
Separations and Collapses in
Computational Social Choice and

Complexity Theory

by

Michael C. Chavrimootoo

Submitted in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Supervised by Professor Lane A. Hemaspaandra

Department of Computer Science
Arts, Sciences and Engineering

Edmund A. Hajim School of Engineering and Applied Sciences

University of Rochester
Rochester, New York

2024

To my parents, who encouraged me to pursue my passions.

iii

Table of Contents

Biographical Sketch vii

Acknowledgments viii

Abstract x

Contributors and Funding Sources xii

List of Tables xiv

List of Figures xvi

1 Introduction 1

2 Preliminaries 5

2.1 Complexity Theory . 5

2.2 Voting Theory . 9

2.3 Electoral Control . 10

2.4 Ambiguity-Bounded Versions of NP 15

2.5 Hardness of Games . 18

iv

3 Separating and Collapsing Electoral Control Types 22

3.1 Introduction . 22

3.2 Results in the General Case . 25

3.3 Results about Plurality . 26

3.4 Results about Veto . 27

3.5 Results about Approval . 29

3.6 Conclusion and Open Directions 41

4 Search versus Search for Collapsing Electoral Control Types 42

4.1 Introduction . 42

4.2 Search Notions for Control Types: Reducibility and Complexity . 44

4.2.1 Search Reducibilities . 45

4.2.2 Search Complexities . 50

4.3 Search Equivalences for the Collapses of Hemaspaandra et al. (2020) 52

4.4 Search Equivalences for the New Collapses of Chapter 3 57

4.5 Concrete Search Complexities of Collapsing Electoral Control Types 61

4.6 Conclusion and Open Directions 71

5 Linked Fates: Expanding the Range of Ambiguity-Based Class

Pairs Known to Stand or Fall Together 72

5.1 Introduction . 72

5.2 Main Results . 74

5.3 Related Work . 80

5.4 Conclusions and Open Problems 81

v

6 Defying Gravity and Gadget Numerosity: The Complexity of the

Hanano Puzzle 83

6.1 Introduction . 83

6.2 Related Work . 85

6.3 The Hanano Puzzle . 86

6.4 Overview of the Approach . 88

6.5 Gadgets and Schemas . 89

6.6 Main Result . 99

6.7 Conclusion and Open Problems 101

Bibliography 103

A Tables Relating to Separating and Collapsing Electoral Control

Types 116

A.1 Compatible Control Types . 116

A.2 Tables . 117

A.2.1 Plurality Tables . 119

A.2.2 Veto Tables . 129

A.2.3 Approval-Voting Tables . 138

B Verifying Claimed Separations and Collapses in Complexity

Theory 148

B.1 A Critique of Keum-Bae Cho’s Proof that P ⊊ NP 148

B.2 A Critique of Kumar’s “Necessary and Sufficient Condition for Sat-

isfiability of a Boolean Formula in CNF and Its Implications on P

versus NP Problem” . 149

B.3 A Critique of Sopin’s “PH = PSPACE” 149

vi

B.4 A Closer Look at Some Recent Proof Compression-Related Claims 150

B.5 Evaluating the Claims of “SAT Requires Exhaustive Search” . . . 150

B.6 On Czerwinski’s “P ̸= NP Relative to a P-Complete Oracle” . . . 151

vii

Biographical Sketch

From a young age, Michael always found himself interested in mathematics, for

which he exhibited a certain affinity. However, his interest and love for computers

quickly overshadowed that, and his budding interest in elections only supple-

mented that distancing from mathematics. After moving from Mauritius to the

University of Rochester (UR) for his undergraduate studies, he pursued courses in

a variety of fields beyond computer science, namely, economics, law, mathematics,

philosophy, political science, and psychology, among others.

At the end of his first four years at UR, Michael received a Bachelor of Science

(B.S.) in Computer Science and a Bachelor of Arts (B.A.) in Political Science

(with a focus on “Elections and Government”). During that time, he developed a

keen interest in theoretical computer science and its applications in many fields,

such as social choice theory, thereby reconnecting his passion for mathematics

with his interest in computing and elections.

In the Fall of 2020, he joined the Computer Science Ph.D. program at the

University of Rochester with Professor Lane A. Hemaspaandra as his advisor.

During that time, he also received a Master of Science (M.S.) in Computer Science

from the University of Rochester, and collaborated on over a dozen projects with

18 different coauthors. Additionally, he spent his summers teaching as an Adjunct

Faculty at the Rochester Institute of Technology and as Adjunct Instructor at the

University of Rochester, teaching nine courses on algorithms, computer models

and limitations, and cryptography.

viii

Acknowledgments

I would like to first thank my thesis committee and the thesis committee chair,

namely Professors Edith Hemaspaandra, Lane A. Hemaspaandra, Anson Kahng,

Saul Lubkin, Jörg Rothe, and Lenhart Schubert, for their feedback and insightful

questions about the work described in this thesis.

I am especially indebted to Lane and Edith, who have been instrumental to

my success in this program. I am grateful to Lane for introducing me to both

complexity theory and computational social choice, for developing my interest in

those topics, and for giving me the opportunity to study problems in those areas.

I also am grateful to Lane for his mentorship and for his unfettered, insightful

advice, among many other things. I also thank Edith for her support when I first

started teaching at RIT, and her ever-so-insightful questions on my work that

stumped me more often than not, and her advice and support while I was on the

job market.

I thank Chen Ding for introducing me to the world of research and Daniel

Štefankovič for starting my interest in theoretical computer science and in the

study of algorithms. And I thank Piotr Faliszewski for his advice and insights.

To all my coauthors over the years: thank you! In particular, I would like to

thank David E. Narváez for his many insightful discussions on generic oracles and

proof assistants (among many other things), Henry B. Welles for his (infectiously)

enthusiastic discussions about foundational questions regarding complexity, and

ix

Benjamin Carleton for our many discussions that helped me better make sense of

the problems we were tackling.

To my friends (especially Agust́ın Dı́az Herrero, Brian C. Filipiak, Mervin

Lim Pac Chong, and Mike A.D. Taylor) and family (especially my parents and

my sisters): Thank you for your constant support and for always believing in me,

even when I doubted myself. And I particularly want to thank my parents for

teaching me to appreciate the beauty of both mathematics and the sciences from

a young age, and for encouraging me to pursue my passion for computing, even

when it did not make sense to them.

Finally, none of this would have been possible without the endless love, sup-

port, and companionship of my amazing partner Audrey F. Thompson, and with-

out the joy that Buddy and Navi bring us.

x

Abstract

This thesis studies separations and collapses in new ways, in both computational

social choice and computational complexity theory.

Since the seminal work of Bartholdi et al. (1989a,b, 1992) and Bartholdi and

Orlin (1991) in computational social choice, the tools and techniques of theoretical

computer science have been used to discover the complexities of a range of at-

tacks on different election systems. That line of work has broadly assumed that

the seemingly different attacks were in fact different. A key contribution of this

thesis will be to explore, in the widely-studied electoral attack domain known as

electoral control, the extent to which that assumption is correct. In particular,

Hemaspaandra et al. (2020) showed that there were several electoral control prob-

lems that, although they had been studied separately for years, are in fact one and

the same (when viewed as decision problems). This showed that researchers had

for years been doing redundant work. We continue this line of work and uncover

additional surprising relationships among electoral control types, thus discovering

additional cases where duplicate effort has occurred, and helping the field avoid

further duplicate work.

Building on this, for control types that collapse in the literature’s standard

notion of collapse—equality of their decision problems—this thesis studies whether

the search complexities of the collapsing types also collapse (i.e., coincide). We find

they do for all known collapsing types, and for all new collapsing types discovered

in this thesis. We indeed go beyond that by showing that one often can efficiently

xi

build search solutions for one type from the search solutions of the other type on

the same input, and we provide a framework to study those search-complexity

relationships.

In computational complexity theory, we study which pairs of ambiguity-

bounded versions of NP stand (collapse) or fall (separate) together: one collapses

to P exactly if the other does too. Prior to our work, the only known family of such

connections was due to Watanabe (1988), and we present here new collections of

such families.

Finally, in the area of the complexity of single-player games, we generalize a

tool used to study reversible deterministic games to work for deterministic games

with irreversible gravity. In some sense, this provides a “collapse” between the

tools used to study two seemingly different categories of games. The particular

too we study is the Nondeterministic Constraint Logic problem, which typically

allows one to show PSPACE-hardness by constructing only two gadgets, but is

unfortunately not directly applicable to the study of games with irreversible grav-

ity. We devise a new method that when applied directly uses 32 gadgets, but we

show that many of those gadgets are effectively equivalent (thus giving another

type of “collapse”) and that we can simulate all 32 gadgets by using only three

gadgets. We apply this method to the study of the Hanano Puzzle and find that

only two gadgets are needed to show the PSPACE-hardness of that game.

Looking at the bigger picture, this thesis looks in new ways at collapses and

separations in computational social choice and computational complexity theory,

making progress using a variety of tools ranging from proving theorems to provid-

ing new human and computer-discovered separations. Overall, we paint a clearer

picture in computational social choice of what collapses and separations occur,

and in computational complexity of what collapses stand or fall together.

xii

Contributors and Funding Sources

Some of the content of this thesis is based on, and at times taken verbatim from,

existing coauthored work (Carleton, Chavrimootoo, and Taliancich, 2021; Chav-

rimootoo and Welles, 2021; Carleton, Chavrimootoo, Hemaspaandra, Narváez,

Taliancich, and Welles, 2022a,b, 2023a,b; Chavrimootoo, Ferland, Gibson, and

Wilson, 2022; Chavrimootoo, Clingerman, and Luu, 2023a; Chavrimootoo, He,

Kotler-Berkowitz, Liuson, and Nie, 2023b; Chavrimootoo, Le, Reidy, and Smith,

2023c) with my collaborators. Some parts of this thesis are also based on my

single-authored papers (Chavrimootoo, 2022, 2023a,b).

Chapter 2 draws its definitions from Carleton, Chavrimootoo, Hemaspaan-

dra, Narváez, Taliancich, and Welles (2022a, 2023b), Chavrimootoo (2023a), and

Carleton, Chavrimootoo, Hemaspaandra, Narváez, Taliancich, and Welsh (2024).

As to the remaining chapters, Chapter 3 and Appendix A are based on content

from Carleton, Chavrimootoo, Hemaspaandra, Narváez, Taliancich, and Welles

(2022b, 2023b), Chapter 4 is based on content from Carleton, Chavrimootoo,

Hemaspaandra, Narváez, Taliancich, and Welles (2022a), Chapter 5 is based on

content from Carleton, Chavrimootoo, Hemaspaandra, Narváez, Taliancich, and

Welsh (2024), Chapter 6 is based on content from Chavrimootoo (2022, 2023a),

and Appendix B is based on Carleton, Chavrimootoo, and Taliancich (2021),

Chavrimootoo and Welles (2021), Chavrimootoo, Ferland, Gibson, and Wilson

(2022), Chavrimootoo, Clingerman, and Luu (2023a), Chavrimootoo, He, Kotler-

xiii

Berkowitz, Liuson, and Nie (2023b), and Chavrimootoo, Le, Reidy, and Smith

(2023c).

This work was supported in part by NSF grant CCF-2006496.

xiv

List of Tables

3.1 Summary of separations and collapses. This table is due to the tech-

nical report version of this work (Carleton et al., 2022b). Blue indi-

cates results due to or inherited from Hemaspaandra et al. (2020).

Red indicates results due to this work. The general-case line shows

when collapses occur for all election systems over linear orders. . 23

4.1 For each collection of (decision-problem) collapsing partition con-

trol types for plurality, veto, and approval elections we have shown

that their search problems are also of the same complexity. 62

A.1 The 44 types of control and a description of which components

are part of the input for each one. The input type thus partitions

the control types into five equivalence classes as to compatibility of

inputs. 116

A.2 Equivalence classes and their respective colors. Each boldfaced

entry indicates the canonical element of its equivalence class. . . . 118

A.3 List of separation witnesses in plurality. We note the computer-

generated entries with a “†” superscript. 119

xv

A.4 Table of separations and collapses (here denoted by EQ) in plu-

rality voting. The Classification column partitions each separation

into one of the three cases, ⊊, ⊋, and INCOMP. (For cases of

INCOMP for which we happen to have established that the sepa-

ration holds with strong incomparability, we have noted that with

a “∗” superscript.) . 122

A.5 List of separation witnesses in veto. We note the computer-

generated entries with a “†” superscript. 129

A.6 Table of separations and collapses (here denoted by EQ) in veto

voting. The Classification column partitions each separation into

one of the three cases, ⊊, ⊋, and INCOMP. (For cases of INCOMP

for which we happen to have established that the separation holds

with strong incomparability, we have noted that with a “∗” super-

script.) . 131

A.7 List of separation witnesses in approval voting. (Example Appr.7

can also be found on page 220 of the Handbook of Approval Voting

by Baumeister et al. 2010.) . 138

A.8 Table of separations and collapses (here denoted by EQ) in approval

voting. The Classification column partitions each separation into

one of the three cases, ⊊, ⊋, and INCOMP. (For cases of INCOMP

for which we happen to have established that the separation holds

with strong incomparability, we have noted that with a “∗” super-

script.) . 139

xvi

List of Figures

2.1 Example of an NCL graph. 19

2.2 A (directed) visibility representation of Figure 2.1. For a vertex

v, Γ(v) denotes the vertical segment representing v. Solid (resp.

dashed) edges from Figure 2.1 are drawn as solid (resp. dashed)

horizontal lines. 20

6.1 Screenshots of the Hanano Puzzle (reproduced with permission

from Qrostar 2022). 87

6.2 Our three gadgets: an OR gadget, an AND gadget, and a red bend

gadget. 91

6.3 Schemas showing the “equivalence” of the OR gadgets. 94

6.4 Schemas showing the “equivalence” of the AND gadgets. 97

6.5 Sketch of how the gadgets map onto the planar grid. 101

1

1 Introduction

Much work in theoretical computer science (TCS) and in computational social

choice (COMSOC) involves building models, proving properties of these models

or of objects within these models, and proving relationships between models,

among others.

A natural question one can ask oneself is whether there are examples of seem-

ingly different models or objects being studied separately in the literature, and

yet being the same if one inspects them more closely. The benefit of exploring

this line of thought is self-evident: It makes little sense to waste resources (e.g.,

the time of researchers and reviewers) in studying the same objects and models

multiple times. It is thus to our surprise that there are instances in the literature

where some objects that were thought to differ and were thus treated separately

for years actually turned out to be the exact same.

As an example, beyond the ones that this thesis deals with, we mention the

following. The initial study of the complexity class IP, which we do not define

here, was started by Babai (1985) and Goldwasser et al. (1985). However, it

was eventually proven by Shamir (1992) that IP and PSPACE, an already well-

known class at the time, in fact coincide. This was shocking for many reasons, in

particular because the classes look—from their definitions—different, and yet are

2

not. This puts one of the major results preceding Shamir’s—that the polynomial

hierarchy PH is contained in IP (Lund et al., 1990)—into perspective; indeed, it

was already known that PH ⊆ PSPACE. Nonetheless, this seeming duplication

of effort was not a waste of effort: This line of research involved using tools of

theoretical computer science and mathematics to provide new insights.

This thesis aims at demonstrating that the tools of theoretical computer sci-

ence and mathematics can be used to provide insights into a variety of fields,

particularly in the study of the hardness of certain types of games, in the study

of ambiguity-bounded computation, and more importantly, in the study of com-

putational social choice.

Electoral control problems are well-studied in COMSOC. A common research

problem in COMSOC is to study the decision complexity (e.g., in P or NP-hard) of

an electoral control problem for a given election system (i.e., a rule that outputs a

winner set given a set of candidates and a set of votes). When the problem is NP-

hard, we say the election system is resistant to that control attack.1 Resistance

to control attacks is, naturally, a desirable property of an election system, and

that motivated somewhat of a race in the literature to find a natural election

system that was resistant to as many of the standard control attacks as possible.

Yet, unbeknownst to the researchers at the time, several of the control problems

under their consideration were actually exactly the same when viewed as decision

problems. The first such cases were discovered by Hemaspaandra et al. (2020)

and from then until our work, this direction remained largely unexplored.

Clarifying the relationships between problems and classes of problems is a

fundamental task in complexity theory. (We provide a brief introduction to the

topic in Section 2.1.) We use the tools and techniques of TCS and mathematics

to develop our understanding of the problems we have at hand. So what else can

1For the sake of clarity, we are intentionally avoiding the issue of so-called “immunity” in

this introduction.

3

we provably say “is the same” (i.e., collapse)? Or what else can we provably say

“is not the same” (i.e., separate)?

The goal of this thesis is to present the results of projects in which we obtain

answers to these questions, and to outline future research directions where we will

continue to explore when certain objects are the same or differ.

In the context of electoral control problems, a decision problem asks if there

is a successful move by the attacker that achieves their goal, such as making a

given candidate win the election. We show that many electoral control problems

are the same (i.e., collapse) when viewed as decision problems (Carleton et al.,

2022b, 2023b). Since our model is the decision model, collapses are proved by

proving sets to be equal, and separations are proved by showing that sets are

not equal. We prove our collapse and “containment” results by using axiomatic

methods at times and by giving direct arguments at other times. To prove our

separations, we provide human-generated “separation witnesses” when possible.

And in many other cases, we make use of computer programs (to automate the

search for separation witnesses).

Of course, in the real world, the typical goal is to find a particular action

within the set of allowed moves that achieves one’s goal, which corresponds to

the search model. We show that the collapses we or Hemaspaandra et al. (2020)

prove in the decision model also hold in the search model (Carleton et al., 2022a,

2023a)! In effect, this means that in addition to collapsing control problems having

the same decision complexity, their search complexities are tightly related. It is

important to investigate this decision-to-search connection, as there are standard

control attacks for which the decision complexities and the search complexities

differ under reasonable assumptions (Hemaspaandra et al., 2020). We provide

a framework to interrelate the search complexities of search problems. We also

determine the search complexities of those problems (such as “polynomial-time

computable” and “NP-hard”) and provide a “bridge” theorem to link decision and

4

search complexities. The aforementioned bridge theorem leverages the notion of

self-reducibility and helps us not duplicate work when proving search complexities.

In the context of ambiguity-bounded computation, we provably link the rela-

tionship between certain ambiguity-bounded versions of NP, e.g., UP and FewP.

Prior to that, the only known linkage was that P = UP ⇐⇒ P = UPO(1) (Wa-

tanabe, 1988). We do so by proving new relationships of the form, for given

ambiguity-bounded versions of NP A and B, “P = A ⇐⇒ P = B.” We give

one family of linkages by using padding and one family by using a new inductive

approach. Finally, we show how to combine the two approaches to yield a family

that contains the one obtained by our padding approach, but not the one obtained

by our inductive approach.

In the study of the hardness of games, we establish that a well-known frame-

work for studying the complexity of fully reversible, deterministic PSPACE-

complete games can be used to study irreversible, deterministic PSPACE-complete

games with gravity. Prior to our work (Chavrimootoo, 2022), all known ap-

proaches to study such games with gravity used ad hoc reductions that do not

seem to generalize naturally. We show this connection by leveraging the notion

of visibility representations, and introducing additional structure into the reduc-

tions. In some sense, we see that there is a type of “collapse” in the methods

used to study these seemingly different classes of games. The new framework is

applied to pinpoint the complexity of the Hanano Puzzle, a previously open is-

sue. While the added structure seems to create a need for more gadgets, we show

how a large number of seemingly different gadgets are effectively equivalent and

interchangeable, which we view as a different type of collapse.

Finally, we include in the appendix our work on critiquing and verifying claims

about separations and collapses in complexity theory, which involved 15 under-

graduate students and resulted in six technical reports (Carleton et al., 2021;

Chavrimootoo and Welles, 2021; Chavrimootoo et al., 2022, 2023a,b,c).

5

2 Preliminaries

This section introduces the concepts that this thesis considers, namely compu-

tational social choice—i.e., voting theory and electoral control—and complexity

theory—i.e., the hardness of games and ambiguity-bounded computation.

Let N = {0, 1, 2, . . .}, let N+ = {1, 2, 3, . . .}, let R denote the set of real

numbers, let R≥1 = {x ∈ R | x ≥ 1}, and let R+ = {x ∈ R | x > 0}. As is

standard, given two functions f and g from N to R+, we say that f(n) = O(g(n))

exactly if there are positive natural numbers c and n0 such that (∀n ≥ n0)[f(n) ≤

cg(n)] (Sipser, 2013). For each R ⊆ R, we will say that a function f : N → R

is monotonically nondecreasing exactly if (∀n1, n2 ∈ N)[n1 ≤ n2 =⇒ f(n1) ≤

f(n2)]. This notion, for the case R = R≥1, will be important in Chapter 5.

We first introduce general complexity theory, before introducing computational

social choice and more specific topics in complexity.

2.1 Complexity Theory

This thesis assumes elementary familiarity with deterministic and nondeterminis-

tic Turing machines as discussed in such classic textbooks as Hopcroft and Ullman

(1979) and Papadimitriou (1994).

6

Complexity theory is primarily concerned with the study of the “easi-

ness”/“hardness” of problems and classes of problems. For example, given an

arbitrary number n ∈ N, how “easy” or how “hard” is it to answer the questions:

1. “Is n even?”

2. “Is n prime?”

3. “Is n the index of a Turing machine (TM) (under some standard enumeration

of TMs) that halts when given its own encoding as an input?”

To even discuss what “easy” and “hard” mean, we must introduce the standard

model in complexity, which is the decision model. Let us explain this by way of

an example.

The yes/no question “Is an input n ∈ N an even number?” defines a decision

problem. We can associate to that (decision) problem a set of inputs for which the

answer to the question is “yes” (and we call those the Yes instances of the decision

problem). (The standard terminology for such sets is “language,” and in this the-

sis, we will often use the words “set,” “problem,” and “language” interchangeably

when appropriate.) Thus the aforementioned decision problem is associated with

the set EVEN = {n ∈ N | n is an even number}. Furthermore, we often abuse

notation and use the name of the set—which is usually descriptive—to refer to the

problem. Finally, a (complexity) class (of problems) is simply a set of languages.

When we say that a problem A is “easy” or “tractable” we mean that there

is a polynomial-time algorithm (i.e., an algorithm whose runtime is bounded by a

polynomial in the input size) that determines membership in A. The class of such

easy problems is denoted by P, and the typical way of showing that a problem A

is in P is to give a polynomial-time algorithm that determines membership in A.

Checking if a number is even is an easy task given in courses introducing

programming, and checking if a number is prime is also easy (i.e., tractable) by

7

the primality breakthrough of Agrawal et al. (2004). The third question in our

list is, however, “hard”—in fact, it is provably not in P.

Discussing “hardness” or “intractability” in complexity is not as simple as

discussing easiness/tractability. We want a “hard” problem B to have the property

that each of the (countably infinitely many) polynomial-time algorithms fails to

determine membership in B, but, as it turns out, establishing such a property is

not well-understood in complexity. While we can say with certainty that some

problems are not in P, there is no known universal method to do this for every

problem not in P. One way to address this issue is to leverage the power of

polynomial-time many-one reductions.

Let FP denote the class of polynomial-time computable functions, i.e., for

each f ∈ FP, there is a deterministic polynomial-time Turing machine that when

given x as its input, halts with exactly f(x) on its output tape. Set A is said to

polynomial-time many-one reduce to set B (denoted A ≤p
m B; for convenience,

we will often just say “A many-one reduces to B”) exactly if (∃f ∈ FP)(∀x)[x ∈

A ⇐⇒ f(x) ∈ B]. Given a complexity class C and set B, we say that B is C-hard

exactly if (∀C ∈ C)[C ≤p
m B]. If in addition to being C-hard it holds that B ∈ C,

then B is said to be C-complete. (We note in passing that it is possible, and not

uncommon, to define “-hardness” and “-completeness” in terms of other forms of

reductions, but in this thesis, those notions are defined in terms of polynomial-

time many-one reductions.) Polynomial-time many-one reductions are transitive,

and so in practice, to the show C-completeness of a new set B ∈ C, it is preferred

to simply show that there is a known C-complete set X such that X ≤p
m B.

Polynomial-time many-one reductions are transitive and reflexive relations,

and induce a partial ordering on the set of languages. Intuitively, if A ≤p
m B, we

understand that A is “no harder” than B. For a given class C, a problem A being

C-hard is typically interpreted to mean that no problem in C is harder than A.

And C-complete problems are commonly interpreted to be the (equally) hardest

8

problems in C.

The class NP refers to the set of languages accepted by nondeterministic

polynomial-time Turing machines, and this class is central to one of the biggest

open questions in complexity theory: the P versus NP problem. It is conjec-

tured that P ̸= NP, and so we associate “hardness” with NP-hardness, i.e., in

this thesis—as is common in computer science—we consider a problem A to be

hard/intractable if it is NP-hard (recall that this means that for every L ∈ NP,

L ≤p
m A). A classic example of an NP-hard problem is that of “boolean satisfiabil-

ity”: Given a boolean formula f , is there an assignment of values to its variables

that make the formula evaluate to true? This problem is often denoted by SAT

and is in fact NP-complete.

Though it is not explicitly relied upon in this thesis, based on the notions

introduced so far, we can establish the following good-to-know fact.

Fact 2.1. Suppose A ≤p
m B.

1. If B ∈ P, then A ∈ P.

2. If A is NP-hard, then B is NP-hard.

In complexity, we are also concerned with the notion of oracles and oracle

machines. We can view an oracle as a language, i.e., a set. An oracle machine is a

modified Turing machine that has the additional capability of querying an oracle

A to determine the membership of a string in A (Sipser, 2013). As is standard,

we denote the oracle machine M with oracle A by MA. The common view is to

treat oracles like black boxes, and we are not concerned with how membership in

the oracle is determined. Sipser (2013) mentions that the term oracle is used to

draw a connection to the “magic ability” of an oracle machine to query the oracle.

We can also define complexity classes in terms of those oracles. For example PA

denotes the class of languages accepted by oracle machines with oracle A that run

9

in polynomial time relative to the oracle. The runtime of an oracle machine may

be different when it is equipped with different oracles.

Other complexity theory concepts relevant to the thesis are introduced in Sec-

tions 2.4 and 2.5, and as needed in the relevant chapters.

2.2 Voting Theory

In this section, we introduce the formal framework of computational social choice.

An election is a pair (C, V), where C is a finite set of candidates and V is a

finite collection of votes over those candidates in C. The collection of votes is often

just called a vote set or a set of votes for simplicity, and it is implicitly understood

to be a multiset. In this thesis, unless otherwise specified, we understand a vote

to be a complete ordering of the set of candidates. For example, if C = {a, b, c},

then a possible set of votes is {a > b > c, a > c > b, a > b > c, b > c > a}. In

Chapters 3 and 4, we will also consider a different type of vote, which we will

discuss then.

An election system (sometimes also known as voting rule) is a function that

maps an election (C, V) to a subset of C, i.e., the winner set. As is standard

in COMSOC, we allow empty winner sets (which is not common in pure social

choice theory). One reason to allow the empty winner set is to be consistent

with the COMSOC literature, but we also feel it is more natural to do so as

allowing the empty winner set is symmetric with allowing every candidate to win.

Moreover, it is certainly possible in the real world to have an election where no

candidate in elected. For example, under majority (where a candidate ranked

first by more than half of the voters uniquely wins that election), if no candidate

receives more than half of the votes, then no candidate is elected. This is in

some sense what happened in the 2023 Speaker of the United States House of

Representatives election. Fifteen majority elections were held as in each of the

10

first fourteen elections, no candidate had secured the majority of the votes. Each

round, voters recast their votes, and by the fifteenth round, Kevin McCarthy was

able to secure a majority of the votes and won the election.

Let us look at examples of an election system and the output of such a function

on given inputs. A common and important election system is “plurality.” In this

system, each candidate receives one point for each vote in which they are ranked

first. The winners are those candidates with maximal points.

Example 2.2. Let C = {a, b, c} and let V = {a > b > c, a > b > c, a > b >

c, b > a > c, b > a > c, c > b > a, c > b > a}. Based on the plurality election

system, a receives three points, b receives two points, and c receives two points,

thus making a the unique winner of the plurality election (C, V).

In the previous example, only one candidate wins. The next example depicts

a plurality election with multiple winners.

Example 2.3. Let C = {a, b, c} and let V = {a > b > c, a > b > c, a > b >

c, b > a > c, b > a > c, b > a > c, c > b > a}. Based on the plurality election

system, a receives three points, b receives three points, and c receives one point,

thus making a and b the tied winners of the plurality election (C, V).

Election systems are known to satisfy properties that are often called axioms.

For example, if an election system never produces multiple winners on each input,

it is said to be resolute (equivalently, it is said to satisfy resoluteness). In this

thesis, we will also look at classes of elections satisfying certain axioms rather

than focus on concrete election systems.

2.3 Electoral Control

The computational study of certain control attacks was introduced by Bartholdi

et al. (1992). Their work was focused on determining the complexity of those

11

control problems. They started the study of the notion known as “constructive

control” in which the goal is to make a distinguished candidate win (perhaps

uniquely or nonuniquely). Hemaspaandra et al. (2007) then introduced the anal-

ogous notion of “destructive control” in which the goal is to make a distinguished

candidate not win. Again, “winning” can be defined as “uniquely winning” or

“nonuniquely winning” (i.e., tied as winner).

The exact control actions are: adding voters, adding candidates, unlimited

adding candidates, deleting voters, deleting candidates, partition of voters, run-

off partition of candidates, and partition of candidates. Each of the control ac-

tions that involve partitioning (i.e., the last three mentioned above) involve run-

ning subelections wherein the winners (if any) of those subelections proceed to

a final-round election. In their seminal work, Bartholdi et al. (1992) dismissed

the importance of the tie-handling rule in these subelections, but Hemaspaandra

et al. (2007) showed that the tie-handling rule matters. They defined two rules

that have become standard in the literature: The ties promote (TP) rule allows

every winner (even if tied) of a subelection to proceed to the final round, and the

ties eliminate (TE) rule allows a winner of a subelection to proceed to the final

round exactly if it is a unique winner of that subelection. They then used those

two tie-handling rules to show that changing the tie-handling rule can make a

particular control problem go from being in P to being NP-complete!

Definition 2.4 defines the 11 standard constructive control problems in the

nonunique-winner model, and we will from that explain how the analogous def-

initions in the unique-winner model follow. We will also explain how to get the

destructive control definitions from the constructive control ones. In our work,

when given a collection of votes V over a set of candidates C, we will often con-

sider elections of the form (C ′, V), where C ′ ⊆ C. As is standard, it is implicitly

understood that in (C ′, V), V is a collection of votes restricted in the natural

and obvious way to be over C ′. The following definition is taken verbatim from

12

Carleton et al. (2022b).

Definition 2.4. Let E be an election system.

1. In the constructive control by adding candidates problem for E (de-

noted by E-CC-AC-NUW), we are given two disjoint sets of candidates C

and A, V a collection of votes over C ∪ A, a candidate p ∈ C, and a non-

negative integer k. We ask if there is a set A′ ⊆ A such that (i) ∥A′∥ ≤ k

and (ii) p is a winner of E election (C ∪ A′, V).

2. In the constructive control by unlimited adding candidates prob-

lem for E (denoted by E-CC-UAC-NUW), we are given two disjoint sets of

candidates C and A, V a collection of votes over C ∪ A, and a candidate

p ∈ C. We ask if there is a set A′ ⊆ A such that p is a winner of E election

(C ∪ A′, V).2

3. In the constructive control by deleting candidates problem for E (de-

noted by E-CC-DC-NUW), we are given an election (C, V), a candidate

p ∈ C, and a nonnegative integer k. We ask if there is a set C ′ ⊆ C

such that (i) ∥C ′∥ ≤ k, (ii) p ̸∈ C ′, and (iii) p is a winner of E election

(C − C ′, V).

4. In the constructive control by adding voters problem for E (denoted

by E-CC-AV-NUW), we are given a set of candidates C, two collections of

votes, V and W , over C, a candidate p ∈ C, and a nonnegative integer k.

We ask if there is a collection W ′ ⊆ W such that (i) ∥W ′∥ ≤ k and (ii) p is

a winner of E election (C, V ∪W ′).

2This control type only differs from the former in the limit imposed by k. Historically, this

version was defined first, but the abovementioned one was introduced to be symmetric with the

control types that follow in this definition.

13

5. In the constructive control by deleting voters problem for E (denoted

by E-CC-DV-NUW), we are given an election (C, V), a candidate p ∈ C,

and a nonnegative integer k. We ask if there is a collection V ′ ⊆ V such

that (i) ∥V ′∥ ≤ k and (ii) p is a winner of E election (C, V − V ′).

6. In the constructive control by partition of voters problem for E , in

the TP or TE tie-handling rule model (denoted by E-CC-PV-TP-NUW or

E-CC-PV-TE-NUW, respectively), we are given an election (C, V), and a

candidate p ∈ C. We ask if there is a partition3 of V into V1 and V2 such

that p is a winner of the two-stage election where the winners of subelec-

tion (C, V1) that survive the tie-handling rule compete (with respect to vote

collection V) along with the winners of subelection (C, V2) that survive the

tie-handling rule. Each election (in both stages) is conducted using election

system E .

7. In the constructive control by run-off partition of candidates prob-

lem for E , in the TP or TE tie-handling rule model (denoted by E-CC-RPC-

TP-NUW or E-CC-RPC-TE-NUW, respectively), we are given an election

(C, V), and a candidate p ∈ C. We ask if there is a partition of C into C1

and C2 such that p is a winner of the two-stage election where the winners of

subelection (C1, V) that survive the tie-handling rule compete (with respect to

vote collection V) against the winners of subelection (C2, V) that survive the

tie-handling rule. Each election (in both stages) is conducted using election

system E .

8. In the constructive control by partition of candidates problem for E ,

in the TP or TE tie-handling rule model (denoted by E-CC-PC-TP-NUW

3A partition of a collection V is a pair of collections V1 and V2 such that V1∪V2 = V , where ∪

denotes multiset union. A partition of a set C is a pair of sets C1 and C2 such that C1∪C2 = C

and C1 ∩ C2 = ∅, where ∪ and ∩ are standard set union and intersection.

14

or E-CC-PC-TE-NUW, respectively), we are given an election (C, V), and

a candidate p ∈ C. We ask if there is a partition of C into C1 and C2 such

that p is a winner of the two-stage election where the winners of subelec-

tion (C1, V) that survive the tie-handling rule compete (with respect to vote

collection V) against all candidates in C2. Each election (in both stages) is

conducted using election system E .

This defines 11 electoral control problems—each of the last three definitions de-

fine two control problems, one for each tie-handling rule—also known as electoral

control types. The remaining constructive control types are about the unique-

winner model and are defined by changing “p is a winner” in each of the above

definitions to “p is a unique winner,” which leads to also changing the suffix of

the control problem’s abbreviation from “-NUW” to “-UW.” The fact that these

control problems are about constructive control is included in their abbreviations

via the “CC” prefix. We now need to define the destructive variants (whose ab-

breviation prefixes will be “DC” rather than “CC”; note that “DC” can mean

“destructive control” or “deleting candidates,” but it is always clear from context

what “DC” refers to). These are defined by simply changing the question to ask

that “p is not a winner” or “p is not a unique winner,” depending on the winner

model under consideration.

As is standard in the literature, we view each control problem as a decision

problem and use each control problem/type’s abbreviation to denote the set of

Yes instances to that decision problem.

Let us look at an example of control, by building on Example 2.2.

Example 2.5. Let C = {a, b, c} and let V = {a > b > c, a > b > c, a >

b > c, b > a > c, b > a > c, c > b > a, c > b > a}. It is easy to see that

a receives three points, b receives two points, and c receives two points, thus

making a the unique winner of the plurality election (C, V). However, we can

15

make b the unique winner by using partition of candidates. Consider the partition

of candidates where C1 = {a, b} and C2 = {c}. Let the tie-handling rule be TP,

although in this example the TE rule also yields the same result. Then in election

(C1, V), a receives three points, while b receives four points and uniquely wins that

subelection. Now the final round is the election (C2∪{b}, V) = ({b, c}, V), and in

that election, b receives five points, while c only receives two points, making b the

unique winner of the two-stage election. In our terminology, (C, V, b) ∈ Plurality-

CC-PC-TP-UW.

In addition to studying the complexity of control problems, it is also common

to study the notion of immunity. Namely, in the unique-winner model, we say an

election system is immune to a particular type of control if the given type of control

can never change a candidate from not uniquely winning to uniquely winning (if

the control type is constructive) (Bartholdi et al., 1992) or change a candidate

from uniquely winning to not uniquely winning (if the control type is destructive)

(Hemaspaandra et al., 2007). In the nonunique-winner model, we say an election

system is immune to a particular type of control if the given type of control can

never change a nonwinner to a winner (if the control type is constructive) or

change a winner to a nonwinner (if the control type is destructive).

2.4 Ambiguity-Bounded Versions of NP

In our work related to ambiguity-bounded versions of NP, we will at times abuse

notation, in cases where it is unambiguous to do so, by writing f(n) to either

denote the value that a function f maps n to, or to denote that function f itself.

We assume in this thesis that log(·) = log2(·), unless noted otherwise.

The notion of ambiguity-bounded machines was introduced by Valiant (1976)

when he introduced the class UP (“unambiguous polynomial time”) as follows:

A language L is in UP exactly if there exists a nondeterministic polynomial-time

16

Turing machine (NPTM) that on each input x has exactly one accepting path if

x ∈ L and has no accepting paths if x ̸∈ L. It is known that P ⊆ UP ⊆ NP, but

it is not known if the inclusions are strict.

Starting with the work of Allender and Rubinstein (1988) that defined a

polynomial-ambiguity sibling of UP, many other ambiguity-bounded versions have

been defined and studied. UP is also sometimes called UP≤1 as the concept of

bounded ambiguity can be generalized as follows. The notation we use is due to

Lange and Rossmanith (1994).

We denote the number of accepting paths of an NPTM M on input x by

#accM(x). For a given function f : N → R≥1, a language L is in UP≤f(n) exactly

if there exists an NPTM N such that for every x ∈ L, 1 ≤ #accN(x) ≤ f(|x|),4

and for every x ̸∈ L, #accN(x) = 0.

Given a class of functions F , we also define UPF =
⋃

f∈F UP≤f(n). This

notation will be useful when discussing certain results in Chapter 5.

Among the existing ambiguity-bounded classes are (in some cases with

slightly different notations in their original papers) the polynomial-ambiguity class

FewP =
⋃

k∈N+ UP≤nk+k of Allender and Rubinstein (1988); the log-bounded

ambiguity class UPO(log(n)) and also the classes UPO(
√

log(n))
and UPO(log(log(n)))

of Hemaspaandra et al. (2022); and the k-bounded ambiguity classes UP≤2,

UP≤3, . . . of Beigel (1989), and their union, the constant-bounded ambiguity class

UPO(1) of Hemaspaandra and Zimand (1993).5 Note that NP = UP
2n

O(1) .

4Because #accN always maps to a natural number, it is fine for us to use “f(|x|)” instead of

“⌊f(|x|)⌋” (where ⌊·⌋ represents the floor function) as both options yield equivalent definitions

for our purposes.
5There is a rather subtle issue at play in this sentence. Consider the class UP≤log(n). Its

definition automatically excludes strings of length 0 or 1, which is unnatural, and problematic

as that would exclude a countably infinite number of sets in P from UP≤log(n), so the statement

P = UP≤log(n) is always false. To remedy this situation, we implicitly assume in this work that

“log(·)” is a shorthand for “log(max(2, ·)).”

17

Each of the above ambiguity-bounded versions of NP are further motivated

by the fact that their equality to P characterizes the existence of complexity-

theoretic one-way functions whose ambiguity (i.e., whose limits on the number

of preimages of each string in the range) share the same bound.6 The general

correspondence is that P ̸= UP≤f(n) ⇐⇒ there exists an f(n)-to-1 one-way

function (Hemaspaandra et al., 2022).7 Though Hemaspaandra et al. (2022) give

the prior result in the general case, earlier case-specific results were given by

Grollmann and Selman (1988).

For any claim regarding classes for which a generally agreed upon notion of

relativization has been reached in the literature, we say that the claim holds ro-

bustly if it holds for each oracle A. For example, if we were to say that P ⊆ NP

holds robustly—and indeed it does—that would be asserting that for each oracle

A it holds that PA ⊆ NPA. The vast majority of theorems, proofs, and proof tech-

niques used to study complexity classes relativize. Thus, showing that a claim

holds in some relativized world establishes that a wide range of proof techniques

cannot prove that the claim fails in the “real” (i.e., unrelativized) world. However,

there exist proof techniques and results, e.g., arithmetization and IP = PSPACE,

that (in some cases controversially as to what the “right”/“fair” model of rela-

tivization is) seem not to relativize (Babai and Fortnow, 1991; Hartmanis et al.,

1992; Lund et al., 1992; Shamir, 1992; Buhrman et al., 1998; Vereshchagin, 1994;

6Though it is not needed to understand the work in this thesis, we provide here briefly the

definition of complexity-theoretic one-way functions as defined in Hemaspaandra and Ogihara

(2002). For a function f , we let range(f) denote the range of f and dom(f) denote the domain

of f . A (possibly nontotal) function f is honest if there is a polynomial q such that (∀y ∈

range(f))(∃x)[f(x) = y∧|x| ≤ q(|y|)]. Moreover, a (possibly nontotal) function f is polynomial-

time invertible if there is a polynomial-time computable function g such that (∀y ∈ range(f))[y ∈

dom(g) ∧ g(y) ∈ dom(f) ∧ f(g(y)) = y]. A (possibly nontotal) function f is one-way if f is

honest, polynomial-time computable, and not polynomial-time invertible.
7A function g is f(n)-to-one exactly if for each y, ∥{x | g(x) = y}∥ ≤ f(|y|). This notion too

is not necessary to understand the work in this thesis.

18

Aaronson, 2020; Ji et al., 2020).

2.5 Hardness of Games

It is often noted that people in TCS thoroughly enjoy problem-solving and working

on puzzle games. It is thus no surprise that a rich area of study in complexity

theory is that of the hardness of games.

Hearn and Demaine’s textbook (2009) provides a comprehensive overview of

the complexity of games that had been studied at the time. They devised a

framework—a family of Constrained Logic problems—to ease the task of devising

many-one reductions to show the hardness (with respect to specific classes) of

reversible, deterministic games.8 In this thesis we are only concerned with the

complexity class PSPACE—the class of languages that are accepted by Turing

machines using only polynomial space (in the input size)—so we will focus on

Nondeterministic Constraint Logic (NCL), which Hearn and Demaine (2009) used

to show the PSPACE-hardness of many games (often significantly simplifying

existing proofs in the literature). The definitions relating to NCL that follow are

based on definitions of Hearn and Demaine (2009).

An NCL graph is a weighted, directed graph where each edge has weight one

(aka red edge) or has weight two (aka blue edge). There is a global constraint

that the sum of weights of incoming edges into each vertex must be at least two.

This is known as the (minimum) inflow constraint.

There is one operation allowed on an NCL graph: We can flip the direction

of an edge in an NCL graph provided that the flip does not violate the minimum

inflow constraint.

8Though the framework was introduced in the context of games, it has found applications in

other areas, such as in planning. We go into more details in Chapter 6.

19

A B

CD

1

2 2

2

1

1

Figure 2.1: Example of an NCL graph.

Given an NCL graph G = (V,E) and an edge e ∈ E, determining if there is a

sequence of edge flips such that e is eventually flipped is PSPACE-complete. The

problem turns out to remain PSPACE-complete even if

1. G is simple, i.e., has no self-loops, and no two vertices have more than one

edge between them,

2. G is planar, i.e., can be drawn on a flat piece of paper without having any

edges intersect (except at common endpoints), and

3. every vertex of G is either an AND vertex (i.e., has degree 3 and every

edge connected to it is blue) or an OR vertex (i.e., has degree 3 with one

connected edge being blue and the remaining two being red).

Such graphs are called planar AND/OR NCL graphs, but since these are the

only types of NCL graphs considered in our work, we shall tacitly assume that

every NCL graph considered henceforth is a planar AND/OR NCL graph. Fig-

ure 2.1 gives an example of an NCL graph (in this thesis, red edges are drawn

using dotted lines while blue edges are drawn using solid lines).

We will be looking at the complexity of the Hanano Puzzle, which is a game of

gravity, i.e., a game with a vertical dimension where objects that have no support

20

Γ(A)

Γ(B)

Γ(C)

Γ(D)

Figure 2.2: A (directed) visibility representation of Figure 2.1. For a vertex v,

Γ(v) denotes the vertical segment representing v. Solid (resp. dashed) edges from

Figure 2.1 are drawn as solid (resp. dashed) horizontal lines.

fall until they encounter an object to support them. We’ll say that the gravity is

irreversible if the game has no provision for a fallen object to retrace its steps and

return to its previous position. For example, the lack of a “jump” ability could

satisfy this “irreversibility” notion. To abstract away the notion of “irreversible

gravity,” we will make use of the notion of visibility representations.

Definition 2.6 (Tamassia 2016). Given a graph G = (V,E), a visibility repre-

sentation Γ for G maps every vertex v ∈ V to a vertical vertex segment Γ(v) and

every edge (u, v) ∈ E to a horizontal edge segment Γ(u, v) such that each horizon-

tal edge segment Γ(u, v) has its respective endpoints lying on the vertical vertex

segments Γ(u) and Γ(v), and no other segment intersections or overlaps occur.9

Figure 2.2 shows an example of a visibility representation of the graph in

Figure 2.1.

9This definition deviates slightly from the standard one; in the standard definition, vertices

are mapped to horizontal segments, and edges are mapped to vertical segments. For our pur-

poses, both definitions are equivalent.

21

It is well-known how to compute the visibility representations of planar graphs

in linear time, and those representations will be crucial for our (many-one) reduc-

tion.

Theorem 2.7 (Tamassia and Tollis 1986; Tamassia 2016). A graph admits a

visibility representation if and only if it is planar. Furthermore, a visibility repre-

sentation for a planar graph can be constructed in linear time.10

10An earlier version (Chavrimootoo, 2022) of this work, unaware of the earlier results of

Tamassia and Tollis (1986), proved a weaker version of this theorem: While our result established

the “if” direction (the “only if” direction is trivial), our polynomial-time algorithm did not run

in linear time.

22

3 Separating and Collapsing

Electoral Control Types

No mathematician in the world would bother making these

senseless distinctions: 2 1/2 is a “mixed number” while 5/2 is

an “improper fraction.” They’re equal, for crying out loud.

They are the exact same numbers, and have the exact same

properties. – Lockhart (2009)

3.1 Introduction

In a recent paper, Hemaspaandra et al. (2020) show that for every election

system E where the votes are linear orders over the candidates it holds that

(1) E-DC-RPC-TE-UW = E-DC-RPC-TE-NUW = E-DC-PC-TE-NUW =

E-DC-PC-TE-UW, and (2) E-DC-RPC-TP-NUW = E-DC-PC-TP-NUW. Their

proof builds on a characterization provided by Faliszewski et al. (2009). Our work

finds that the proof of Hemaspaandra et al. (2020) does not actually rely on votes

being linear orders, thus making their proofs hold for any election system E .

Although researchers in the field initially thought that there were 44 distinct

electoral control types (for each election system), there are 40. This was sur-

prising as those problems had been treated differently for years by many prolific

23

researchers in computational social choice. In our work, we explore whether there

are additional such equalities (i.e., collapses) or if all the other pairs of control

types in fact do differ (i.e., separate). We prove that in the general case, there are

no additional collapses, but if we bring our attention to concrete election systems

such as veto and approval, then there are many more—fifteen to be precise—

collapses hiding in plain sight. For each pair of control types for the concrete

election systems plurality, veto, and approval, we determine the relationship be-

tween these types and classify them as either “equal” (i.e., collapsing), “⊊,” “⊋,”

or “incomparable” (see Section 2.3 for precise definitions of each of these terms).

Additionally, we provide some axiomatic sufficient conditions that will simplify

future studies involving election systems satisfying these conditions. Table 3.1

provides a summary of our results.

Table 3.1: Summary of separations and collapses. This table is due to the technical

report version of this work (Carleton et al., 2022b). Blue indicates results due to

or inherited from Hemaspaandra et al. (2020). Red indicates results due to this

work. The general-case line shows when collapses occur for all election systems

over linear orders.

Set Classification Subclassification of Separations

Election System Separations Collapses Open “⊊”/“⊋” Incomparable Open

General Case 1 + 314 = 315† 7 0 38 277 0

Plurality 315 7 0 38 277 0

Veto 314 7 + 1 = 8 0 58 256 0

Approval Voting 301 7 + 14 = 21 0 88 213 0
† Or 0 + 315 for the pure social choice approach to candidate names (see Foot-

note 2 and the Related Works section of our technical report for more details).

Let us now define formally our notions of separations and collapses. Two con-

trol types are said to be compatible if their input types are the same. For example,

E-CC-RPC-TP-UW and E-DC-PV-TE-NUW are compatible, but E-CC-RPC-

24

TP-UW and E-CC-AC-UW are not compatible. Fix an election system E . We say

that two compatible types E-T1 and E-T2 collapse exactly if E-T1 = E-T2. Other-

wise, they separate. We further refine the type of separations into three cases. The

first case (called “⊊”) holds exactly if E-T1 ⊊ E-T2, the second case (called “⊋”)

holds exactly if E-T1 ⊋ E-T2, and finally, the third case (called incomparability)

holds exactly if E-T1 ̸⊆ E-T2 and E-T1 ̸⊇ E-T2.

The first two abovementioned cases are what we also call “containments” and

they establish a meaningful relationship: For two electoral control types E-T1

and E-T2, if E-T1 ⊊ E-T2, it follows from standard set-theoretic notions that

the existence of a successful control action under control type E-T1 implies the

existence of a successful control action under control type E-T2. As we will see, we

at times prove such relationships that are not what we would intuitively expect.

The notion of incomparability can itself be further refined, but it requires us

to introduce a new notion; we can describe each type of separation and collapse

in terms of a functional model as follows. Fix an election system E and a control

type T . A reduced input is an input to a control problem—a tuple—with the

focus candidate removed. Then the function fE-T is function that, when given a

reduced input I ′, outputs the set of candidates C ′ such that for each c ∈ C ′, the

tuple formed by merging I ′ and c in the obvious way belongs to E-T . It is easy

to verify that for two compatible control types E-T1 and E-T2, E-T1 ⊆ E-T2 if and

only if for each reduced input I ′, fE-T1(I
′) ⊆ fE-T2(I

′).

We say that two compatible control types E-T1 and E-T2 are strongly incom-

parable exactly if there is a reduced input I such that fE-T1(I)− fE-T2(I) ̸= ∅ and

fE-T2(I)−fE-T1(I) ̸= ∅. In many of our incomparability results we in fact establish

strong incomparability.

The above definitions are focused on a fixed election system, but we can also

consider a “general case.” We consider a collapse to hold “in the general case”

if it holds for every election system, even when the votes are not linear orders.

25

Naturally, a separation holds in the general case if it holds for some election

system. Thus to show the separation of two types, it suffices to find one election

system for which the two types differ. By looking at the general case, we are able

to view a different form of incomparability: two control problems T1 and T2 are

weakly incomparable in the general case if there is an election system E such that

E-T1 ̸⊆ E-T2 and an election system E ′ such that E ′-T1 ̸⊆ E ′-T2.

We thus have three notions of incomparability: strong incomparability, which

implies incomparability, which in turn implies weak incomparability (in the gen-

eral case). We note however that in our work, we never deal with weak incompa-

rability as we are always able to show either incomparability or strong incompa-

rability.

Let us now look at the results established in this work.

3.2 Results in the General Case

Recall that the results in the general case refers to those results that hold for

every election system (such as the collapses of Hemaspaandra et al. 2020).

We prove that there are no additional collapses in the general case, but show

some previously unknown containment relationships.

Theorem 3.1. Let E be an election system. For each T ∈ {DC-RPC-TP-

UW,DC-PC-TP-UW}, E-T ⊆ E-DC-RPC-TE-NUW.

Proof. Let T ∈ {DC-RPC-TP-UW,DC-PC-TP-UW}. We will show E-T ⊆

E-DC-RPC-TE-NUW. Suppose (C, V, p) ∈ E-T . Let (C1, C2) be a partition

that witnesses (C, V, p)’s membership in E-T . It holds that either p participates

in and loses in a subelection, or p participates in and does not win uniquely in

the final round. If the former holds, then the partition (C1, C2) suffices as p will

be eliminated in a subelection and thus will not proceed to the final round. If the

26

latter holds, then let D denote the set of candidates present during the final round.

Clearly p ∈ D. Thus the partition (D,C − D) witnesses (C, V, p)’s membership

in E-DC-RPC-TE-NUW since p either loses in the first subelection (D, V) or ties

in that subelection and is eliminated by the tie-handling rule.

For every pair of control types (in the general case), if they are not equal and

if they are not in a ⊋/⊊ relationship per Theorem 3.1, then we prove that they

are incomparable, and we do so using separation witnesses that use the plurality

election system.

3.3 Results about Plurality

In a plurality election, each vote is a linear order over the set of candidates, and

the election system works as follows: Each candidate gets one point for each vote

where they are ranked first and the set of winners is the set of candidates with

maximal score (so we allow multiple winners).

We prove (via Table A.4) that there are no additional collapses or containments

in plurality, and so, each strict containment/incomparability that we prove for

plurality translates directly to a new result in the general case. Indeed, recall that

in the general case, to show that for two types T1 and T2, it holds that T1 ̸⊆ T2,

it suffices to find one election system where that relationship holds; for every pair

of types for which we prove such a relationship in the general case, the witnessing

election system is plurality, and so in some sense, we are “cutting down the work”

by proving things about the general case by only studying one simple and natural

election system.

27

3.4 Results about Veto

In a veto election, votes are linear orders of the candidates, and for each vote

where a particular candidate is not ranked last, that candidate receives a point. A

winner is a candidate with the highest number of points among all the candidates

(naturally, there can be multiple winners). For example, if C = {a, b, c} and

V = {a > b > c, c > a > b}, then b and c each receive one point, and a receives

two points and wins.

In veto elections, we prove one new collapse, and several strict containments.

Our first collapse is the following.

Theorem 3.2. Veto-DC-PV-TE-UW = Veto-DC-PV-TE-NUW.

Proof. The ⊇ relationship is immediate. The approach that follows resembles

closely that of Maushagen and Rothe (2018). Let (C, V, p) ∈ Veto-DC-PV-TE-

UW. If there is a partition such that p is not a winner of the two-stage election,

then (C, V, p) ∈ Veto-DC-PV-TE-NUW. Otherwise, there is a partition and c ∈

C, c ̸= p, such that p and c are both winners of the two-stage election. Suppose

∥C∥ = 2. Then p and c are both winners of the election (C, V). In this case,

consider the partition (V, ∅). Both candidates will tie and be eliminated, in both

subelections. Suppose ∥C∥ ≥ 3. Then there are two distinct candidates d, e ∈

C − {p}. Let V1 denote the set of votes in which e is vetoed and let V2 be the

remaining votes. Now, consider the two-stage election with partition (V1, V2).

Since e is never vetoed in V2, p can at best tie with e in the subelection (C, V2).

Finally, d is never vetoed in V1 (since all votes there veto e), so p cannot be a

unique winner of (C, V1). Thus p is eliminated in both first-round elections.

By leveraging a key fact in the proof of Theorem 3.2, namely that when there

are at least three candidates, destructive control by partition of voters using the

TE rule is always possible, we establish the following result.

28

Theorem 3.3. For each T ∈ {DC-PV-TP-UW, DC-PV-TP-NUW}, Veto-T ⊊

Veto-DC-PV-TE-NUW.

Proof. Let T ∈ {DC-PV-TP-UW, DC-PV-TP-NUW}. Suppose (C, V, p) ∈

Veto-T , and let (V1, V2) be a partition that witnesses this membership. Using

the same technique as in the proof of Theorem 3.2, we can handle the case where

∥C∥ ≥ 3, and thus we only need to consider the case where ∥C∥ = 2 in this proof.

Let C = {c, p}. First, suppose that p is present in the final round. Then, since p

is not a unique winner of the final round, all candidates in C are present in this

round. Thus p is not a unique winner of the election (C, V), and so the partition

(V, ∅) witnesses (C, V, p)’s membership in Veto-DC-PV-TE-NUW. Now, suppose

that p is absent from the final round. Then p is not a winner of (C, V1) or (C, V2),

and so p receives strictly more vetoes than c in both V1 and V2. Thus p receives

more vetoes than c in V , so again, p is not a unique winner of (C, V). A separation

witness for the strict containment can be found in Table A.6.

The previous result involves types that are about partitioning candidates, but

we find that, surprisingly, we can show containments between control types that

are about partitioning different elements of the election.

Theorem 3.4. For each T ∈ {DC-RPC-TE-NUW, DC-RPC-TP-UW,

DC-RPC-TP-NUW, DC-PC-TP-UW}, Veto-T ⊊ Veto-DC-PV-TE-NUW.

Proof. Let T ∈ {DC-RPC-TE-NUW, DC-RPC-TP-UW, DC-RPC-TP-NUW,

DC-PC-TP-UW}. Suppose (C, V, p) ∈ Veto-T , and let (C1, C2) be a partition

that witnesses this membership. As per the two preceding proofs (namely, of

Theorems 3.2 and 3.3), we need only consider the case where ∥C∥ = 2. The case

where p is present in the final round is handled as in Theorem 3.3, so suppose

that p is absent from the final round. Without loss of generality, we may assume

that p ∈ C1. Then p is not a unique winner of (C1, V), so C1 = C. Thus p is not a

29

unique winner of (C, V), and the partition (V, ∅) witnesses (C, V, p)’s membership

in Veto-DC-PV-TE-NUW. A separation witness for the strict containment can

be found in Table A.6.

For every remaining pair of control types, we prove that they are incomparable.

3.5 Results about Approval

Unlike plurality and veto, approval uses a different type of votes. In an approval

election (C, V), each vote is a ∥C∥-bit vector, where each bit is associated with a

candidate. A candidate is approved by a vote exactly if that candidate’s bit is set

to 1 in that vote. In an approval election, a candidate receives one point for each

vote in which they are approved, and the set of winners is the set of candidates

with maximal score.

Since we note in our paper (Carleton et al., 2023b) that the proof of Hema-

spaandra et al. (2020) does not rely on vote types, their collapses apply to ap-

proval.

Corollary 3.5 (see Hemaspaandra et al. 2020). 1. The following control

types pairwise collapse: Approval-DC-RPC-TE-UW, Approval-DC-RPC-

TE-NUW, Approval-DC-PC-TE-NUW, and Approval-DC-PC-TE-UW.

2. Approval-DC-RPC-TP-NUW = Approval-DC-PC-TP-NUW.

We first discuss our results pertaining to axiomatic sufficient conditions. Let

us first consider Property α, which states that p winning an election (C, V) implies

that p remains a winner of every election (C ′, V) for which p ∈ C ′ ⊆ C (Samuelson,

1938).11 The “unique” version of this axiom (Property Unique-α) only differs in

11Readers familiar with the computational social choice literature will see this definition as

being that of the Weak Axiom of Revealed Preferences (WARP). However, that is incorrect; the

30

that it requires p to be a unique winner, i.e., it states that p uniquely winning in

an election (C, V) implies that p uniquely wins in each election (C ′, V) for which

p ∈ C ′ ⊆ C. Hemaspaandra et al. (2007) prove interesting results relating to

destructive control for those election systems that satisfy (Property) Unique-α,

and so we draw on them to prove new relationships between electoral control

types.

So far, all our nontrivial results have been about control by partition. We show

that for election systems satisfying either Property α or satisfying Unique-α, we

can relate types that are about deleting candidates and deleting voters. In the

proof of Theorem 3.6, as in the proof of other theorems, we rely of the notion of

immunity.

Theorem 3.6. Let E be an election system that satisfies Unique-α. Then the

following hold.

1. E-DC-DC-UW ⊆ E-DC-DV-UW.

2. E-DC-DC-NUW ⊆ E-DC-DV-UW.

Proof. Fix any E that satisfies Property Unique-α.

seminal work on control (Bartholdi et al., 1992) introduced the notion captured by Property α

in an ambiguous way that led the field to believe that they were giving the definition of WARP.

This does not invalidate past results however, as they were all consistent with their definition

of WARP. Rather, this merely indicates a naming that we believe—and as we’ve detailed in

our technical reports (Carleton et al., 2022a,b)—should be revisited to be more consistent with

the social choice literature’s definitions of Property α and WARP. Relatedly, we now dub what

was once known in computational social choice as “Unique-WARP” as “Property Unique-α”

(and omitting the “Property” for conciseness when the context is clear). For a more thorough

discussion on the relationship between WARP and Property α, both in computational social

choice and in choice social theory, we refer the readers to our technical report “Search versus

Search for Collapsing Electoral Control Types” (Carleton et al., 2022a).

31

1. The proof is analogous to that of Theorem 3.8, which we give later. Since E

is immune to destructive control by deleting candidates in the unique-winner

model, the inclusion is immediate as E-DC-DC-UW consists of those inputs

where the focus candidate is already not a unique winner.

2. It trivially holds that E-DC-DC-NUW ⊆ E-DC-DC-UW. Thus the proof

follows from the previous part of this theorem.

Theorem 3.7. Let E be an election system that satisfies Property α. Then E-DC-

DC-NUW ⊆ E-DC-DV-NUW.

Proof. Fix any E that satisfies Property α. The proof is analogous to that of

Theorem 3.6. Given an election (C, V) and p ∈ C, if p is a winner of E election

(C, V), by Property α it follows that no deletion of candidates (other than p) can

prevent p from being a winner. Thus E-DC-DC-NUW consists of those inputs

where the focus candidate is already not a winner.

Beyond those, all the results we mention in text are about control by partition

(of voters or candidates).

The next result extends the four-type collapse of Hemaspaandra et al. (2020)

into a five-type collapse.

Theorem 3.8. Let E be an election system that satisfies Unique-α. Then

E-DC-PC-TP-UW = E-DC-PC-TE-UW.

Proof. Fix any E that satisfies Property Unique-α. Let E-T1 = E-DC-PC-TP-UW

and let E-T2 = E-DC-PC-TE-UW. Consider the two sets AE = {(C, V, p) | p ∈ C

and p is a unique winner of E election (C, V)} and BE = {(C, V, p) | p ∈ C and

p is not a unique winner of E election (C, V)}. These sets form a partition of

Y = {(C, V, p) | p ∈ C}, so of course Y = AE ∪ BE . Clearly we also have that

E-T1 ⊆ Y and that E-T2 ⊆ Y . We will argue that E-T1 = BE = E-T2. Since E ,

32

like all systems satisfying Property Unique-α, is immune to both control types in

the theorem statement, we have (recall that both of these types are destructive

types) that E-T1 ∩ AE = ∅ and E-T2 ∩ AE = ∅, and thus it holds that E-T1 ⊆ BE

and E-T2 ⊆ BE . Fix (C, V, p) ∈ BE . Then the partition (∅, C) witnesses both

(C, V, p) ∈ E-T1 and (C, V, p) ∈ E-T2, since in both cases the final round will

simply be (C, V), and we know that since (C, V, p) ∈ BE , p will not be a unique

winner of the final round.

And we leverage Unique-α to show our first collapse that is about constructive

control by showing that under any election system satisfying Unique-α, the only

way to make a candidate a unique winner under those types of control is if the

candidate is already a unique winner in the original election.

Theorem 3.9. Let E be an election system that satisfies Unique-α. Then

E-CC-PC-TP-UW = E-CC-RPC-TP-UW.

Proof. We use an argument similar to that of Theorem 3.8. Fix any E that satisfies

Property Unique-α. Let E-T1 = E-CC-PC-TP-UW and let E-T2 = E-CC-RPC-

TP-UW. Consider the two sets AE = {(C, V, p) | p ∈ C and p is a unique winner

of E election (C, V)} and BE = {(C, V, p) | p ∈ C and p is not a unique winner

of E election (C, V)}. These sets form a partition of Y = {(C, V, p) | p ∈ C}, so

of course Y = AE ∪ BE . Clearly we also have that E-T1 ⊆ Y and that E-T2 ⊆ Y .

We will show that E-T1 = AE = E-T2. Hemaspaandra et al. (2007) show that any

election system that satisfies Property Unique-α is, under the TP tie-handling

rule in the unique-winner model, immune to constructive control by both run-off

partition of candidates and partition of candidates. Thus E-T1 ∩ BE = ∅ and

E-T2 ∩ BE = ∅, and it holds that E-T1 ⊆ AE and E-T2 ⊆ AE . Fix (C, V, p) ∈ AE .

Then the partition (∅, C) witnesses that (C, V, p) ∈ E-T1 as the final round will

simply be (C, V), and we know that since (C, V, p) ∈ AE , p will be the unique

winner of the final round. Additionally, the partition (∅, C) also witnesses that

33

(C, V, p) ∈ E-T2 as no one will proceed from subelection (∅, V), and only p will

proceed from subelection (C, V) (since (C, V, p) ∈ AE), and p must be the unique

winner of ({p}, V), the final round (since E satisfies Property Unique-α and p is

the unique winner of E election (C, V)).

As a corollary to the methods used in the proof of the above theorem, we get

the following result.

Corollary 3.10. Let E be an election system that satisfies Unique-α. Then, for

each T ∈ {CC-PC-TE-UW, CC-PC-TE-NUW, CC-RPC-TE-UW, CC-RPC-

TE-NUW, CC-PV-TE-UW, CC-PV-TE-NUW, CC-PV-TP-UW, CC-PV-TP-

NUW}, it holds that E-CC-PC-TP-UW ⊆ E-T (equivalently, E-CC-RPC-TP-

UW ⊆ E-T).

Proof. Fix any E that satisfies Property Unique-α, fix a T ∈ {CC-PC-TE-

UW, CC-PC-TE-NUW, CC-RPC-TE-UW, CC-RPC-TE-NUW, CC-PV-TE-UW,

CC-PV-TE-NUW, CC-PV-TP-UW, CC-PV-TP-NUW}, and fix (C, V, p) ∈

E-CC-PC-TP-UW. Since E-CC-PC-TP-UW consists of only those inputs where

p is already a unique winner of the E election (C, V), the trivial partition (i.e.,

(∅, C) if T is about partitioning candidates and (∅, V) if T is about partitioning

votes) is a witness that (C, V, p) ∈ E-T as p will win at least one subelection in

which it participates (if T is about partitioning votes, then p participates in two

subelections) and wins uniquely (because E satisfies Property Unique-α). The

“equivalently” follows from Theorem 3.9.

Of course, since approval clearly satisfies both Property α and Unique-α, all the

abovementioned results that are about these two axioms also hold for approval.

In the case where we only prove a containment relationship, we note that the

containment is strict under approval, and we include the separation witnesses in

Table A.8.

34

Corollary 3.11. Under approval, the following control-type relationships hold.

1. DC-PC-TP-UW = DC-PC-TE-UW = DC-RPC-TE-UW = DC-RPC-TE-

NUW = DC-PC-TE-NUW.

2. DC-RPC-TP-NUW = DC-PC-TP-NUW.

3. DC-DC-UW ⊊ DC-DV-UW.

4. DC-DC-NUW ⊊ DC-DV-NUW.

5. DC-DC-NUW ⊊ DC-DV-UW.

6. CC-PC-TP-UW = CC-RPC-TP-UW.

7. For each T ∈ {CC-PC-TE-UW, CC-PC-TE-NUW, CC-RPC-TE-UW,

CC-RPC-TE-NUW, CC-PV-TE-UW, CC-PV-TE-NUW, CC-PV-TP-UW,

CC-PV-TP-NUW}, it holds that CC-PC-TP-UW ⊊ T .

We now focus on approval-specific arguments. First, we extend the five-type

collapse above to a six-type collapse.

Theorem 3.12. Approval-DC-RPC-TP-UW = Approval-DC-PC-TP-UW.

Proof. We will show that both sets coincide with the set B = {(C, V, p) | p ∈ C

and p is not a unique winner of approval election (C, V)}.

It follows from the fact that approval is immune with respect to DC-RPC-TP-

UW and DC-PC-TP-UW (Hemaspaandra et al., 2007) that Approval-DC-RPC-

TP-UW and Approval-DC-PC-TP-UW are both subsets of B. Fix (C, V, p) ∈ B.

Then the partition (∅, C) witnesses that (C, V, p) ∈ Approval-DC-PC-TP-UW as

the final stage will be approval election (C, V). Similarly, the partition (∅, C) also

witnesses that (C, V, p) ∈ Approval-DC-RPC-TP-UW. This follows from the fact

that p is not a unique winner of the approval election (C, V) and so there must

35

exist a different candidate d who is a winner of election (C, V) and so whose score

is at least as large as p’s score. No one will proceed from subelection (∅, V) and d

will proceed from subelection (C, V) (along with those candidates, if any, who tie

with d) and be a winner of the final round. Thus even if p proceeds to the final

round, it will not be a unique winner.

To help us prove the next collapse, we will again appeal to the notion of

immunity, but this time, we must prove a new relationship that holds in the

nonunique-winner model (see Hemaspaandra et al. 2007 for the analogous result

in the unique-winner model).

Theorem 3.13. Approval is immune to constructive control by partition of can-

didates and run-off partition of candidates under the TP tie-handling rule in the

nonunique-winner model.

Proof. We first show that a winner (possibly tied) of the two-stage approval elec-

tion induced by partition of candidates under the TP tie-handling rule must be a

winner without any control action (i.e., in the input’s election). Fix an election

(C, V) and let p ∈ C be a candidate such that (C, V, p) ∈ Approval-CC-PC-TP-

NUW. Thus it holds that p’s score is at least as high as the score of the other

candidates present in the final round. Since no candidate is eliminated by the

tie-handling rule, each candidate that is eliminated in the first round has score

strictly less than some candidate that is present in the final round. It follows that

p’s score is at least as high as the score of every other candidate in C. Thus p is

a winner of the approval election (C, V).

Essentially the same argument line can be used to show that for each (C, V, p) ∈

Approval-CC-RPC-TP-NUW, it holds that p is a winner of approval election

(C, V).

We can now prove the following result.

36

Theorem 3.14. Approval-CC-PC-TP-NUW = Approval-CC-RPC-TP-NUW.

Proof. We will show that Approval-CC-PC-TP-NUW and Approval-CC-RPC-

TP-NUW are comprised of exactly those inputs where the focus candidate is

already a nonunique winner, following the approach in the proofs of Theorems 3.8

and 3.9.

Consider the following two disjoint sets: A = {(C, V, p) | p ∈ C and p is a

winner of approval election (C, V)} and B = {(C, V, p) | p ∈ C and p is not a

winner of approval election (C, V)}. It’s clear that Approval-CC-PC-TP-NUW ⊆

(A∪B) and Approval-CC-RPC-TP-NUW ⊆ (A∪B). By Theorem 3.13, it holds

that approval is immune to constructive control by partition of candidates and run-

off partition of candidates under the TP tie-handling rule in the nonunique-winner

model. Thus Approval-CC-PC-TP-NUW ∩ B = ∅ and Approval-CC-RPC-TP-

NUW ∩B = ∅, and it holds that Approval-CC-PC-TP-NUW ⊆ A and Approval-

CC-RPC-TP-NUW ⊆ A. Fix (C, V, p) ∈ A. Then the partition (∅, C) witnesses

that both (C, V, p) ∈ Approval-CC-PC-TP-NUW and (C, V, p) ∈ Approval-CC-

RPC-TP-NUW as no candidate will have score higher than p’s score (because p

is a winner of approval election (C, V)), and since the tie-handling rule does not

eliminate candidates, p will always proceed from the subelection it participates in

to the final round. Thus no candidate can defeat p in the final round, making p a

winner of the two-stage election.

The above theorem is proved by showing that for both types of control, the

only way to succeed is if the distinguished candidate is already a winner (possibly

tied) in the original election. This allows us to prove the following corollary.

Corollary 3.15. For each T ∈ {CC-PC-TE-NUW, CC-RPC-TE-NUW,

CC-PV-TP-NUW}, it holds that Approval-CC-PC-TP-NUW ⊊ Approval-T .

Proof. Fix T ∈ {CC-PC-TE-NUW, CC-RPC-TE-NUW, CC-PV-TP-NUW} and

fix (C, V, p) ∈ Approval-CC-PC-TP-NUW. By the proof of Theorem 3.14, we

37

know that Approval-CC-PC-TP-NUW consists of only those inputs where p is

already a nonunique winner of the approval election (C, V). In the first case,

where T is about partitioning candidates, then the partition ({p}, C − {p}) is

a witness that (C, V, p) ∈ Approval-T as p will uniquely win the subelection it

participates in and proceed to the final round. Regardless of which candidates

proceed to the final round from the other subelection, they will not have score

greater than p’s (or they would have defeated p in the (C, V) election) and so p is a

winner of the two-stage election. In the second case, where T is about partitioning

votes (i.e., T = CC-PV-TP-NUW), then the partition (∅, V) suffices as everyone

proceeds to the final round (because all the candidates tie in the subelection (C, ∅)

and the tie-handling rule does not eliminate candidates) and since p is already a

winner of the approval election (C, V), they are a winner of the final round. The

corresponding separation witness can be found in Table A.8.

We now use direct arguments to complete our remaining proofs.

A similar relationship to the one below also holds under veto, but we use a

different approach to prove this collapse.

Theorem 3.16. Approval-DC-PV-TE-UW = Approval-DC-PV-TE-NUW.

Proof. The ⊇ relationship is immediate.

⊆: Let (C, V, p) ∈ Approval-DC-PV-TE-UW and let (V1, V2) be a vote parti-

tion that witnesses this membership. As the tie-handling rule is the TE rule, it

must hold (since if p uniquely won both subelections it necessarily would uniquely

win the second-round election) that either p is eliminated in both subelections

(either by tieing or by losing) or p uniquely wins one subelection, some other can-

didate d uniquely wins the other subelection, and p does not uniquely win the final

round (thus d’s score must be at least as large as p’s score when using vote set V).

This also tells us that ∥C∥ ≥ 2. In the first case, the partition (V1, V2) witnesses

(C, V, p) ∈ DC-PV-TE-NUW since p will not proceed to the final round. In the

38

second case, using the partition (V, ∅) suffices for the following reasons. This is

because in the subelection (C, V), since d’s score is at least as large as that of p,

either d uniquely wins the subelection or both p and d tie and are eliminated by

the tie-handling rule, and in the subelection (C, ∅), every candidate ties and so

all candidates are eliminated by the tie-handling rule (since ∥C∥ ≥ 2). Thus p is

eliminated in both subelections, does not proceed to the final round, and so is not

a final-round winner.

The following collapse, which is about constructive control, is also proven

using direct arguments. The actual proof of Theorem 3.17 is more involved than

necessary, but it allows us to directly establish the result in Corollary 3.18.

Theorem 3.17. Approval-CC-PC-TE-NUW = Approval-CC-RPC-TE-NUW.

Proof. We structure this proof so as to yield not just this theorem but also the

related result that we state as Corollary 3.18.

⊆: Let (C, V, p) ∈ Approval-CC-PC-TE-NUW and let (C1, C2) be a candidate

partition that witnesses this membership. Consider the case where p uniquely

wins the final round. If p ∈ C1, then p uniquely wins (C1, V) and in the final

round defeats all candidates in C2. If p ∈ C2, then in the final round p defeats the

candidate (if any) that survives the TE tie-handling rule regarding the subelection

(C1, V) as well as all the candidates in C2 − {p}. Regardless of which case holds,

the partition (C1, C2) will witness (C, V, p) ∈ Approval-CC-RPC-TE-NUW since

p will uniquely win its subelection and then will defeat any candidate that moves

forward from the other subelection. If p does not uniquely win the final round,

then there is at least one other candidate that ties with p in the final round.

We consider two cases. If p ∈ C1, then p must uniquely win in (C1, V) and as

(since (C1, C2) witnesses (C, V, p) ∈ Approval-CC-PC-TE-NUW) no candidate in

C2 can have a score greater than p’s, the partition (C1, C2) suffices to witness

(C, V, p) ∈ Approval-CC-RPC-TE-NUW. If p ∈ C2, then under partition (C1, C2)

39

p could first-round tie with a candidate and be eliminated (under run-off partition

of candidates due to the TE rule). However, let T denote the (possibly empty)

set of candidates (other than p) that tie with p in (C2, V). Then the partition

(C1 ∪ T,C2 − T) witnesses (C, V, p) ∈ Approval-CC-RPC-TE-NUW, since p will

uniquely win (C2 − T, V) and will either tie or defeat the winner (if any) of

(C1 ∪ T, V).

⊇: Let (C, V, p) ∈ Approval-CC-RPC-TE-NUW and let (C1, C2) be a candi-

date partition that witnesses this membership. Without loss of generality, assume

that p ∈ C1. Thus it holds that p uniquely wins (C1, V). If p uniquely wins the

final round, then p also defeats the candidate (if any) that moves forward from

(C2, V). Thus the partition (C2, C1) will also witness (C, V, p) ∈ Approval-CC-

PC-TE-NUW (since p has strictly more approvals than any candidate other than

itself). If p does not uniquely win the final round, then there is another candidate

d, who is the unique winner of (C2, V) and ties with p in the final round. Again the

partition (C2, C1) suffices to witness (C, V, p) ∈ Approval-CC-PC-TE-NUW since

d proceeds to the final round and both p and d win there due to their numbers of

approvals.

Corollary 3.18. Approval-CC-PC-TE-UW = Approval-CC-RPC-TE-UW.

Proof. This is an immediate corollary to the above proof of Theorem 3.17, as

the proof was intentionally structured to ensure that if the witness of one type

made p a unique winner of the final round, then the constructed-above (sometimes

different) partition for the other type also made p a unique winner of the final

round under that other type of control.

The following containment is not too surprising, and involves two types that

are both about partitioning voters.

Theorem 3.19. Approval-DC-PV-TP-UW ⊊ Approval-DC-PV-TE-NUW.

40

Proof. The proof is similar in flavor to that of Theorem 3.16. Let (C, V, p) ∈

Approval-DC-PV-TP-UW and let (V1, V2) be a vote partition that witnesses this

membership. There are two cases to consider. Either p uniquely wins in exactly

one subelection (it certainly cannot uniquely win in both, else p would be the

unique final-round winner), or p is not a unique winner in either subelection. In

the latter case, the partition (V1, V2) witnesses that (C, V, p) ∈ Approval-DC-PV-

TE-NUW as p never survives the TE tie-handling rule (because it is not a unique

winner in either subelection). In the former case, the partition (V, ∅) witnesses

that (C, V, p) ∈ Approval-DC-PV-TE-NUW. Why does this hold? In that case,

there must exist a candidate d ̸= p that in the Approval-DC-PV-TP-UW setting

under partition (V1, V2) proceeds to the final stage and in the second round has a

score at least as high as that of p. So in the Approval-DC-PV-TE-NUW setting’s

first round under the partition (V, ∅), in the subelection (C, V) candidate p can

at best tie d, and thus certainly cannot move forward under the TE tie-handling

rule. Additionally, no one moves forward from subelection (C, ∅) (everyone ties

and, since in the current case we know there are at least two candidates, everyone

is eliminated from that subelection). This shows the containment. The separation

witness for the strict containment can be found in Table A.8.

However, we find the following two results are more surprising as they are

about partitioning different elements of the election, and so one would, intuitively,

expect an incomparability result here.

Theorem 3.20. Approval-DC-RPC-TE-NUW ⊊ Approval-DC-PV-TP-UW.

Proof. Let (C, V, p) ∈ Approval-DC-RPC-TE-NUW and let (C1, C2) be a can-

didate partition that witnesses this membership. Then, with respect to that

partition, p is eliminated either in its subelection (either by tieing or by losing)

or in the final round. In both cases, this must happen because there is another

candidate d such that p’s score is at most d’s score (using vote set V). By using

41

the partition (∅, V), we know that every candidate will proceed to the final round

(everyone ties in (C, ∅) and proceeds to the final round) and in that final round,

either d will tie p or d will defeat p. In either case, p is not a unique winner. This

shows the containment. The separation witness for the strict containment can be

found in Table A.8.

As a corollary to the above two theorems, we obtain the easy-to-see result

below.

Corollary 3.21. Approval-DC-RPC-TE-NUW ⊊ Approval-DC-PV-TE-NUW.

3.6 Conclusion and Open Directions

Our work thus establishes which pairs of electoral control types collapse (1) under

every election system, (2) under plurality, (3) under veto, and (4) under approval.

Additionally, for the remaining pairs that do not collapse, we prove whether they

are incomparable.

We also give new axiomatic sufficient conditions that imply collapses. An

interesting open direction would be to further explore this axiomatic sufficient

approach. Being able to fully characterize collapses (in the sense of this work)

seems to require a deeper understanding of control and election systems, and how

they relate to axioms.

It would also be interesting to study the separations and collapses that hold

for other popular and important election systems, and we have work in progress

in that direction. Finally, we mention that just because control types are equal as

sets in the decision model does not mean that they are “equivalent” in the search

model. The early work of Borodin and Demers (1976) gives a concrete case where

search and decision “rip apart” under reasonable assumptions. We explore that

direction in Chapter 4.

42

4 Search versus Search for

Collapsing Electoral Control

Types

A [relationship] is like a pointillist painting. In order to see

it in its entirety, you have to take a step back. – Byakuya

Kuchiki (Kubo, 2015)

4.1 Introduction

Chapter 3 covers collapsing control types and other definitions that are not in

Chapter 2 but are relevant to the current section. In this chapter, we only consider

those control problems that are about partitioning (voters or candidates), as our

results on collapsing control types only involve partition-based types.

Our study of collapsing control types, although interesting, is restricted to the

so-called decision model, i.e., we study electoral control problems as decision prob-

lems, which is the norm in both theoretical computer science and computational

social choice. However, in the real world, people are more concerned with under-

standing the search versions of problems rather than their decision counterparts.

More precisely, the decision model only tells us whether a successful control action

43

exists, but in practice, it is far more desirable to know what the control action

is. It is often implicitly assumed that results in the decision model have a natural

translation to the search model, making a problem either “easy” in both models

or “hard” in both models. Unfortunately, the gap from decision to search is not a

negligible one as there are problems that are known to be “easy” in the decision

model, but “hard” in the search model (under reasonable assumptions).

To our knowledge, Borodin and Demers (1976) were the first to show that if

P ̸= NP∩coNP, then there exists a set of boolean formulas that is in P and yet no

polynomial-time algorithm can compute a satisfying assignment of an arbitrary

formula from that set. Informally, this means that there is language in P having

a search variant that is not polynomial-time computable. The assumption is

certainly reasonable; the decision complexity of integer factorization is known to

be in NP∩coNP and so as to not violate our expectation of modern cryptosystems

being secure, we also expect—or at the very least hope—that P ̸= NP ∩ coNP.

We briefly mention below some other papers that leverage the above result of

Borodin and Demers (1976). Bellare and Goldwasser (1994) studied search in the

context of cryptography, which is a natural place to see the assumption that P ̸=

NP∩ coNP. Hemaspaandra and Narváez (2017) studied the complexity of finding

so-called nontrivial backbones in boolean formulas. And finally, Hemaspaandra

et al. (2020), whose work we centrally rely on in the study of separations and

collapses of electoral control types, show that there are election systems for which

certain electoral attack problems have polynomial-time decision complexity, and

yet their search counterparts cannot have polynomial-time complexity.

The decision model lends itself naturally to comparing decision problems as

one can simply use basic set-theoretic notions, as we do. When it comes to search

problems however, the way to study their relationships is not as obvious. Megiddo

and Papadimitriou (1991) had originally given a framework to interrelate the com-

plexity of search problems, but their general method introduced a loophole that

44

could be exploited to “interreduce” (under some notion specific to their frame-

work) even SAT and the empty set! The flaw was subtle, and so we redefined

some of their notions, while also correcting the error in their paper.

When dealing with these search variants of electoral control problems, we take

a slight departure from our standard notation. In this chapter, we allow a control

type’s name to also include the election system. For example, we will say “let

T = E-CC-PC-TE-UW” rather than have the “E” exist outside the “T ”. In

doing so, we now lose the ability to identify when two control types are about the

same election system, and so we introduce some additional terminology. To avoid

confusion with our definitions from Chapter 3, we present the definitions that are

unique to this chapter within the chapter itself.

If two control type T1 and T2 are compatible (i.e., their input fields are the

same), then we say that T1 and T2 collapse if T1 = T2 (as decision problems). If the

two control types are about the same election system E , and they are compatible,

we say that T1 and T2 are E-matched. Finally, if T1 and T2 are about the same

election system E , and they collapse, we say that T1 and T2 are a collapsing pair.

4.2 Search Notions for Control Types: Re-

ducibility and Complexity

In this section, we discuss several notions about search problems in the context

of electoral control, but those notions naturally generalize to other settings.

For a given election system E , the winner problem is given as

WE = {(C, V, p) | p ∈ C and p is a winner of the E election (C, V)}.

Let us now define what we mean by search variants/problems of control problems.

Let E be an election system. Each control problem about E has an associated lan-

guage, i.e., the set of inputs on which the given control action succeeds. Naturally

45

associated with each of those languages is an “NPWE search problem”: On a valid

input, guess a control action under the given control type and output it if it is a

successful control action under the given control type.

We will first discuss the notions relating the reducibilities of search problems

as they are used in this work, and we will then discuss the complexity of search

problems.

4.2.1 Search Reducibilities

We will discuss below a framework to interrelate the complexity of search prob-

lems. Namely, we will leverage the framework of Megiddo and Papadimitriou

(1991), except that we will further restrict the way problems can interrelate, al-

low our reductions to have access to an oracle so as to have results that hold even

for election systems whose winner problems are not polynomial-time computable,

and we will fix a subtle loophole in the framework of Megiddo and Papadimitriou

(1991).

Consistent with the work of Megiddo and Papadimitriou (1991), let Σ be a

finite alphabet with at least two characters, and let R ⊆ Σ∗×Σ∗ be a relation that

is decidable in polynomial time relative to oracle A and polynomially-balanced,

i.e., there is a polynomial p such that (x, y) ∈ R implies |y| ≤ p(|x|). Without the

“polynomially-balanced” requirement solutions could be exponentially long and

thus not polynomial-time computable, regardless of the oracle. The relation R

describes a search problem ΠR where the task is to, given x ∈ Σ∗, find a y ∈ Σ∗

such that (x, y) ∈ R. If no such y exists, then output “no,” and that relation is

decidable in PA. The class of such search problems is called FNPA; this departs

from the notion of Megiddo and Papadimitriou (1991), who are only concerned

with the class FNP—that is, the case where A = ∅—but remains consistent with

their nomenclature.

46

Going back to our control types, the “x” refers to the input to the control type.

In the case of partition-based control types, the inputs are of the form (C, V, p),

and y is a partition of either the candidate set or the vote set, depending on the

nature of the control type under consideration.

Let E be an election system and let T be a partition-based control type that

is about E . The relation RT is the natural PWE polynomially-balanced relation

for the search problem of T . The resulting search problem, in the terminology

of Megiddo and Papadimitriou (1991) is denoted by ΠRT , but we often omit the

“R” and just write ΠT for simplicity. It is easy to see that ΠT ∈ FNPWE , e.g.,

ΠE-DC-PC-TP-NUW ∈ FNPWE , and since approval’s winner problem is in P, the

search problem ΠApproval-DC-PC-TP-NUW is in FNP.

While we showed that collapsing control types are equal in the decision model,

and thus have the same decision complexity, we wish to show that they are also

“equal” under some notion of equivalence in the search model. We leverage a type

of reduction defined by Megiddo and Papadimitriou (1991) to give a framework for

interrelating the search complexities of collapsing electoral control types: Given a

solution from one problem on a given input, we will construct a solution for the

other problem on the same input, provided that the two problems are collapsing

electoral control types that are about the same election system.

From the work of Megiddo and Papadimitriou (1991), a reduction from prob-

lem ΠR to problem ΠS is a pair of polynomial-time computable functions f and g

such that for any x ∈ Σ∗, it holds that (x, g(y)) ∈ R ⇐⇒ (f(x), y) ∈ S. Essen-

tially, what this attempts to say is that given an input x to problem ΠR, we can

map to f(x) in polynomial time, and the solution to problem ΠS on input f(x)

when fed to g (which is polynomial-time computable) is the solution to problem

ΠR on input x. So under that interpretation, the reduction certainly relates the

complexity of problem ΠR to that of problem ΠS. But, this definition does not

say what it should be saying. Indeed—even if we patch the missing quantifier

47

on y—consider the case where some x has a solution relative to R, f(x) is just

a string that has no solution relative to S, and g never maps to a solution of x

relative to R. By making both sides of the “ ⇐⇒ ” false, we are able to satisfy

the definition, but that does not give us any meaningful way of interrelating the

search problems as no “solution transfer” has occurred. So we patch this flaw in

our own definitions, which also have other distinctions from the above definition.

First, we allow our reductions to have access to the winner problem of the

election system under consideration, as we wish to draw meaningful relationships

between the search complexity of control types even when the winner problem

of the election system is not in P. Second, we restrict the reduction further by

requiring that f be the identity function. This is because collapsing types are

equal sets. So we are dealing with the same inputs, but with different witness

schemes, and since our goal is to draw connections between those witnesses, it is

most natural to restrict f to be the identity function.

We note that our definitions do not explicitly mention the “Π” formalism, but

that formalism is exactly what is at the core of our definitions.

Definition 4.1. 1. For an election system E and E-matched, collapsing12 con-

trol types T1 and T2, we say that “T1 is polynomially search-reducible to T2

with respect to E” (denoted by T1 ≤p,E
search T2) if there is a reduction that runs

in polynomial time relative to WE , and on each input (I, S) where I is an

input to T1 and S is a solution for I with respect to T2, outputs a solution

S ′ for I with respect to T1.

2. For an election system E and E-matched, collapsing control types T1 and T2,

we say that “T1 is polynomially search-equivalent to T2 with respect to E”

(denoted by T1 ≡p,E
search T2) if T1 ≤p,E

search T2 and T2 ≤p,E
search T1.

12The reason we include “collapsing” in the definition is that if it is omitted, then one would

trivially satisfy the notion on a given I whenever I was not in T2. That is, our notion is focused

on pairs of types that collapse—where each input is either in both or not in both.

48

We note two things. The first is the intuition behind the notation. Though

the reduction is from T1 to T2, the reduction expects a solution to T2 on the

given input. This is meant to be interpreted as T2 being “so powerful” that a

solution to it on a given input allows us to construct a solution to T1 given the

same input. Second, we note that in the above definition, we allow our reduction

to have access to the winner problem of the election, since the complexity of the

latter could be not polynomial-time computable, thus not making our methods

very general; indeed, for those control types that collapse regardless of the election

system, translating the decision-collapse into search-collapses involves being able

to evaluate the winner problem on up to three inputs (see the proof of Theorem 4.6

for an example). We now state an analogous definition wherein an oracle to the

election system’s winner problem is not provided.

Definition 4.2. 1. For an election system E and E-matched, collapsing control

types T1 and T2, we say that “T1 is polynomially search-reducible to T2”

(denoted by T1 ≤p
search T2) if there is a reduction that runs in polynomial

time and on each input (I, S), where I is an input to T1 and S is a solution

for I with respect to T2, outputs a solution S ′ for I with respect to T1.

2. For an election system E and E-matched, collapsing control types T1 and

T2, we say that “T1 is polynomially search-equivalent to T2” (denoted by

T1 ≡p
search T2) if T1 ≤p

search T2 and T2 ≤p
search T1.

We note that the notion closest to our Definitions 4.1 and 4.2 is that of Levin

reductions. Definitions and discussions of Levin reductions are provided in Piter-

man and Fisman’s notes from a course by Oded Goldreich (1998). Other easily

accessible sources are (Arora and Barak, 2009; Henry (455), 2013). However, we

note that the notion is not comparable with ours since it requires that solutions

be transferred both forward and backward, whereas our reductions only transfer

solutions in one direction. Furthermore, in our Definition 4.1, we make the winner

49

problem of the election available to the reduction machine, which does not hap-

pen in Levin reductions. We must however mention that in their 2008 textbook,

Goldreich (2008) modified their definition of Levin reductions. In that case, our

notions are very similar, but they differ slightly as we focus on collapsing electoral

types, and so our problem-to-problem reduction is the identity function, and we

sometimes make the winner problem available via an oracle.

It is easy to see that when an election system’s winner problem is polynomial-

time computable, i.e., in FP, the reduction machine can simply skip the oracle

queries and determine the outcome of the election in polynomial time. In such a

case, the reduction machine is still a polynomial-time machine. We thus have the

following proposition, which is clearly true, and so we do not provide a proof for

it.

Proposition 4.3. Let E be an election system such that WE ∈ P, and let T1 and

T2 be E-matched control types.

1. If T1 ≤p,E
search T2, then T1 ≤p

search T2.

2. If T1 ≡p,E
search T2, then T1 ≡p

search T2.

These above-defined notions give us a clear way to relate the complexity of

search problems,13 but they do not provide us with a nice notion of “hardness”

13 Definitions 4.1 part 1 and 4.2 part 1 do not require that if S is not a solution to T2 then the

reduction declares that fact. Rather, the definitions are simply about efficiently obtaining a solu-

tion to T1 given a solution to T2. However, we mention that if one changed Definition 4.1 part 1

to require detection of nonsolution-hood, the set of pairs (T1, T2) for which the reduction held

would not change at all, since with the WE oracle one can check whether S is a solution to T2.

Although Definition 4.2 part 1 is not in general guaranteed to be unchanged if it is altered to

require detection of the case where S is not a solution to T2, it clearly does remain unchanged

by that alteration whenever WE ∈ P. Most of the cases to which we apply Definition 4.2 indeed

satisfy WE ∈ P; in particular, plurality, veto, and approval voting each satisfy WE ∈ P.

50

to indicate that a polynomial-time algorithm might not exist for specific search

problems. We provide this notion next, and we do so by leveraging the theory of

multivalued “functions” of Book et al. (1984).

4.2.2 Search Complexities

We do not detail the theory of Book et al. (1984), but we draw only on the

notion of multivalued functions in the sense below. The problem ΠR is related

to a multivalued function Π̂R that on an input x, is undefined—or maps to some

special symbol ⊥—if x has no solution relative to ΠR and otherwise, maps to the

set of all such solutions. The crucial notion we rely on is that of a “single-valued

refinement (of a multivalued function Π̂R),” which is any function that when given

an input x

1. is undefined, i.e., outputs a special symbol such as ⊥ if x has no solution

relative to R (and so there is no y such that (x, y) ∈ R), and

2. maps to exactly one solution of x relative to R if x has at least one solution

relative to R (and so the function maps to some y such that (x, y) ∈ R).

This notion gives us the tools we want to define what we mean by having a

search problem be “easy” or “hard.” Naturally, a search problem T is easy if it has

at least one refinement (of its associated multivalued function) that is polynomial-

time computable (i.e., in FP). We say that the search problem for T is NP-hard

if for each of its refinements f , it holds that NP ⊆ Pf . We also call the search

problem for T NP-easy if it has a refinement that can be computed in polynomial

time given an oracle to SAT, i.e., the refinement is in FPNP. If the search problem

for T is both NP-easy and NP-hard, then we say that it is SAT-equivalent. In

some sense, this provides an analogue to the notion of NP-completeness in the

decision model as NP-hardness captures the fact that the problem is so hard that

51

it can be used to solve any NP problem, and NP-easiness captures the fact that

the problem is easy enough that we can solve it using access to SAT.

Together with the notion of reductions we introduce, we prove the following

useful propositions.

Proposition 4.4. Let A and B be two polynomially search-equivalent problems.

If A is SAT-equivalent, then B is SAT-equivalent.

Proof. Fix two polynomially search-equivalent search problems A and B, with

A being SAT-equivalent. We need to show that, per our definitions, B is both

NP-hard and NP-easy.

NP-hard: Let g be an arbitrary refinement of Π̂B. We need to show that

NP ⊆ Pg. It suffices to show that SAT ∈ Pg.

Let r be a function that witnesses A ≤p
search B. It follows that the function h

that on arbitrary input x maps to ⊥ if g(x) maps to ⊥, and that otherwise maps

to r(x, g(x)), is a refinement of Π̂A.

Since A is NP-hard, we have that SAT ∈ Ph. Let T denote the polynomial-

time algorithm (with oracle h) that decides SAT. Here is the Pg algorithm T ′ for

SAT. Our polynomial-time algorithm T ′ (with oracle g) simulates T , and each

time T asks a question, y, to its oracle, T ′ asks the same question to its oracle g,

and if the answer is ⊥ then T ′ acts as if the answer T got is ⊥, and otherwise T ′

acts as if the answer T got is h(y). So the outcome of T ′ with oracle g is precisely

the same as that of T with oracle h, and so we have proven that SAT ∈ Pg.

NP-easy: It suffices to show that Π̂B has a refinement in FPSAT. Let s denote a

function witnessing B ≤p
search A. Since A is SAT-equivalent, there is a refinement

t of Π̂A such that t ∈ FPSAT. But it also holds, for each x, that t(x) is a solution

for x under A if and only if (t is not ⊥ and) s(x, t(x)) is a solution for x with

respect to B. Thus the function, h, that on input x is ⊥ if t(x) is ⊥ and otherwise

is s(x, t(x)) is a refinement of Π̂B. But since t ∈ FPSAT, clearly so is h.

52

Proposition 4.5. Let A and B be two polynomially search-equivalent problems.

If A is polynomial-time computable, then B is polynomial-time computable.

Proof. Fix two polynomially search-equivalent search problems A and B, with A

being polynomial-time computable. We need to show that B is polynomial-time

computable, by providing a refinement of Π̂B in FP.

Let f be a polynomial-time computable refinement of Π̂A and let g be a func-

tion witnessing B ≤p
search A. The function h that on input x is ⊥ if f(x) is ⊥

and otherwise is g(x, f(x)) is clearly a polynomial-time computable refinement of

Π̂B.

In this work, we ask whether the decision collapses hold in the search model,

under the notion of polynomial search-equivalence (with respect to the winner

problem of the election system). We will show that there is a tight relationship

between the search complexities of all known collapsing electoral control types.

4.3 Search Equivalences for the Collapses of

Hemaspaandra et al. (2020)

Our first set of results establishes that each of the decision collapses of Hema-

spaandra, Hemaspaandra, and Menton (Hemaspaandra et al., 2020) holds in the

search model.

We first show the result for the two-type collapse.

Theorem 4.6. For each election system E , E-DC-RPC-TP-NUW ≡p,E
search E-

DC-PC-TP-NUW.

Proof. Let T1 = E-DC-PC-TP-NUW and T2 = E-DC-RPC-TP-NUW.

53

T1 ≤p,E
search T2: We give a polynomial-time algorithm performing the reduction,

given access to oracle WE . On input (I, S), where I = (C, V, p) and p ∈ C, do

the following. If the syntax is bad, halt. Otherwise, check that S is a solution

to I under T2. This may involve up to three calls to the oracle. If S is not a

good solution, then simply halt as the definition does not require anything in this

case (although note also the comments in Footnote 13). Since S is a solution and

our model is NUW, p must have participated and lost either in one of the two

first-round elections or (in fact, exclusive-or) in the final-round election. In that

election, let C ′ be the candidate set (note that p ∈ C ′ and p is not a winner of

(C ′, V)). Then output as the successful T1 solution C1 = C ′ and C2 = C −C ′. In

T1 on input I, p will be eliminated in the (C ′, V) first-round election.14

T2 ≤p,E
search T1: We give the algorithm. On input (I, S), where I = (C, V, p) and

S = (C1, C2), check for bad syntax and by using the WE oracle up to two times as

per the nature of T1, check that S is a solution to I under T1. If the syntax is bad

or S is not a solution under T1, then simply halt. Otherwise, since S is a solution

under T1, p was a participant in and eliminated either in the (C1, V) contest or

the final-round contest (involving the winners of (C1, V) and the candidates in

C2). In the former case, output (C1, C2), and in the latter case let D be the set

final-round participants and output (D,C −D). This is a solution for T2.

Showing the search equivalence of the elements of the four-type collapse

of Hemaspaandra et al. (2020) would require quite a number of reductions, so

we prove the following useful proposition to help reduce the amount of work.

14This direction of the proof illustrates the importance of giving the reduction access to the

oracle for WE . Suppose we tried to claim that this direction held without any oracle use by,

if S is (C1, C2), just outputting S′ = (C1, C2). But then if p participated in and lost in the

(C2, V) first-round T2 case, S′ might not be a solution with respect to T1. Can we fix that by, if

p ∈ C2, just outputting (C2, C1)? No. Maybe in that case under T2 candidate p lost in (C2, V),

or maybe it lost in (WinnersE(C2, V) ∪WinnersE(C1, V), V). But if it was the latter, in T1 our

second-round election is (WinnersE(C2, V) ∪ C1, V) and it is possible that p wins in that.

54

Proposition 4.7. If E is an election system, T1, T2, and T3 are pairwise E-

matched control types, T1 ≤p,E
search T2, and T2 ≤p,E

search T3, then T1 ≤p,E
search T3. That is,

for E-matched types T1, T2, and T3, ≤p,E
search is transitive.

Proof. Let E be an election system and let T1, T2, and T3 be pairwise E-matched

control types such that T1 ≤p,E
search T2 via f and T2 ≤p,E

search T3 via g (with f and g

both running in polynomial time given oracleWE). We will show that T1 ≤p,E
search T3.

On input (I, S), where I = (C, V, p), if S is a solution for T3 on input I, then on

input ((C, V, p), S) g outputs a solution S ′ for T2 on input I. Additionally, if S ′

is a solution for T2 on input I, then on input ((C, V, p), S ′) f outputs a solution

S ′′ for T1 on input I. Thus if S is a solution for T3 on input I, then by applying

g and then f in the manner just described we obtain, running in polynomial time

with oracle WE , a solution S ′′ for T1 on input I. Thus T1 ≤p,E
search T3.

We are now ready to prove that the second type of decision collapse of Hema-

spaandra et al. (2020) also holds in the search model.

Theorem 4.8. For every election system E , and each pair (T1, T2) among the four

collapsing control types E-DC-RPC-TE-NUW, E-DC-PC-TE-NUW, E-DC-RPC-

TE-UW, and E-DC-PC-TE-UW, we have that T1 ≡p,E
search T2.

Proof. Let E be an election system. We will make a closed cycle of ≤p,E
search reduc-

tions involving these four types. In light of Proposition 4.7, this suffices to estab-

lish the theorem. In each part, as per the reduction definition, we will assume our

input is (I, S), with I = (C, V, p). We define the following shorthand to make some

statements easier to state: For an election (C, V), let UniqueWinnerIfAnyE(C, V)

denote a set containing exactly the unique winner of the E election (C, V) if one

exists, or no element otherwise.

E-DC-RPC-TE-UW ≤p,E
search E-DC-RPC-TE-NUW: A solution (C1, C2) for I

under E-DC-RPC-TE-NUW is always a solution for I under E-DC-RPC-TE-UW,

55

since UW is stricter in the final round. If p was eliminated under E-DC-RPC-

TE-NUW, then p is also eliminated under E-DC-RPC-TE-UW. So our reduction

here can simply output the purported solution it is given. (Even if that is not

a correct solution to the right-hand side, the reduction’s action is legal, since if

given a nonsolution as input all the reduction has to do, under the definition of

this reduction type, is not run for too long.)

E-DC-RPC-TE-NUW ≤p,E
search E-DC-PC-TE-NUW: Say we are for I =

(C, V, p) given a purported solution S = (C1, C2) to E-DC-PC-TE-NUW. If S

is not a successful solution, immediately reject. Otherwise, either (a) p ∈ C1 but

p is not a unique winner of (C1, V), or (b) p ∈ UniqueWinnerIfAnyE(C1, V) ∪ C2

yet p is not a winner of (UniqueWinnerIfAnyE(C1, V) ∪ C2, V). Using our oracle,

determine which of (a) or (b) holds (exactly one must hold if S was a solution). If

(a) holds, output (C1, C2). This is then a successful solution on I to E-DC-RPC-

TE-NUW. If (b) holds, then set D = UniqueWinnerIfAnyE(C1, V) ∪ C2 and out-

put (D,C − D) and this is a successful solution of I to E-DC-RPC-TE-NUW,

since we know that p is not a winner of (D, V), so it certainly is not a unique

winner of (D, V), and so in our E-DC-RPC-TE-NUW first round p participates

and is eliminated.

E-DC-PC-TE-NUW ≤p,E
search E-DC-PC-TE-UW: Say we are given for I =

(C, V, p) a purported solution S = (C1, C2) for I to E-DC-PC-TE-UW. If S is not

a solution, immediately reject. Otherwise, we know that (a) p ∈ C1 and p does not

uniquely win in (C1, V), exclusive-or (b) p ∈ UniqueWinnerIfAnyE(C1, V)∪C2 yet

p is not a unique winner of (UniqueWinnerIfAnyE(C1, V)∪C2, V). If (a) holds, out-

put (C1, C2). This is a successful solution of I for E-DC-PC-TE-NUW as p is elim-

inated in the first round. If (b) holds, set D = UniqueWinnerIfAnyE(C1, V) ∪ C2

and output (D,C −D). This is a successful solution of I for E-DC-PC-TE-NUW

as p will be eliminated in the first round.

E-DC-PC-TE-UW ≤p,E
search E-DC-RPC-TE-UW: Say we are given I = (C, V, p)

56

and a purported solution S = (C1, C2) for E-DC-RPC-TE-UW for I. If S

is not a solution, immediately reject. Otherwise, since C1 and C2 are sym-

metric in RPC, w.l.o.g. assume p ∈ C1 (otherwise, if p ∈ C2, rename C1

and C2 so that p ∈ C1). So exactly one of (a) and (b) holds, where (a)

and (b) are: (a) p ∈ C1 and p is not a unique winner of (C1, V), and

(b) p ∈ UniqueWinnerIfAnyE(C1, V)∪UniqueWinnerIfAnyE(C2, V) and p is not a

unique winner of (UniqueWinnerIfAnyE(C1, V)∪UniqueWinnerIfAnyE(C2, V), V).

If (a) holds, output (C1, C2) and that is a successful solution for I of E-

DC-PC-TE-UW as p is eliminated in the first round. If (b) holds, set D =

UniqueWinnerIfAnyE(C1, V) ∪UniqueWinnerIfAnyE(C2, V), and output (D,C −

D) and that is a successful solution for I of E-DC-PC-TE-UW as p is eliminated

in the first round.

This is indeed surprising. We know that there are election systems where

search and decision separate, but what these two theorems show is that for the

“general” (i.e., holding for every election system) collapses of Hemaspaandra et al.

(2020), the related search complexities are intimately linked.

And as a result, we can establish the following search equivalences about plural-

ity, veto, and approval, which follow from Proposition 4.3, and from Theorems 4.6

and 4.8.

Corollary 4.9. For each E ∈ {Plurality,Veto,Approval} the following hold.

1. E-DC-RPC-TP-NUW ≡p
search E-DC-PC-TP-NUW.

2. For each pair (T1, T2) among the four collapsing types E-DC-RPC-TE-NUW,

E-DC-PC-TE-NUW, E-DC-RPC-TE-UW, and E-DC-PC-TE-UW, it holds

that T1 ≡p
search T2.

57

4.4 Search Equivalences for the New Collapses

of Chapter 3

Unlike the proofs of collapses of Hemaspaandra et al. (2020), the proofs of collapses

that we provide in Chapter 3 also implicitly establish search equivalence.

Corollary 4.10 (to the collapse results of Chapter 3).

1. Veto-DC-PV-TE-UW ≡p
search Veto-DC-PV-TE-NUW.

2. For each election system E that satisfies Unique-α, it holds that E-DC-PC-

TP-UW ≡p
search E-DC-PC-TE-UW.15

3. For each election system E that satisfies Unique-α, it holds that E-CC-PC-

TP-UW ≡p
search E-CC-RPC-TP-UW.

4. Approval-DC-RPC-TP-UW ≡p
search Approval-DC-PC-TP-UW.

5. Approval-CC-PC-TP-NUW ≡p
search Approval-CC-RPC-TP-NUW.

6. Approval-DC-PV-TE-UW ≡p
search Approval-DC-PV-TE-NUW.

7. Approval-CC-PC-TE-NUW ≡p
search Approval-CC-RPC-TE-NUW.

8. Approval-CC-PC-TE-UW ≡p
search Approval-CC-RPC-TE-UW.

Proof. For all parts except 2 and 3 we have WE ∈ P so we can check if the S of

the input is a valid solution, and so in those parts we below assume that input

always is a solution for I = (C, V, p) of the problem on the right-hand side of the

reduction. For parts 2 and 3 we cannot and do not make that assumption.

15One might expect here and in part 3 of this corollary the weaker conclusion “≡p,E
search.” But

in both these parts we mean and prove “≡p
search.”

58

1. Veto-DC-PV-TE-UW ≤p
search Veto-DC-PV-TE-NUW: A solution (C1, C2)

for I under Veto-DC-PV-TE-NUW is always a solution for I under Veto-

DC-PV-TE-UW, so we just output (C1, C2).

Veto-DC-PV-TE-NUW ≤p
search Veto-DC-PV-TE-UW: The proof of

Theorem 3.2 shows how to construct, given I = (C, V, p) and a solution

S = (C1, C2) for Veto-DC-PV-TE-UW, a solution for I to Veto-DC-PV-TE-

NUW, and we note that this construction can easily be done in polynomial

time.

2. Let E be an election system that satisfies Unique-α. The proof of

Theorem 3.8 shows that E-DC-PC-TP-UW = E-DC-PC-TE-UW = BE =

{(C, V, p) | p ∈ C and p is not a unique winner of the E election (C, V)}.

They also show that for each I ∈ BE , (∅, C) is a solution to I for both E-

DC-PC-TP-UW and E-DC-PC-TE-UW.

E-DC-PC-TP-UW ≤p
search E-DC-PC-TE-UW: Let our input be (I, S). If S

is a solution to I for E-DC-PC-TE-UW, then I ∈ BE . So output (∅, C).

(Note that there is no guarantee on the output if S is not a solution of I for

E-DC-PC-TE-UW and that is fine since our reduction type does not require

us to make any such guarantee. This fact implicitly holds throughout the

rest of this proof and so we do not mention it again.)

E-DC-PC-TE-UW ≤p
search E-DC-PC-TP-UW: Let our input be (I, S). If S

is a solution to I for E-DC-PC-TP-UW, then I ∈ BE . So output (∅, C).

3. Let E be an election system that satisfies Unique-α. The proof of

Theorem 3.9 shows that E-CC-PC-TP-UW = E-CC-RPC-TP-UW = AE =

{(C, V, p) | p ∈ C and p is the unique winner of the E election (C, V)}. They

also show that for each I ∈ AE , (∅, C) is a solution to I for both E-CC-PC-

TP-UW and E-CC-RPC-TP-UW.

59

E-CC-PC-TP-UW ≤p
search E-CC-RPC-TP-UW: Let our input be (I, S). If

S is a solution to I for E-CC-RPC-TP-UW, then I ∈ AE . So output (∅, C).

E-CC-RPC-TP-UW ≤p
search E-CC-PC-TP-UW: Let our input be (I, S). If

S is a solution to I for E-CC-PC-TP-UW, then I ∈ AE . So output (∅, C).

4. The proof of Theorem 3.12 shows that Approval-DC-PC-TP-UW =

Approval-DC-RPC-TP-UW = B = {(C, V, p) | p ∈ C and p is not a unique

winner of the approval election (C, V)}. They also show that for each I ∈ B,

(∅, C) is a solution to I for both Approval-DC-PC-TP-UW and Approval-

DC-RPC-TP-UW.

Approval-DC-PC-TP-UW ≤p
search Approval-DC-RPC-TP-UW: Let our in-

put be (I, S). Since S is a solution to I for Approval-DC-RPC-TP-UW,

I ∈ B. So output (∅, C).

Approval-DC-RPC-TP-UW ≤p
search Approval-DC-PC-TP-UW: Let our in-

put be (I, S). Since S is a solution to I for Approval-DC-PC-TP-UW,

I ∈ B. So output (∅, C).

5. The proof of Theorem 3.14 shows that Approval-CC-PC-TP-NUW =

Approval-CC-RPC-TP-NUW = A = {(C, V, p) | p ∈ C and p is a win-

ner of the approval election (C, V)}. They also show that for each I ∈ A,

(∅, C) is a solution to I for both Approval-CC-PC-TP-NUW and Approval-

CC-RPC-TP-NUW.

Approval-CC-PC-TP-NUW ≤p
search Approval-CC-RPC-TP-NUW: Let our

input be (I, S). Since S is a solution to I for Approval-CC-RPC-TP-NUW,

I ∈ A. So output (∅, C).

Approval-CC-RPC-TP-NUW ≤p
search Approval-CC-PC-TP-NUW: Let our

input be (I, S). Since S is a solution to I for Approval-CC-PC-TP-NUW,

I ∈ S. So output (∅, C).

60

6. Approval-DC-PV-TE-UW ≤p
search Approval-DC-PV-TE-NUW: On input

I = (C, V, p) and S, since a solution for I to Approval-DC-PV-TE-NUW is

a solution for I to Approval-DC-PV-TE-UW, output S.

Approval-DC-PV-TE-NUW ≤p
search Approval-DC-PV-TE-UW: The proof

of Theorem 3.16 shows how to construct, given I = (C, V, p) and a solution

S for Approval-DC-PV-TE-UW, a solution to I for Approval-DC-PV-TE-

NUW, and we note that the construction can be done in polynomial time.

7. Approval-CC-PC-TE-NUW ≤p
search Approval-CC-RPC-TE-NUW: The

proof of Theorem 3.17 shows how to construct, given I = (C, V, p) and

a solution S for Approval-CC-RPC-TE-NUW, a solution to I for Approval-

CC-PC-TE-NUW, and we note that the construction can be done in poly-

nomial time.

Approval-CC-RPC-TE-NUW ≤p
search Approval-CC-PC-TE-NUW: The

proof of Theorem 3.17 shows how to construct, given I = (C, V, p) and

a solution S for Approval-CC-PC-TE-NUW, a solution to I for Approval-

CC-RPC-TE-NUW, and we note that the construction can be done in poly-

nomial time.

8. Approval-CC-PC-TE-UW ≤p
search Approval-CC-RPC-TE-UW: The proof of

Corollary 3.18 shows how to construct, given I = (C, V, p) and a solution

S for Approval-CC-RPC-TE-UW, a solution to I for Approval-CC-PC-TE-

UW, and we note that the construction can be done in polynomial time.

Approval-CC-RPC-TE-UW ≤p
search Approval-CC-PC-TE-UW: The proof of

Corollary 3.18 shows how to construct, given I = (C, V, p) and solution S for

Approval-CC-PC-TE-UW, a solution to I for Approval-CC-RPC-TE-UW,

and we note that the construction can be done in polynomial time.

It is well-known that approval satisfies Unique-α, and so the following corollary

holds.

61

Corollary 4.11. 1. For each pair (T1, T2) among the six collapsing types

Approval-DC-RPC-TE-NUW, Approval-DC-RPC-TE-UW, Approval-DC-

PC-TE-NUW, Approval-DC-PC-TE-UW, Approval-DC-RPC-TP-UW,

and Approval-DC-PC-TP-UW, it holds that T1 ≡p
search T2.

2. Approval-CC-PC-TP-UW ≡p
search Approval-CC-RPC-TP-UW.

Proof. This corollary is easy to see, but we include the proof for completeness.

1. This follows directly from Corollaries 4.9 and 4.10 (Parts 2 and 4 of the

latter) since approval satisfies Unique-α.

2. Similarly, this follows directly from Corollary 4.10 since approval satisfies

Unique-α.

4.5 Concrete Search Complexities of Collapsing

Electoral Control Types

In this section, we prove that each control type involved in a search-equivalence

proven in this thesis is either polynomial-time computable or SAT-equivalent.

Table 4.1 provides a comprehensive summary of our results and indicates which

are polynomial-time computable (denoted “polynomial”) in the table or are SAT-

equivalent. Propositions 4.4 and 4.5 are not listed in the References column, since

it is clear when they are being drawn on.

Our strategy is, for each known equivalence class of (decision-)collapsing elec-

toral control types for plurality, voting, and approval, to determine the search

complexity of at least one element. We will then leverage the search equivalences

(see Propositions 4.4 and 4.5) to determine the search complexity of the remaining

elements in the equivalence classes.

62

Collapsing Control Types Search

Complexities

References

Plurality-DC-RPC-TP-NUW, Plurality-DC-PC-TP-NUW SAT-

equivalent

Theorem 4.6

Corollary 4.19

Plurality-DC-RPC-TE-NUW, Plurality-DC-RPC-TE-UW,

Plurality-DC-PC-TE-NUW, Plurality-DC-PC-TE-UW

SAT-

equivalent

Theorem 4.8

Corollary 4.19

Veto-DC-PV-TE-NUW, Veto-DC-PV-TE-UW polynomial Corollary 4.10

Theorem 4.13

Veto-DC-RPC-TP-NUW, Veto-DC-PC-TP-NUW SAT-

equivalent

Theorem 4.6

Corollary 4.19

Veto-DC-RPC-TE-NUW, Veto-DC-RPC-TE-UW,

Veto-DC-PC-TE-NUW, Veto-DC-PC-TE-UW

SAT-

equivalent

Theorem 4.8

Corollary 4.19

Approval-DC-RPC-TP-NUW, Approval-DC-PC-TP-NUW polynomial Theorems 4.6 and 4.12

Approval-DC-RPC-TP-UW, Approval-DC-PC-TP-UW,

Approval-DC-RPC-TE-NUW, Approval-DC-RPC-TE-UW,

Approval-DC-PC-TE-NUW, Approval-DC-PC-TE-UW

polynomial Corollary 4.10

Theorem 4.12

Approval-DC-PV-TE-UW, Approval-DC-PV-TE-NUW polynomial Corollary 4.10

Theorem 4.13

Approval-CC-RPC-TP-UW, Approval-CC-PC-TP-UW polynomial Corollary 4.10

Theorem 4.12

Approval-CC-RPC-TP-NUW, Approval-CC-PC-TP-NUW polynomial Corollary 4.10

Theorem 4.12

Approval-CC-RPC-TE-UW, Approval-CC-PC-TE-UW polynomial Corollary 4.10

Theorem 4.13

Approval-CC-RPC-TE-NUW, Approval-CC-PC-TE-NUW polynomial Corollary 4.10

Theorem 4.13

Table 4.1: For each collection of (decision-problem) collapsing partition control

types for plurality, veto, and approval elections we have shown that their search

problems are also of the same complexity.

We prove our results about polynomial-time computability, before proving

SAT-equivalences.

63

The first theorem is only about new algorithms (i.e., not in the literature) that

we provide for control with respect to approval.

Theorem 4.12. The search problem for each of the following control problems is

polynomial-time computable:

1. Approval-DC-PC-TE-UW,

2. Approval-DC-PC-TP-NUW,

3. Approval-CC-PC-TP-UW, and

4. Approval-CC-PC-TP-NUW.

Proof. 1. Consider the case of Approval-DC-PC-TE-UW. Approval is known

to be immune to DC-PC-TE-UW (Hemaspaandra et al., 2007). So on each

input (C, V, p), we have: If p is a unique winner of election (C, V) under

approval voting, then p ̸∈ Approval-DC-PC-TE-UW (i.e., there exists no

candidate partition under which p is not a final-round unique winner in the

PC-TE two-stage election process under approval voting). Our polynomial-

time search-problem algorithm thus is the following: On input (C, V, p), in

polynomial time determine whether p is a unique winner under approval

of election (C, V). If it is, output ⊥ (indicating there is no partition that

will prevent p from being the unique winner in the PC-TE two-stage election

process under approval, regarding (C, V)). Otherwise, output as our solution

the partition (∅, C), since this will make the final-round election be (C, V),

and we know in this “otherwise” case that p does not uniquely win there.

2. It is not hard to see that approval is also immune to DC-PC-TP-NUW: Let

p be a winner of an election (C, V). Let k denote the number of ballots

(votes) that approve of p in V . It follows that no candidate is approved by

more than k votes (else p would not be a winner). Since the TP handling

64

rule is used, p can never be eliminated from a subelection as no candidate

is approved by more votes than p. Thus p always proceeds to the final

round, and is a winner. So the Approval-DC-PC-TP-NUW case follows by

the above proof with each instance of the word “unique” removed and each

TE and UW respectively changed to TP and NUW.

3. Since approval is immune to CC-PC-TP-UW (Hemaspaandra et al., 2007),

this case is analogous to case 1, of course by asking whether p is not a unique

winner of (C, V), and proceeding in the obvious way, again using (∅, C) as

our output partition in those cases that do not output ⊥.

4. Since approval is immune to CC-PC-TP-NUW (see Chapter 3), this case

is analogous to case 2, of course by asking whether p is not a winner of

(C, V), and proceeding in the obvious way, again using (∅, C) as our output

partition in those cases that do not output ⊥.

This next theorem about approval and veto follows primarily from existing

work in the literature, and in one case, we provide a modification to an existing

algorithm to establish our result.

Theorem 4.13. The search problem for each of the following control problems is

polynomial-time computable:

1. Veto-DC-PV-TE-UW.

2. Approval-DC-PV-TE-UW.

3. Approval-CC-RPC-TE-UW.

4. Approval-CC-RPC-TE-NUW.

Proof. 1. Maushagen and Rothe (2018) show that Veto-DC-PV-TE-UW ∈ P

and their algorithm detects whether a solution exists and explicitly con-

structs a solution in polynomial time when a solution exists.

65

2. Hemaspaandra et al. (2007) show that Approval-DC-PV-TE-UW ∈ P and

their construction detects whether a solution exists and explicitly constructs

a solution in polynomial time when a solution exists.

3. Hemaspaandra et al. (2007) show that Approval-CC-RPC-TE-UW ∈ P and

their construction detects whether a solution exists and explicitly constructs

a solution in polynomial time when a solution exists.

4. Our algorithm, which is a modified version of one of Hemaspaandra et al.

(2007), proceeds as follows: On input (C, V, p), for each a ∈ C, let ya be

the number of votes in V that approve a and let Y = max{ya | a ∈ C}. If

yp ̸= Y and ∥{a ∈ C | ya = Y }∥ = 1, then output ⊥. Otherwise, output

({p}, C−{p}). Why does ({p}, C−{p}) work? Note that in this “otherwise”

case, we have that either (a) yp = Y or (b) ∥{a ∈ C | ya = Y }∥ ≥ 2. If

(a) holds, then the partition ({p}, C − {p}) makes p a winner in the final

round, since p will uniquely win and move forward from its subelection,

and no candidate has more approvals than p so even if a candidate moves

forward from the other subelection it cannot prevent p from being a final-

round winner. If (a) fails and (b) holds, then the partition ({p}, C − {p})

will make p a winner (indeed, a unique winner) in the final round, since in

the other subelection there will be at least two candidates that are approved

by Y votes, so they tie as winners of that subelection and are eliminated;

thus no candidates will move forward from that first-round election.

The algorithm just given clearly runs in polynomial time.

We now move on to proving our results about SAT-equivalence. Showing SAT-

equivalence for an individual problem is quite tedious. Since the theme behind our

work on collapsing control types involved seeing where/if duplicate work happens,

we aimed at having a meta-theorem to help us show SAT-equivalence by leveraging

known decision-complexity results, thereby avoiding duplicate work.

66

Theorem 4.14. Given an election system E satisfying WE ∈ P, if T is one of

our partition-based control types involving E and (the decision problem) T is NP-

complete, then the search problem for T is SAT-equivalent.

Proof. Assume T is one of our partition-based control types, that E is the election

system of T , that WE ∈ P, and that (the decision problem) T is NP-complete.

NP-hard: Let f be any refinement of Π̂T . Since T is NP-complete, it suffices to

show T ∈ Pf to show that NP ⊆ Pf . Our polynomial-time algorithm to decide T

with function oracle f proceeds as follows: If x is not a triple of the form (C, V, p)

where C is a set of candidates, V is a vote collection over C of the vote-type of E ,

and p ∈ C, then reject. Otherwise, query the function oracle with x and verify,

in polynomial time (using the fact that WE ∈ P), whether the oracle response is

a solution to the control problem. If it is, accept, and otherwise reject.

NP-easy: It is easy to see that there is a refinement of Π̂T , h, such that

h ∈ FPNP. Let us focus on T being a voter partition type. The candidate

cases are exactly analogous except we build the candidate rather than the voter

partition. On input (C, V, p), h makes sure that the input is of the form (C, V, p),

that p ∈ C, and that the votes in V are of the type appropriate for E ; if not

output ⊥. Otherwise, use a single call to SAT to determine if (C, V, p) ∈ T .

If not, output ⊥. Otherwise, by an easy binary search, with an NP oracle, we

will construct a set V1 such that (V1, V − V1) is a solution to T for (C, V, p). In

fact, if we naturally encode partitions into binary strings, we can binary search,

with any NP-complete set such as SAT as our oracle, to find the lexicographically

smallest encoding of a V1 ⊆ V such that (V1, V −V1) is a solution to (C, V, p) with

respect to T , and then we will output (V1, V − V1). (The “helper” NP set for the

binary search is simply {(C, V, p, C) | (∃C ′)[C ′ ≥lex C and C ′ encodes a V1 such that

(V1, V − V1) is a solution to (C, V, p) with respect to T]}. Since this is an NP set,

questions to it can be polynomial-time transformed into questions to SAT.)

67

Equipped with this powerful tool, we can now prove our SAT-equivalence re-

sults. We first establish a new NP-completeness result that is new to the literature,

i.e., that Plurality-DC-PC-TP-NUW is NP-complete.

An earlier paper by Hemaspaandra et al. (2007) established that Plurality-

DC-PC-TP-UW is NP-complete, but for our study we need the analogous in the

NUW model, and so we prove the following theorem by building on the proof that

Plurality-DC-PC-TP-UW is NP-complete.

Theorem 4.15. As a decision problem, Plurality-DC-PC-TP-NUW (and equiv-

alently, Plurality-DC-RPC-TP-NUW) is NP-complete.

Proof. The analogous result in the unique-winner model was established by Hema-

spaandra et al. (2007). Our proof, which we include for completeness, closely

follows their proof. We use the same construction (i.e., reduction), but our cor-

rectness argument involves small yet important modifications.

Membership in NP is immediately clear. We now prove NP-hardness. We in

particular provide a reduction from the Hitting Set problem, a known NP-complete

problem (Garey and Johnson, 1979).

The Hitting Set problem is defined as follows. Given a set B = {b1, b2, . . . , bm},

a family S = {S1, S2, . . . , Sn} of subsets of B, and a positive integer k, does S

have a hitting set of size at most k? (That is, is there a set B′ ⊆ B with ∥B′∥ ≤ k

such that, for each i, Si ∩ B′ ̸= ∅?)

We now state that construction that Hemaspaandra et al. (2007) used for their

NP-hardness reduction for Plurality-DC-PC-TP-UW, since we will use the same

construction as our P-hardness reduction for Plurality-DC-PC-TP-NUW.

Construction 4.16 (Hemaspaandra et al. 2007). Given a triple (B, S, k), where

B = {b1, b2, . . . , bm}, S = {S1, S2, . . . , Sn} is a family of subsets of B, and k ≤ m

is a positive integer, construct the following election:

68

1. The candidate set is C = B ∪ {c, w}.

2. The vote set V is defined as:

(a) There are 2(m−k)+2n(k+1)+4 votes of the form c > w > · · · , where

the “· · · ” means that the remaining candidates are in some arbitrary

order.

(b) There are 2n(k + 1) + 5 votes of the form w > c > · · · .

(c) For each i ∈ {1, . . . , n}, there are 2(k + 1) votes of the form Si > c >

· · · , where “Si” denotes the elements of Si in some arbitrary order.

(d) For each j ∈ {1, . . . ,m}, there are two votes of the form bj > w > · · · .

3. The distinguished candidate is c.

We now state two claims that will be used to prove that the reduction works

in our case.

Claim 4.17 (Hemaspaandra et al. 2007). If B′ is a hitting set of S of size k, then

w is the unique winner of the plurality election (B′ ∪ {c, w}, V).

Claim 4.18. Let D ⊆ B ∪ {w}. If c is not a winner of plurality election (D ∪

{c}, V), then there exists a set B′ ⊆ B such that

1. D = B′ ∪ {w},

2. w is the unique winner of plurality election (B′ ∪ {c, w}, V), and

3. B′ is a hitting set of S of size less than or equal to k.

Proof. Fix D ⊆ B ∪ {w} such that c is not a winner of plurality election (D ∪

{c}, V). We will show that the above three properties hold, by using a modified

version of the argument used by Hemaspaandra et al. (2007).

69

For a given election, we will let score(d) denote the number of votes that rank

candidate d first in that election.

First, notice that for each b ∈ D ∩ B, score(b) < score(c) in (D ∪ {c}, V).

Since c is not a winner of that election, it must hold that w is the unique winner

of that election, and thus score(w) > score(c).

Let B′ ⊆ B be such that D = B′ ∪ {w}. Then D ∪ {c} = B′ ∪ {c, w}. Thus it

follows that w is the unique winner of the election (B′ ∪ {c, w}), proving the first

two properties.

Finally, observe that in (B′ ∪ {c, w}, V), it holds that

1. score(w) = 2n(k + 1) + 5 + 2(m− ∥B′∥), and

2. score(c) = 2(m− k) + 2n(k + 1) + 4 + 2(k + 1)ℓ,

where ℓ is the number of sets in S that have an empty intersection with B′, i.e.,

are not “hit by B′.” Since w is the unique winner of the election, it follows that

score(c) < score(w),

2(m− k) + 2(k + 1)ℓ < 1 + 2(m− ∥B′∥), and

(k + 1)ℓ+ ∥B′∥ − k < 1/2.

Since ℓ is a nonnegative integer, the only value that it can have here is 0, and so

it follows that B′ is a hitting set of S of size at most k.

Now to conclude the proof of Theorem 4.15, we will leverage the two claims

above to show that the following two items are equivalent:

1. There is a set B′ ⊆ B of size at most k that is a hitting set of S.

2. There is a partition of C such that c can be prevented from being a winner of

the two-stage plurality election conducted under the PC-TP-NUW model.

70

Let B′ be a hitting set of S of size k. Let C1 = B′ ∪ {c, w} and C2 = C − C1.

By Claim 4.17 it holds that w is the unique winner of the subelection (C1, V),

and thus c does not proceed to the final round and is not a winner.

Suppose there is a partition of C such that c is not a winner of the correspond-

ing two-stage plurality election. It must hold that c is eliminated either in the

first-round election or in the final-round election. Then it holds that there is a

set D ⊆ B ∪ {w} such that c is not a winner of plurality election (D ∪ {c}, V). It

directly follows from Claim 4.18 that S has a hitting set of size at most k. This

concludes the proof that Plurality-DC-PC-TP-NUW is NP-complete.

The “equivalently” in the theorem’s statement follows from the fact that for

every election system E , E-DC-RPC-TP-NUW = E-DC-PC-TP-NUW (Hema-

spaandra et al., 2020).

For each class of pairwise-decision-collapsing electoral control types of interest,

we now know the decision complexity of at least one element, thus allowing us to

establish the concrete search complexities of the remaining problems by leveraging

our Theorem 4.14.

Corollary 4.19. The search-problem versions of the following are SAT-equivalent.

1. Plurality-DC-RPC-TP-NUW

2. Plurality-DC-RPC-TE-UW

3. Veto-DC-RPC-TP-NUW

4. Veto-DC-RPC-TE-NUW

Proof. Each of these four is NP-complete, the first by Theorem 4.15, the second is

from Hemaspaandra et al. (2007), and the remaining two are from Maushagen and

Rothe (2018). The SAT-equivalence follows from those four NP-completenesses,

by Theorem 4.14.

71

4.6 Conclusion and Open Directions

Our work introduces a notion of equivalence between collapsing electoral control

types and establishes that the collapses of Hemaspaandra et al. (2020) and our col-

lapses listed in Chapter 3 hold in the search model. In doing so, we establish a new

NP-completeness result in the decision model, prove a powerful result that shows

that every NP-complete (decision) partition-control problem is SAT-equivalent in

the search model, and we prove interesting results about transference of hardness

using our notion of equivalence.

An interesting open direction would be to prove dichotomy theorems (if they

exist) in this setting. However, even in the decision setting for unweighted con-

trol those are not known to exist, though they are known to exist for other

forms/settings of electoral attacks (see Hemaspaandra et al. 2014, Hemaspaan-

dra and Schnoor 2016, and Faliszewski et al. 2015). Another direction would be

to find a dichotomy theorem that leverages decision-complexity results (in the

sense of Theorem 4.14).

72

5 Linked Fates: Expanding the

Range of Ambiguity-Based

Class Pairs Known to Stand

or Fall Together

The optimist proclaims that we live in the best of all possible

worlds; and the pessimist fears this is true. – Cabell (1927)

5.1 Introduction

The class UP≤1, more commonly known as UP, which was introduced by Valiant

(1976), is often said to capture “unambiguous nondeterministic computation.”

Since its introduction, it has been involved in many results that are not necessar-

ily about core complexity theory. In particular, the class UP has been at the center

of many results in the study of one-way functions. We briefly discuss that relation

in this section and refer interested readers to Watanabe (1988), Beigel (1989), and

Hemaspaandra and Zimand (1993), or for a more self-contained overview of the re-

lationship between ambiguity-bounded versions of NP and one-way functions, see

also Hemaspaandra and Ogihara (2002, Chapter 2). From a complexity perspec-

73

tive, we are primarily concerned with the relationship established by Watanabe

that for each k ∈ N+, P = UP≤1 ⇐⇒ P = UP≤k.

In this chapter, we are concerned with which pairs of functions yield ambiguity-

bounded versions of NP with “linked fates,” i.e., for which functions f1 and f2 such

that (∀n ∈ N)[f1(n) ≤ f2(n)] does it hold that P = UP≤f1(n) ⇐⇒ P = UP≤f2(n).

Fact 5.1. If f1 and f2 are functions from N to R≥1 such that (∀n ∈ N)[f1(n) ≤

f2(n)], then P = UP≤f1(n) =⇒ P = UP≤f2(n).

The above fact follows directly from the definitions of UP≤f1(n) and UP≤f2(n).

Watanabe’s (1988) result settles the case where each function is bounded by a

constant, i.e., for each function, there exists a constant k such that the function

never maps to a number greater than k. However, over the last 36 years, there

has been no success in strengthening the work of Watanabe beyond the constant

case, and no other linked fates have been established.

We define two new types of linked fates. As a first result, we show that for any

function f : N → R≥1 that is monotonically nondecreasing and k ∈ N+, UP≤f(n)

and UP≤f(nk) have linked fates, i.e., P = UP≤f(n) ⇐⇒ P = UP≤f(nk). In some

sense, a polynomial increase in the argument size is not enough to separate from

P. The result itself relies on a simple, yet powerful technique: padding.

Perhaps more surprisingly, we even show that our new type of linked fate

and Watanabe’s approach can be merged, and we can get the best advantages

of each approach simultaneously. More specifically, for each k ∈ N+ and each

monotonically nondecreasing f : N → R≥1, we show that P = UP≤f(n) ⇐⇒ P =

UP≤f(nk)+O(1).

In fact, to establish the proof of the result in the prior paragraph, we estab-

lish that for each function f : N → R≥1 and j ∈ N, “P = UP≤f(n) ⇐⇒ P =

UP≤f(n)+j” holds even without the assumption that f is monotonically nonde-

creasing (we give and prove this result as Theorem 5.5). This, in some sense,

74

provides a second type of linked fate since it is not implied by the result stated in

the previous paragraph (because there is no assumption that f is monotonically

nondecreasing in Theorem 5.5). However, this type of linked fate is probably less

interesting that the one described in the previous paragraph.

5.2 Main Results

In this section, we will discuss two differing approaches to showing that pairs

of classes have linked fates. The first approach is one implicitly achieved by

Watanabe, who showed that unambiguous one-way functions exist if and only

if constant-ambiguity one-way functions exist (Watanabe, 1988). (We here are

speaking of complexity-theoretic one-way functions, not cryptographic one-way

functions.) Viewed through the lens of the relationships between one-way func-

tions and ambiguity-bounded classes (see Grollmann and Selman 1988; Hema-

spaandra and Zimand 1993; Hemaspaandra and Ogihara 2002), that equivalently

establishes the following.

Theorem 5.2 (Watanabe 1988). For each k ∈ N+, it holds that P = UP≤1 ⇐⇒

P = UP≤k.

The treatment in Hemaspaandra and Ogihara (2002) proves that implication

directly within the language of ambiguity-bounded classes, rather than indirectly

through one-way functions. Theorem 5.2 shows that for every two constants

k1 ∈ N+ and k2 ∈ N+, k1 ≤ k2, it holds that the fates of UP≤k1 and UP≤k2

are linked. Or, taking the extreme case, it says that the fates of UP≤1 and UPO(1)

are linked: P = UP≤1 ⇐⇒ P = UPO(1).

The above result, Theorem 5.2 of Watanabe, is the only result we know of in

the literature that implies a linked-fates situation for polynomial-time, ambiguity-

bounded nondeterminism. However, we now give completely different families of

75

such linked-fates cases. We do so via the power of padding—a technique that

has been central in complexity theory in a remarkably varied range of settings,

such as the elegant construction of universal complete sets for many complexity

classes (Hartmanis, 1978), the study of whether all NP-complete sets are iso-

morphic to SAT (Berman and Hartmanis, 1977), and the connection between

polynomial-time and exponential-time complexity classes (Book, 1974; Hartma-

nis et al., 1985)—and by appealing to a new inductive approach that subsumes

the proof of Theorem 5.2 given by Hemaspaandra and Ogihara (2002).

We will use the power of padding to reduce how much nondeterminism is

needed relative to the input length, via increasing the input length.

Theorem 5.3. For each k ∈ N+ and each function f : N → R≥1, it holds that

UP≤f(nk) ≤p
m UP≤f(n).

Proof. Fix k and f to satisfy the requirements of the theorem statement. Let L

belong to UP≤f(nk). Let a be a character in L’s alphabet.

We claim that L ≤p
m {x · a|x|k−|x| | x ∈ L}, where · denotes concatenation, and

aj denotes the string consisting of j many “a”s. In particular, the polynomial-time

many-one reduction simply is the mapping from x to x · a|x|k−|x|.

However, {x · a|x|k−|x| | x ∈ L} ∈ UP≤f(n). In particular, on an arbitrary input

y, the UP≤f(n) machine will parse the input into x and a|x|
k−|x|, or if the input

cannot be parsed as that, will reject as the input is clearly not in {x · a|x|k−|x| |

x ∈ L}. Since nk−n is monotonically nondecreasing, it is impossible that a given

input string can have two different x values (say, at different lengths) that can be

parsed as being its x value. Our UP≤f(n) machine then simulates the UP≤f(nk)

machine for L, running on input x. Since |x ·a|x|k−|x|| = |x|k, the f(|x|k) ambiguity

bound that the UP≤f(nk) machine for L will have in its simulated run ensures that

our machine will itself satisfy an f(n) bound relative to its input size, since its

input size itself is |x|k.

76

Theorem 5.4. For each k ∈ N+ and each monotonically nondecreasing function

f : N → R≥1, it holds that P = UP≤f(n) ⇐⇒ P = UP≤f(nk).

Proof. Fix k and f to satisfy the theorem’s requirements. The left-to-right di-

rection follows from Theorem 5.3 and the fact that P is closed downwards under

polynomial-time many-one reductions. Because f is monotonically nondecreas-

ing, it follows that (∀n)[f(n) ≤ f(nk)], and so the right-to-left direction holds by

Fact 5.1.

This theorem provides the first result on “linked fates” with respect to

ambiguity-bounded versions of NP since the work of Watanabe (1988). For more

common functions such as n+ 1 and 2n, this padding argument yields even more

dramatic collapses (see Corollary 5.9), because, informally, increasing the input

size effectively permits us to have more accepting paths. However, when dealing

with slow-growing functions (e.g., log log log(n)), padding does not seem to buy

us much. In our next theorem, we show how to get an additional constant number

of accepting paths “for free.”

Theorem 5.5. For each function f : N → R≥1 and for each j ∈ N, it holds that

P = UP≤f(n) ⇐⇒ P = UP≤f(n)+j.

Proof. By Fact 5.1, the right-to-left direction holds. We now prove the left-to-right

direction.

Fix a function f : N → R≥1. We prove that for each j ∈ N, P = UP≤f(n) =⇒

P = UP≤f(n)+j by induction on j.

The base case (when j = 0) is trivial. The inductive hypothesis we prove is

that for each j ∈ N, P = UP≤f(n)+j =⇒ P = UP≤f(n)+j+1.

Fix a natural number j, suppose P = UP≤f(n)+j, pick an arbitrary L ∈

UP≤f(n)+j+1, and let M be an NPTM that witnesses that membership (i.e.,

(∀x)[(x ∈ L =⇒ 1 ≤ #accM(x) ≤ f(|x|)+j+1)∧(x ̸∈ L =⇒ #accM(x) = 0)]).

77

Informally, the intuition for the approach we employ is as follows. We wish to

“poison” exactly one accepting path of M for each input x ∈ L with #accM(x) >

1—that is, we wish to have exactly one accepting path of M on x become a

rejecting path whenever M has more than one accepting path on input x. In

doing so, we would be decreasing M ’s number of accepting paths on each input

with multiple accepting paths (without changing the language it accepts), thus

bounding the number of accepting paths by f(|x|) + j for each x ∈ L. This is

however not a realistic goal as doing so seems to require the NPTM to know when

it has more than one accepting path. But we can draw insight from this scenario.

Consider now this informal description of the machine M ′ whose behavior is the

same as that of M , except that on each input x ∈ L, it has exactly one of its

accepting path(s) “poisoned” (and we do not specify the “how” as that is not

relevant in our informal description). The language of M ′ is

R = {x ∈ L | #accM(x) > 1},

which is similar to the one used to prove Theorem 5.2 by Hemaspaandra and

Ogihara (2002). Our biggest task is to prove that R ∈ P under the current

assumptions, which will be crucial to us in proving that L ∈ P. Unfortunately,

we cannot use the same approach used by Hemaspaandra and Ogihara (2002); in

that approach, an NPTM only needs to guess a constant number of distinct paths,

but here, the number of paths may be too large for an NPTM to guess. So we

use a different approach to prove that R ∈ P, and then use that fact to conclude

that L ∈ P.

To prove that R ∈ P, we first define the auxiliary language

S = {(x, p) | x ∈ L and p is an accepting path of M on x and M has an

accepting path on input x that is lexicographically smaller than p}

and prove that S ∈ P.16

16In this proof, we tacitly assume without loss of generality that we have access to a

78

Lemma 5.6. S ∈ P.

Proof. Let NS be an NPTM that does the following on input z. If z is not a pair,

reject. Otherwise, let (x, p) be the pair represented by z. If p is an accepting path

of M on x, then guess a path p′ of M on x that is lexicographically smaller than

p (if no such path exists, then reject). If p′ is an accepting path, then we accept

on the current path. If p′ is not an accepting path, then we reject on the current

path.

We first argue correctness. If NS accepts z, it must be that z = (x, p) for

some x ∈ L and some accepting path p of M on x, and that M on input x has

an accepting path p′ that is lexicographically smaller than p, i.e., z ∈ S. If z ∈ S,

then z is a pair, let us call it (x, p). The machine NS verifies that x ∈ L using

p, and nondeterministically guesses a path p′ of M on x that is lexicographically

smaller than p. Since (x, p) ∈ S, there is such a path p′ that is accepting, and so

NS accepts.

To conclude, it is clear that NS runs in nondeterministic polynomial time

and that for any (x, p) ∈ S, the number of accepting paths is #accM(x) − 1 ≤

f(|x|)+ j ≤ f(|z|)+ j, as the (lexicographically) smallest accepting path of M on

x is “poisoned.” So S ∈ UP≤f(n)+j = P.

We now use Lemma 5.6 to prove that R ∈ P.

Lemma 5.7. R ∈ P.

Proof. Let NR be an NPTM that does the following on input x. Guess a path

p of M on x. If p is not an accepting path, reject. If (x, p) ∈ S, then accept.

Otherwise, reject.

polynomial-time computable total order over the accepting paths of Turing machines. Indeed,

one can encode an accepting path as a finite string over a finite alphabet (with at least two

elements) using only polynomial amount of space. And the standard lexicographical ordering

over those strings is a total order that satisfies our assumption.

79

Because S ∈ P, the membership test of (x, p) in S can be computed in poly-

nomial time. So NR clearly runs in nondeterministic polynomial time. Also, for

each input x ∈ L, there are only up to f(|x|) + j accepting paths, and NR ac-

cepts if and only if M has more than one accepting path on x, so it follows that

L(NR) = R ∈ UP≤f(n)+j = P.

Now to conclude, consider the NPTM NL that does the following on input x.

If x ∈ R, accept. Otherwise, immersively simulate M on input x.

Since R ∈ P, computing the membership of x in R can be computed in poly-

nomial time. So NL clearly runs in nondeterministic polynomial time, accepts L,

and has at most one accepting path on any input. So, L ∈ UP = P.

Naturally, we can combine Theorems 5.4 and 5.5 and prove the theorem below.

Theorem 5.8. For each monotonically nondecreasing function f : N → R≥1 and

each k ∈ N+, P = UP≤f(n) ⇐⇒ P = UPf(nk)+O(1).

Proof. Fix f and k to satisfy the requirements of the theorem statement.

For the right-to-left direction, for every function j(n) that is O(1), j(n) is

positive by the definition of big-Oh (see Sipser 2013, Chapter 7) and by the mono-

tonicity of f , (∀n ∈ N)[f(nk) + j(n) ≥ f(n)]. So the right-to-left direction holds

by Fact 5.1.

We now prove the left-to-right direction. Assume that P = UP≤f(n). By the

definition of big-Oh, UPf(nk)+O(1) =
⋃

j∈N UP≤f(nk)+j. Fix j ∈ N. It suffices to

show that P = UP≤f(nk)+j. (One may be concerned here that the case where j = 0

is problematic as the ambiguity bound may be 0, but since f maps to R≥1 that can

never happen.) It follows from our assumption that P = UP≤f(n) and Theorem 5.5

that P = UP≤f(n)+j. Moreover, f(n) + j is clearly a monotonically nondecreasing

function from N to R≥1, so by Theorem 5.4, it follows that P = UP≤f(nk)+j.

80

As a corollary to Theorem 5.8, we obtain the following concrete examples of

linked fates.

Corollary 5.9.

1. P = UP≤log log(n) ⇐⇒ P = UPO(1)+log log(n).

2. P = UP≤log(n) ⇐⇒ P = UPO(log(n)).

3. For each k ∈ N+, P = UP≤nk+k ⇐⇒ P = FewP.

4. For each j ∈ N+, P = UP≤j+nlog(n) ⇐⇒ P = UPO(1)+nO(log(n)).

5. For each k ∈ N+, P = UP≤2n
k ⇐⇒ P = NP.

Theorem 5.4 shows that polynomially-bounded increases in the argument of

the ambiguity limit yield linked-fate pairs of classes, and the corollaries just given

provide a number of concrete examples. In a similar fashion, Theorem 5.5 shows

that an addition of a constant amount of ambiguity also yields linked-fate pairs

of classes.

5.3 Related Work

It is important not to conflate our issue of (un)linked fates of two classes with

the different issue of whether the two classes can be separated in some relativized

world. A clear example of this is the constant-ambiguity case mentioned in Sec-

tion 5.2. Watanabe (1988) proved (in light of the connection between ambiguity-

bounded classes and one-way functions; see Grollmann and Selman 1988; Hema-

spaandra and Zimand 1993; Hemaspaandra and Ogihara 2002) that if P = UP≤1

then P = UP≤2. And that implication holds in the real world and every rela-

tivized world. Nonetheless, there are oracles A for which UPA
≤1 ̸= UPA

≤2 holds,

and indeed that separation holds with probability one relative to a random oracle

81

(Beigel, 1989); however, again by Watanabe’s relativizable result, relative to that

oracle A, it certainly cannot hold that PA = UPA
≤1.

Historically, the first person to show a pair of classes whose ambiguity levels

were distant enough that in some relativized world their fates were not linked was

Rackoff, who in the early 1980s showed that there is an oracle B relative to which

(and recall that NP = UP
2n

O(1)) PB = UPB ̸= NPB (Rackoff, 1982). Viewed

through the lens of robustness, it implies that any improvement of Watanabe’s

work where UP and NP have linked fates cannot hold robustly. Rackoff’s result

was substantially tightened in a paper by Fortnow and Rogers (2002) (itself build-

ing on techniques of Blum and Impagliazzo 1987 and Hartmanis and Hemachandra

1991) which, although it is not explicitly stated in the paper, builds an oracle A

such that PA = UPA ̸= FewPA. In fact, Fortnow and Rogers effectively show

that relative to a “sufficiently generic size-bounded generic oracle” (Fenner et al.,

2003) A there is a k ∈ N+ such that PA = UPA ̸= UPA
≤n+k, and our Theorem 5.8

implies that UP≤n+k and FewP have linked fates, not just in the real world, but

also in every relativized world.

5.4 Conclusions and Open Problems

In this thesis, we provide new families of functions with linked fates, which to our

knowledge had not been done since the seminal work of Watanabe (1988). We

expect, in in-progress work (Carleton et al., 2024), to provide proofs showing that

Watanabe’s and this chapter’s results are optimal with respect to results that hold

robustly (i.e., in all relativized worlds).

We of course would like to provide structural collapses, e.g., of the polynomial

hierarchy PH, that follow from our assumptions. However, this is an area that

has proved difficult, as even certain dramatic assumptions, such as P = UP or

even UP = NP, are not known to imply the collapse of the polynomial hierarchy.

82

Indeed, regarding the P = UP assumption, it is known by Blum and Impagliazzo

(1987) (see also Sheu and Long 1996, p. 425) that there is a relativized world in

which P = NP ∩ coNP = UP yet the polynomial hierarchy is infinite. However,

there is no known relativized world where UP = NP and the polynomial hierarchy

is infinite (Hemaspaandra et al., 1995; Fortnow, 2021). And it is open whether

there is an oracle world in which UP is in the high hierarchy and PH is infinite—in

fact, Sheu and Long (1996, p. 425) explicitly mentioned this open problem in 1996,

and, to the best of our knowledge, it remains open even now, decades later.

We have seen that Watanabe (1988) showed how to give a constant addition

(and we strengthened that result), and we showed that for each monotonically

nondecreasing function f we can change f(n) to f(nk). (And we even showed

that the two methods can be combined.) Aside from these two methods that we

found, it would be interesting to see if there are other techniques that can create

linked fates and if they can be combined with our two methods.

83

6 Defying Gravity and Gadget

Numerosity: The Complexity

of the Hanano Puzzle

I defy gravity. – Marilyn Monroe (Time, 1954)

6.1 Introduction

Many games have been studied through the lens of complexity theory, namely

as decision problems. Single-player games are typically NP-complete, and two-

player games tend to be PSPACE-complete (Hearn and Demaine, 2009). It is of

course possible to have a one-player game be PSPACE-complete, and that indeed

does tend to happen if the number of moves in an instance of the game is not

bounded by some polynomial in the size of the instance or if the instance’s layout

is dynamic (Hearn and Demaine, 2009). We notice that one-player games also

seem to become hard when they are subject to “irreversible gravity,” even though

one may expect otherwise as each move seems to be further constrained.

The work on the complexity of games has long focused on what we understand

to be “fully reversible games,” meaning games for which every action a can be

followed by an action b that effectively undoes the effects of action a (without the

84

use of an “undo” button). In this chapter, we see how our work (Chavrimootoo,

2023a) provides a notion of equivalence (i.e., a notion of collapse) between fully

reversible games and games with irreversible gravity. We do so by adding structure

to our graphs (through visibility representations, which we define in Chapter 2),

and this structure seems to crowd the space of gadgets needed to carry out our

reduction, namely the method seems to require 32 different gadgets. We prove

however that three suffice, and collapse all the other ones, i.e., we prove them to

be equivalent under some meaningful notion, thereby exhibiting another notion

of collapse.

In this work, we consider a one-player game with irreversible gravity that hints

that it could be PSPACE-complete, and we show that its decision complexity is

indeed such. The game in question is the Hanano Puzzle, which was developed by

video game creator Qrostar (2011). A few years ago, Liu and Yang showed that a

decision version of the game is NP-hard, and left open the question of determining

if it is also NP-complete (Liu and Yang, 2019). We prove the PSPACE-hardness

by giving an indirect reduction from Nondeterministic Constraint Logic (NCL),

which is a known PSPACE-complete problem that tends to be useful in proving

the PSPACE-hardness of games with sliding blocks (Hearn and Demaine, 2009),

by simulating edge flips on the NCL graph using the movement of blocks along

a grid. A major challenge of the reduction is circumventing the unwanted effects

of gravity that limit of reversibility the game is (e.g., because there is no “jump”

feature). We introduce a method grounded in graph theory. Reductions from

NCL typically only require two gadgets. However, taken at face value, our method

drastically increases the number of gadgets needed to 32, but we prove interesting

results about those gadgets and are able to give our reduction using only three

gadgets in general (but if we restrict our attention to the Hanano Puzzle, then

two gadgets suffice)! These results are independent of the Hanano Puzzle, and so

we believe they have applications to other games with properties similar to those

85

of the Hanano Puzzle.

6.2 Related Work

The literature on the complexity of games is rich and covers a variety of games.

For general earlier results, we refer readers to Appendix A of Hearn and Demaine’s

book (2009), which contains an extensive survey of games whose complexities were

known at their time of writing. Some more recent results include showing that

connected multiagent path finding is PSPACE-hard (Calviac et al., 2023) (see also

earlier work on showing the PSPACE-completeness of multiagent connected path

planning by Tateo et al. 2018), motion planning with robots is PSPACE-complete

(Demaine et al., 2018), motion planning through doors is PSPACE-complete

(Ani et al., 2020), motion planning with multiple robots in certain settings is

PSPACE-hard (Brocken et al., 2020), 1 × 1 Rush Hour is PSPACE-complete

(Brunner et al., 2020), Push-1F is PSPACE-complete (Ani et al., 2022)—a 20-

year-old open problem, as it was proven in 2002 that for all k ≥ 2, Push-kF is

PSPACE-complete (Hearn et al., 2002)—and Wordle is NP-hard (Subercaseaux

and Lokshtanov, 2022).

The introduction of NCL (Hearn and Demaine, 2005) helped simplify the pro-

cess of showing that many games with sliding blocks are PSPACE-complete by

limiting the number of gadgets to simulate to two. The work on motion planning

through doors (Ani et al., 2020) provides a framework to show the PSPACE-

hardness of certain problems by simulating one gadget. However, that paper’s

contribution does not solve the major problem faced by classifying the Hanano

Puzzle: circumventing certain effects of gravity. There are games with grav-

ity that were studied prior to the introduction of NCL. For example, Friedman

(2001) proved Cubic to be NP-hard using a similar construction to that of Liu and

86

Yang (2019).17 Clickomania is another such game. It is a one-player game with a

bounded number of moves, and it is in fact NP-complete (Biedl et al., 2002). Solv-

ing a level of Super Mario Brothers (SMB), which is another game with gravity,

has also been proven to be PSPACE-complete (Demaine et al., 2016). However,

the framework used in that proof does not rely on NCL, since SMB is not a game

that involves pulling blocks. Another famous game with gravity is Tetris. While

the “offline” version is NP-complete (Breukelaar et al., 2004), in the general case,

it is NP-hard (Asif et al., 2020). On the other hand, Jelly-no-Puzzle, also by

Qrostar, is known to be NP-hard is the general case (Yang, 2018). Our work uses

NCL to study a game with sliding blocks and irreversible gravity, and extends

this line of work by providing a framework to study such games using only three

gadgets in general, and by having only two gadgets when focusing on the Hanano

Puzzle.

6.3 The Hanano Puzzle

The Hanano Puzzle comprises different levels. A level of the game is an n × m

grid (with n,m > 0) that contains only the following components: immovable

gray blocks, movable gray blocks, (movable) colored blocks, colored flowers, and

empty spaces. Each colored block/flower can be red, blue, or yellow. Each flower

is immovable and is affixed to some block. If that block is movable, then whenever

it moves, the affixed flower moves with the block (see Figure 6.1d). Gray blocks

can be of arbitrary shape and size, while all other components are 1 × 1 objects.

In our gadgets, we try to the best of our ability to minimize the number of sides

of each movable gray block. A block can slide (see Figure 6.1a) left or right, one

step at a time. For a slide to occur, the space that the block will occupy after the

17That paper actually claims to show the NP-completeness of Cubic. However, there is no

apparent proof or observation in the text of a matching upper bound.

87

slide must either be empty or be occupied by part of the block that is sliding. Two

adjacent blocks of width one can also be swapped in one step (see Figure 6.1b) the

positions of the two blocks can be swapped without moving any other component

of the grid.

(a) Example of a slide (Qrostar, 2011). (b) Example of a swap (Qrostar, 2011).

(c) Example of a blooming flower (Qrostar,

2011).

(d) Example of effects of gravity (Qrostar,

2011).

Figure 6.1: Screenshots of the Hanano Puzzle (reproduced with permission from

Qrostar 2022).

Figure 6.1 shows screenshots of the game that show sample game moves. Note

that the checkered cells are what we call “immovable gray blocks.” Movable gray

blocks are not depicted in these figures. Because this is a game with gravity, after

the player makes a move, every movable block that is not directly supported will

fall (see Figure 6.1d). This can be viewed as happening in a single step. Each

colored block contains an arrow, pointing either up, down, left, or right. If a

colored block touches (by sharing a side; touching corners have no effect) a flower

of the same color, a flower will bloom from the side of the colored block indicated

by the arrow (see Figure 6.1c), and the flower will stay affixed/attached to that

block. We will sometimes say that the block has bloomed when this happens.

If the blooming side is in contact with a block, the blooming flower attempts to

88

“force” its way out by pushing against the surface in contact with the blooming

side. This may result in that block in contact with the blooming side to be

shifted, or in the blooming block to be shifted. If no shift is possible, then the

flower does not bloom. A block can only bloom once and that action cannot be

undone. Additionally, if the new flower is in contact with a different block of the

same color, chain bloomings can occur within the same step. To solve (complete)

a level, one must make every colored block bloom. Formally, we determine the

complexity of HANANO = {H | H is a solvable level of the Hanano Puzzle}.

6.4 Overview of the Approach

The common way of showing PSPACE-hardness by reducing from NCL is to

give a gadget—that is, an instance of the game—that simulates an AND vertex

and giving a second gadget that simulates the OR vertex. The gadgets typically

simulate edge flips in an NCL graph by using the movement of blocks between

the gadgets. However, in our case, such a direct reduction will not work; due to

gravity, many moves are not reversible, and so such a reduction is not guaranteed

to work. Liu and Yang (2019) did not encounter this problem as their reduction

from CIRCUIT-SAT (a known NP-complete problem) leveraged the fact that bits

only “move” in one direction in a boolean circuit.

We will adopt the same approach of designing gadgets that simulate AND/OR

NCL vertices. For each edge in the original graph, we will have a blue block in the

gadget representing the vertex to which the edge is incident. Thus the location of

those blue blocks will represent the orientation of edges in the original graph. We

will ensure that these blocks can move between the correct gadgets while being

subject to the inflow constraints of NCL. It is however evident that this design

faces a clear challenge; not every edge will be horizontal, and so gravity prevents

the blocks from moving in certain directions (thus making our HANANO instances

89

not as reversible as the original NCL instances). Thankfully, the planarity of the

NCL graphs allows us to leverage a known graph-theoretic technique: visibility

representations.

Our reduction will thus first compute the visibility representation of the given

graph, thus giving us the guarantee that all edges are horizontal. Hence, those

“edge flips” in the game of interest (here, the Hanano Puzzle) are fully reversible,

to the extent that is required to be compatible with NCL’s reversibility.

6.5 Gadgets and Schemas

We know that each vertex in the NCL graph is connected to exactly three edges.

So this tells us that each gadget must have exactly three entry points, and each

of these entry points can lie on either the left side or the right side of the gadget.

It is easier to consider that on each side, there is a bottom entry point, a middle

entry point, and a top entry point, and that based on the specific gadget, three of

the six entry points will be “blocked off.” We introduce some notation to describe

the different gadgets that arise from this combinatorial issue. Each gadget is

assigned a label of the form x1x2x3|y1y2y3, where for each i ∈ {1, 2, 3}, {xi, yi} ∈

{{R, ·}, {B, ·}}, and the list [x1, x2, x3, y1, y2, y3] contains either exactly three Bs,

or exactly one B and two Rs. Thus · ·R|RB· is the name given to the gadget with

a bottom entry point on the left for a blue block representing a red edge, a top

entry point on the right for a blue block representing a red edge, and a middle

entry point on the right for a blue block representing a blue edge. By a simple

counting argument, we can see that this creates an explosion in the number of

gadgets as we need to implement eight OR gadgets and 24 AND gadgets (thus

32 gadgets in total) However, we will show how to construct all our gadgets from

just three gadgets! Moreover, we note that when our attention is restricted to the

Hanano Puzzle, we only need to construct two gadgets.

90

All our movable blocks and flowers will be blue. To help identify the blocks

and flowers of the gadgets in proofs, we give those items an ID. For example, the

label “B2” indicates the second blue block in the gadget, whereas the label “BF1”

indicates the first blue flower. (We still need to specify the color to distinguish

from gray blocks.) It’s important to note that all our blocks bloom upwards.

Next to each flower will be a boldfaced white line to indicate where the flower is

attached. Additionally, our gadgets will contain some grid lines to help the reader

better gauge the distances.

Let us first look at how to construct the OR gadgets. Figure 6.2a shows a

gadget for B · ·| · BB.

Theorem 6.1. The gadget in Figure 6.2a respects the OR constraints.

Proof. First notice that each movable gray block has very limited movement. G2

can only move up by one “unit,” and G1 can either move up or move down by one

unit. Thus for any blue block Bx, the only flower that it can reach in that gadget

is BFx. Now, the only way for B4 to bloom is if B4 is in contact with BF4, and

it must be on BF4’s right side (the only other exposed side of BF4 is the bottom

side, but if B4 is directly under BF4 it will not have enough room to bloom).

Thus B4 can bloom if and only if G2 moves up by one unit. This happens if and

only if G1 moves up by one unit, which happens if and only if one of B1, B2, or

B3 blooms. Finally, notice that if B1, B2, and B3 all leave the gadget, then G1

and G2 both drop by one unit with no possibility of returning to their original

configuration, thus making it impossible to bloom B4.

We conclude by noting that we could have merged G1 and G2 into a single

block, but opted not to as we sought to minimize the number of sides on each

movable gray block.

Now, for convenience we define a constrained blue edge terminator gadget,

which will allow us to fix the direction of a particular blue edge without connecting

91

BF4 B4

G2

B3

BF3

B2

BF2

G1

B1

BF1

(a) B · ·| ·BB gadget.

BF4 B4

G4 G5 G6

3G2G

B2

BF2

B3

BF3

G1

B1

BF1

G12 G11 G10 G7 G8 G9

(b) R · ·| ·RB gadget.

BF3 B3

G2

B2

BF2

G1

B1

BF1

(c) Red bend gadget.

Figure 6.2: Our three gadgets: an OR gadget, an AND gadget, and a red bend

gadget.

it to any other nodes. We state the following proposition in a general form, i.e.,

its proof will not depend on the Hanano Puzzle’s properties.

92

Proposition 6.2. The constrained blue edge terminator gadget can be constructed

using any gadget that respects the OR constraints.

Proof. We want the constrained blue edge terminator to be a gadget that, when

attached to a tunnel that represents a blue edge, will force the block that represents

the edge’s orientation to be inside itself (i.e., inside the constrained blue edge

terminator) so as to not violate the inflow constraints.

Fix a gadget that satisfies the same constraints as an NCL OR vertex. There

must exist a configuration of the gadget that corresponds to the NCL OR with one

(blue) edge pointing into the vertex and the remaining edges (also blue) pointing

out of the vertex. Now, block off the tunnels that correspond to the two edges

pointing of the vertex. This configuration of the gadget correctly constraints the

represented blue edge’s orientation.

A natural question to ask is whether B · ·| ·BB is special, or whether this result

can be achieved using any of the other OR gadgets, and we answer in the positive

that indeed, any of the eight OR gadgets suffices. We first note that it suffices to

consider the gadgets for B · ·| · BB, ·B · |B · B, · · B|BB·, and · · · |BBB, as the

remaining ones can be obtained via vertical symmetry. In an abuse of notation,

we will sometimes use the shorthand for a gadget to refer to the gadget that is

obtained from it via vertical symmetry in our schemas. Edges that are connected

to the constrained blue edge terminator have a direction assigned and point to a

⊘ to indicate the termination. The remaining edges have no direction, indicating

that they can be assigned in any way that satisfies the minimum inflow constraints.

Though the proof is omitted, Figure 6.3 provides the necessary constructions.

The following theorem is proven by giving a closed loop of constructions. In

the following cases, we assume we have a blue edge terminator, since it is in some

sense a “freebie.” Gadget (2) is implemented using only instances of gadget (1).

Gadget (3) is implemented using only instances of gadget (2). Gadget (4) is imple-

93

mented using only instances of gadget (3). And finally, gadget (1) is implemented

using only instances of gadget (4). It thus suffices to construct one OR gadget.

The proof of Lemma 6.6 follows a similar strategy.

Lemma 6.3. For each gadget in the following list, the remaining gadgets in that

same list can be constructed from that initial gadget: 1. B · ·| ·BB, 2. ·B · |B ·B,

3. · · B|BB·, and 4. · · · |BBB.

Proof. We prove this lemma by showing how to construct 2 from 1, how to con-

struct 3 from 2, how to construct 4 from 3, and finally how to construct 1 from 4.

In each case, we will have a gadget that satisfies the same constraints as an NCL

OR vertex, so we tacitly appeal to Proposition 6.2 to, for “free,” have a con-

strained blue edge terminator. We construct in Figure 6.3 schematic diagrams to

aid in our proof.

From 1 to 2. Figure 6.3a depicts the construction. The edges of the ·B · |B ·B

gadget are 2, 4, and 5. If those edges all point out (i.e., 2 points left and the other

two point right), then the minimum inflow constraint is violated as 3 cannot be

flipped and 1 can only point into one the two gadgets. Thus one of 2, 4, or 5 must

always be pointed inwards, and this gadget satisfies the same constraints and as

NCL OR vertex.

From 2 to 3. Figure 6.3b depicts the construction. The edges of the ·B · |B ·B

gadget are 2, 4, and 5. If those edges all point out (i.e., 2 points left and the other

two point right), then the minimum inflow constraint is violated as 3 cannot be

flipped and 1 can only point into one the two gadgets. Thus one of 2, 4, or 5 must

always be pointed inwards, and this gadget satisfies the same constraints and as

NCL OR vertex.

From 3 to 4. Figure 6.3c depicts the construction. The edges of the ·B · |B ·B

gadget are 2, 4, and 5. If those edges all point out (i.e., they all point right), then

the minimum inflow constraint is violated as 3 cannot be flipped and 1 can only

94

point into one the two gadgets. Thus one of 2, 4, or 5 must always be pointed

inwards, and this gadget satisfies the same constraints and as NCL OR vertex.

From 4 to 1. Figure 6.3d depicts the construction. The edges of the ·B · |B ·B

gadget are 2, 4, and 5. If those edges all point out (i.e., 2 points left and the other

two point right), then the minimum inflow constraint is violated as 3 cannot be

flipped and 1 can only point into one the two gadgets. Thus one of 2, 4, or 5 must

always be pointed inwards, and this gadget satisfies the same constraints and as

NCL OR vertex.

⊘

1

2

3

4

5

(a) ·B · |B ·B.

⊘ 3

2

4

5

1

(b) · ·B|BB·.

⊘ 3 5

1

4

2

(c) · · · |BBB.

⊘

2

3

1

4

5

(d) B · ·| ·BB.

Figure 6.3: Schemas showing the “equivalence” of the OR gadgets.

We now present one gadget that respects the AND constraints.

Theorem 6.4. The gadget in Figure 6.2b respects the AND constraints.

Proof. Let us first describe the gadget before arguing its correctness.

G4 and G6 can only move up by one “unit,” and G2 and G3 can each either

move up or move down by one unit. Thus each colored block, can only reach

one flower. If both B2 and B3 exit the gadget, then B1 must remain to support

G1 (which in turn supports G2 and G3), as otherwise, G2 and G3 will drop by

one unit and G4 and G6 will never be able to move up. Similarly, if B1 is to

exit, all the gray blocks must remain supported. This is only possible if G1 is

stowed to the left and B2 and B3 remain in the gadget to, respectively, support

95

G3 and G2. Additionally, the area underneath B1 is made up of multiple movable

gray blocks for a simple reason: B1 must be able to move horizontally without

blooming (either to exit the gadget or two carry G1 to “stow” it). By this setting,

we can move the location of BF1 (by swapping G7 with an adjacent movable block

of width one; BF1 is affixed to G7 and the two will move as if they were one 2× 1

block) to make sure it is always on the left of B1.

Now, the only way for B4 to bloom is if B4 is in contact with BF4, and it must

be on BF4’s right side (the only other exposed side of BF4 is the bottom side,

but if B4 is directly under BF4 it will not have enough room to bloom). Thus

B4 can bloom if and only if G4 and G6 move up by one unit. This can happen

exactly if both G2 and G3 move up by one unit. There are two ways this can

happen: Either both B2 and B3 bloom, or B1 blooms (thus pushing G1 up by

one unit). Thus B4 blooms if and only if either B2 and B3 bloom in the gadget,

or B1 blooms in the gadgets.

Through Theorem 6.1 and Lemma 6.3, we have handled the OR gadgets.

However, the AND gadgets are a harder case to handle, but we can construct

all of them using two gadgets: a gadget that satisfies the AND constraints, and

a newly-defined “red bend” gadget. Lemma 6.6 gives an analogous result to

Lemma 6.3, and Figure 6.4 shows the necessary constructions. We now define an

important property of the red bend gadget that is used in the proof of Lemma 6.6.

Intuitively, the results means that the inflow constraint on red bend gadgets is

one (or two under the “blue bend” interpretation).

Proposition 6.5. The red bend gadget is solvable if and only if at least one red

block remains in the gadget throughout the game play.

Proof. The design of the gadget is simply a restricted/modified version of that in

Figure 6.2a, so we omit the description of the gadget.

96

=⇒ : Suppose the gadget is solvable. Then B3 must come in contact with

BF3. This is only possible if both G1 and G2 move up by one unit. For this to

happen, either B1 or B2 must bloom while supporting G1.

⇐= : Suppose that either B1 or B2 blooms while supporting G1. In both

cases, G1 moves up by one unit, and pushes G2 up by one unit, allowing B3 to

come in contact with BF3 to bloom.

Earlier, we mentioned that when our attention is focus on HANANO, we only

need two gadgets. This is indeed possible because all the blocks that we use are of

the same color, and so we can define the red bend gadget to be a restricted version

of the OR gadget. Consider the gadget in Figure 6.2a. If we place a constrained

blue edge terminator at the tunnel for B3, then the resulting gadget is essentially

the red bend gadget.

Lemma 6.6. For each gadget in the following list, the remaining gadgets in that

same list can be constructed from that initial gadget, the red bend gadget, and any

OR gadget: 1. R · ·| · RB, 2. ·R · |R · B, 3. · · · |RRB, 4. · · B|RR·, 5. · · · |BRR,

6. · ·R|BR·, 7. B · ·| ·RR, 8. ·R · |B ·R, 9. · · · |RBR, 10. R · ·| ·BR, 11. ·B · |R ·R,

and 12. · · R|RB·.

Proof. We represent our red bend gadgets using a vertex with exactly two red

edges on the same side of the gadget. The structure of this proof resembles that

of Lemma 6.3.

From 1 to 2. Figure 6.4a depicts the construction. If edge 5 points right, then

edge 1 points right and edge 4 points left. Thus edge two must point left, leaving

edge 3 to point right. If edge 5 points left, then edge 4 is free to point in either

direction. In that case, we can fix edge 1 to point left and edge 2 to point right,

thus leaving edge 3 to point in any direction. Therefore, this gadget satisfies the

same constraints as an NCL AND vertex.

97

1

2

3

4

5

(a) ·R · |R ·B.

1

2

3

4

(b) · · · |RRB.

1

2

3

4

⊘5

(c) · ·B|RR·.

1

2

3

4

⊘ 5

(d) · · · |BRR.

1

2

3

4

(e) · ·R|BR·.

1

2

3

4

(f) B · ·| ·RR.

1

2

3

4

(g) ·R · |B ·R.

1

2

4

3

(h) · · · |RBR.

1

2

4

3

(i) R · ·| ·BR.

1

2

4

3

(j) ·B · |R ·R.

1

2

4

3

(k) · ·R|RB·.

1

2

4

3

5

(l) R · ·| ·RB.

Figure 6.4: Schemas showing the “equivalence” of the AND gadgets.

98

In the rest of this proof, whenever we use a number x, we implicitly mean

“edge x.”

From 2 to 3. Figure 6.4b depicts the construction. If 4 points right, then 2

must point right and 3 must point left. Thus 1 must point left. If 4 points left, we

can fix 2 to point left, leaving 1 and 3 free to point in either direction. Therefore,

this gadget satisfies the same constraints as an NCL AND vertex.

From 3 to 4. Figure 6.4c depicts the construction. If 4 points left, then 3 must

point right, forcing both 1 and 2 to point left. If 4 points right, we can fix 3 to

point left, thus leaving 1 and 2 free to point in any direction. Thus, this gadget

satisfies the same constraints as an NCL AND vertex.

From 4 to 5. Figure 6.4d depicts the construction. If 4 points right, then 3

must point left, forcing both 1 and 2 to point left. If 4 points left, we can fix 3 to

point right, thus leaving 1 and 2 free to point in either direction. Therefore, this

gadget satisfies the same constraints as an NCL AND vertex.

From 5 to 6. Figure 6.4e depicts the construction. If 1 points right, then 2

and 3 must point left, and so 4 must point left. If 1 points left, then we can fix 3

to point right, leaving 2 and 4 free to point in either direction. Therefore, this

gadget satisfies the same constraints as an NCL AND vertex.

From 6 to 7. Figure 6.4f depicts the construction. If 1 points right, then 2

must point left and 3 must point right, and so 4 must point right. If 1 points left,

then we can fix 2 to point right, leaving 3 and 4 free to point in either direction.

Therefore, this gadget satisfies the same constraints as an NCL AND vertex.

From 7 to 8. Figure 6.4g depicts the construction. If 1 points right, then 2

and 3 must point right too, and so 4 must point left. If 1 points left, then we can

fix 3 to point left, leaving 2 and 4 free to point in either direction. Therefore, this

gadget satisfies the same constraints as an NCL AND vertex.

From 8 to 9. Figure 6.4h depicts the construction. If 1 points right, then 2

99

must point right and 3 must point left, and so 4 must point left. If 1 points left,

then we can fix 2 to point left, leaving 3 and 4 free to point in either direction.

Therefore, this gadget satisfies the same constraints as an NCL AND vertex.

From 9 to 10. Figure 6.4i depicts the construction. If 1 points right, then 2

and 3 must point left, and so 4 must point right. If 1 points left, then we can

fix 3 to point right, leaving 2 and 4 free to point in either direction. Therefore,

this gadget satisfies the same constraints as an NCL AND vertex.

From 10 to 11. Figure 6.4j depicts the construction. If 1 points right, then 2

must point left and 3 must point right, and so 4 must point right. If 1 points left,

then we can fix 2 to point right, leaving 3 and 4 free to point in either direction.

Therefore, this gadget satisfies the same constraints as an NCL AND vertex.

From 11 to 12. Figure 6.4k depicts the construction. If 1 points right, then 2

and 3 must point right, and so 4 must point left. If 1 points left, then we can

fix 3 to point left, leaving 2 and 4 free to point in either direction. Therefore, this

gadget satisfies the same constraints as an NCL AND vertex.

From 12 to 1. Figure 6.4l depicts the construction. If 1 points right, then 2

must point right and 3 must point left, and so 4 must point left, and 5 must point

right. If 1 points left, then we can fix 2 to point left and fix 4 to point right,

leaving 3 and 5 free to point in either direction. Therefore, this gadget satisfies

the same constraints as an NCL AND vertex.

6.6 Main Result

It is easy to see that HANANO ∈ PSPACE. Indeed, a nondeterministic machine

can on a given level of the Hanano Puzzle simply nondeterministically guess the

next move to make and accept if and if only the level is solved. The machine will

only use polynomial space (in fact, linear space).

100

Using the defined gadgets and the visibility representation, we can guide a

reduction from NCL to HANANO, thus yielding the following theorem.

Theorem 6.7. HANANO is PSPACE-complete even if (1) all flowers and colored

blocks have the same color, and (2) colored blocks can only bloom upwards.

Proof. Since HANANO ∈ PSPACE, it suffices to show that NCL ≤p
m HANANO.

Consider the function—which will clearly be polynomial-time computable—that

we describe in the next paragraph. We assume without loss of generality that

the input is an NCL graph and a valid target edge, as we can easily detect in

polynomial time if is not and map to a fixed element that is not in HANANO.

Construct in polynomial time a visibility representation for the input NCL

graph and construct a game grid based on the visibility representation, replacing

each vertex of the graph by a suitable gadget, and replacing edges with the ap-

propriate tunnels. The game grid will be polynomially larger than the visibility

representation since the gadgets have constant-bounded size. We must ensure

that the game is only solvable when the target edge e = (u, v) is flipped. Let b

denote the blue block representing edge e. If the flower that blooms b is attached

to an immovable gray block, replace that flower with an immovable gray block.

Otherwise, the flower that blooms b must be attached to the top of a 1×1 movable

gray block. Replace that gray block (along with the attached flower) with a 2× 1

movable gray block. There is now no flower in the gadget for v that can bloom b,

so to bloom, b must move to the gadget for u. If the game is solvable, then b must

bloom, and so there will exist a sequence of block movements corresponding to

edge flips, so the edge e can be flipped in G. If there is a sequence of edge flips that

eventually flips edge e in G, there is sequence of block movements that respect

the inflow constraints and eventually see b move from the gadget representing v

to the gadget representing u. Thus the colored block b (and all the other ones in

the game) can bloom, and the game is solvable. Finally, note that all the colored

101

blocks in our gadgets have their arrows pointing up, and that we only use blue

blocks/flowers.

Figure 6.5 shows a sketch of a reduction from NCL to HANANO by using

as a working example the graph in Figure 2.1. We already have a visibility rep-

resentation from Figure 2.2. Let the target edge to be flipped be (C,B), i.e.,

edge 4.

· · · |RBR

·R · |B ·R

B · B| · B·

· · · |RBR

1

2

3
4

5

6

Figure 6.5: Sketch of how the gadgets map onto the planar grid.

The horizontal lines now represent tunnels, the ·R · |B ·R gadget has one less

blue flower, and empty spaces can be filled with immovable gray blocks. The

target edge has been boldfaced.

6.7 Conclusion and Open Problems

Our result establishes that HANANO cannot be NP-complete unless NP =

PSPACE, thus closing Liu and Yang’s open problem.

The use of visibility representations in the context of NCL graphs is an im-

portant contribution of this work. Even more important are Proposition 6.2, and

Lemmas 6.3 and 6.6 as those help make this new method even more attractive by

reducing the number of gadgets needed and by being independent of HANANO.

102

Furthermore, we believe this new result about NCL should help researchers work-

ing on multiagent path planning/finding show the PSPACE-hardness of real-world

problems they face that involve gravity.

As an open direction, it would be interesting to find out if we could further

reduce the number of gadgets to two in the general case, or even down to one! An-

other interesting problem would be to show that our gadgets can be implemented

with movable gray blocks that have only four sides (i.e., rectangles); we are seeing

some levels of success along that latter problem in in-progress research.

Another rather natural future direction would be to apply this method to other

games. We suspect that it can be used to study the complexity of Jelly-no-Puzzle,

another game by Qrostar (Yang, 2018).

103

Bibliography

Aaronson, S. 2020. MIP∗ = RE. Shtetl-Optimized (the blog of Scott Aaronson),

www.scottaaronson.com/blog/?p=4512.

Agrawal, M., N. Kayal, and N. Saxena. 2004. PRIMES is in P. Annals of Math-

ematics, 160(2):781–793.

Allender, E. and R. Rubinstein. 1988. P-printable sets. SIAM Journal on Com-

puting, 17(6):1193–1202.

Ani, J., J. Bosboom, E. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch.

2020. Walking through doors is hard, even without staircases: Proving

PSPACE-hardness via planar assemblies of door gadgets. In Proceedings of

the 10th International Conference on Fun with Algorithms, volume 157, pages

3:1–3:23.

Ani, J., L. Chung, E. Demaine, Y. Diomidov, D. Hendrickson, and J. Lynch. 2022.

Pushing blocks via checkable gadgets: PSPACE-completeness of Push-1F and

Block/Box Dude. In Proceedings of the 11th International Conference on Fun

with Algorithms, volume 226, pages 3:1–3:30.

Arora, S. and B. Barak. 2009. Computational Complexity: A Modern Approach.

Cambridge University Press.

www.scottaaronson.com/blog/?p=4512

104

Asif, S., M. Coulombe, E. Demaine, M. Demaine, A. Hesterberg, J. Lynch, and

M. Singhal. 2020. Tetris is NP-hard even with O(1) rows or columns. Journal

of Information Processing, 28:942–958.

Babai, L. 1985. Trading group theory for randomness. In Proceedings of the 17th

ACM Symposium on Theory of Computing, pages 421–429. ACM Press.

Babai, L. and L. Fortnow. 1991. Arithmetization: A new method in structural

complexity theory. Computational Complexity, 1(1):41–66.

Bartholdi, J., III and J. Orlin. 1991. Single transferable vote resists strategic

voting. Social Choice and Welfare, 8(4):341–354.

Bartholdi, J., III, C. Tovey, and M. Trick. 1989a. The computational difficulty of

manipulating an election. Social Choice and Welfare, 6(3):227–241.

Bartholdi, J., III, C. Tovey, and M. Trick. 1989b. Voting schemes for which it can

be difficult to tell who won the election. Social Choice and Welfare, 6(2):157–

165.

Bartholdi, J., III, C. Tovey, and M. Trick. 1992. How hard is it to control an

election? Mathematical and Computer Modeling, 16(8–9):27–40.

Baumeister, D., G. Erdélyi, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe.

2010. Computational aspects of approval voting. In J. Laslier and M. Sanver,

editors, Handbook on Approval Voting, pages 199–251. Springer.

Beigel, R. 1989. On the relativized power of additional accepting paths. In

Proceedings of the 4th Structure in Complexity Theory Conference, pages 216–

224. IEEE Computer Society Press.

Bellare, M. and S. Goldwasser. 1994. The complexity of decision versus search.

SIAM Journal on Computing, 23(1):97–119.

105

Ben-Sasson, E. and A. Wigderson. 2001. Short proofs are narrow—resolution

made simple. Journal of the ACM, 48(2):149–169.

Berman, L. and J. Hartmanis. 1977. On isomorphisms and density of NP and

other complete sets. SIAM Journal on Computing, 6(2):305–322.

Biedl, T., E. Demaine, M. Demaine, R. Fleischer, L. Jacobson, and J. I. Munro.

2002. The complexity of Clickomania. In R. J. Nowakowski, editor, More

Games of No Chance, pages 389–404. Cambridge University Press, Cambridge,

England.

Blum, Manuel and Russel Impagliazzo. 1987. Generic oracles and oracle classes. In

Proceedings of the 28th IEEE Symposium on Foundations of Computer Science,

pages 118–126. IEEE Computer Society Press.

Book, R. 1974. Tally languages and complexity classes. Information and Control,

26(2):186–193.

Book, R., T. Long, and A. Selman. 1984. Quantitative relativizations of complex-

ity classes. SIAM Journal on Computing, 13(3):461–487.

Borodin, A. and A. Demers. 1976. Some comments on functional self-reducibility

and the NP hierarchy. Technical Report TR 76-284, Department of Computer

Science, Cornell University, Ithaca, NY.

Breukelaar, R., E. Demaine, S. Hohenberger, H. Hoogeboom, W. Kosters, and

D. Liben-Nowell. 2004. Tetris is hard, even to approximate. International

Journal of Computational Geometry & Applications, 14(1–2):41–68.

Brocken, T., G. van der Heijden, I. Kostitsyna, L. Lo-Wong, and R. Surtel. 2020.

Multi-robot motion planning of k-colored discs is PSPACE-hard. In Proceedings

of the 10th International Conference on Fun with Algorithms, volume 157, pages

15:1–15:16.

106

Brunner, J., L. Chung, E. Demaine, D. Hendrickson, A. Hesterberg, A. Suhl,

and A. Zeff. 2020. 1 × 1 Rush Hour with fixed blocks is PSPACE-complete.

In Proceedings of the 10th International Conference on Fun with Algorithms,

volume 157, pages 7:1–7:14.

Buhrman, H., L. Fortnow, and T. Thierauf. 1998. Nonrelativizing separations. In

Proceedings of the 13th Annual IEEE Conference on Computational Complexity,

pages 8–12. IEEE Computer Society Press.

Cabell, J. 1927. The Silver Stallion, volume 3. Robert M. McBride & Company.

Calviac, I., O. Sankur, and F. Schwarzentruber. 2023. Improved complexity results

and an efficient solution for connected multi-agent path finding. In Proceedings

of the 22nd International Conference on Autonomous Agents and Multiagent

Systems, pages 896–904. International Foundation for Autonomous Agents and

Multiagent Systems.

Carleton, B., M. Chavrimootoo, L. Hemaspaandra, D. Narváez, C. Taliancich, and

H. Welles. 2022a. Search versus search for collapsing electoral control types.

Technical Report arXiv:2207.03049 [cs.GT], Computing Research Repository,

arXiv.org/corr/. Revised, February 2024.

Carleton, B., M. Chavrimootoo, L. Hemaspaandra, D. Narváez, C. Taliancich,

and H. Welles. 2022b. Separating and collapsing electoral control types.

Technical Report arXiv:2207.00710 [cs.MA], Computing Research Repository,

arXiv.org/corr/. Revised, February 2023.

Carleton, B., M. Chavrimootoo, L. Hemaspaandra, D. Narváez, C. Taliancich,

and H. Welles. 2023a. Search versus search for collapsing electoral control

types. In Proceedings of the 22nd International Conference on Autonomous

Agents and Multiagent Systems, pages 2682–2684. International Foundation for

Autonomous Agents and Multiagent Systems.

107

Carleton, B., M. Chavrimootoo, L. Hemaspaandra, D. Narváez, C. Taliancich, and

H. Welles. 2023b. Separating and collapsing electoral control types. In Proceed-

ings of the 22nd International Conference on Autonomous Agents and Mul-

tiagent Systems, pages 1743–1751. International Foundation for Autonomous

Agents and Multiagent Systems.

Carleton, B., M. Chavrimootoo, L. Hemaspaandra, D. Narváez, C. Taliancich,

and M. Welsh. 2024. Linked fates: How small of an ambiguity increase can

make the difference between equaling and separating from P? In preparation.

Carleton, B., M. Chavrimootoo, and C. Taliancich. 2021. A critique of Keum-

Bae Cho’s proof that P ⊊ NP. Technical Report arXiv:2104.01736 [cs.CC],

Computing Research Repository, arXiv.org/corr/.

Chavrimootoo, M. 2022. Defying gravity: The complexity of the Hanano Puzzle.

Technical Report arXiv:2205.03400 [cs.CC], Computing Research Repository,

arXiv.org/corr/. Revised, April 2023.

Chavrimootoo, M. 2023a. Defying gravity and gadget numerosity: The complexity

of the Hanano Puzzle. In Proceedings of the 25th International Conference on

Descriptional Complexity of Formal Systems, pages 36–50.

Chavrimootoo, M. 2023b. Separations and collapses in computational social

choice. In Proceedings of the 22nd International Conference on Autonomous

Agents and Multiagent Systems, pages 3026–3028. International Foundation for

Autonomous Agents and Multiagent Systems.

Chavrimootoo, M., I. Clingerman, and Q. Luu. 2023a. A critique of Sopin’s “PH =

PSPACE”. Technical Report arXiv::2301.03487 [cs.CC], Computing Research

Repository, arXiv.org/corr/.

Chavrimootoo, M., E. Ferland, E. Gibson, and A. Wilson. 2022. A closer

look at some recent proof compression-related claims. Technical Report

108

arXiv:2212.12150 [cs.CC], Computing Research Repository, arXiv.org/corr/.

Submitted to Studia Logica in January, 2023.

Chavrimootoo, M., Y. He, M. Kotler-Berkowitz, H. Liuson, and Z. Nie. 2023b.

Evaluating the claims of “SAT requires exhaustive search”. Technical Report

arXiv:2312.02071 [cs.CC], Computing Research Repository, arXiv.org/corr/.

Chavrimootoo, M., T. Le, M. Reidy, and E. Smith. 2023c. On Czerwinski’s “P ̸=

NP relative to a P-complete oracle”. Technical Report arXiv:2312.04395 [cs.CC],

Computing Research Repository, arXiv.org/corr/.

Chavrimootoo, M. and H. Welles. 2021. A critique of Kumar’s “Necessary and

sufficient condition for satisfiability of a boolean formula in CNF and its impli-

cations on P versus NP problem”. Technical Report arXiv:2112.06062 [cs.CC],

Computing Research Repository, arXiv.org/corr/.

Cho, Keum-Bae. 2018. Indistinguishable binomial decision tree of 3-SAT: Proof

of class P is a proper subset of class NP. Technical Report arXiv:1801.09673

[cs.CC], Computing Research Repository, arXiv.org/corr/. Version 1.

Czerwinski, R. 2023. P ̸= NP relative to a P-complete oracle. Technical Report

arXiv:2305.02226 [cs.CC], Computing Research Repository, arXiv.org/corr/.

Demaine, E., I. Grosof, J. Lynch, and M. Rudoy. 2018. Complexity of motion plan-

ning of a robot through simple gadgets. In Proceedings of the 9th International

Conference on Fun with Algorithms, volume 100, pages 18:1–18:21.

Demaine, E., G. Viglietta, and A. Williams. 2016. Super Mario Bros. is

harder/easier than we thought. In Proceedings of the 9th International Confer-

ence on Fun with Algorithms, pages 13:1–13:14.

Faliszewski, P., E. Hemaspaandra, and L. Hemaspaandra. 2015. Weighted elec-

toral control. Journal of Artificial Intelligence Research, 52:507–542.

109

Faliszewski, P., E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. 2009. Llull

and Copeland voting computationally resist bribery and constructive control.

Journal of Artificial Intelligence Research, 35:275–341.

Fenner, S., L. Fortnow, S. Kurtz, and L. Li. 2003. An oracle builder’s toolkit.

Information and Computation, 182(2):95–136.

Fortnow, L. 2021. Worlds to die harder for: Open oracle questions for the 21st

century. SIGACT News, 52(3):26–36.

Fortnow, L. and J. Rogers. 2002. Separability and one-way functions. Computa-

tional Complexity, 11(3–4):137–157.

Friedman, E. 2001. Cubic is NP-complete. In 34th Annual Floria MAA Section

Meeting.

Garey, M. and D. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company.

Goldreich, O. 2008. Computational Complexity: A Conceptual Perspective. Cam-

bridge University Press.

Goldwasser, S., S. Micali, and C. Rackoff. 1985. The knowledge complexity of in-

teractive proof systems. In Proceedings of the 17th ACM Symposium on Theory

of Computing, pages 291–304. ACM Press.

Gordeev, L. and E. Haeusler. 2019. Proof compression and NP versus PSPACE.

Studia Logica, 107(1):53–83.

Gordeev, L. and E. Haeusler. 2020. Proof compression and NP versus PSPACE

II. Bulletin of the Section of Logic, 49(3):213–230.

Gordeev, L. and E. Haeusler. 2022. Proof compression and NP versus PSPACE

II: Addendum. Bulletin of the Section of Logic, 51(2):197–205.

110

Grollmann, J. and A. Selman. 1988. Complexity measures for public-key cryp-

tosystems. SIAM Journal on Computing, 17(2):309–335.

Haken, A. 1985. The intractability of resolution. Theoretical Computer Science,

39:297–308.

Hartmanis, J. 1978. Feasible Computations and Provable Complexity Properties.

CBMS-NSF Regional Conference Series in Applied Mathematics #30. SIAM.

Hartmanis, J., R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. 1992. Relativiza-

tion: A revisionistic retrospective. Bulletin of the EATCS, 47:144–153.

Hartmanis, J. and L. Hemachandra. 1991. One-way functions and the non-

isomorphism of NP-complete sets. Theoretical Computer Science, 81(1):155–

163.

Hartmanis, J., N. Immerman, and V. Sewelson. 1985. Sparse sets in NP−P:

EXPTIME versus NEXPTIME. Information and Control, 65(2–3):159–181.

Hearn, R. and E. Demaine. 2005. PSPACE-completeness of sliding-block puz-

zles and other problems through the nondeterministic constraint logic model of

computation. Theoretical Computer Science, 343(1-2):72–96.

Hearn, R. and E. Demaine. 2009. Games, Puzzles, and Computation. CRC Press.

Hearn, R., E. Demaine, and M. Hoffmann. 2002. Push-2-F is PSPACE-complete.

In Proceedings of the 14th Canadian Conference on Computational Geometry,

pages 31–35.

Hemaspaandra, E., L. Hemaspaandra, and C. Menton. 2020. Search versus deci-

sion for election manipulation problems. ACM Transactions on Computation,

12:1–42.

111

Hemaspaandra, E., L. Hemaspaandra, and J. Rothe. 2007. Anyone but him: The

complexity of precluding an alternative. Artificial Intelligence, 171(5–6):255–

285.

Hemaspaandra, E., L. Hemaspaandra, and H. Schnoor. 2014. A control dichotomy

for pure scoring rules. In Proceedings of the 28th AAAI Conference on Artificial

Intelligence, pages 712–720. AAAI Press.

Hemaspaandra, E. and H. Schnoor. 2016. Dichotomy for pure scoring rules under

manipulative electoral actions. In Proceedings of the 22nd European Conference

on Artificial Intelligence, pages 1071–1079. IOS Press.

Hemaspaandra, L., M. Juvekar, A. Nadjimzadah, and P. Phillips. 2022. Gaps, am-

biguity, and establishing complexity-class containments via iterative constant-

setting. In Proceedings of the 47th International Symposium on Mathematical

Foundations of Computer Science, pages 57:1–57:15. Leibniz International Pro-

ceedings in Informatics (LIPIcs) #241.

Hemaspaandra, L. and D. Narváez. 2017. The opacity of backbones. In Proceedings

of the 31st AAAI Conference on Artificial Intelligence, pages 3900–3906. AAAI

Press.

Hemaspaandra, L. and M. Ogihara. 2002. The Complexity Theory Companion.

Springer-Verlag.

Hemaspaandra, L., A. Ramachandran, and M. Zimand. 1995. Worlds to die for.

SIGACT News, 26(4):5–15.

Hemaspaandra, L. and M. Zimand. 1993. Strong forms of balanced immunity.

Technical Report TR-480, Department of Computer Science, University of

Rochester, Rochester, NY. Revised, May 1994.

Henry (455). 2013. Levin reduction. https://planetmath.org/levinreduction.

https://planetmath.org/levinreduction

112

Hopcroft, J. and J. Ullman. 1979. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley.

Ji, Z., A. Natarajan, T. Vidick, J. Wright, and H. Yuen. 2020. MIP∗ = RE.

Technical Report arXiv:2001.04383 [quant-ph], Computing Research Reposi-

tory, arXiv.org/corr/.

Kubo, T. 2015. Bleach Volume 63: Hear, Fear, Here, chapter 569: The White

Haze, pages 153–170. Viz Media.

Lange, K.-J. and P. Rossmanith. 1994. Unambiguous polynomial hierarchies and

exponential size. In Proceedings of the 9th Structure in Complexity Theory

Conference, pages 106–115. IEEE Computer Society Press.

Liu, Z. and C. Yang. 2019. Hanano Puzzle is NP-hard. Information Processing

Letters, 145:6–10.

Lockhart, P. 2009. A Mathematician’s Lament: How School Cheats Us Out of Our

Most Fascinating and Imaginative Art Form. Bellevue Literary Press.

Lund, C., L. Fortnow, H. Karloff, and N. Nisan. 1990. Algebraic methods for in-

teractive proof systems. In Proceedings of the 31st IEEE Symposium on Foun-

dations of Computer Science, pages 2–10. IEEE Computer Society Press.

Lund, C., L. Fortnow, H. Karloff, and N. Nisan. 1992. Algebraic methods for

interactive proof systems. Journal of the ACM, 39(4):859–868.

Manoj, K. 2021. Necessary and sufficient condition for satisfiability of a boolean

formula in CNF and its implications on P versus NP problem. Technical Report

arXiv:2101.05597v3 [cs.CC], Computing Research Repository, arXiv.org/corr/.

Revised, May 2021.

113

Maushagen, C. and J. Rothe. 2018. Complexity of control by partitioning veto

elections and of control by adding candidates to plurality elections. Annals of

Mathematics and Artificial Intelligence, 82(4):219–244.

Megiddo, N. and C. Papadimitriou. 1991. On total functions, existence theorems

and computational complexity. Theoretical Computer Science, 81(2):317–324.

Papadimitriou, C. 1994. Computational Complexity. Addison-Wesley.

Piterman, N. and D. Fisman. 1998. Introduction to complexity theory Lecture 2:

NP-completeness and self reducibility. Lecture Notes for a course given by Oded

Goldreich, https://www.wisdom.weizmann.ac.il/~oded/PS/CC/l2.ps, notes

taken by N. Piterman and D. Fisman.

Qrostar. 2011. Hanano Puzzle. https://qrostar.skr.jp/en/hanano/.

Qrostar. 2022. Personal communication.

Rackoff, C. 1982. Relativized questions involving probabilistic algorithms. Journal

of the ACM, 29(1):261–268.

Samuelson, P. 1938. A note on the pure theory of consumer’s behaviour. Eco-

nomica, 5(17):61–71.

Shamir, A. 1992. IP = PSPACE. Journal of the ACM, 39(4):869–877.

Sheu, M. and T. Long. 1996. UP and the low and high hierarchies: A relativized

separation. Mathematical Systems Theory, 29(5):423–450.

Sipser, M. 2013. Introduction to the Theory of Computation. Cengage Learning,

3rd edition.

Sopin, V. 2014. PH = PSPACE. Technical Report arXiv:1411.0628v20 [cs.CC],

Computing Research Repository, arXiv.org/corr/. Revised, November 2022.

https://www.wisdom.weizmann.ac.il/~oded/PS/CC/l2.ps
https://qrostar.skr.jp/en/hanano/

114

Subercaseaux, B. and D. Lokshtanov. 2022. Wordle is NP-hard. In Proceedings of

the 11th International Conference on Fun with Algorithms, volume 226, pages

19:1–19:8.

Tamassia, R. 2016. Handbook of Graph Drawing and Visualization. Chapman and

Hall/CRC.

Tamassia, R. and I. Tollis. 1986. A unified approach to visibility representations

of planar graphs. Discrete & Computational Geometry, 1:321–341.

Tateo, D., J. Banfi, A. Riva, F. Amigoni, and A. Bonarini. 2018. Multiagent

connected path planning: PSPACE-completeness and how to deal with it. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pages 4735–

4742. AAAI Press.

Time. 1954. Cinema: To Aristophanes & back. Time, LXVII(20). No Author

Listed.

Valiant, L. 1976. The relative complexity of checking and evaluating. Information

Processing Letters, 5(1):20–23.

Vereshchagin, N. 1994. Relativizable and nonrelativizable theorems in the

polynomial theory of algorithms. Russian Academy of Sciences–Izvestiya–

Mathematics, 42(2):261–298.

Walsh, T. 2000. SAT v CSP. In Proceedings of the 6th International Conference of

Principles and Practice of Constraint Programming, pages 441–456. Springer-

Verlag Lecture Notes in Computer Science #1894.

Watanabe, O. 1988. On hardness of one-way functions. Information Processing

Letters, 27(3):151–157.

115

Xu, K. and G. Zhou. 2023. SAT requires exhaustive search. Technical Report

arXiv:2302.09512 [cs.CC], Computing Research Repository, arXiv.org/corr/.

Revised September 21, 2023.

Yang, C. 2018. On the Complexity of Jelly-no-Puzzle. In Japanese Conference

on Discrete and Computational Geometry, Graphs, and Games, pages 165–174.

Springer.

116

A Tables Relating to Separating

and Collapsing Electoral

Control Types

This appendix serves two purposes. For one, it provides a list of all the separation

witnesses (and which results they apply to), and also, it provides a tabulation of

our results.

A.1 Compatible Control Types

Table A.1: The 44 types of control and a description of which components are

part of the input for each one. The input type thus partitions the control types

into five equivalence classes as to compatibility of inputs.

Control Type Candidates Votes Focus

Candi-

date

Spoiler

Candi-

dates

Spoiler

Votes

Limit

(Natural

Number)

CC-PV-TE-UW, CC-PV-TE-NUW,

Yes Yes Yes No No No

CC-PV-TP-UW, CC-PV-TP-NUW,

CC-PC-TE-UW, CC-PC-TE-NUW,

CC-PC-TP-UW, CC-PC-TP-NUW,

CC-RPC-TE-UW, CC-RPC-TE-NUW,

CC-RPC-TP-UW, CC-RPC-TP-NUW,

DC-PV-TE-UW, DC-PV-TE-NUW,

DC-PV-TP-UW, DC-PV-TP-NUW,

117

Control Type Candidates Votes Focus

Candi-

date

Spoiler

Candi-

dates

Spoiler

Votes

Limit

(Natural

Number)

DC-PC-TE-UW, DC-PC-TE-NUW,

DC-PC-TP-UW, DC-PC-TP-NUW,

DC-RPC-TE-UW, DC-RPC-TE-NUW,

DC-RPC-TP-UW, DC-RPC-TP-NUW

CC-AC-UW, CC-AC-NUW,
Yes Yes Yes Yes No Yes

DC-AC-UW, DC-AC-NUW

CC-DC-UW, CC-DC-NUW,

Yes Yes Yes No No Yes
CC-DV-UW, CC-DV-NUW,

DC-DC-UW, DC-DC-NUW,

DC-DV-UW, DC-DV-NUW

CC-AV-UW, CC-AV-NUW,
Yes Yes Yes No Yes Yes

DC-AV-UW, DC-AV-NUW

CC-UAC-UW, CC-UAC-NUW,
Yes Yes Yes Yes No No

DC-UAC-UW, DC-UAC-NUW

A.2 Tables

We use Tables A.3, A.5, and A.7 to list the separation witnesses used with respect

to each election system (respectively, plurality, veto, and approval). Each witness

appears on a different row. Each table has six columns: the ID column assigns a

unique identifier to the separation witness presented in a given row, the columns

C and V refer to the original candidate set and vote set of the election, the column

S refers to the spoiler set of candidates, the column U refers to the spoiler set of

votes, and the column k refers to the limit that the control type may impose (e.g.,

adding/delete candidates/voters). For each row, if a column is not relevant to the

usage of that separation witness (for example, a separation witness of Plurality-

CC-UAC-UW and Plurality-CC-UAC-NUW need not have k be specified), then

the related entry is set to “-” to denote that it is not relevant.

Using those unique identifiers, we give our results within Tables A.4, A.6,

and A.8. We do not explicitly state when we are appealing to the trivial contain-

ments that arise from the UW/NUW variants of the same control type.

118

Furthermore, to make it easier to read the table and identify equivalences,

we color-code the table. The key for the color-coding is in Table A.2. Each

equivalence class formed by collapsing control types is assigned a unique color.

(As an aside, we note that we can certainly view control types with no assigned

color, i.e., with a white background, as each forming an equivalence class of size

one, but we omit that discussion as it is not particularly useful to consider here

and in the next paragraph.)

Since we are dealing with equivalence classes, we find it useful to designate

a canonical element for each equivalence class so as to save on effort. Indeed,

doing so allowed us to focus on those canonical elements when working through

our separation/collapse proofs instead of duplicating effort and studying multiple

elements of the same equivalence class separately. We thus denote the canonical

element of each equivalence class by boldfacing its name, making it easy to identify.

Finally, let us note that the font size of Tables A.4, A.6, and A.8 has been

reduced to make the tables fit within the page in a way that retains readability.

Table A.2: Equivalence classes and their respective colors. Each boldfaced entry

indicates the canonical element of its equivalence class.

Class Color

Plurality-DC-RPC-TE-NUW, Plurality-DC-RPC-TE-UW,

Plurality-DC-PC-TE-UW, Plurality-DC-PC-TE-NUW

Plurality-DC-RPC-TP-NUW, Plurality-DC-PC-TP-NUW

Veto-DC-RPC-TE-NUW, Veto-DC-RPC-TE-UW, Veto-DC-PC-

TE-UW, Veto-DC-PC-TE-NUW

Veto-DC-RPC-TP-NUW, Veto-DC-PC-TP-NUW

Veto-DC-PV-TE-NUW, Veto-DC-PV-TE-UW

Approval-DC-PV-TE-NUW, Approval-DC-PV-TE-UW

119

Class Color

Approval-DC-RPC-TE-NUW, Approval-DC-RPC-TE-UW,

Approval-DC-PC-TE-UW, Approval-DC-PC-TE-NUW, Approval-

DC-RPC-TP-UW, Approval-DC-PC-TP-UW

Approval-DC-RPC-TP-NUW, Approval-DC-PC-TP-NUW

Approval-CC-RPC-TP-UW, Approval-CC-PC-TP-UW

Approval-CC-RPC-TP-NUW, Approval-CC-PC-TP-NUW

Approval-CC-RPC-TE-UW, Approval-CC-PC-TE-UW

Approval-CC-RPC-TE-NUW, Approval-CC-PC-TE-NUW

A.2.1 Plurality Tables

Table A.3: List of separation witnesses in plurality. We note the computer-

generated entries with a “†” superscript.

ID C S V U k

Plur.1 {a, b, c} - {a > b > c, b > a > c, c > a > b} - -

Plur.2 {a, b} - {a > b, b > a} - -

Plur.3 {a, b} - {a > b} - -

Plur.4† {a, b, c, d} - {b > c > d > a, d > a > c > b, b > c > d > a, a > c > b > d, a > b > d > c, d > a > b >

c, c > d > b > a, d > a > c > b, a > c > b > d, d > c > b > a, b > c > d > a, a > b > d >

c, d > b > c > a, a > d > c > b, b > c > d > a, c > a > b > d, b > a > d > c, a > c > d >

b}

- -

Plur.5 {a, b, c} - {a > b > c, a > b > c, a > c > b, a > c > b, b > a > c, b > a > c, b > a > c, c > a > b, c >

a > b, c > a > b}
- -

Plur.6 {a, b, c} - {b > c > a, c > b > a} - -

Plur.7 {a, b, c, d} - {a > b > c > d, c > d > a > b, d > b > a > c} - -

Plur.8 {a, b, c} - {a > b > c, a > b > c, b > a > c, b > a > c, c > b > a} - -

Plur.9 {a, b, c, d} - {a > b > c > d, a > b > c > d, a > b > c > d, b > a > c > d, c > b > a > d, d > b > a >

c}
- -

Plur.10 {a, b, c} - {a > b > c, a > b > c, b > a > c, c > a > b} - -

Plur.11 {a, b, c, d,
e}

- {c > b > a > d > e, c > d > e > a > b, a > d > b > c > e, c > d > b > e > a, c > b > e >

d > a, d > e > b > c > a, d > b > e > c > a, a > b > d > e > c, e > c > b > d > a, c >

a > b > d > e, b > e > a > c > d, a > d > b > e > c, d > a > c > e > b, a > b > c > e >

d, c > d > e > b > a, e > d > c > a > b, e > d > a > b > c}

- -

Plur.12 {a, b, c} - {a > b > c, a > c > b, b > a > c, c > a > b} - -

Plur.13 {a, b, c} - {a > b > c, a > c > b, b > c > a, c > b > a} - -

120

ID C S V U k

Plur.14 {a, b, c} - {a > b > c, a > c > b, b > c > a, b > c > a, b > c > a, c > b > a, c > b > a, c > b > a} - -

Plur.15 {a, b, c} - {a > b > c, a > c > b, b > a > c, b > c > a, c > b > a} - -

Plur.16 {a, b, c} - {a > b > c, a > c > b, b > a > c, b > c > a, c > a > b} - -

Plur.17 {a, b, c} - {a > b > c, a > c > b, b > a > c, b > c > a, c > a > b, c > b > a} - -

Plur.18 {a, b, c} - {a > b > c, b > c > a, b > c > a, c > b > a, c > b > a, c > b > a} - -

Plur.19 {a, b, c, d} - {a > b > c > d, a > b > c > d, a > b > c > d, b > a > c > d, c > b > a > d, d > b > a >

c}
- -

Plur.20 {a, b, c, d} - {a > c > b > d, b > a > c > d, b > a > c > d, c > b > a > d, d > c > b > a} - -

Plur.21 {a, b, c, d} - {a > b > c > d, a > b > c > d, b > c > a > d, b > c > a > d, c > d > b > a} - -

Plur.22 {a, b, c, d} - {a > b > c > d, a > b > c > d, a > b > c > d, b > c > d > a, c > b > d > a, d > a > c >

b, d > b > c > a, d > b > c > a}
- -

Plur.23 {a, b, c} - {b > a > c, b > a > c, b > a > c, b > a > c, b > a > c, b > a > c, a > b > c, a > b > c, a >

b > c, a > b > c, a > b > c, c > b > a, c > b > a, c > b > a}
- -

Plur.24 {a, b, c, d} - {b > a > d > c, b > a > d > c, b > a > d > c, b > a > d > c, b > a > d > c, c > a > b >

d, c > a > b > d, c > a > b > d, c > a > b > d, d > a > b > c, d > a > b > c}
- -

Plur.25† {a, b, c, d,
e, f}

- {d > e > b > f > c > a, b > f > c > a > e > d, b > e > c > a > d > f, f > e > a > b >

d > c, b > a > e > d > f > c, a > c > d > e > b > f, c > e > f > b > a > d}
- -

Plur.26† {a, b, c, d,
e, f, g}

- {c > d > g > f > b > e > a, a > f > b > c > d > g > e, g > c > a > d > e > b > f, a >

g > f > d > e > b > c, e > g > a > d > b > c > f, d > f > e > a > g > c > b, f > a >

d > g > e > c > b, b > g > a > c > f > d > e, a > c > g > b > f > d > e}

- -

Plur.27 {a, b} {c} {c > b > a} - 1

Plur.28 {a, b} - {a > b} {a > b} 1

Plur.29 {a, b} {c} {a > c > b} - 1

Plur.30 {a, b} - {a > b, a > b} - 0

Plur.31 {a, b, c, d} - {b > c > d > a, b > c > d > a, a > b > c > d} - 2

Plur.32 {a, b, c, d} - {a > b > c > d, a > b > c > d, a > b > c > d, a > b > c > d, a > b > c > d, a > b > c >

d, b > c > d > a, b > c > d > a, b > c > d > a, c > b > d > a, c > b > d > a, c > b > d >

a, d > b > c > a, d > b > c > a, d > b > c > a}

- 2

Plur.33 {a} ∅ {a} - 0

Plur.34 {a} - {a} - 0

Plur.35 {a} - {a} ∅ 0

Plur.36 {a} ∅ {a} - -

Plur.37 {a, b} ∅ {a > b, b > a} - 0

Plur.38 {a, b} - {a > b, b > a} - 0

Plur.39 {a, b} - {a > b, b > a} ∅ 0

Plur.40 {a, b} ∅ {a > b, b > a} - -

Plur.41 {a, b} - {b > a, b > a} - 1

Plur.42 {a, b} - {a > b, a > b, b > a} - 1

Plur.43 {a, b} - {a > b, b > a} - 1

Plur.44 {a, b, c} - {a > b > c, b > c > a, b > c > a, c > b > a, c > b > a} - -

Plur.45 {a, b, c} - {a > b > c, b > c > a, c > b > a} - -

Plur.46 {a, b, c} - {a > b > c, b > c > a, b > c > a, b > c > a, c > b > a, c > b > a, c > b > a} - -

Plur.47† {a, b, c, d} - {c > b > a > d, d > c > a > b, b > a > d > c, c > b > d > a, a > b > c > d, d > b > c >

a, a > d > b > c}
- -

121

ID C S V U k

Plur.48† {a, b, c, d,
e}

- {a > c > b > d > e, d > c > b > a > e, c > d > b > e > a, e > d > b > a > c, a > d >

b > e > c, b > e > d > a > c, a > d > e > b > c, e > d > a > b > c, c > a > e > d >

b, b > e > d > a > c, d > c > e > b > a}

- -

Plur.49† {a, b, c, d} - {c > a > b > d, b > a > c > d, c > b > a > d, b > d > c > a, d > a > b > c, c > b > d >

a, a > d > b > c, a > b > d > c, c > d > a > b}
- -

Plur.50† {a, b, c, d,
e}

- {a > d > e > b > c, e > c > b > a > d, c > b > a > e > d, e > a > d > b > c, b > d >

a > e > c, e > a > b > d > c, b > c > e > a > d, d > c > b > a > e, d > c > b > a > e}
- -

122

Table A.4: Table of separations and collapses (here denoted by EQ) in plurality

voting. The Classification column partitions each separation into one of the three

cases, ⊊, ⊋, and INCOMP. (For cases of INCOMP for which we happen to have

established that the separation holds with strong incomparability, we have noted

that with a “∗” superscript.)

T T ′ Classification Justification(s)

CC-PV-TE-UW CC-PV-TE-NUW ⊊ Plur.2

CC-PV-TE-UW CC-PV-TP-UW INCOMP Plur.1 + Plur.50

CC-PV-TE-UW CC-PV-TP-NUW INCOMP Plur.2 + Plur.46

CC-PV-TE-UW CC-RPC-TE-UW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW CC-RPC-TE-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW CC-RPC-TP-UW INCOMP Plur.1 + Plur.24

CC-PV-TE-UW CC-RPC-TP-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW CC-PC-TE-UW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW CC-PC-TE-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW CC-PC-TP-UW INCOMP Plur.1 + Plur.24

CC-PV-TE-UW CC-PC-TP-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PV-TE-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PV-TE-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW CC-PV-TP-UW INCOMP Plur.2 + Plur.50

CC-PV-TE-NUW CC-PV-TP-NUW INCOMP Plur.14 + Plur.50

CC-PV-TE-NUW CC-RPC-TE-UW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW CC-RPC-TE-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW CC-RPC-TP-UW INCOMP Plur.2 + Plur.24

CC-PV-TE-NUW CC-RPC-TP-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW CC-PC-TE-UW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW CC-PC-TE-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW CC-PC-TP-UW INCOMP Plur.2 + Plur.24

CC-PV-TE-NUW CC-PC-TP-NUW INCOMP Plur.20 + Plur.23

CC-PV-TE-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PV-TP-UW INCOMP∗ Plur.3

123

T T ′ Classification Justification(s)

CC-PV-TE-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PV-TE-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-UW CC-PV-TP-NUW ⊊ Plur.21

CC-PV-TP-UW CC-RPC-TE-UW INCOMP Plur.20 + Plur.23

CC-PV-TP-UW CC-RPC-TE-NUW INCOMP Plur.20 + Plur.23

CC-PV-TP-UW CC-RPC-TP-UW INCOMP Plur.1 + Plur.23

CC-PV-TP-UW CC-RPC-TP-NUW INCOMP Plur.2 + Plur.23

CC-PV-TP-UW CC-PC-TE-UW INCOMP Plur.18 + Plur.23

CC-PV-TP-UW CC-PC-TE-NUW INCOMP Plur.2 + Plur.23

CC-PV-TP-UW CC-PC-TP-UW INCOMP Plur.1 + Plur.23

CC-PV-TP-UW CC-PC-TP-NUW INCOMP Plur.2 + Plur.23

CC-PV-TP-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PV-TP-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PV-TP-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-NUW CC-RPC-TE-UW INCOMP Plur.2 + Plur.24

CC-PV-TP-NUW CC-RPC-TE-NUW INCOMP Plur.18 + Plur.23

CC-PV-TP-NUW CC-RPC-TP-UW INCOMP Plur.2 + Plur.24

CC-PV-TP-NUW CC-RPC-TP-NUW INCOMP Plur.15 + Plur.24

CC-PV-TP-NUW CC-PC-TE-UW INCOMP Plur.2 + Plur.24

CC-PV-TP-NUW CC-PC-TE-NUW INCOMP Plur.18 + Plur.23

CC-PV-TP-NUW CC-PC-TP-UW INCOMP Plur.2 + Plur.24

CC-PV-TP-NUW CC-PC-TP-NUW INCOMP Plur.20 + Plur.23

CC-PV-TP-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

124

T T ′ Classification Justification(s)

CC-PV-TP-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PV-TP-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW CC-RPC-TE-NUW ⊊ Plur.2

CC-RPC-TE-UW CC-RPC-TP-UW INCOMP∗ Plur.22

CC-RPC-TE-UW CC-RPC-TP-NUW INCOMP Plur.2 + Plur.44

CC-RPC-TE-UW CC-PC-TE-UW INCOMP Plur.22 + Plur.49

CC-RPC-TE-UW CC-PC-TE-NUW INCOMP Plur.2 + Plur.49

CC-RPC-TE-UW CC-PC-TP-UW INCOMP Plur.18 + Plur.47

CC-RPC-TE-UW CC-PC-TP-NUW INCOMP Plur.2 + Plur.44

CC-RPC-TE-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PC-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW CC-RPC-TP-UW INCOMP Plur.2 + Plur.4

CC-RPC-TE-NUW CC-RPC-TP-NUW INCOMP Plur.18 + Plur.45

CC-RPC-TE-NUW CC-PC-TE-UW INCOMP Plur.2 + Plur.47

CC-RPC-TE-NUW CC-PC-TE-NUW INCOMP Plur.15 + Plur.49

CC-RPC-TE-NUW CC-PC-TP-UW INCOMP Plur.2 + Plur.47

CC-RPC-TE-NUW CC-PC-TP-NUW INCOMP Plur.6 + Plur.45

CC-RPC-TE-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PV-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-RPC-TE-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW CC-RPC-TP-NUW ⊊ Plur.2

125

T T ′ Classification Justification(s)

CC-RPC-TP-UW CC-PC-TE-UW INCOMP Plur.18 + Plur.47

CC-RPC-TP-UW CC-PC-TE-NUW INCOMP Plur.2 + Plur.49

CC-RPC-TP-UW CC-PC-TP-UW INCOMP Plur.7 + Plur.47

CC-RPC-TP-UW CC-PC-TP-NUW INCOMP Plur.2 + Plur.49

CC-RPC-TP-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PC-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW CC-PC-TE-UW INCOMP Plur.2 + Plur.9

CC-RPC-TP-NUW CC-PC-TE-NUW INCOMP Plur.6 + Plur.49

CC-RPC-TP-NUW CC-PC-TP-UW INCOMP Plur.2 + Plur.47

CC-RPC-TP-NUW CC-PC-TP-NUW INCOMP Plur.8 + Plur.49

CC-RPC-TP-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PV-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-RPC-TP-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-UW CC-PC-TE-NUW ⊊ Plur.2

CC-PC-TE-UW CC-PC-TP-UW INCOMP Plur.17 + Plur.48

CC-PC-TE-UW CC-PC-TP-NUW INCOMP Plur.2 + Plur.44

CC-PC-TE-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PC-TE-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PC-TE-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PC-TE-UW INCOMP∗ Plur.3

126

T T ′ Classification Justification(s)

CC-PC-TE-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PC-TE-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW CC-PC-TP-UW INCOMP Plur.2 + Plur.48

CC-PC-TE-NUW CC-PC-TP-NUW INCOMP Plur.6 + Plur.48

CC-PC-TE-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PC-TE-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-UW CC-PC-TP-NUW ⊊ Plur.2

CC-PC-TP-UW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-UW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-UW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PC-TP-UW DC-PC-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PV-TE-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PV-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PV-TP-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PV-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-RPC-TE-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-RPC-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-RPC-TP-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-RPC-TP-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PC-TE-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PC-TE-NUW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PC-TP-UW INCOMP∗ Plur.3

CC-PC-TP-NUW DC-PC-TP-NUW INCOMP∗ Plur.3

DC-PV-TE-UW DC-PV-TE-NUW ⊋ Plur.9

DC-PV-TE-UW DC-PV-TP-UW INCOMP Plur.12 + Plur.26

127

T T ′ Classification Justification(s)

DC-PV-TE-UW DC-PV-TP-NUW INCOMP Plur.2 + Plur.26

DC-PV-TE-UW DC-RPC-TE-UW INCOMP Plur.10 + Plur.25

DC-PV-TE-UW DC-RPC-TE-NUW INCOMP Plur.10 + Plur.25

DC-PV-TE-UW DC-RPC-TP-UW INCOMP Plur.16 + Plur.25

DC-PV-TE-UW DC-RPC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TE-UW DC-PC-TE-UW INCOMP Plur.10 + Plur.25

DC-PV-TE-UW DC-PC-TE-NUW INCOMP Plur.10 + Plur.25

DC-PV-TE-UW DC-PC-TP-UW INCOMP Plur.13 + Plur.25

DC-PV-TE-UW DC-PC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TE-NUW DC-PV-TP-UW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-PV-TP-NUW INCOMP Plur.2 + Plur.26

DC-PV-TE-NUW DC-RPC-TE-UW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-RPC-TE-NUW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-RPC-TP-UW INCOMP Plur.16 + Plur.25

DC-PV-TE-NUW DC-RPC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TE-NUW DC-PC-TE-UW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-PC-TE-NUW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-PC-TP-UW INCOMP Plur.19 + Plur.10

DC-PV-TE-NUW DC-PC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TP-UW DC-PV-TP-NUW ⊋ Plur.2

DC-PV-TP-UW DC-RPC-TE-UW INCOMP Plur.5 + Plur.25

DC-PV-TP-UW DC-RPC-TE-NUW INCOMP Plur.5 + Plur.25

DC-PV-TP-UW DC-RPC-TP-UW INCOMP Plur.13 + Plur.25

DC-PV-TP-UW DC-RPC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TP-UW DC-PC-TE-UW INCOMP Plur.5 + Plur.25

DC-PV-TP-UW DC-PC-TE-NUW INCOMP Plur.5 + Plur.25

DC-PV-TP-UW DC-PC-TP-UW INCOMP Plur.13 + Plur.25

DC-PV-TP-UW DC-PC-TP-NUW INCOMP Plur.2 + Plur.25

DC-PV-TP-NUW DC-RPC-TE-UW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-RPC-TE-NUW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-RPC-TP-UW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-RPC-TP-NUW INCOMP Plur.1 + Plur.5

DC-PV-TP-NUW DC-PC-TE-UW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-PC-TE-NUW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-PC-TP-UW INCOMP Plur.2 + Plur.5

DC-PV-TP-NUW DC-PC-TP-NUW INCOMP Plur.1 + Plur.5

DC-RPC-TE-UW DC-RPC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-RPC-TP-UW ⊋ Plur.13 + Theorem 3.1

DC-RPC-TE-UW DC-RPC-TP-NUW ⊋ Plur.2 + Theorem 3.1

DC-RPC-TE-UW DC-PC-TE-UW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-PC-TP-UW ⊋ Plur.13 + Theorem 3.1

DC-RPC-TE-UW DC-PC-TP-NUW ⊋ Plur.2 + Theorem 3.1

DC-RPC-TE-NUW DC-RPC-TP-UW ⊋ Plur.13 + Theorem 3.1

128

T T ′ Classification Justification(s)

DC-RPC-TE-NUW DC-RPC-TP-NUW ⊋ Plur.2 + Theorem 3.1

DC-RPC-TE-NUW DC-PC-TE-UW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-NUW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-NUW DC-PC-TP-UW ⊋ Plur.13 + Theorem 3.1

DC-RPC-TE-NUW DC-PC-TP-NUW ⊋ Plur.2 + Theorem 3.1

DC-RPC-TP-UW DC-RPC-TP-NUW ⊋ Plur.2 + Theorem 3.1

DC-RPC-TP-UW DC-PC-TE-UW ⊊ Plur.13 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-UW DC-PC-TE-NUW ⊊ Plur.13 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-UW DC-PC-TP-UW INCOMP Plur.16 + Plur.11

DC-RPC-TP-UW DC-PC-TP-NUW ⊋ Plur.2 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TE-UW ⊊ Plur.2 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TE-NUW ⊊ Plur.2 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TP-UW ⊊ Plur.2 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TP-NUW EQ Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TP-UW ⊋ Plur.13 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TP-NUW ⊋ Plur.2 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-NUW DC-PC-TP-UW ⊋ Plur.13 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-NUW DC-PC-TP-NUW ⊋ Plur.2 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TP-UW DC-PC-TP-NUW ⊋ Plur.2

CC-AC-UW CC-AC-NUW ⊊ Plur.37

CC-AC-UW DC-AC-UW INCOMP Plur.33 + Plur.27

CC-AC-UW DC-AC-NUW INCOMP Plur.33 + Plur.27

CC-AC-NUW DC-AC-UW INCOMP Plur.33 + Plur.27

CC-AC-NUW DC-AC-NUW INCOMP Plur.33 + Plur.27

DC-AC-UW DC-AC-NUW ⊋ Plur.37

CC-DC-UW CC-DC-NUW ⊊ Plur.38

CC-DC-UW CC-DV-UW INCOMP Plur.41 + Plur.31

CC-DC-UW CC-DV-NUW INCOMP Plur.38 + Plur.41

CC-DC-UW DC-DC-UW INCOMP Plur.38 + Plur.30

CC-DC-UW DC-DC-NUW INCOMP Plur.34 + Plur.30

CC-DC-UW DC-DV-UW INCOMP Plur.38 + Plur.30

CC-DC-UW DC-DV-NUW INCOMP Plur.34 + Plur.30

CC-DC-NUW CC-DV-UW INCOMP Plur.38 + Plur.31

CC-DC-NUW CC-DV-NUW INCOMP Plur.41 + Plur.31

CC-DC-NUW DC-DC-UW INCOMP Plur.34 + Plur.30

CC-DC-NUW DC-DC-NUW INCOMP Plur.34 + Plur.30

CC-DC-NUW DC-DV-UW INCOMP Plur.34 + Plur.30

CC-DC-NUW DC-DV-NUW INCOMP Plur.34 + Plur.30

CC-DV-UW CC-DV-NUW ⊊ Plur.38

CC-DV-UW DC-DC-UW INCOMP Plur.38 + Plur.30

CC-DV-UW DC-DC-NUW INCOMP Plur.34 + Plur.30

CC-DV-UW DC-DV-UW INCOMP Plur.38 + Plur.30

CC-DV-UW DC-DV-NUW INCOMP Plur.34 + Plur.30

129

T T ′ Classification Justification(s)

CC-DV-NUW DC-DC-UW INCOMP Plur.34 + Plur.30

CC-DV-NUW DC-DC-NUW INCOMP Plur.34 + Plur.30

CC-DV-NUW DC-DV-UW INCOMP Plur.34 + Plur.30

CC-DV-NUW DC-DV-NUW INCOMP Plur.34 + Plur.30

DC-DC-UW DC-DC-NUW ⊋ Plur.38

DC-DC-UW DC-DV-UW INCOMP Plur.42 + Plur.32

DC-DC-UW DC-DV-NUW INCOMP Plur.38 + Plur.31

DC-DC-NUW DC-DV-UW INCOMP Plur.38 + Plur.32

DC-DC-NUW DC-DV-NUW INCOMP Plur.43 + Plur.32

DC-DV-UW DC-DV-NUW ⊋ Plur.38

CC-AV-UW CC-AV-NUW ⊊ Plur.39

CC-AV-UW DC-AV-UW INCOMP Plur.39 + Plur.28

CC-AV-UW DC-AV-NUW INCOMP Plur.35 + Plur.28

CC-AV-NUW DC-AV-UW INCOMP Plur.35 + Plur.28

CC-AV-NUW DC-AV-NUW INCOMP Plur.35 + Plur.28

DC-AV-UW DC-AV-NUW ⊋ Plur.39

CC-UAC-UW CC-UAC-NUW ⊊ Plur.40

CC-UAC-UW DC-UAC-UW INCOMP Plur.40 + Plur.29

CC-UAC-UW DC-UAC-NUW INCOMP Plur.36 + Plur.29

CC-UAC-NUW DC-UAC-UW INCOMP Plur.36 + Plur.29

CC-UAC-NUW DC-UAC-NUW INCOMP Plur.36 + Plur.29

DC-UAC-UW DC-UAC-NUW ⊋ Plur.40

A.2.2 Veto Tables

Table A.5: List of separation witnesses in veto. We note the computer-generated

entries with a “†” superscript.

ID C S V U k

Veto.1 {a, b} - {a > b, b > a} - -

Veto.2 {a, b, c} - {a > b > c, a > b > c} - -

Veto.3 {a, b, c} - {a > b > c, c > a > b, c > b > a, c > b > a} - -

Veto.4 {a, b, c} - {a > b > c} - -

Veto.5 {a, b} - {a > b} - -

Veto.6 {a, b} - {b > a} - -

Veto.7 {a, b, c} - {a > b > c, a > c > b, b > c > a, b > c > a} - -

Veto.8 {a, b, c} - {a > b > c, a > b > c, c > a > b, c > b > a, c > b > a} - -

Veto.9 {a, b, c, d} - {a > b > c > d, a > b > c > d, b > d > c > a} - -

Veto.10 {a, b, c} - {b > c > a, c > b > a} - -

Veto.11 {a, b, c} - {b > a > c} - -

Veto.12 {a, b, c, d} - {a > b > c > d, b > c > d > a, c > a > d > b} - -

130

ID C S V U k

Veto.13 {a, b, c} - {a > b > c, a > b > c, a > b > c, c > a > b, c > a > b, c > b > a, c > b > a} - -

Veto.14 {a, b, c, d} - {c > d > a > b, c > d > a > b, d > b > a > c} - -

Veto.15 {a, b, c, d} - {a > b > c > d, a > b > c > d, b > c > a > d, c > a > b > d, c > d > b > a} - -

Veto.16† {a, b, c, d} - {a > b > c > d, b > a > c > d, b > a > c > d, b > a > c > d, c > b > a > d, d > c >

a > b, d > c > a > b, d > c > a > b, d > c > b > a, d > c > b > a}
- -

Veto.17 {a, b, c} - {b > a > c, c > a > b} - -

Veto.18 {a, b, c} - {a > b > c, a > b > c, a > b > c, a > c > b, a > c > b, a > c > b, b > c > a, b > c >

a}
- -

Veto.19 {a, b, c, d} - {a > b > c > d, b > d > a > c, c > d > a > b} - -

Veto.20 {a, b, c} - {a > b > c, c > a > b} - -

Veto.21 {a, b} {c} {b > a > c} - 1

Veto.22 {a, b, c} {d} {b > a > c > d} - 1

Veto.23 {a, b} {c} {a > b > c} - 1

Veto.24 {a, b} {c} {b > c > a, c > b > a} - 1

Veto.25 {a, b, c, d} - {d > c > a > b} - 1

Veto.26 {a, b, c} - {a > b > c, a > b > c, c > a > b, c > b > a, c > b > a} - 0

Veto.27 {a, b, c} - {a > c > b, a > c > b} - 1

Veto.28 {a, b, c} - {c > a > b, c > a > b} - 1

Veto.29 {a, b} - {a > b} - 1

Veto.30 {a, b, c} - {c > b > a, c > a > b, b > a > c} - 1

Veto.31 {a, b, c} - {a > c > b, a > c > b, a > c > b, c > b > a, c > b > a} - 1

Veto.32 {a, b, c, d} - {a > b > c > d, a > b > c > d, b > d > c > a} - 0

Veto.33 {a, b, c} - {b > c > a, b > c > a, b > a > c, b > a > c, a > c > b} - 2

Veto.34 {a, b, c} - {c > b > a, c > b > a, b > c > a} - 1

Veto.35 {a, b, c} - {c > a > b} - 1

Veto.36 {a, b, c} - {c > a > b} {c > a > b} 1

Veto.37 {a, b} - {a > b} {a > b} 1

Veto.38 {a, b} - {b > a} {b > a} 1

Veto.39 {a, b, c} {d} {d > c > a > b} - -

Veto.40 {a, b} {c} {a > c > b, a > b > c} - -

Veto.41 {a, b} {c} {c > b > a} - -

Veto.42 {a, b, c} - {a > b > c, a > c > b} - -

Veto.43† {a, b, c, d} - {c > d > b > a, a > b > c > d, b > d > a > c, b > d > c > a, a > b > d > c, a > b >

d > c}
- -

Veto.44 {a, b, c} - {a > b > c} ∅ 0

Veto.45 {a, b} - {a > b} - 0

Veto.46 {a, b, c, d,
e}

- {b > c > d > e > a, b > c > d > e > a, d > b > c > a > e, e > b > c > a > d, e > c >

d > a > b, e > b > d > a > c}
- 2

131

Table A.6: Table of separations and collapses (here denoted by EQ) in veto voting.

The Classification column partitions each separation into one of the three cases, ⊊,

⊋, and INCOMP. (For cases of INCOMP for which we happen to have established

that the separation holds with strong incomparability, we have noted that with a

“∗” superscript.)

T T ′ Classification Justification(s)

CC-PV-TE-UW CC-PV-TE-NUW ⊊ Veto.1

CC-PV-TE-UW CC-PV-TP-UW INCOMP Veto.2 + Veto.3

CC-PV-TE-UW CC-PV-TP-NUW INCOMP Veto.1 + Veto.3

CC-PV-TE-UW CC-RPC-TE-UW INCOMP Veto.4 + Veto.8

CC-PV-TE-UW CC-RPC-TE-NUW INCOMP Veto.1 + Veto.8

CC-PV-TE-UW CC-RPC-TP-UW INCOMP Veto.4 + Veto.8

CC-PV-TE-UW CC-RPC-TP-NUW INCOMP Veto.1 + Veto.8

CC-PV-TE-UW CC-PC-TE-UW INCOMP Veto.4 + Veto.8

CC-PV-TE-UW CC-PC-TE-NUW INCOMP Veto.1 + Veto.8

CC-PV-TE-UW CC-PC-TP-UW INCOMP Veto.4 + Veto.8

CC-PV-TE-UW CC-PC-TP-NUW INCOMP Veto.1 + Veto.8

CC-PV-TE-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW CC-PV-TP-UW INCOMP Veto.1 + Veto.2

CC-PV-TE-NUW CC-PV-TP-NUW INCOMP Veto.4 + Veto.7

CC-PV-TE-NUW CC-RPC-TE-UW INCOMP Veto.1 + Veto.2

CC-PV-TE-NUW CC-RPC-TE-NUW INCOMP Veto.4 + Veto.8

CC-PV-TE-NUW CC-RPC-TP-UW INCOMP Veto.1 + Veto.2

CC-PV-TE-NUW CC-RPC-TP-NUW INCOMP Veto.4 + Veto.8

CC-PV-TE-NUW CC-PC-TE-UW INCOMP Veto.1 + Veto.2

CC-PV-TE-NUW CC-PC-TE-NUW INCOMP Veto.4 + Veto.8

CC-PV-TE-NUW CC-PC-TP-UW INCOMP Veto.1 + Veto.2

CC-PV-TE-NUW CC-PC-TP-NUW INCOMP Veto.4 + Veto.8

CC-PV-TE-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

132

T T ′ Classification Justification(s)

CC-PV-TE-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TE-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

breakpage CC-PV-TE-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW CC-PV-TP-NUW ⊊ Veto.1

CC-PV-TP-UW CC-RPC-TE-UW INCOMP Veto.4 + Veto.8

CC-PV-TP-UW CC-RPC-TE-NUW INCOMP Veto.1 + Veto.8

CC-PV-TP-UW CC-RPC-TP-UW INCOMP Veto.4 + Veto.8

CC-PV-TP-UW CC-RPC-TP-NUW INCOMP Veto.1 + Veto.8

CC-PV-TP-UW CC-PC-TE-UW INCOMP Veto.4 + Veto.8

CC-PV-TP-UW CC-PC-TE-NUW INCOMP Veto.1 + Veto.8

CC-PV-TP-UW CC-PC-TP-UW INCOMP Veto.4 + Veto.8

CC-PV-TP-UW CC-PC-TP-NUW INCOMP Veto.1 + Veto.8

CC-PV-TP-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW CC-RPC-TE-UW INCOMP Veto.1 + Veto.9

CC-PV-TP-NUW CC-RPC-TE-NUW INCOMP Veto.10 + Veto.8

CC-PV-TP-NUW CC-RPC-TP-UW INCOMP Veto.1 + Veto.9

CC-PV-TP-NUW CC-RPC-TP-NUW INCOMP Veto.11 + Veto.9

CC-PV-TP-NUW CC-PC-TE-UW INCOMP Veto.1 + Veto.9

CC-PV-TP-NUW CC-PC-TE-NUW INCOMP Veto.10 + Veto.8

CC-PV-TP-NUW CC-PC-TP-UW INCOMP Veto.1 + Veto.9

CC-PV-TP-NUW CC-PC-TP-NUW INCOMP Veto.12 + Veto.8

CC-PV-TP-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

133

T T ′ Classification Justification(s)

CC-PV-TP-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PV-TP-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW CC-RPC-TE-NUW ⊊ Veto.1

CC-RPC-TE-UW CC-RPC-TP-UW INCOMP Veto.10 + Veto.13

CC-RPC-TE-UW CC-RPC-TP-NUW INCOMP Veto.1 + Veto.10

CC-RPC-TE-UW CC-PC-TE-UW INCOMP Veto.12 + Veto.14

CC-RPC-TE-UW CC-PC-TE-NUW INCOMP Veto.1 + Veto.15

CC-RPC-TE-UW CC-PC-TP-UW INCOMP Veto.10 + Veto.13

CC-RPC-TE-UW CC-PC-TP-NUW INCOMP Veto.1 + Veto.10

CC-RPC-TE-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW CC-RPC-TP-UW INCOMP Veto.1 + Veto.13

CC-RPC-TE-NUW CC-RPC-TP-NUW INCOMP Veto.10 + Veto.13

CC-RPC-TE-NUW CC-PC-TE-UW INCOMP Veto.1 + Veto.14

CC-RPC-TE-NUW CC-PC-TE-NUW INCOMP Veto.11 + Veto.15

CC-RPC-TE-NUW CC-PC-TP-UW INCOMP Veto.1 + Veto.13

CC-RPC-TE-NUW CC-PC-TP-NUW INCOMP Veto.10 + Veto.11

CC-RPC-TE-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TE-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW CC-RPC-TP-NUW ⊊ Veto.1

134

T T ′ Classification Justification(s)

CC-RPC-TP-UW CC-PC-TE-UW INCOMP Veto.10 + Veto.12

CC-RPC-TP-UW CC-PC-TE-NUW INCOMP Veto.1 + Veto.15

CC-RPC-TP-UW CC-PC-TP-UW INCOMP Veto.12 + Veto.14

CC-RPC-TP-UW CC-PC-TP-NUW INCOMP Veto.1 + Veto.15

CC-RPC-TP-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW CC-PC-TE-UW INCOMP Veto.1 + Veto.10

CC-RPC-TP-NUW CC-PC-TE-NUW INCOMP Veto.10 + Veto.15

CC-RPC-TP-NUW CC-PC-TP-UW INCOMP Veto.1 + Veto.14

CC-RPC-TP-NUW CC-PC-TP-NUW INCOMP Veto.11 + Veto.15

CC-RPC-TP-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-RPC-TP-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW CC-PC-TE-NUW ⊊ Veto.1

CC-PC-TE-UW CC-PC-TP-UW INCOMP Veto.10 + Veto.13

CC-PC-TE-UW CC-PC-TP-NUW INCOMP Veto.1 + Veto.10

CC-PC-TE-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

135

T T ′ Classification Justification(s)

CC-PC-TE-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW CC-PC-TP-UW INCOMP Veto.1 + Veto.16

CC-PC-TE-NUW CC-PC-TP-NUW INCOMP Veto.10 + Veto.16

CC-PC-TE-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TE-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW CC-PC-TP-NUW ⊊ Veto.1

CC-PC-TP-UW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-UW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PV-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PV-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PV-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PV-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-RPC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-RPC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-RPC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-RPC-TP-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PC-TE-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PC-TE-NUW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PC-TP-UW INCOMP Veto.5 + Veto.6

CC-PC-TP-NUW DC-PC-TP-NUW INCOMP Veto.5 + Veto.6

DC-PV-TE-UW DC-PV-TE-NUW EQ Theorem 3.2

DC-PV-TE-UW DC-PV-TP-UW ⊋ Veto.42 + Theorem 3.3

136

T T ′ Classification Justification(s)

DC-PV-TE-UW DC-PV-TP-NUW ⊋ Veto.1 + Theorem 3.3

DC-PV-TE-UW DC-RPC-TE-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-RPC-TE-NUW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-RPC-TP-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-RPC-TP-NUW ⊋ Veto.1 + Theorem 3.4

DC-PV-TE-UW DC-PC-TE-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-PC-TE-NUW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-PC-TP-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-UW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.4 + Hemaspaandra et al. (2020)

DC-PV-TE-NUW DC-PV-TP-UW ⊋ Veto.42 + Theorem 3.3

DC-PV-TE-NUW DC-PV-TP-NUW ⊋ Veto.1 + Theorem 3.3

DC-PV-TE-NUW DC-RPC-TE-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-RPC-TE-NUW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-RPC-TP-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-RPC-TP-NUW ⊋ Veto.1 + Theorem 3.4

DC-PV-TE-NUW DC-PC-TE-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-PC-TE-NUW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-PC-TP-UW ⊋ Veto.42 + Theorem 3.4

DC-PV-TE-NUW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.4 + Hemaspaandra et al. (2020)

DC-PV-TP-UW DC-PV-TP-NUW ⊋ Veto.1

DC-PV-TP-UW DC-RPC-TE-UW INCOMP Veto.17 + Veto.18

DC-PV-TP-UW DC-RPC-TE-NUW INCOMP Veto.17 + Veto.18

DC-PV-TP-UW DC-RPC-TP-UW INCOMP Veto.4 + Veto.20

DC-PV-TP-UW DC-RPC-TP-NUW INCOMP Veto.1 + Veto.19

DC-PV-TP-UW DC-PC-TE-UW INCOMP Veto.17 + Veto.18

DC-PV-TP-UW DC-PC-TE-NUW INCOMP Veto.17 + Veto.18

DC-PV-TP-UW DC-PC-TP-UW INCOMP Veto.20 + Veto.18

DC-PV-TP-UW DC-PC-TP-NUW INCOMP Veto.1 + Veto.19

DC-PV-TP-NUW DC-RPC-TE-UW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-RPC-TE-NUW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-RPC-TP-UW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-RPC-TP-NUW INCOMP Veto.11 + Veto.18

DC-PV-TP-NUW DC-PC-TE-UW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-PC-TE-NUW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-PC-TP-UW INCOMP Veto.1 + Veto.18

DC-PV-TP-NUW DC-PC-TP-NUW INCOMP Veto.11 + Veto.18

DC-RPC-TE-UW DC-RPC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-RPC-TP-UW ⊋ Veto.4 + Theorem 3.1

DC-RPC-TE-UW DC-RPC-TP-NUW ⊋ Veto.1 + Theorem 3.1

DC-RPC-TE-UW DC-PC-TE-UW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-UW DC-PC-TP-UW ⊋ Veto.17 + Theorem 3.1

DC-RPC-TE-UW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.1

DC-RPC-TE-NUW DC-RPC-TP-UW ⊋ Veto.4 + Theorem 3.1

137

T T ′ Classification Justification(s)

DC-RPC-TE-NUW DC-RPC-TP-NUW ⊋ Veto.1 + Theorem 3.1

DC-RPC-TE-NUW DC-PC-TE-UW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-NUW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-RPC-TE-NUW DC-PC-TP-UW ⊋ Veto.17 + Theorem 3.1

DC-RPC-TE-NUW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.1

DC-RPC-TP-UW DC-RPC-TP-NUW ⊋ Veto.1

DC-RPC-TP-UW DC-PC-TE-UW ⊊ Veto.4 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-UW DC-PC-TE-NUW ⊊ Veto.4 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-UW DC-PC-TP-UW INCOMP Veto.4 + Veto.43

DC-RPC-TP-UW DC-PC-TP-NUW ⊋ Veto.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TE-UW ⊊ Veto.1 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TE-NUW ⊊ Veto.1 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TP-UW ⊊ Veto.1 + Hemaspaandra et al. (2020)

DC-RPC-TP-NUW DC-PC-TP-NUW EQ Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TE-NUW EQ Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TP-UW ⊋ Veto.17 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-UW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-NUW DC-PC-TP-UW ⊋ Veto.17 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TE-NUW DC-PC-TP-NUW ⊋ Veto.1 + Theorem 3.1 + Hemaspaandra et al. (2020)

DC-PC-TP-UW DC-PC-TP-NUW ⊋ Veto.1

CC-AC-UW CC-AC-NUW ⊊ Veto.22

CC-AC-UW DC-AC-UW INCOMP Veto.22 + Veto.24

CC-AC-UW DC-AC-NUW INCOMP Veto.21 + Veto.23

CC-AC-NUW DC-AC-UW INCOMP∗ Veto.26

CC-AC-NUW DC-AC-NUW INCOMP∗ Veto.32

DC-AC-UW DC-AC-NUW ⊋ Veto.22

CC-DC-UW CC-DC-NUW ⊊ Veto.25

CC-DC-UW CC-DV-UW INCOMP Veto.27 + Veto.30

CC-DC-UW CC-DV-NUW INCOMP Veto.25 + Veto.31

CC-DC-UW DC-DC-UW INCOMP∗ Veto.26

CC-DC-UW DC-DC-NUW INCOMP Veto.25 + Veto.34

CC-DC-UW DC-DV-UW INCOMP∗ Veto.45

CC-DC-UW DC-DV-NUW INCOMP Veto.25 + Veto.34

CC-DC-NUW CC-DV-UW INCOMP Veto.27 + Veto.46

CC-DC-NUW CC-DV-NUW INCOMP Veto.35 + Veto.31

CC-DC-NUW DC-DC-UW INCOMP Veto.25 + Veto.34

CC-DC-NUW DC-DC-NUW INCOMP Veto.25 + Veto.34

CC-DC-NUW DC-DV-UW INCOMP Veto.25 + Veto.34

CC-DC-NUW DC-DV-NUW INCOMP Veto.25 + Veto.34

CC-DV-UW CC-DV-NUW ⊊ Veto.27

CC-DV-UW DC-DC-UW INCOMP∗ Veto.45

CC-DV-UW DC-DC-NUW INCOMP Veto.25 + Veto.28

CC-DV-UW DC-DV-UW INCOMP∗ Veto.45

CC-DV-UW DC-DV-NUW INCOMP Veto.25 + Veto.34

138

T T ′ Classification Justification(s)

CC-DV-NUW DC-DC-UW INCOMP∗ Veto.26

CC-DV-NUW DC-DC-NUW INCOMP Veto.25 + Veto.34

CC-DV-NUW DC-DV-UW INCOMP∗ Veto.26

CC-DV-NUW DC-DV-NUW INCOMP Veto.25 + Veto.34

DC-DC-UW DC-DC-NUW ⊋ Veto.27

DC-DC-UW DC-DV-UW INCOMP Veto.29 + Veto.31

DC-DC-UW DC-DV-NUW INCOMP Veto.27 + Veto.33

DC-DC-NUW DC-DV-UW INCOMP Veto.27 + Veto.31

DC-DC-NUW DC-DV-NUW INCOMP Veto.28 + Veto.33

DC-DV-UW DC-DV-NUW ⊋ Veto.27

CC-AV-UW CC-AV-NUW ⊊ Veto.44

CC-AV-UW DC-AV-UW INCOMP Veto.37 + Veto.38

CC-AV-UW DC-AV-NUW INCOMP Veto.37 + Veto.38

CC-AV-NUW DC-AV-UW INCOMP Veto.37 + Veto.38

CC-AV-NUW DC-AV-NUW INCOMP Veto.37 + Veto.38

DC-AV-UW DC-AV-NUW ⊋ Veto.36

CC-UAC-UW CC-UAC-NUW ⊊ Veto.39

CC-UAC-UW DC-UAC-UW INCOMP Veto.39 + Veto.40

CC-UAC-UW DC-UAC-NUW INCOMP Veto.40 + Veto.41

CC-UAC-NUW DC-UAC-UW INCOMP Veto.40 + Veto.41

CC-UAC-NUW DC-UAC-NUW INCOMP Veto.39 + Veto.41

DC-UAC-UW DC-UAC-NUW ⊋ Veto.39

A.2.3 Approval-Voting Tables

Table A.7: List of separation witnesses in approval voting. (Example Appr.7 can

also be found on page 220 of the Handbook of Approval Voting by Baumeister

et al. 2010.)

ID C S V U k

Appr.1 {a, b} - {10} - -

Appr.2 {a, b} - {10, 01} - -

Appr.3 {a, b, c} - {101, 110} - -

Appr.4 {a, b, c} - {110, 110, 010, 101, 101, 001} - -

Appr.5 {a, b, c} - {100, 011, 011} - -

Appr.6 {a, b, c} - {100, 110, 011, 011} - -

Appr.7 {a, b, c} - {100, 100, 100, 100, 100, 110, 010, 010, 010, 010, 001, 001, 001, 001, 001, 001, 001} - -

Appr.8 {a, b, c} - {100, 100, 100, 100, 010, 010, 010, 010, 010, 001, 001, 001} - -

Appr.9 {a, b, c, d} - {1001, 1001, 1001, 1000, 0100, 0100, 0100, 0100, 0100, 0010, 0010, 0010, 0010, 0010} - -

Appr.10 {a, b} - {10} - 0

139

ID C S V U k

Appr.11 {a, b} {c} {111} - 1

Appr.12 {a, b} {c} {010} - 1

Appr.13 {a, b} {c} {100} - 1

Appr.14 {a, b, c} - {111} - 1

Appr.15 {a, b} - {11} - 1

Appr.16 {a, b, c} - {011} - 1

Appr.17 {a, b, c} - {011, 011} - 1

Appr.18 {a, b, c} - {100, 111} - 1

Appr.19 {a, b, c} - {100, 011} - 1

Appr.20 {a, b} - {10, 01, 01, 01} - 1

Appr.21 {a, b, c, d} - {1000, 0111, 0111} - 2

Appr.22 {a, b} - {10, 10, 01} - 2

Appr.23 {a} - {1} - 1

Appr.24 {a, b} - {01} {10} 1

Appr.25 {a, b} - {10} {10} 1

Appr.26 {a, b} - {01} {01} 1

Appr.27 {a, b} - {10, 01} ∅ 0

Appr.28 {a, b} {c} {100} - -

Appr.29 {a, b, c} - {101, 110} - 0

Appr.30 {a, b} ∅ {10, 01} - -

Appr.31 {a, b, c, d,
e, f, g, h}

- {10111100, 10111100, 11100000, 01000001, 01000001, 00010001, 00001011, 00000111,
10111110, 11011110}

- -

Appr.32 {a, b, c, d,
e, f, g, h,

i, j}

- {1110111100, 1110111100, 1110111100, 1111000001, 0001000001, 0001000001, 0001000001,
0000100001, 0000010011, 0000001011, 0000000111, 1011111110, 1101111110, 1110111110}

- -

Table A.8: Table of separations and collapses (here denoted by EQ) in approval

voting. The Classification column partitions each separation into one of the three

cases, ⊊, ⊋, and INCOMP. (For cases of INCOMP for which we happen to have

established that the separation holds with strong incomparability, we have noted

that with a “∗” superscript.)

T T ′ Classification Justification(s)

CC-PV-TE-UW CC-PV-TE-NUW ⊊ Appr.2

CC-PV-TE-UW CC-PV-TP-UW INCOMP Appr.5 + Appr.31

CC-PV-TE-UW CC-PV-TP-NUW INCOMP Appr.2 + Appr.5

CC-PV-TE-UW CC-RPC-TE-UW INCOMP Appr.6 + Appr.9

CC-PV-TE-UW CC-RPC-TE-NUW INCOMP Appr.2 + Appr.6

CC-PV-TE-UW CC-RPC-TP-UW ⊋ Appr.5 + Corollary 3.10

CC-PV-TE-UW CC-RPC-TP-NUW INCOMP Appr.2 + Appr.5

CC-PV-TE-UW CC-PC-TE-UW INCOMP Appr.6 + Appr.9

140

T T ′ Classification Justification(s)

CC-PV-TE-UW CC-PC-TE-NUW INCOMP Appr.2 + Appr.6

CC-PV-TE-UW CC-PC-TP-UW ⊋ Appr.5 + Corollary 3.10

CC-PV-TE-UW CC-PC-TP-NUW INCOMP Appr.2 + Appr.5

CC-PV-TE-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PV-TE-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PV-TE-UW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW CC-PV-TP-UW INCOMP Appr.2 + Appr.32

CC-PV-TE-NUW CC-PV-TP-NUW INCOMP∗ Appr.5

CC-PV-TE-NUW CC-RPC-TE-UW INCOMP Appr.2 + Appr.9

CC-PV-TE-NUW CC-RPC-TE-NUW INCOMP Appr.6 + Appr.5

CC-PV-TE-NUW CC-RPC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-PV-TE-NUW CC-RPC-TP-NUW INCOMP∗ Appr.5

CC-PV-TE-NUW CC-PC-TE-UW INCOMP Appr.2 + Appr.9

CC-PV-TE-NUW CC-PC-TE-NUW INCOMP Appr.6 + Appr.5

CC-PV-TE-NUW CC-PC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-PV-TE-NUW CC-PC-TP-NUW INCOMP∗ Appr.5

CC-PV-TE-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PV-TE-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-UW CC-PV-TP-NUW ⊊ Appr.2

CC-PV-TP-UW CC-RPC-TE-UW INCOMP Appr.5 + Appr.8

CC-PV-TP-UW CC-RPC-TE-NUW INCOMP Appr.2 + Appr.8

CC-PV-TP-UW CC-RPC-TP-UW ⊋ Appr.7 + Corollary 3.10

CC-PV-TP-UW CC-RPC-TP-NUW INCOMP Appr.2 + Appr.8

CC-PV-TP-UW CC-PC-TE-UW INCOMP Appr.5 + Appr.8

CC-PV-TP-UW CC-PC-TE-NUW INCOMP Appr.2 + Appr.8

141

T T ′ Classification Justification(s)

CC-PV-TP-UW CC-PC-TP-UW ⊋ Appr.7 + Corollary 3.10

CC-PV-TP-UW CC-PC-TP-NUW INCOMP Appr.2 + Appr.8

CC-PV-TP-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PV-TP-UW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW CC-RPC-TE-UW INCOMP Appr.2 + Appr.5

CC-PV-TP-NUW CC-RPC-TE-NUW INCOMP Appr.5 + Appr.8

CC-PV-TP-NUW CC-RPC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-PV-TP-NUW CC-RPC-TP-NUW ⊋ Appr.7 + Corollary 3.15

CC-PV-TP-NUW CC-PC-TE-UW INCOMP Appr.2 + Appr.5

CC-PV-TP-NUW CC-PC-TE-NUW INCOMP Appr.5 + Appr.8

CC-PV-TP-NUW CC-PC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-PV-TP-NUW CC-PC-TP-NUW ⊋ Appr.7 + Corollary 3.15

CC-PV-TP-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PV-TP-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW CC-RPC-TE-NUW ⊊ Appr.2

CC-RPC-TE-UW CC-RPC-TP-UW ⊋ Appr.5 + Corollary 3.10

CC-RPC-TE-UW CC-RPC-TP-NUW INCOMP Appr.2 + Appr.5

CC-RPC-TE-UW CC-PC-TE-UW EQ Corollary 3.18

CC-RPC-TE-UW CC-PC-TE-NUW ⊊ Appr.2

CC-RPC-TE-UW CC-PC-TP-UW ⊋ Appr.5 + Corollary 3.10

CC-RPC-TE-UW CC-PC-TP-NUW INCOMP Appr.2 + Appr.5

CC-RPC-TE-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PV-TP-UW INCOMP∗ Appr.1

142

T T ′ Classification Justification(s)

CC-RPC-TE-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-RPC-TE-UW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW CC-RPC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-RPC-TE-NUW CC-RPC-TP-NUW ⊋ Appr.5 + Corollary 3.15

CC-RPC-TE-NUW CC-PC-TE-UW ⊋ Appr.2

CC-RPC-TE-NUW CC-PC-TE-NUW EQ Theorem 3.17

CC-RPC-TE-NUW CC-PC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-RPC-TE-NUW CC-PC-TP-NUW ⊋ Appr.5 + Corollary 3.15

CC-RPC-TE-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PC-TP-UW INCOMP∗ Appr.1

CC-RPC-TE-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW CC-RPC-TP-NUW ⊊ Appr.2

CC-RPC-TP-UW CC-PC-TE-UW ⊊ Appr.5 + Corollary 3.10

CC-RPC-TP-UW CC-PC-TE-NUW ⊊ Appr.2 + Corollary 3.10

CC-RPC-TP-UW CC-PC-TP-UW EQ Corollary 3.11

CC-RPC-TP-UW CC-PC-TP-NUW ⊊ Appr.2

CC-RPC-TP-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PV-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-UW DC-PC-TP-NUW INCOMP∗ Appr.1

143

T T ′ Classification Justification(s)

CC-RPC-TP-NUW CC-PC-TE-UW INCOMP Appr.2 + Appr.5

CC-RPC-TP-NUW CC-PC-TE-NUW ⊊ Appr.5 + Corollary 3.15

CC-RPC-TP-NUW CC-PC-TP-UW ⊋ Appr.2 + Corollary 3.15

CC-RPC-TP-NUW CC-PC-TP-NUW EQ Corollary 3.11

CC-RPC-TP-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PC-TP-UW INCOMP∗ Appr.1

CC-RPC-TP-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-UW CC-PC-TE-NUW ⊊ Appr.2

CC-PC-TE-UW CC-PC-TP-UW ⊋ Appr.5 + Corollary 3.10

CC-PC-TE-UW CC-PC-TP-NUW INCOMP Appr.2 + Appr.5

CC-PC-TE-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PC-TE-UW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW CC-PC-TP-UW ⊋ Appr.2 + Corollary 3.10

CC-PC-TE-NUW CC-PC-TP-NUW ⊋ Appr.5 + Corollary 3.15

CC-PC-TE-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PC-TE-NUW DC-PC-TP-UW INCOMP∗ Appr.1

144

T T ′ Classification Justification(s)

CC-PC-TE-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-UW CC-PC-TP-NUW ⊊ Appr.2

CC-PC-TP-UW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-UW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-UW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PC-TP-UW DC-PC-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PV-TE-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PV-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PV-TP-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PV-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-RPC-TE-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-RPC-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-RPC-TP-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-RPC-TP-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PC-TE-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PC-TE-NUW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PC-TP-UW INCOMP∗ Appr.1

CC-PC-TP-NUW DC-PC-TP-NUW INCOMP∗ Appr.1

DC-PV-TE-UW DC-PV-TE-NUW EQ Theorem 3.16

DC-PV-TE-UW DC-PV-TP-UW ⊋ Appr.3 + Theorem 3.19

DC-PV-TE-UW DC-PV-TP-NUW ⊋ Appr.2 + Theorem 3.19

DC-PV-TE-UW DC-RPC-TE-UW ⊋ Appr.3 + Corollary 3.11 + Corollary 3.21

DC-PV-TE-UW DC-RPC-TE-NUW ⊋ Appr.3 + Corollary 3.21

DC-PV-TE-UW DC-RPC-TP-UW ⊋ Appr.3 + Theorem 3.12 + Corollaries 3.11 and 3.21

DC-PV-TE-UW DC-RPC-TP-NUW ⊋ Appr.2 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-UW DC-PC-TE-UW ⊋ Appr.3 + Corollary 3.11 + Corollary 3.21

DC-PV-TE-UW DC-PC-TE-NUW ⊋ Appr.3 + Corollary 3.11 + Corollary 3.21

DC-PV-TE-UW DC-PC-TP-UW ⊋ Appr.3 + Corollary 3.11 + Corollary 3.21

DC-PV-TE-UW DC-PC-TP-NUW ⊋ Appr.2 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-NUW DC-PV-TP-UW ⊋ Appr.3 + Theorem 3.19

DC-PV-TE-NUW DC-PV-TP-NUW ⊋ Appr.2 + Theorem 3.19

DC-PV-TE-NUW DC-RPC-TE-UW ⊋ Appr.3 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-NUW DC-RPC-TE-NUW ⊋ Appr.3 + Corollary 3.21

DC-PV-TE-NUW DC-RPC-TP-UW ⊋ Appr.3 + Corollaries 3.11 and 3.21 + Theorem 3.12

DC-PV-TE-NUW DC-RPC-TP-NUW ⊋ Appr.2 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-NUW DC-PC-TE-UW ⊋ Appr.3 + Corollary 3.21 + Corollary 3.11

145

T T ′ Classification Justification(s)

DC-PV-TE-NUW DC-PC-TE-NUW ⊋ Appr.3 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-NUW DC-PC-TP-UW ⊋ Appr.3 + Corollary 3.21 + Corollary 3.11

DC-PV-TE-NUW DC-PC-TP-NUW ⊋ Appr.2 + Corollary 3.21 + Corollary 3.11

DC-PV-TP-UW DC-PV-TP-NUW ⊋ Appr.2

DC-PV-TP-UW DC-RPC-TE-UW ⊋ Appr.4 + Theorem 3.20 + Corollary 3.11

DC-PV-TP-UW DC-RPC-TE-NUW ⊋ Appr.4 + Theorem 3.20

DC-PV-TP-UW DC-RPC-TP-UW ⊋ Appr.4 + Theorems 3.12 and 3.20 + Corollary 3.11

DC-PV-TP-UW DC-RPC-TP-NUW ⊋ Appr.2 + Corollary 3.15

DC-PV-TP-UW DC-PC-TE-UW ⊋ Appr.4 + Theorem 3.20 + Corollary 3.11

DC-PV-TP-UW DC-PC-TE-NUW ⊋ Appr.4 + Theorem 3.20 + Corollary 3.11

DC-PV-TP-UW DC-PC-TP-UW ⊋ Appr.4 + Theorem 3.20 + Corollary 3.11

DC-PV-TP-UW DC-PC-TP-NUW ⊋ Appr.2 + Corollary 3.15

DC-PV-TP-NUW DC-RPC-TE-UW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-RPC-TE-NUW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-RPC-TP-UW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-RPC-TP-NUW ⊋ Appr.4 + Theorem 3.1 + Theorem 3.20

DC-PV-TP-NUW DC-PC-TE-UW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-PC-TE-NUW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-PC-TP-UW INCOMP Appr.2 + Appr.8

DC-PV-TP-NUW DC-PC-TP-NUW ⊋ Appr.4 + Theorem 3.1 + Theorem 3.20

DC-RPC-TE-UW DC-RPC-TE-NUW EQ Corollary 3.11

DC-RPC-TE-UW DC-RPC-TP-UW EQ Corollary 3.11 + Corollary 3.11

DC-RPC-TE-UW DC-RPC-TP-NUW ⊋ Appr.2 + Theorem 3.1

DC-RPC-TE-UW DC-PC-TE-UW EQ Corollary 3.11

DC-RPC-TE-UW DC-PC-TE-NUW EQ Corollary 3.11

DC-RPC-TE-UW DC-PC-TP-UW EQ Corollary 3.11 + Corollary 3.11

DC-RPC-TE-UW DC-PC-TP-NUW ⊋ Appr.2 + Theorem 3.1

DC-RPC-TE-NUW DC-RPC-TP-UW EQ Corollary 3.11

DC-RPC-TE-NUW DC-RPC-TP-NUW ⊋ Appr.2 + Theorem 3.1

DC-RPC-TE-NUW DC-PC-TE-UW EQ Corollary 3.11

DC-RPC-TE-NUW DC-PC-TE-NUW EQ Corollary 3.11

DC-RPC-TE-NUW DC-PC-TP-UW EQ Corollary 3.11

DC-RPC-TE-NUW DC-PC-TP-NUW ⊋ Appr.2 + Theorem 3.1

DC-RPC-TP-UW DC-RPC-TP-NUW ⊋ Appr.2

DC-RPC-TP-UW DC-PC-TE-UW EQ Corollary 3.11 + Theorem 3.12

DC-RPC-TP-UW DC-PC-TE-NUW EQ Corollary 3.11 + Theorem 3.12

DC-RPC-TP-UW DC-PC-TP-UW EQ Theorem 3.12

DC-RPC-TP-UW DC-PC-TP-NUW ⊋ Appr.2 + Theorems 3.1 and 3.12 + Corollary 3.11

DC-RPC-TP-NUW DC-PC-TE-UW ⊊ Appr.2 + Theorem 3.1 + Corollary 3.11

DC-RPC-TP-NUW DC-PC-TE-NUW ⊊ Appr.2 + Theorem 3.1 + Corollary 3.11

DC-RPC-TP-NUW DC-PC-TP-UW ⊊ Appr.2 + Theorem 3.1 + Corollary 3.11

DC-RPC-TP-NUW DC-PC-TP-NUW EQ Corollary 3.11

DC-PC-TE-UW DC-PC-TE-NUW EQ Corollary 3.11

DC-PC-TE-UW DC-PC-TP-UW EQ Corollary 3.11 + Corollary 3.11

146

T T ′ Classification Justification(s)

DC-PC-TE-UW DC-PC-TP-NUW ⊋ Appr.2 + Theorem 3.1 + Corollary 3.11

DC-PC-TE-NUW DC-PC-TP-UW EQ Corollary 3.11 + Corollary 3.11

DC-PC-TE-NUW DC-PC-TP-NUW ⊋ Appr.2 + Theorem 3.1 + Corollary 3.11

DC-PC-TP-UW DC-PC-TP-NUW ⊋ Appr.2

CC-AC-UW CC-AC-NUW ⊊ Appr.11

CC-AC-UW DC-AC-UW INCOMP Appr.13 + Appr.11

CC-AC-UW DC-AC-NUW INCOMP Appr.13 + Appr.12

CC-AC-NUW DC-AC-UW INCOMP Appr.13 + Appr.12

CC-AC-NUW DC-AC-NUW INCOMP Appr.13 + Appr.12

DC-AC-UW DC-AC-NUW ⊋ Appr.11

CC-DC-UW CC-DC-NUW ⊊ Appr.14

CC-DC-UW CC-DV-UW INCOMP Appr.15 + Appr.19

CC-DC-UW CC-DV-NUW INCOMP Appr.20 + Appr.14

CC-DC-UW DC-DC-UW INCOMP Appr.23 + Appr.14

CC-DC-UW DC-DC-NUW INCOMP∗ Appr.10

CC-DC-UW DC-DV-UW INCOMP Appr.23 + Appr.14

CC-DC-UW DC-DV-NUW INCOMP∗ Appr.10

CC-DC-NUW CC-DV-UW INCOMP Appr.14 + Appr.21

CC-DC-NUW CC-DV-NUW INCOMP Appr.16 + Appr.20

CC-DC-NUW DC-DC-UW INCOMP Appr.23 + Appr.16

CC-DC-NUW DC-DC-NUW INCOMP∗ Appr.29

CC-DC-NUW DC-DV-UW INCOMP∗ Appr.29

CC-DC-NUW DC-DV-NUW INCOMP∗ Appr.29

CC-DV-UW CC-DV-NUW ⊊ Appr.14

CC-DV-UW DC-DC-UW INCOMP Appr.23 + Appr.14

CC-DV-UW DC-DC-NUW INCOMP Appr.23 + Appr.16

CC-DV-UW DC-DV-UW INCOMP Appr.23 + Appr.14

CC-DV-UW DC-DV-NUW INCOMP Appr.23 + Appr.16

CC-DV-NUW DC-DC-UW INCOMP Appr.23 + Appr.17

CC-DV-NUW DC-DC-NUW INCOMP∗ Appr.29

CC-DV-NUW DC-DV-UW INCOMP Appr.23 + Appr.17

CC-DV-NUW DC-DV-NUW INCOMP∗ Appr.29

DC-DC-UW DC-DC-NUW ⊋ Appr.14

DC-DC-UW DC-DV-UW ⊊ Theorem 3.6 + Appr.18

DC-DC-UW DC-DV-NUW INCOMP Appr.14 + Appr.22

DC-DC-NUW DC-DV-UW ⊊ Theorem 3.6 + Appr.18

DC-DC-NUW DC-DV-NUW ⊊ Theorem 3.7 + Appr.19

DC-DV-UW DC-DV-NUW ⊋ Appr.14

CC-AV-UW CC-AV-NUW ⊊ Appr.24

CC-AV-UW DC-AV-UW INCOMP Appr.25 + Appr.24

CC-AV-UW DC-AV-NUW INCOMP Appr.25 + Appr.24

CC-AV-NUW DC-AV-UW INCOMP Appr.25 + Appr.26

CC-AV-NUW DC-AV-NUW INCOMP Appr.25 + Appr.26

DC-AV-UW DC-AV-NUW ⊋ Appr.27

147

T T ′ Classification Justification(s)

CC-UAC-UW CC-UAC-NUW ⊊ Appr.30

CC-UAC-UW DC-UAC-UW INCOMP Appr.28 + Appr.24

CC-UAC-UW DC-UAC-NUW INCOMP Appr.28 + Appr.24

CC-UAC-NUW DC-UAC-UW INCOMP Appr.28 + Appr.24

CC-UAC-NUW DC-UAC-NUW INCOMP Appr.28 + Appr.24

DC-UAC-UW DC-UAC-NUW ⊋ Appr.30

148

B Verifying Claimed

Separations and Collapses in

Complexity Theory

This section briefly summarizes additional work performed in conjunction with 15

different undergraduate students that has resulted in six technical reports (Car-

leton et al., 2021; Chavrimootoo and Welles, 2021; Chavrimootoo et al., 2022,

2023a,b,c) that refute claims to have resolved longstanding open problem in com-

plexity theory. Part of the goal of these projects was to get undergraduate students

acquainted with doing research in TCS and with writing research papers.

B.1 A Critique of Keum-Bae Cho’s Proof that

P ⊊ NP

This paper (Carleton et al., 2021) critiques a claimed proof that P ⊊ NP by

Cho (2018). Their purported proof restricts its attention to resolution-based

algorithms for 3-SAT, and attempts to give a lower bound on the complexity

of 3-SAT by leveraging that restriction. We pinpoint the error in their main

purported proof: they misuse one of their own lemmas by making an unproven

generalization, thereby drawing the wrong conclusion. We also note that their

149

work ignores already established superpolynomial lower bounds on methods using

resolution (Haken, 1985; Ben-Sasson and Wigderson, 2001).

B.2 A Critique of Kumar’s “Necessary and

Sufficient Condition for Satisfiability of a

Boolean Formula in CNF and Its Implica-

tions on P versus NP Problem”

In their paper, Manoj (2021) claim to give a polynomial-time algorithm for CNF-

SAT, thus claiming that P = NP. Their algorithm constructs a tree-like structure

from input formulas and then repeatedly prunes the tree to determine whether a

given formula is satisfiable. In our critique (Chavrimootoo and Welles, 2021), we

give a family of boolean formulas and show that the tree-like structure constructed

by Kumar’s algorithm uses an exponential amount of time and space when the

input is in that family, thereby making their claim erroneous.

B.3 A Critique of Sopin’s “PH = PSPACE”

Sopin (2014) claims to show that PH = PSPACE by showing that the well-known

PSPACE-complete problem QBF lies in Πp
4 (a level of the so-called polynomial

hierarchy). Their paper first establishes a known result about Skolem functions,

and then proceeds to give a purported proof that QBF ∈ Πp
4. However, we ar-

gue that their purported proof fails to achieve its goal. We also argue that their

attempted proof makes an implicit assumption, and we prove that the aforemen-

tioned assumption has far more dramatic consequences that what they claim to

establish (Chavrimootoo et al., 2023a).

150

B.4 A Closer Look at Some Recent Proof

Compression-Related Claims

In a series of peer-reviewed publications Gordeev and Haeusler (2019, 2020, 2022)

claim to resolve a longstanding open problem in complexity theory, namely that

NP = PSPACE. Roughly speaking, they (1) claim that the problem of deciding

if a formula is provable in minimal propositional logic is PSPACE-complete, and

(2) build a framework to show that each formula that is provable in minimal

propositional logic has a proof whose length is polynomial in the size of the formula

(and they do so via a notion of proof compression). We find that (1) is not known

to hold, and thus they have no such proof, and (2) fails to hold because they

convert sentences in minimal propositional logic to a weaker logic system that is

not complete for minimal propositional logic, hence making their bound seem to

hold for that weaker system.

B.5 Evaluating the Claims of “SAT Requires

Exhaustive Search”

Xu and Zhou (2023) give a purported proof of the Strong Exponential Time Hy-

pothesis (SETH)—which states that for each positive real-valued constant c < 1,

SAT cannot be solved in O(2cn)—which is a stronger claim than P ̸= NP. They

build their work off of a random CSP (Constraint Satisfaction Problem) model

called Model RB, and claim to establish a lower bound on that problem’s com-

plexity. However, we note (Chavrimootoo et al., 2023b) that they make several

assumptions that are presented without proof. Namely, they claim that an algo-

rithm for Model RB must be a divide-and-conquer algorithm, and they leverage a

downward self-reducibility approach to claim that, in conjunction with the divide-

151

and-conquer assumption, that such a subexponential-time algorithm for Model RB

cannot exist. However, they fail to present a proof that the self-reducibility struc-

ture does exist, and so fail to reach their conclusion. Moreover, the claim that

SETH is true relies on an encoding of CSPs into boolean formulas by Walsh (2000).

That encoding however was designed to relate two decision problems. Model RB,

however, describes a distributional problem—a pair (L, µ) where L is a language

and µ is a distribution—and so the encoding of Walsh is not known to establish

any such meaningful relationship.

B.6 On Czerwinski’s “P ̸= NP Relative to a P-

Complete Oracle”

Czerwinski (2023) claims to construct a P-complete oracle relative to which P

and NP differ. Though there are (uncountably) many oracles relative to which P

and NP differ, their paper’s claim is far more ambitious than it claims to be: It

is well-known that for every A ∈ P, PA ̸= NPA ⇐⇒ P ̸= NP, as NPA = NP

and PA = P. Czwerwinski’s paper presents two undecidable sets DP and DNP

and claims that any deterministic oracle machine that both accepts DP and has

DNP as its oracle must make h(n) (for some h(n) = Θ(2n)) queries to its oracle

on each input of length n. They then attempt to use that claim to argue that

an oracle machine accepting some NP set and having a P-complete set as oracle

must make h(n) calls to their oracle. However, we prove that DP and DNP are

both Σ0
1-complete (Chavrimootoo et al., 2023c) and thus recursively isomorphic.

This in turn implies that a machine that accepts DP, halts on every input when

its oracle is DNP, and only makes one oracle call certainly exists. And if we drop

the requirement that the machine needs to halt on every (nonaccepting) input,

then a machine that makes zero oracle calls and yet accepts DP clearly exists.

	Biographical Sketch
	Acknowledgments
	Abstract
	Contributors and Funding Sources
	List of Tables
	List of Figures
	Introduction
	Preliminaries
	Complexity Theory
	Voting Theory
	Electoral Control
	Ambiguity-Bounded Versions of NP
	Hardness of Games

	Separating and Collapsing Electoral Control Types
	Introduction
	Results in the General Case
	Results about Plurality
	Results about Veto
	Results about Approval
	Conclusion and Open Directions

	Search versus Search for Collapsing Electoral Control Types
	Introduction
	Search Notions for Control Types: Reducibility and Complexity
	Search Reducibilities
	Search Complexities

	Search Equivalences for the Collapses of Hemaspaandra et al. (2020)
	Search Equivalences for the New Collapses of Chapter 3
	Concrete Search Complexities of Collapsing Electoral Control Types
	Conclusion and Open Directions

	Linked Fates: Expanding the Range of Ambiguity-Based Class Pairs Known to Stand or Fall Together
	Introduction
	Main Results
	Related Work
	Conclusions and Open Problems

	Defying Gravity and Gadget Numerosity: The Complexity of the Hanano Puzzle
	Introduction
	Related Work
	The Hanano Puzzle
	Overview of the Approach
	Gadgets and Schemas
	Main Result
	Conclusion and Open Problems

	Bibliography
	Tables Relating to Separating and Collapsing Electoral Control Types
	Compatible Control Types
	Tables
	Plurality Tables
	Veto Tables
	Approval-Voting Tables

	Verifying Claimed Separations and Collapses in Complexity Theory
	A Critique of Keum-Bae Cho's Proof that P is a strict subset of NP
	A Critique of Kumar's ``Necessary and Sufficient Condition for Satisfiability of a Boolean Formula in CNF and Its Implications on P versus NP Problem''
	A Critique of Sopin's ``PH = PSPACE''
	A Closer Look at Some Recent Proof Compression-Related Claims
	Evaluating the Claims of ``SAT Requires Exhaustive Search''
	On Czerwinski's ``P = NP Relative to a P-Complete Oracle''

