework-to-framework
conversion are the primary use cases for interoperability tools,
both used by over half of the interoperability-using respondents.
Finding 3. Many respondents (59%) encounter ONNX problems.
Crashes and performance differences are the most common fail-
ure modes. Each was encountered by ~35% of respondents.

4.2.1 Interoperability Tool Usage. The majority of respondents uti-
lized the PyTorch or TensorFlow frameworks for model development.
Most of the respondents utilized PyTorch (89%). TensorFlow is the
second most used framework (37%). JAX, MLX, and other frame-
works made up 20% responses. The data show that the respondents
often use multiple frameworks or have moved from one framework
to another (e.g., moving from TensorFlow to PyTorch), perhaps mo-
tivating their use of interoperability tools.

Approximately 42% (39/92) of respondents reported using ONNX.
Only 15 respondents used other interoperability tools suchas MMdnn
and NNEF. The rest (41%) do not use interoperability tools. In our
survey, although we did not gather extensive data on participants’
specific roles, insights from their deployment considerations sug-
gest they are primarily model developers. They either lack model
deployment responsibilities or deploy the models directly.

4.2.2 Use Cases. Interoperability tools are used equally to inter-
operate between frameworks and to deploy models. 69% (37/54) of
respondents report using model conversion for deployment of DL
models. Whereas 52% (28/54) of respondents report using framework-
to-framework conversion (e.g., PyTorch to TensorFlow).

For the respondents who use interoperability tools for framework-
to-framework conversion, most of them use the tools to “integrate
the models in non-Python code”. For example, one respondent wants
to “interact with the base CUDA system”. Another respondent “exports
[pre-trained models] to ONNX for import into Axon, an Elixir/Nx based
DL framework that often [lacks] native pre-trained models”.

Table 4 presents the deployment considerations of practitioners
when using interoperability tools. Many practitioners report deploy-
ing directly from frameworks when they want easy deployment or
expect to update models often. The broader organization’s practices
may play arole: “ifT have control over the entire training to deployment
pipeline, it is easier to use PyTorch exports”.

Table 4: Induced themes for model deployment consideration
when using interoperability tools, such as ONNX. Based on
code-able responses from 32 participants.

Theme # Participants (%)
Simplicity 8/32(25%)
Deployment requirements 7/32(22%)
Inference speed 5/32(16%)
Portability 5/32(16%)
Other (e.g., maintenance, stability) 2/32(6%)
Deploy directly from the DL frameworks 13/32(35%)

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

Interoperability tools are preferred when respondents care about
performance gains, portability, language compatibility, or if they
require exotic configurations. Examples were: “[PyTorch in browser
is] too big”, and “[ONNX offers] portability over performance”.

4.2.3 Failure Modes. We ask practitioners about their experiences
using ONNX. 59% (32/54) of practitioners report encountering prob-
lems when using ONNX, while 41% (22/54) report that they do not
commonly encounter problems with ONNX models. Crashes (19/32,
59%) and performance differences (19/32, 59%) are the most promi-
nent. Often models do not convert, or there are performance differ-
ences between the original and converted models. There are also
some other problems (6/32, 19%) mentioned by the respondents. Ex-
amples included “ONNX doesn’t support Fourier layers” and “driver
problems during...deployment on user machines”.

Table 5 presents practitioners’ strategies for resolving issues with
the ONNX converter. Many (44%) turn to community resources, in-
cluding GitHub issues and Stack Overflow posts, for help. One-third
(31%) verify the conversion process through testing, while 19% ex-
plore solutions by changing ONNX versions. Some had experienced
no good solution, resolving ONNX issues “case-by-case”.

Table 5: Induced themes for strategies to address ONNX issues.
Based on code-able responses from 16 participants.

Theme # Participants (%)
Seeking help from the community 7/16 (44%)
Test with executions 5/16(31%
Version changes 3/16(19%

Other (i.e., documentation, config) 3/16(19%)

5 Theme 2: Failure Analysis (of ONNX)

The second theme of this work is a failure analysis of deep learning
interoperability software, specifically, deep learning model convert-
ers. We apply the method of Failure Analysis [5, 6, 40, 57], which
characterizes and reports the distributions of past failures to revise
engineering methodologies and prioritize research targets.

Many model converters have been proposed, but our survey data
show which converters are of practical interest (§4.2.1): those for
the ONNX framework (~half of respondents use it); and specifically
those associated with the PyTorch and TensorFlow model develop-
ment frameworks (the two most common).

About ONNX: The ONNX (Open Neural Network eXchange) spec-
ification provides a common representation that DL frameworks
and runtimes use to represent DL models [53]. The ONNX specifica-
tion has three main components: (1) A definition of a computational
graph; (2) definitions of standard data types; and (3) definitions
of built-in operators such as ArgMax [53]. The ONNX specification
changes regularly to keep up with DL framework evolution [64].
These changes consist of adding new types and operators, and updat-
ing the behavior of existing operators. These changes are versioned
within operator sets. As of 2023 there have been 18 operator sets,
totaling 149 additions and 217 updates to the available operators.

5.1 Methodology

5.1.1 Data Selection. Figure 4 depicts our data selection method.
We describe the five main stages and rationales next.

ISSTA 24, September 16-20, 2024, Vienna, Austria

Filters
torch.onnx is: closed && is: issue & tf2onnx
N Is:.clqsed && (label: "pending on user v
is: issue response") &&
|(label: "question") 792 issues

1,118 issues
X

; |
label: "module:
onnx"
959 649
closed issues closed issues
l Commit/PR Filters
Closed with commit ID &&
References commit ID && Sampl
< !’, }a_mm‘ !’,4— PR from same repository is > !V_E) !'

e e 242 failures 100 failures
PR is linked to issue

'

100 failures 327 failures

Figure 4: Filtering of issues for each repository studied. Filters
are using GitHub search predicates. Commit/PR filters are
applied to issue timeline events. Data were collected on Jan. 6,
2023. 100 issues per repository were analyzed.

Table 6: Popularity and data availability of ONNX convert-
ers. Framework—ONNX converters (top) have notably more
activity than ONNX—Framework converters (bottom). *:
torch.onnx is a component in the PyTorch repository, so stars
are skewed. PyTorch issues are filtered for those in the con-
verter. Data from April 11, 2024. Parenthesized numbers are
issues at time of data collection (July 7, 2023).

Project Input Stars Forks Closed Issues
torch.onnx PyTorch, Caffe2 *77,429 20,938 1,286 (959)
tf2onnx TensorFlow, Keras 2,200 425 848 (792)
Paddle20ONNX PaddlePaddle 637 145 192
sklearn-onnx Sci-kit Learn 506 94 328
onnx2torch ONNX 370 35 32
onnx-tf ONNX 291 25 129
onnx-coreml ONNX 385 79 archived

(1) Repositories: For the reasons noted above, we studied the DL
model converters from PyTorch and TensorFlow into the ONNX IR
(torch.onnx and tf2onnx, respectively). We note that among ONNX
model converters, those for PyTorch and TensorFlow have the most
failure data available on GitHub (Table 6).

Using the PyTorch and TensorFlow converters covers two rele-
vant differences within DL and interoperability. Within DL, these
converters include both common representations of computational
graphs: static (TensorFlow) and dynamic (PyTorch) [8, 31]. Within
interoperability, these converters include both kinds of converter
owners. Converters are naturally owned either by the upstream
producer of the data or the downstream consumer of the data. In
our case, torch.onnx gives an example of upstream ownership (it is
owned by the PyTorch engineers), while tf2onnx gives an example
of downstream ownership (it is owned by the ONNX engineers).

(2) Filters for Relevance: We follow prior work [10, 23, 61], and
study closed issues because these issues typically contain greater
information about failure causes and symptoms. For each repository,
we collected closed GitHub issues related to ONNX conversion. For
torch.onnx, the PyTorch repository marks ONNX converter issues
with the label module: onnx. We collect all closed issues with this
label, yielding the search filter: is:issue label: “module: onnx” is:closed.
For tf2onnx, all issues are relevant. We remove issues labeled “pend-
ing onuser response” and “question” because these issues may not be

ISSTA 24, September 16-20, 2024, Vienna, Austria

failures. This yields in 959 issues in torch.onnx (from 20,782 issues,
not all ONNX-related) and 649 issues in tf2onnx (from 792 issues).

(3) Filters for Data Availability: Following prior work [23, 32],
we subsequently filtered for GitHub issues that contained enough
information for failure analysis. We filter issues for sufficient infor-
mation (e.g., the issue is resolved with a commit and pull request).
This filtering is conducted upon the timeline events for each GitHub
issue and the filtering criteria are given in Figure 4. This filter yields
327 issues in torch.onnx and 242 issues in tf2onnx.

(4) Filter Validation: We piloted filters to ensure they captured
relevant issues (recall) but not irrelevant issues (precision). We hand-
labelled 50 issues per repository prior to filtering, applied the filter,
and measured recall and precision. If recall and precision > 0.8 we
consider our filter to acceptably balance manual work against bias.
For torch.onnx, we measured recall of 0.81 and precision of 0.94. For
tf2onnx, we measured recall of 0.82 and precision of 0.93.

(5) Sampling: Given the similar number of issues after filtering (Fig-
ure 4), we randomly sampled and analyzed 100 issues per repository,
or roughly one-third of relevant issues. This quantity is comparable
to the proportion (~44%) analyzed in prior work [63].

5.1.2 Data Analysis. We describe converter failures in 3 dimensions:
location, symptoms, and causes.

Location: We map failures to the converter stages in Table 1: Load
Model, Node Convert, Optimization, Export, and Validate.

Symptoms & Causes: We adapted taxonomies from Shen et al. [63],
the closest related work, as discussed in §2.2. Conceptually, we chose
to reuse deep learning compiler taxonomies due to the expected
similarity between compiler front-ends and converters. This choice
also follows the recent advice of Amusuo et al., who called for greater
reuse of taxonomies in failure analysis research, where feasible [5].
To assess whether the taxonomies are applicable to converters, we tri-
aled the taxonomies on a sample of 30 randomly chosen issues from
each repository. Two researchers classified symptoms and causes.
Computing inter-rater reliability via the Kappa coefficient [12], we
found k=0.90 (causes) and k=0.95 (symptoms), ie., “strong agree-
ment” [49] for both taxonomies.

The taxonomy we used for symptoms is: crash, wrong model, bad
performance, build failure, and unknown/other. In a crash, conver-
sion errors out. A wrong model is syntactically sound but semanti-
cally incorrect. Bad performance indicates unexpectedly high time
or memory cost, e.g., worse than on a previous version. Build failure
means the user could not install the converter.

The taxonomy of failure causes is more complex — see Table 7.

Interrater Agreement: In our pilot study of applying Shen et al.’s
taxonomies, we observed strong agreement between raters. There-
fore, we relied on a single rating (one rater analyzing all issues) of
the 200 sampled issues. To assess the risk of taxonomic drift [70], a
second rater analyzed one tranche of randomly selected failures. In
those 20 samples, the two raters had perfect agreement/x=1.0. We
conclude the single-rater analysis was sound.

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

Table 7: Taxonomy of failure causes, adapted from [63], with
concise definitions. Italics and Strikeout indicate changed or
deleted wording, respectively. Bold indicates additions.

Cause Definition

API compatib. issues in model converters.
Compatibility issues with third-party li-
braries (e.g., ONNX, TensorFlow).

Issues related to atomic DL operators in
model conversion.

Issues related to the types of tensors.

Issues with types of conventional variables
in software systems.

Input/output tensor shape issues.

Issues in model converter optimizations.
Issues tracing dynamic models in computa-
tional graphs.
Buye: toide DL mpiler
Bugs e DLcompileropti n
Test errors, incl. flaky or missing tests.

Incompatibility - Internal
Incompatibility - External

Type Problem - Node

Type Problem - Tensor
Type Problem - Conventional

Fenser Shape Problem
Alg. Error - Optimization Error
Alg. Error - Tracing Issue

Tes-ting

5.2 RQ2: The Characteristics of Failures

Finding 4. Location: Most failures are in Node Conversion (74%).
Finding 5. Symptom: The most common symptoms in DL model
converters are Crash (56%) and Wrong Model (33%).

Finding 6. Causes: Crashes are largely due to Incompatibilities
and Type Problems. Wrong models are largely due to Type Problems
and Algorithmic Errors.

5.2.1 Failure Locations. tf2onnx and torch.onnx have similar failure
location distributions (Table 8). The most common location of failures
is the Node Conversion stage: 148/200 failures occur in this stage,
with a similar proportion in tf2onnx (70%) and torch.onnx (78%). The
Graph Optimization stage is the second most common location of
failures, with 19 in total. The distribution of failures in this stage
differs between converters, with ~3x more in tf2onnx.

Table 8: Failure locations (cf. Table 1). The majority of failures
occur during Node Conversion in each ONNX converter.

Location | TF PT || Total
Load Model 5 6 11(6%)
Node Conversion 70 78 || 148(74%)
(Graph) Optimization | 14 5 19 (10%)
Export (Protobuf) 1 0 1(1%)
Validation 0 3 3(2%)
(Not Distinguishable) 10 8 18 (9%)
Total | 100 100 || 200(100%)

5.2.2 Failure Symptoms. The distributions of symptoms for both
tf2onnx and PyTorch are similar — see Table 9. The most common
failure symptoms are Crash and Wrong Model, comprising >85% of
failures in each converter. The Bad Performance and Build Failure
make up around 5% of failure symptoms.

Our results show the similarity of the failure symptom distribu-
tion between DL model converters (our work) and DL compilers
(Shen et al. [63]). In the last two columns of Table 9, we see the Crash
and Wrong Model symptoms make up the majority of symptoms
across both DL converters and DL compiler front-ends. The Wrong
Model and Crash symptoms appear characteristic of interoperability
in this context, regardless of implementation.

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

Table 9: Distribution of symptoms. TF: tf2onnx. PT: torch.onnx.
DL Comp.: Symptoms of DL compiler failures in compiler
front-ends, per Shen et al. [63]. Percentages are rounded.

Symptom | TF PT || Total || DL Comp.[63]
Crash 50 62 || 112(56%) 226 (63%)
Wrong Model 35 30 || 65(33%) 100 (28%)
Build Failure 3 2 5(3%) 3(1%)

Bad Performance 2 1 3(2%) 6 (2%)
Hang 0 0 0(0%) 4(1%)
Unreported 10 5 15 (8%) 20 (6%)
Total | 100 100 || 200(100%) || 359 (100%)

Table 10: Joint distribution of primary causes and symptoms.
The majority of Crashes result from Incompatibilities and
Type Problems. Algorithmic Errors that result in Wrong Mod-
els occur more often in tf2onnx. The top-5 causes in terms
of frequency are shown, with the rest binned as Other. Rare
symptoms are likewise binned as Other.

c \ Sympt Crash Wrong Model Other Total

ause \ symptom | g pT | TF PT | TF PT || TF PT
Incompatibility 19 28 4 3 2 1 25 32
Type Problem 8 14 | 17 13 0 2 25 29
Algorithmic Error 4 3| 10 3 4 0 18 6
Shape Problem 5 4 4 7 0 1 9 12
API Misuse 6 5 0 1 0 0 6 6
Other 8 8 0 3 9 4 17 15
Total | 50 62| 35 30| 15 9| 100 100

5.2.3 Failure Causes. We report the joint distribution of failure
causes by symptom in Table 10. The most common failure causes are
the Incompatibility and Type Problem, with more than 50% of failures
exhibiting these causes for both converters. Algorithmic Errors and
Shape Problems each contribute ~20% of cases. By symptom, crashes
were caused by incompatibility and type problems, while wrong
models were caused by type problems and algorithmic errors.

For most causes, we see a similar distribution in each studied con-
verter. For Algorithmic Error, we observe that tf2onnx has three times
as many as torch.onnx. The disparity in Algorithmic Errors varies
by the subclass, with the majority in torch.onnx being related to the
loading of models namely tracing. An example is PyTorch #84092:
trace not working on autocast. In contrast, in tf2onnx the majority are
related to optimizations, such as tf2onnx #226 (incorrect reshape) and
tf2onnx #1719 (incorrect folding). We conjecture that this difference
may have a deeper cause: recall that the PyTorch converter is owned
by the PyTorch engineers, while the TensorFlow converter is owned
by the ONNX team (§5). This difference in ownership may reduce the
team’s understanding of the implications of optimizations, leading
to worse outcomes in TensorFlow.

6 Theme 3: Investigating Deeper Causes

In the final theme of this work, we investigate the possibility that
ONNX converter errors have a shared structural cause. By this, we
mean a latent cause beyond the code-level causes in the taxonomy
of Table 7. If so, ONNX users could use this factor to better assess
their risk for the associated failure modes. Based on our survey data

ISSTA 24, September 16-20, 2024, Vienna, Austria

(§4) and failure analysis (§5), we formulate and test two hypotheses
of structural failure causes. The RQs and hypotheses are:

RQ3: Does ONNX evolution affect converter failure rates?
We hypothesize Hgg, : Changes in ONNX operator sets are correlated
with increased defects. This hypothesis is based in data from our sur-
vey and failure analysis. In the survey, 19% of respondents reported
changing ONNX versions as a possible solution (Table 5). This sug-
gests that conversion defects (not just compatibility issues) may be
localized by version. In the failure analysis, we found that crashes
were largely due to Incompatibilities or Type Problems (Table 10).
These failure modes relate to API compatibility and conversion cor-
rectness, which can be affected by changes in the ONNX opset.

RQ4: Do model types affect converter failure rates? We hy-
pothesize Hg, : Failures are caused by model structure, i.e., models
with particular layers (node) or layer sequences are more prone to de-
fects. This hypothesis is primarily based on our failure analysis. The
majority of failures occurred during Node Conversion (Table 8), indi-
cating that nodes and node sequences may be problematic. Survey
data also had a relevant anecdote: one respondent solved conversion
issues by re-implementing models in pure tensor operations, imply-
ing that conversion may fail due to the use of certain operations.

In the remainder of this section, we describe the method and result
for testing each hypothesis. Ultimately, we find evidence to support
Hgg, - This result will help guide future validation efforts (§7.1).

6.1 RQ3:Does ONNX Evolution Lead to Failures?

Finding 7. Hg, is rejected: Changes in ONNX operator sets are
not strongly correlated with increased defects.

Here we describe the method and results for testing Hgo, : That
changes in ONNX operator sets are correlated with increased de-
fects. The expected correlated failures in the model converters are
incompatibility and type problems (defined in Table 7).

6.1.1 Methodology. We test the hypothesis by checking whether
larger changes in the ONNX specification correlate with greater
incidence of failures in DL model converters. To obtain the size of
changes to the ONNX specification, we count the number of operator
changes (additions or updates) per release in the ONNX release notes
(Figure 5). We approximate the number of failures per release using
the GitHub issue creation times of the failures sampled for RQ2. We
then attribute each issue to the nearest previous ONNX release.

We note four ways in which this measurement approximates: (1)
DL model converters lag behind ONNX releases (this might cause
a failure to be mis-attributed to another release, i.e., offset in time);
(2) Failures might be in any ONNX available release, not just the
most recent (possibly inflating the failure rate of a given release); (3)
our failure analysis data were randomly sampled, possibly under-
sampling certain time windows (though we note that our sample
comprises ~30-50% of qualifying issues); (4) as noted in the user
survey (§4.2.3), users may simply revert to a previous operator set
without opening a bug report. For items 1 and 2, issues do not reliably
include ONNX versions, so no more accurate data is available. For
item 3, we use the data sampled during RQ2 so that we can check
incidences by cause (incompatibility and type problems).

We test the hypothesis qualitatively and quantitatively. Qualita-
tively, we inspect a visualization of the hypothesized trend. We also

ISSTA 24, September 16-20, 2024, Vienna, Austria

80
mmm updated
70 added
60
50
€
3 40
o

67
1 1
. HH Hﬂ 000
o MEE1 1 Bmﬂ B s
45

1
123 6 7 8 9 10 11 1213 14 1516 17 18
Operator Set Number

Figure 5: Additions and updates of operators by ONNX op-
erator set version, from version 1 (2017)—version 18 (2022).
Version size := sum of operator additions and updates.

measure the relationship, assessing the correlation in the number
of changes in an ONNX release and the number of failures between
its release and the next. We use the Spearman correlation, which
is a commonly-used and robust metric for measuring a monotonic
relationship between two variables [21].

6.1.2 Results. Figure 6 depicts the hypothesized correlation be-
tween ONNX releases and model converter failures from §5. After
larger ONNX releases (Figure 5) we expect more failures (Figure 6).

Qualitatively, in Figure 6 we see no discernible increase in the
number of failures following larger ONNX updates. Quantitatively
(Spearman), results are similar. The test yields a weak positive cor-
relation (p =0.34). Similarly, Incompatibility and Type Problems are
weakly positively correlated (p=0.33). In the test, we discarded the
first release (converters may be unstable) and the most recent release
(insufficient data). We also merged releases 2-7 because they are too
close together (released within a 1-month period).

Conclusion: Given the weak correlations, we do not find evidence to
support Hro, - There is a fairly steady rate of defects in ONNX model
converters, whether the associated ONNX release is large or small.

6.2 RQ4:Do Model Types Affect Failure Rates?

7

Finding 8. Real models convert well: converter crashes and
incorrect behavior affected only 5% of models. Synthetic models
show incorrect model behavior more often than Real models:
320/3544 (9%) of synthetic models vs. 20/1605 real models (1%).
Finding 9. We find support for Hg(, . Though incorrect conver-
sions are not directly attributable to the use of unusual operators,
they may be attributable to operator sequences.

For this RQ we analyze models at two scales, macro and micro.
In our macro scale analysis (§6.2.1, §6.2.2), we study entire models
(all layers). For our micro scale analysis (§6.2.3, §6.2.4) we study
individual layer and sequence patterns from the macro analysis.

6.2.1 Method for Macro Analysis. At the macro scale, we test DL
converters using two types of models and then analyze the failure-
inducing inputs. We used a differential testing approach (Figure 7).
Differential tests need (1) inputs, and (2) a difference criterion [50].

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

100 e torch.onnx (PT) f

tf2onnx (TF) . e
PT (Type + Incompatibility) °
80 TF (Type + Incompatibility) 5
|
8 doe®
=3
= 60
] °
5 6 L4 N
@ al® -
£ 40 o X %X
=3 1 7 x x q
z s ol x
20 o | X
) © y
.
0 “% % 910 11 12 13 14 18
2018 2019 2020 2021 2022 2023

Year

Figure 6: Cumulative number of failures in the torch.onnx and
tf2onnx converters, plotted quarterly from 2018-2023. The gap
between two points is the number of newly opened issues
during that time period. The O’s track all failures. The X’s
track the subset of Incompatibility and Type Problem failures.
The annotated vertical lines indicate the release of ONNX
operator sets with > 5 changes.

(1) Inputs: For inputs, we converted both real models and synthetic
models. Real models contain input patterns that the converter ex-
pects. Synthetic models are more diverse and should exercise edge
cases on the converter. Real and synthetic models came from:

® Real Models: We used the HF Torrent dataset from Jiang et al. [34].
At time of experiment, this was the largest available set of real-
world DL models, containing 63,182 pre-trained models collected
from the HuggingFace model registry.! We filtered for the 1,761
models with both PyTorch and TensorFlow versions, allowing
comparison between the two converters on similar inputs. These
models represent 112 distinct full architectures (58 backbones).

o Synthetic Models: We systematically generated synthetic DNNs
for conversion, using the NNSmith tool [43]. NNSmith generates
random valid TensorFlow and PyTorch DNNs that use operators
supported by ONNX. We added a parameter to NNSmi th to generate
DNNSs of a given size (# nodes). We then systematically generated
DNNss containing between 15-100 nodes in increments of 5. For each

Future measurements could use the PeaTMOSS dataset [35] or its successors.

Real Synthetic
(HFTorrent) (NNSmith)
I I

])
[PyTorch] [ONNX } [TensorFlow }
Model Model Model

T
VR RUNTIME

PyTorch Inference jOutput TensorFlow
Output Output

Differences

Figure 7: Macro analysis: Real and Synthetic models are con-
verted and then differences are measured. For synthetic mod-
els, we used tf2onnx or torch.onnx directly. For real models we
used HuggingFace’s converter, which does preprocessing and
then calls those converters.

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

node count, we generated DNNs until two conditions were met:
(1) ALl NNSmith-supported operators appeared at least once in the
family; and (2) > 100 distinct models were created.

In initial tests, we found the resulting models were often con-
vertible yet unsupported by ONNX RunTime. To address common
errors, we constrained the NNSmith synthesizer. Specifically, we re-
moved 1 operator out of 71 for torch.onnx and 3 out of 56 for tf2onnx.
Additionally, we confined the tensor data type to float32.

There are other DL model generation approaches, e.g., MUF-
FIN [28], COMET [41], and LEMON [68]. These tools generate in-
puts by mutating seed models, typically real models. We viewed
HFTorrent as a sufficient source of real models, and synthesized
with NNSmith as a complementary approach.

(2) Difference Criterion: For each model, we attempt to convert it
to ONNX using its respective converter. If conversion succeeds, we
load it into the ONNX RunTime. For models that load successfully,
we perform inference on both the original model (using PyTorch
or TensorFlow) and the converted model (using ONNX Runtime).
For real models, we use the inputs provided by the model owners
to test the model. (These are also known as “dummy inputs” on the
HuggingFace platform.) For synthetic models, we use 100 randomly
generated inputs matching the model’s input shape.

In both cases, to measure model misbehavior we used a simple
community-accepted approach: the distance measure and threshold
used by the PyTorch exporter. This rule is that between the origi-
nal and ONNX-converted models, in the inference result tensors, the
maximum absolute element-wise difference should be <1077 [59].

We considered alternatives to measure behavioral differences.
A more general notion of tolerance or “acceptable error” could be
used, but the choice of tolerance is not well established — the Py-
Torch verification tool uses 107, NNSmith uses 1073 [43]. Openja
et al. [55] proposed using model accuracy and robustness, but this
method requires training each model on a suitable dataset. Training
substantially increases the cost of the measurement, and the dataset
requirement limits the types of models that can be generated.

6.2.2 Results for Macro Analysis. Real Models: Real models ex-
hibited few converter failures and little incorrect model behavior.
Most issues occurred within the HuggingFace-specific converter.
Converter failures occurred for only 85/3,522 models (~2 %). Once
models reached torch.onnx and tf2onnx, over 90 % could convert
and had equivalent behavior in ONNX Runtime.

One interesting form of failure we observed was models with
identical architectures but varying conversion issues. For example,
in tf2onnx, various checkpoints of the t5 model had 65 HuggingFace
conversion errors, 56 unsuccessful tf2onnx conversions, 1 unsuc-
cessful ONNX Runtime load, 0 incorrect outputs, and 183 successes.
We could not determine the cause(s) of this instability.

Synthetic Models: Synthetic models exhibit more difficulties and
often show incorrect model behaviour.

Crashes: Synthetic models exhibit difficulties when converting to
ONNX andloading converted models to the ONNX Runtime. We find
802/3,544 (~23%) Unsuccessful Conversions, almost entirely in syn-
thetic models on tf2onnx. These crashes correspond to 4 unique crash
locations. Of the 2,742/3,544 (~77%) synthetic models that success-
fully convert, only 1,244/2,742 (~45%) successfully load into ONNX
Runtime. We observed 11 unique ONNX Runtime errors, of which 6

ISSTA 24, September 16-20, 2024, Vienna, Austria

Table 11: Results of conversion testing. Real models’ conver-
sion may fail in the HuggingFace wrapper. Both kinds of mod-
els may fail in DL model converter, or when the result is fed
to ONNX Runtime (ORT). Behavioural Difference: ORT infer-
ence results with difference > 1077, Real models fail rarely,
synthetic models often.

Outcome tf2onnx torch.onnx
Real Syn. | Real Syn.
Start: Total models 1,761 1,820 1,761 1,724
Conv. Fail (HF) 456 (26%) N/A 342 (20%) N/A
Conv. Fail 65(4%) 800 (44%) 20 (2%) 2(1%)
ORT load Fail 19(1%) 757 (42%) 27 (2%) 741 (42%)
Mismatch 9(1%) 220 (12%) 11(1%) 100 (6%)

Successful 1,212(68%) 43(2%) | 1,361 (75%) 881(51%)

appear to correspond to open GitHub issues [3, 9, 20, 37, 60, 66]. We
disclosed the rest to the engineering teams. For most disclosures, we
have not yet received a response. For one disclosure, which described
amodel that causes the libc++ abi to terminate unexpectedly during
inference with ONNX Runtime, it had been (unintentionally) fixed
in the development branch. The defect still affects older releases.

Behavioural Differences: We observed alarge fraction of behavioural
differences (incorrect output) with synthetic models. Compared to
real models, which had 20 instances, synthetic models had 320 in-
stances where the inference results exceeded the threshold. The
majority of these instances were observed in the tf2onnx converter.
For both converters, we disclosed such instances to the respective
engineering teams (we have not heard a response yet). A summary
of disclosed issues can be found in the artifact.

6.2.3 Method for Micro Analysis. To investigate the causes of the
conversion failures we observed, we analyze mismatching models
in terms of the operators used. We examine the individual operators
and the sequences of operators. We compare these to non-failing
models (for trends) as well as to the models in the converter test suites
(for gaps in testing). Test suite models are collected from converters’
CI/CD pipelines. Figure 8 illustrates our approach.

For operator types, we measure the operators present in each
converted model, out of the set of available operators in the ONNX
opset. For operator sequences, we extract the simple paths through
each model. To illustrate, the ONNX model in Figure 2 shows three
operators (ReduceMax_0, ArgMax, and ReduceMax) and two simple
linear paths (ReduceMax_0— ArgMax and ReduceMax_0 — Reduce-
Max). Models with similar architectures may have simple paths that
are largely identical, inflating the number of shared sequences. For
example, the sequences aaaabd and aaaabc are identical except for
the last element. To deal with cases we further reduce the common
sequences to the smallest shared subsequences, i.e., we recursively
find the longest common subsequences for our sequences until we
cannot find any smaller subsequences [14]. After reduction we find
that sequences are between 3 to 5 operators long.

Evaluation Criteria for Hgp,: To evaluate the impact of operator
types, we compare the operators of mismatched and correct models.
If failing and correct models use different operators, we conclude that
specific operators may cause failures. To evaluate the impact of oper-
ator sequences, we identify shared operator sequences belonging only
to mismatched models, and their frequency. If mismatching models

ISSTA 24, September 16-20, 2024, Vienna, Austria

often share common simple paths of operators, that will support
Hpgg,- Hro, would be further strengthened if operator sequences
are rarely shared with correct models.

6.2.4 Results for Micro Analysis. We focused on synthetic models
that converted successfully but had mismatching behavior. There
were 330 such models across TensorFlow and PyTorch. We compared
them to correct models and models from converter test suites.

Incorrect conversions cannot be explained solely by operator
types. Of the 154 ONNX operators, mismatched models contain 58
(torch.onnx) and 54 (tf2onnx) unique operators while correct mod-
els contain 59 (torch.onnx) and 52 (tf2onnx) unique operators. All
but 1-2 operators are shared, indicating that for synthetic models,
operator types do not predict mismatch.

In contrast, our analysis of shared operator sequences supports
hypothesis Hrg,. As shown in Table 12 an overwhelming majority
of mismatched models share unusual operator sequences. 312/320
of the mismatching models tested share at least one operator se-
quence that never occurred in the correct models. Further, we assess
how often the sequences are shared by many models. We find that
for torch.onnx, only 1 of the 131 sequences is shared by more than
3 models, and for tf2onnx no sequence is shared by more than 11
models. This indicates the failing models will often contain common
operator patterns, suggesting families of sequences that cause er-
rors. Finally, our comparison of test suite and mismatching models
((3)in Table 12) shows that the failing models share few sequences
with the models used in converter test suites (which are real mod-
els rather than synthetic ones), suggesting a gap in test coverage.
Further analysis is left to future work.

7 Discussion and Future Work
7.1 Validating DL Model Converters

We find DL model converters are robust to new operator releases
(§6.1). The weak correlation found between ONNX releases and is-
sues implies that test suites are sufficient for catching issues that may

1. Operators
2. Simple Paths

Figure 8: Micro analysis: Given two sets of models, we mea-
sure shared operators and simple paths between all model
pairs (intersection). We compare three sets. First, the pair-
ing ()x(1) compares mismatched models to themselves. Any
operators and sequences shared by mismatched models may
indicate shared causes of failure. Second, (1)x(2) compares
mismatched and correct models. Overlaps suggest a given op-
erator or sequence is sometimes problematic, depending on
context. Third, (1)x(3) compares mismatched models to those
from converter test suites. Substantial non-overlap implies
gaps in test coverage.

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

Table 12: Model sequence analysis results for the synthetic
models that converted but mismatched (“Mismatch” in Ta-
ble 11). (1) : Sequences shared by mismatched models. (2) :
Sequences shared by mismatched and correct models; (3): Se-
quences shared by mismatched and test suite models. (1)\(2)
: sequences present only in mismatched models. Reduced:
smallest shared subsequences (§6.2.3).

Set tf2onnx torch.onnx
Unique Reduced | Unique Reduced
Total Models | 220 | 100
@ Mism. N Mismatch 2,125 1,126 980 635
@ Mism. N Correct 1,050 508 4,243 2,988
(3) Mism. N Tests 35 35 2 2
oO\® | 1527 862 | 176 131
#models with(D\(@) | 216 | 96

come along with new ONNX releases — modulo the shortcomings
of the approximations listed in §6.1.1.

Converter test suites share little in common with failing mod-
els, often missing critical model structures (§6.2.4). Specifically,
model converters need better testing techniques for behav-
ioral changes. Though this critical failure mode occurred in ~1/3
of historical failures (§5.2) and affected 6% of the models we tested
(§6.2.2), the existing test suite models share little in common with
models affected by this failure mode. For example, only 37 operator
sequences are shared between mismatching models and test suite
models (Table 12). Introducing operator sequence coverage met-
rics may help improve the quality of test suites, to promote the
diversity of the models tested. These metrics could also be incorpo-
rated into fuzzers. Since some nodes or sequences are more likely to
cause failures (Table 12), a coverage-guided fuzzing approach could
help identify them.

Identifying behavioral changes after model conversion is critical,
this is typically done with an end-to-end test. End-to-end testing
carries with it the need to assess the outcome: is the converted model
acceptable, and how much error is tolerable [19, 33]? Engineers cur-
rently use a variety of heuristic tolerances derived from experience
(§6.2.1). Theoretical and empirical examination of the expected and
acceptable tolerance would benefit DL model converter testing.

7.2 Comparison to Prior Studies

7.2.1 DL Model Converters. Openja et al. evaluated DL model con-
verters by converting 5 models [55]. We extend their findings in two
directions. First, we conducted a failure analysis (§5) to study how
converters fail. Second, we convert models systematically (§6) and
analyze them to understand why they fail. We considered both real-
istic and synthetic models. For realistic models, rather than picking 5
real-world models, we used 1,605 models from a large model corpus.
For synthetic models, we adapted a DL model generation tool to
conduct a bounded systematic exploration of converter behaviors.
We omitted measurements of model size, adversarial robustness,
and prediction accuracy, to focus instead on measuring the common
failure modes (crashing and behavioral differences) identified in our
failure analysis. Our analysis reveals that converters can successfully

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

convert many real model but synthetic models are more prone to fail-
ure, moreover analyzing the synthetic models reveals that particular
operator sequences co-occur with failures.

7.2.2 DL Compilers. Shen et al. studied failures in DL compilers [63],
including the components thatload models from DL frameworks and
from common intermediary formats such as ONNX. Many of their
results generalized to DL model converters: (1) we were able to adapt
their taxonomies of failure symptoms and causes to DL model con-
verters (§5.1.1, Table 7); and (2) as shown in Table 9, we found a similar
distribution of failure symptoms for DL model converters. However,
the causes of failures between the two contexts differed: as noted
in §5.2.3, Incompatibilities were more common in DL model convert-
ers, while Algorithmic Errors were more common in DL compilers.

This causal asymmetry may be attributable to differences in the
requirements of DL model converters and DL compilers. The pur-
pose of DL model converters is interoperability (§2.1), making com-
patibility failures a focus and reducing the need for optimizations.
Hardware-specific optimizations are left to the consumer of the
model. Conversely, DL compilers must provide both compatibility
and hardware-specific optimizations.

7.2.3 Methodological Innovations on the “Bug Study”. Our study
began with a survey that offered valuable insights into the problem
domain, guiding our design of the subsequent failure study, including
the selection of the interoperability tool and the creation of a failure
taxonomy (§5). This methodological progression, from survey to
failure study, and then to hypothesis testing about the failures, di-
verges from the typical failure study in software engineering. Those
studies typically focus on the “middle step” [5], understanding the
root causes of defects and the conditions under which they mani-
fest (e.g., [32, 74]). Our hypothesis testing phase, in particular, adds
understanding by providing an estimate of failure rates, an aspect
seldom addressed in standard failure studies. We suggest that this
holistic approach, integrating a survey, failure study, and hypothesis
testing, may be a useful methodology for future failure studies.

8 Threats to Validity

Wediscuss three types of threats to validity [71]. Taking into consider-
ation the criticisms of Verdecchia et al. [67], we focus on substantive
threats that might influence our findings.

Construct Threats are potential limitations of how we opera-
tionalized concepts. We mitigated definitional concerns for RQ2 by
adapting existing taxonomies in our failure analysis. We defined
failures consistently with other works (GitHub issues closed with a
repair), though we note there are other means of failure discovery [7].
To answer RQ3, we conservatively defined failure in terms of clear
misbehaviors — when ONNX converter output is incompatible with
ONNX Runtime, or the model’s behavior changes. This may mask
some “Crash” failures in the ONNX converter. In addition, different
measures of behavioral difference are possible, such as the L1- or L2-
distance. We used the measure recommended by PyTorch.

Internal threats are those that affect cause-effect relationships.
We specifically allowed respondents to leave answers blank to im-
prove the response rate. As a result, the results for interoperability
tool use in RQ1 may be biased as only 48/92 respondents use an

ISSTA 24, September 16-20, 2024, Vienna, Austria

interoperability tool (§4.1.2). However, of the 48 respondents who re-
ported using interoperability tools, 98% (47/48) gave analyzable data.

Our failure characterization in RQ2 was manual. We mitigated
subjectivity via interrater agreement, on a pilot sample and a sub-
sequent tranche during the full analysis (§5.1.2). In §6.1.1 we noted
several approximations in our test of hypothesis Hgg, . We tested
hypothesis Hgg, indirectly, using a frequency analysis of operators
and sequences in mismatched models rather than directly testing
the discovered subsequences.

External threats may impact generalizability. For RQ1, the sur-
veyed population (HuggingFace users) may not fully reflect all ONNX
users. However, it is an appropriate population, and we sampled at a
confidence level of 90%. For RQ2-4, we examined two DL model con-
verters for one interoperability framework (ONNX). Our results may
not extend to other model converters nor other interoperability tasks.
As mitigation, our data suggest that ONNX is the most popular DL in-
teroperability tool. For ONNX, our results were similar across the two
converters, suggested generalizability in two dimensions: DNN mod-
eling approaches, and converter owners (§5.1.1). With regard to our
methodology for RQ3-4, we generated synthetic models with the NN-
Smith tool. Other methods [28, 41, 68] might have different results.

9 Conclusion

DL model converters play a crucial role in providing interoperability
between DL frameworks, registries, and runtimes. Understanding
the nature of failures in DL model converters enables engineers to
make informed decisions when relying on them. We conducted the
first failure analysis of DL model converters, considering the PyTorch
and TensorFlow converters for the popular ONNX intermediate rep-
resentation. The most common symptoms of failure are crashes and,
perhaps more concerningly, models that misbehave on certain in-
puts. Of the five stages of a typical model converter, one stage (node
conversion) accounts for ~75% of the defects. A deductive descrip-
tion of the causes of erroneous converter behavior remains elusive
— individual operators are not predictive of failure; sequences of
operators may be correlated. Our findings suggest that in ONNX,
engineers can rely on model converters but should validate the result
for behavioral consistency. Through a mix of positive and negative
results, we exposed several directions for further improvement of DL
model converters. The main opportunities are new measurements:
anew architectural coverage measure for a DL model converter, and
arefined measure of tolerance after conversion.

10 Data-Availability Statement

This paper is accompanied by an artifact [2] to support replication
and reproduction. The artifact includes the survey data for Theme
1, the failure analysis data for Theme 2, and the processed results
of data associated with the hypothesis evaluation for Theme 3. The
artifact also includes the modified NNSmith model generator, and the
specific synthetic models used in the study. The source code for the
artifact is available at https://github.com/PurdueDualityLab/issta24-
onnx-artifact.

Acknowledgements

This work is supported by Cisco and Google, as well by NSF awards
#2107020, #2107230, #1813935, and #2104319.

https://github.com/PurdueDualityLab/issta24-onnx-artifact
https://github.com/PurdueDualityLab/issta24-onnx-artifact

ISSTA 24, September 16-20, 2024, Vienna, Austria

References

(1]
(2]

[3

=

&

(7]

(8]

[10

(11

[12] Jacob Cohen. 1960.

[13]

[14]

2019. ONNX |Home. https://onnx.ai/

2024. Interoperability in Deep Learning: A User Survey and Failure Analysis of
ONNX Model Converters. Zenodo. https://doi.org/10.5281/zenodo.12667479
12sf12. 2022. Name:’MatMul_32007" Status Message: matmul_helper.h:61
Compute MatMul dimension mismatch. https://github.com/microsoft/onnxr
untime/issues/12594.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, and Harald Gall.
2019. Software Engineering for Machine Learning: A Case Study. In International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
https://doi.org/10.1109/ICSE-SEIP.2019.00042

Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent,
and James C. Davis. 2022. Reflections on software failure analysis. In Pro-
ceedings of the 30th ACM jJoint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
Association for Computing Machinery, New York, NY, USA, 1615-1620.
https://doi.org/10.1145/3540250.3560879

Dharun Anandayuvaraj and James C. Davis. 2023. Reflecting on Recurring Failures
in IoT Development. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE °22). Association for Computing
Machinery, New York, NY, USA, 1-5. https://doi.org/10.1145/3551349.3559545
Jorge Aranda and Gina Venolia. 2009. The secret life of bugs: Going past the errors
and omissions in software repositories. In International Conference on Software
Engineering (ICSE). https://doi.org/10.1109/ICSE.2009.5070530

Atilim Giines Baydin, Barak A Pearlmutter, Alexey A Radul, and Jef-
frey Mark Siskind. 2018. Automatic differentiation in machine learning:
a survey. Journal of machine learning research 18, 1 (2018), 5595-5637.
http://jmlr.org/papers/v18/17-468.html

BowenBao. 2023. [LocalFunction] Shape mismatch attempting to re-use buffer.
https://github.com/microsoft/onnxruntime/issues/17061.

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Char-
alambos Mitropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2021.
Well-typed programs can go wrong: a study of typing-related bugs in JVM
compilers. Proc. ACM Program. Lang. 5, OOPSLA, Article 123 (oct 2021), 30 pages.
https://doi.org/10.1145/3485500

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: an automated end-to-end optimizing
compiler for deep learning. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (Carlsbad, CA, USA) (OSDI'18).
USENIX Association, USA, 579-594.

A Coeflicient of Agreement for Nominal Scales. Ed-
ucational and Psychological Measurement 20, 1 (1960), 37-46. https:
//doi.org/10.1177/001316446002000104

MLEAP Consortium. 2023. EASA Research — Machine Learning Application
Approval (MLEAP) interim technical report. Horizon Europe research and
innovation programme report. European Union Aviation Safety Agency.
Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to algorithms. MIT press.

[15] James C Davis, Purvish Jajal, Wenxin Jiang, Taylor R Schorlemmer, Nicholas

[16

[17]

(18

[19]
[20]
[21]
[22]

[23]

[24]

Synovic, and George K Thiruvathukal. 2023. Reusing deep learning models:
Challenges and directions in software engineering. In 2023 IEEE John Vincent
Atanasoff International Symposium on Modern Computing (JVA). IEEE, 17-30.
Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. Springer
London, London, 285-311. https://doi.org/10.1007/978-1-84800-044-5_11

Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton.
2015. Measure it? manage it? ignore it? software practitioners and technical
debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 50~60.

Hugging Face. 2021. Hugging Face — The Al community building the future.
https://huggingface.co/.

Hugging Face. 2023. Export to ONNX. https://huggingface.co/docs/transfor
mers/serialization#validating-the-model-outputs.

fatcat z. 2022. Resize op can’t work well under Cubic mode with ORT 1.12.
https://github.com/microsoft/onnxruntime/issues/12302.

Norman Fenton and James Bieman. 2014. Software Metrics: A Rigorous and
Practical Approach, Third Edition (3rd ed.). CRC Press, Inc., USA.

Forbes. 2024. Hugging Face - Company Profile. https://www.forbes.com/com
panies/hugging-face/?sh=b2bcef56c38c.

Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred
Chen. 2020. A comprehensive study of autonomous vehicle bugs. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE °20). Association for Computing Machinery, New York, NY,
USA, 385-396. https://doi.org/10.1145/3377811.3380397

Gargi. 2024. The Power of Hugging Face Al https://medium.com/@gargg/the-
power-of-hugging-face-ai-4f6558ee0874.

[25

[26

[27

[29

[30

[32

[33

(34

[35

[36

[37

[38

[42

[43

]

]

]

Jajal, Jiang, Tewari, Kocinare, Woo, Sarraf, Lu, Thiruvathukal, Davis

Adrien Gauffriau, Iryna De Albuquerque Silva, and Claire Pagetti. 2024.
Formal description of ML models for unambiguous implementation.
arXiv:2307.12713 [cs.NE] https://arxiv.org/abs/2307.12713

Ahmad Nauman Ghazi, Kai Petersen, Sri Sai Vijay Raj Reddy, and
Harini Nekkanti. 2019. Survey Research in Software Engineering: Prob-
lems and Mitigation Strategies. IEEE Access 7 (2019), 24703-24718.
https://doi.org/10.1109/ACCESS.2018.2881041

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020.
A survey of deep learning techniques for autonomous driving. Journal of Field
Robotics 37, 3 (2020), 362-386. https://doi.org/10.1002/rob.21918

Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin:
testing deep learning libraries via neural architecture fuzzing. In Proceed-
ings of the 44th International Conference on Software Engineering (ICSE °22).
Association for Computing Machinery, New York, NY, USA, 1418-1430.
https://doi.org/10.1145/3510003.3510092

Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. 2020. An empirical study towards characterizing
deep learning development and deployment across different frameworks and
platforms. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press,
810-822. https://doi.org/10.1109/ASE.2019.00080

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie
Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-trained
models: Past, present and future. AI Open 2 (2021), 225-250.

Momoko Hattori, Shimpei Sawada, Shinichiro Hamaji, Masahiro Sakai, and
Shunsuke Shimizu. 2020. Semi-static type, shape, and symbolic shape inference
for dynamic computation graphs. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages
(London, UK) (MAPL 2020). Association for Computing Machinery, New York,
NY, USA, 11-19. https://doi.org/10.1145/3394450.3397465

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510-520. https://doi.org/10.1145/3338906.3338955

Wenxin Jiang, Vishnu Banna, Naveen Vivek, Abhinav Goel, Nicholas
Synovic, George K. Thiruvathukal, and James C. Davis. 2024. Chal-
lenges and practices of deep learning model reengineering: A case study
on computer vision. Empirical Software Engineering 29, 6 (Aug. 2024).
https://doi.org/10.1007/s10664-024-10521-0

Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2023. An
Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning
Model Registry. In Proceedings of the 45th International Conference on Software
Engineering (Melbourne, Victoria, Australia) (ICSE °23). IEEE Press, 2463-2475.
https://doi.org/10.1109/ICSE48619.2023.00206

Wenxin Jiang, Jerin Yasmin, Jason Jones, Nicholas Synovic, Jiashen Kuo, Nathaniel
Bielanski, Yuan Tian, George K Thiruvathukal, and James C Davis. 2024. Peatmoss:
A dataset and initial analysis of pre-trained models in open-source software.
In 2024 IEEE/ACM 21st International Conference on Mining Software Repositories
(MSR). IEEE, 431-443.

J Jones, W Jiang, N Synovic, GK Thiruvathukal, and JC Davis. 2024. What do we
know about Hugging Face? A systematic literature review and quantitative valida-
tion of qualitative claims. In Proceedings of the 18th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM) 2024. ACM/IEEE.
josephrocca. 2021. [wasm runtime] Could not find an implementation for
ArgMax(12) node with name *’ArgMax_1382". https://github.com/microsoft/o
nnxruntime/issues/9760.

Mingyu Kim, Jihye Yun, Yongwon Cho, Keewon Shin, Ryoungwoo Jang, Hyun-jin
Bae, and Namkug Kim. 2019. Deep Learning in Medical Imaging. Neurospine 16,
4(Dec 2019), 657-668. https://doi.org/10.14245/n5.1938396.198

Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion sur-
veys. In Guide to advanced empirical software engineering. Springer, 63-92.
https://doi.org/10.1007/978-1-84800-044-5_3

Nancy G. Leveson. 1995. Safeware: System safety and computers. ACM, New York,
NY, USA.

Meiziniu Li, Jialun Cao, Yonggiang Tian, Tsz On Li, Ming Wen*, and Shing-Chi
Cheung”. 2023. COMET: Coverage-guided Model Generation For Deep Learning
Library Testing. ACM Transactions on Software Engineering and Methodology (Feb.
2023). https://doi.org/10.1145/3583566

Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi
Luan, Lin Gan, Guangwen Yang, and Depei Qian. 2020. The deep learning
compiler: A comprehensive survey. IEEE Transactions on Parallel and Distributed
Systems 32,3 (2020), 708-727. https://doi.org/10.1109/TPDS.2020.3030548
Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Ling-
ming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for Deep

https://onnx.ai/
https://doi.org/10.5281/zenodo.12667479
https://github.com/microsoft/onnxruntime/issues/12594
https://github.com/microsoft/onnxruntime/issues/12594
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1145/3540250.3560879
https://doi.org/10.1145/3551349.3559545
https://doi.org/10.1109/ICSE.2009.5070530
http://jmlr.org/papers/v18/17-468.html
https://github.com/microsoft/onnxruntime/issues/17061
https://doi.org/10.1145/3485500
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/978-1-84800-044-5_11
https://huggingface.co/
https://huggingface.co/docs/transformers/serialization#validating-the-model-outputs
https://huggingface.co/docs/transformers/serialization#validating-the-model-outputs
https://github.com/microsoft/onnxruntime/issues/12302
https://www.forbes.com/companies/hugging-face/?sh=b2bcef56c38c
https://www.forbes.com/companies/hugging-face/?sh=b2bcef56c38c
https://doi.org/10.1145/3377811.3380397
https://medium.com/@gargg/the-power-of-hugging-face-ai-4f6558ee0874
https://medium.com/@gargg/the-power-of-hugging-face-ai-4f6558ee0874
https://arxiv.org/abs/2307.12713
https://arxiv.org/abs/2307.12713
https://doi.org/10.1109/ACCESS.2018.2881041
https://doi.org/10.1002/rob.21918
https://doi.org/10.1145/3510003.3510092
https://doi.org/10.1109/ASE.2019.00080
https://doi.org/10.1145/3394450.3397465
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1007/s10664-024-10521-0
https://doi.org/10.1109/ICSE48619.2023.00206
https://github.com/microsoft/onnxruntime/issues/9760
https://github.com/microsoft/onnxruntime/issues/9760
https://doi.org/10.14245/ns.1938396.198
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1145/3583566
https://doi.org/10.1109/TPDS.2020.3030548

Learning Compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 530-543. https://doi.org/10.1145/3575693.3575707

Yu Liu, Cheng Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao
Yang. 2020. Enhancing the interoperability between deep learning frameworks
by model conversion. In Proceedings of the 28th ACM Joint Meeting on ESEC/FSE.
ACM, Virtual Event USA, 1320-1330. https://doi.org/10.1145/3368089.3417051
Guoming Long and Tao Chen. 2022. On Reporting Performance and Accuracy Bugs
for Deep Learning Frameworks: An Exploratory Study from GitHub. In Proceedings
of the 26th International Conference on Evaluation and Assessment in Software
Engineering (Gothenburg, Sweden) (EASE °22). Association for Computing
Machinery, New York, NY, USA, 90-99. https://doi.org/10.1145/3530019.3530029
Guodong Long and Ting Chen. 2022. On Reporting Performance and Accuracy
Bugs for Deep Learning Frameworks: An Exploratory Study from GitHub. IEEE
Transactions on Software Engineering (Apr 2022). https://arxiv.org/abs/2204.04542
Nikolaos Louloudakis, Perry Gibson, José Cano, and Ajitha Rajan. 2023.
DeltaNN: Assessing the Impact of Computational Environment Parameters
on the Performance of Image Recognition Models. In 2023 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). 414-424.
https://doi.org/10.1109/ICSME58846.2023.00054

N. Louloudakis, P. Gibson, J. Cano, and A. Rajan. 2023. Fault Localization
for Buggy Deep Learning Framework Conversions in Image Recognition. In
2023 38th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE Computer Society, Los Alamitos, CA, USA, 1795-1799.
https://doi.org/10.1109/ASE56229.2023.00147

Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia medica
22,3(2012), 276-282.

William M McKeeman. 1998. Differential testing for software. https://www.cs.s
warthmore.edu/~bylvisal/cs97/f13/Papers/Differential TestingForSof tware.pdf.
Digital Technical Journal 10, 1 (1998), 100-107.

Louis G Michael, James Donohue, James C Davis, Dongyoon Lee, and Fran-
cisco Servant. 2019. Regexes are hard: Decision-making, difficulties, and
risks in programming regular expressions. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 415-426.
https://doi.org/10.1109/ASE.2019.00047

Mohammad Mehdi Morovati, Amin Nikanjam, Florian Tambon, Foutse Khomh,
and Zhen Ming Jiang. 2024. Bug characterization in machine learning-based
systems. Empirical Software Engineering 29, 1 (2024), 14.

ONNX. 2022. Open Neural Network Exchange Intermediate Representation
(ONNX IR) Specification . https://github.com/onnx/onnx/blob/ee7d2cdfa34b
8b3c7e0b68b70daf72aaa48c23ac/docs/IR.md.

ONNX. 2023. ONNX Meeting - Thursday, July 13th, 2023 at 9:00am PST.
https://github.com/onnx/sigs/blob/main/operators/meetings/041-20230713.md.
Moses Openja, Amin Nikanjam, Ahmed Haj Yahmed, Foutse Khomh, and Zhen
Ming Jack Jiang. 2022. An Empirical Study of Challenges in Converting Deep
Learning Models. In 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 13-23. https://doi.org/10.1109/ICSME55016.2022.00010
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Henry Petroski et al. 1994. Design paradigms: Case histories of error and
judgment in engineering. https://www.cambridge.org/core/books/design-
paradigms/92832B6D5EF85B08B890DED83DDBAF57.

Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems
and Opportunities in Training Deep Learning Software Systems: An Analysis

Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters

[59

[60

[61]

o
£,

[63

[64

[65

[69

[70

<
[y

[72

[73

(74

ISSTA 24, September 16-20, 2024, Vienna, Austria

of Variance. In International Conference on Automated Software Engineering (ASE).
771-783. https://doi.org/10.1145/3324884.3416545

PyTorch. 2023. verification.py. https://github.com/pytorch/pytorch/blob/869e
52e3dd211d4770ab38{621b906b23fae0132/torch/onnx/verification.py#L256.
rafaelagrc. 2022. Incompatible dimensions for matrix multiplica-
tion Error in StarNet model when doing InferenceSession. https:
//github.com/microsoft/onnxruntime/issues/11846.

Alan Romano, Xinyue Liu, Yonghwi Kwon, and Weihang Wang. 2022. An empirical
study of bugs in webassembly compilers. In Proceedings of the 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering (Melbourne, Australia)
(ASE °21). IEEE Press, 42-54. https://doi.org/10.1109/ASE51524.2021.9678776
Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G.
Parameswaran. 2024. “We Have No Idea How Models will Behave in Production
until Production”: How Engineers Operationalize Machine Learning. Proceedings
of the ACM on Human-Computer Interaction 8, CSCW1 (April 2024), 1-34.
https://doi.org/10.1145/3653697

Qingchao Shen, Haoyang Ma, Junjie Chen, Yonggiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,

USA, 968-980. https://doi.org/10.1145/3468264.3468591

Ayush Shridhar, Phil Tomson, and Mike Innes. 2020. Interoperating Deep Learning
models with ONNX. jl. In Proceedings of the JuliaCon Conferences, Vol. 1. 59.

Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2022. An exploratory study of deep
learning supply chain. In Proceedings of the 44th International Conference on Soft-
ware Engineering (Pittsburgh, Pennsylvania) (ICSE '22). Association for Computing
Machinery, New York, NY, USA, 86-98. https://doi.org/10.1145/3510003.3510199
vbogach. 2022. [ONNX] Scripted reshape incorrect if shape is dynamically
calculated. https://github.com/pytorch/pytorch/issues/78721.

Roberto Verdecchia, Emelie Engstrom, Patricia Lago, Per Runeson, and Qunying
Song. 2023. Threats to validity in software engineering research: A critical
reflection. Information and Software Technology 164 (2023), 107329.

Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020.
Deep learning library testing via effective model generation. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 788-799.
https://doi.org/10.1145/3368089.3409761

Peter Wegner. 1996. Interoperability. ACM CSUR 28, 1 (Mar 1996), 285-287.
https://doi.org/10.1145/234313.234424

David Wicks. 2017. The coding manual for qualitative researchers. Qualitative
research in organizations and management: an international journal 12, 2 (2017),
169-170.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Dongwei Xiao, Zhibo LIU, Yuanyuan Yuan, Qi Pang, and Shuai Wang. 2022.
Metamorphic Testing of Deep Learning Compilers. Proc. ACM Meas. Anal. Comput.
Syst. 6, 1, Article 15 (feb 2022), 28 pages. https://doi.org/10.1145/3508035
YsYusaito. 2022. Inference result is different between Pytorch and ONNX model.
https://github.com/pytorch/pytorch/issues/74732.

Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An Em-
pirical Study of Common Challenges in Developing Deep Learning Applications.
In International Symposium on Software Reliability Engineering (ISSRE).

Received 2024-04-12; accepted 2024-07-03

https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1145/3368089.3417051
https://doi.org/10.1145/3530019.3530029
https://arxiv.org/abs/2204.04542
https://doi.org/10.1109/ICSME58846.2023.00054
https://doi.org/10.1109/ASE56229.2023.00147
https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
https://www.cs.swarthmore.edu/~bylvisa1/cs97/f13/Papers/DifferentialTestingForSoftware.pdf
https://doi.org/10.1109/ASE.2019.00047
https://github.com/onnx/onnx/blob/ee7d2cdfa34b8b3c7e0b68b70daf72aaa48c23ac/docs/IR.md
https://github.com/onnx/onnx/blob/ee7d2cdfa34b8b3c7e0b68b70daf72aaa48c23ac/docs/IR.md
https://github.com/onnx/sigs/blob/main/operators/meetings/041-20230713.md
https://doi.org/10.1109/ICSME55016.2022.00010
https://www.cambridge.org/core/books/design-paradigms/92832B6D5EF85B08B890DED83DDBAF57
https://www.cambridge.org/core/books/design-paradigms/92832B6D5EF85B08B890DED83DDBAF57
https://doi.org/10.1145/3324884.3416545
https://github.com/pytorch/pytorch/blob/869e52e3dd211d4770ab38f621b906b23fae0132/torch/onnx/verification.py#L256
https://github.com/pytorch/pytorch/blob/869e52e3dd211d4770ab38f621b906b23fae0132/torch/onnx/verification.py#L256
https://github.com/microsoft/onnxruntime/issues/11846
https://github.com/microsoft/onnxruntime/issues/11846
https://doi.org/10.1109/ASE51524.2021.9678776
https://doi.org/10.1145/3653697
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1145/3510003.3510199
https://github.com/pytorch/pytorch/issues/78721
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/234313.234424
https://doi.org/10.1145/3508035
https://github.com/pytorch/pytorch/issues/74732

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DL Model Conversion as Interoperability
	2.2 Failure Studies of DL Components

	3 Research Questions & Study Design
	3.1 Research Questions
	3.2 Study Design

	4 Theme 1: Interoperability Study
	4.1 Methodology
	4.2 RQ1: Engineers and Interoperability Tools

	5 Theme 2: Failure Analysis (of ONNX)
	5.1 Methodology
	5.2 RQ2: The Characteristics of Failures

	6 Theme 3: Investigating Deeper Causes
	6.1 RQ3: Does ONNX Evolution Lead to Failures?
	6.2 RQ4: Do Model Types Affect Failure Rates?

	7 Discussion and Future Work
	7.1 Validating DL Model Converters
	7.2 Comparison to Prior Studies

	8 Threats to Validity
	9 Conclusion
	10 Data-Availability Statement
	References

