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Abstract: Control of anode relative humidity is crucial for optimal hydration and performance in proton
exchange membrane (PEM) fuel cells. Accurate predictive models can be essential to enabling real-time
control of humidity. This study applies the Koopman operator with radial basis function (RBF) and time-
delay embeddings as observables in an extended dynamic mode decomposition (EDMD) framework, to
predict anode relative humidity and stack voltage in a SkW open-cathode PEM fuel cell stack. The
performance of the Koopman approaches is compared to a NARX neural network. The Koopman model
with time delay embeddings as the basis function consistently outperformed that with RBF across all
prediction horizons investigated. Particularly at a 5-step prediction horizon, the RBF EDMD recorded
RMSE of 0.61% and 1.17V for humidity and voltage respectively while the time-delay EDMD
demonstrated exceptional performance, achieving RMSE on the order of 1073 for both outputs. The
NARX model with random data division showed competitive results (RMSE of 0.77% and 1.05V) but
deteriorated in performance (RMSE of 2.97% and 2.01V) when tested on unseen data. These findings
highlight the effectiveness of the Koopman operator, especially with time-delay embeddings as coordinate
basis. Additionally, the linearity of the Koopman model enables easy integration with established linear

control strategies.
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1. INTRODUCTION

Proton exchange membrane (PEM) fuel cells represent a
promising clean energy technology due to their high efficiency
and reduced environmental impact compared to fossil fuels.
Achieving optimal performance in PEM fuel cells relies on
effective water management, as membrane hydration is crucial
to their operation. Experimental studies have shown that
membrane humidity has a more significant impact on
performance than stack temperature (Morner & Klein, 2001).
(Zeng et al., 2019) found through experiments that high
airflow rates led to a decrease in cell voltage due to excessive
membrane dehydration. Given that membrane hydration is
influenced by the relative humidity at both the anode and
cathode, precise control of anode humidity is key to ensuring
optimal fuel cell performance.

Control strategies often rely on physics-based models for
predicting relative humidity in PEM fuel cells. (Pukrushpan et
al. 2004) developed a model to predict relative humidity in the
anode and cathode based on conservation of mass. Building on
this approach, (Headley, 2013) proposed a dynamic
subdivided model to analyze variation in relative humidity.
However, the nonlinear nature of the PEM fuel cell stack
makes the development of physics-based models challenging.
Recently, machine learning approaches have gained traction,
as they can simplify model development while maintaining
predictive accuracy. Artificial neural networks (ANN) and
support vector machines (SVM) have been used to predict
membrane hydration, and ANN was shown to perform better
than SVM (Legala et al., 2022). Similarly, (H. Huo et al.,

2023) developed an ANN model to predict membrane water
content, demonstrating superior performance over SVM.
Despite their effectiveness, traditional ANNs are static models
that lack memory, limiting their ability to capture dynamic
behaviors. Dynamic neural networks, such as the nonlinear
autoregressive with exogenous inputs (NARX) network,
overcome this limitation by incorporating feedback
mechanisms to handle temporal dependencies in the data. (Da
Costa Lopes et al., 2015) used a NARX network to accurately
predict voltage in a control-oriented PEM fuel cell model. Cho
et al. (2022) applied a NARX network in a model predictive
control framework to optimize membrane hydration.
However, the nonlinear nature of these networks often
necessitates the use of complex control algorithms or
linearization techniques to integrate with linear control theory.

Linear representations are therefore preferable due to the
availability of well-established linear control theory. A
promising approach to achieve this is the Koopman operator,
introduced by (Koopman & Neumann, 1932), which enables
linear representation of nonlinear dynamics in an infinite-
dimensional space of observables. Finite-dimensional
approximation of the Koopman operator can be achieved with
dynamic mode decomposition (DMD). Standard DMD,
however, relies on linear state measurements, limiting its
ability to capture complex nonlinearities. Extended DMD
addresses this by using nonlinear observables or basis
functions, to lift the states to a higher-dimensional space,
where the dynamics can be more accurately approximated as
linear (Korda & Mezi¢, 2016). The success of EDMD depends
on the choice of observables; poorly selected observables may
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miss essential dynamics, while excessive observables risk
overfitting. Additionally, observable selection is often system-
specific and requires tailoring to each application. While the
optimal set of observables is not known a priori and is usually
determined through the use of trial basis functions, radial basis
functions (RBF) are commonly used. In fuel cell modeling, (D.
Huo et al., 2023) applied the Koopman operator to model an
open-cathode PEM fuel cell stack, employing RBF as
observables, but did not predict water activity in this study.

Time-delay embedding, which involves incorporating past
state information into dynamical system models, has emerged
as an effective coordinate basis for finite approximation of the
Koopman operator (Pan & Duraisamy, 2020). This approach
is supported by the Takens embedding theorem (Takens,
1980). By augmenting a system’s states with delayed versions,
each dimension reflects a different time delay, effectively
capturing the system’s temporal dynamics. This concept is
integral to NARX models where the delayed targets and inputs
enhance predictive accuracy.

The primary contribution of this paper is the application of the
Koopman operator for predicting the anode relative humidity
in an open-cathode PEM fuel cell stack, with a specific focus
on comparing the performance of RBF and time-delay
embeddings as basis functions for finite approximation of the
Koopman operator. In this study the effectiveness of these
basis functions in predicting anode relative humidity and
voltage in a 5kW open-cathode PEM fuel cell stack is
evaluated. The performance of the Koopman models is then
compared to that of a NARX neural network.

2. EXPERIMENTAL CONFIGURATION

2.1 Experimental Setup

The models are based on the experimental setup shown in
Figure 1. The fuel cell stack is a SkW open-cathode stack from
Horizon, featuring 120 cells in series, each with an active area
of 150 cm?. Air is supplied by four blowers operating within a
pulse width modulation (PWM) range of 20% to 90%.
Hydrogen of 99.99% purity is sourced from a pressurized tank.
Each cell has four anode channels and 81 cathode channels.
The stack includes a manufacturer-built controller that
monitors current, voltage, and temperature. A mass flow
controller from Aalborg measures hydrogen inlet pressure and
flow rate, while a Vaisala humidity sensor, installed via a gas
sampling cell, measures the dew point temperature at the
anode outlet.

2.2 Experimental Test Procedure

To generate training and testing data, experimental tests were
conducted at varying current loads across three fan PWM
settings—20%, 55%, and 90%—referred to as dataset 1,
dataset 2, and dataset 3, respectively. As shown in Figure 2,
the maximum allowable current load decreases with reduced
PWM to prevent overheating of the PEM fuel cell stack.

Datasets 1 and 2 provided transient data for training the
Koopman model, while dataset 3’s transient data were used for
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Figure 2: Load test points

testing. The PEM fuel cell stack first underwent a 30-minute
warm-up to ensure adequate humidification before the test.
During this time, the load was initially set to 0A, while the
Aalborg mass flow controller recorded hydrogen gas flow rate,
temperature, and pressure. Simultaneously, the in-built
controller monitored the current, voltage, and stack
temperature, and a humidity sensor at the anode outlet
measured the dew point temperature. The dew point data,
combined with stack temperature, was used to calculate the
relative humidity. Data were logged for approximately 5
minutes at each load for datasets 1 and 2, while dataset 3
involved an extended 10-minute logging period to ensure
adequate load coverage for time-delay embedding analysis.
Data from all instruments were synchronized in LabVIEW at
a consistent 0.5-second sampling rate.

3. MODEL DEVELOPMENT

3.1 Koopman Model

Consider a discrete-time nonlinear controlled dynamical
system

X1 = f (oo wye) (1

where k is the current step, x € R™ represents the state of the
system with n dimensions, u € R™ is the control input with
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m dimensions, and f is the transion mapping. The Koopman
operator, J:F— F is a linear operator that acts on nonlinear
observable functions g: R™ - RN, where F is a space of
observables invariant under the action of the Koopman
operator. The operator can be expressed by

(Ko)(x) = o(f(x)) 2

where g(f (x)) is the basis function of the future state obtained
by applying the transition mapping f to the current state.

In this system, the states and inputs are defined as
x = [RHun, Vs, Tst,PHz,] (3)
u=[PWM,I]

where RH,, is the anode relative humidity, V;; is the stack
voltage, Ty, is the stack temperature and Py, is the hydrogen
inlet pressure. The inputs are the fan’s PWM and the stack
current. ;.

The predictors being sought are of the form
Zrk+1 — AZk + Buk (4)
y=Cz

where z € RV with (typically) N>>n, and y is the prediction
of z, B € RM™ and C € R™". The state z is known as the
lifted state since it evolves on a higher dimensional lifted
space. The lifted state z is an augmented state of the original
state with its transformed coordinates and as such the lifted
state z can be described as

z= [xl,xz,x3,x4, @5 (x) ---,Q’N(X)IT ®)

3.1.1 RBF as Basis Function

Radial basis functions (RBF) are a common choice of
observables for finite approximation of the Koopman operator.
The thin plate spline (TPS) RBF was selected as the preferred
RBF due to its simplicity, as it avoids the need for additional
scaling parameters required by other RBF types. To
implement TPS RBF, the radial distance, r is computed
between the data and randomly generated centers. The TPS
RBF can be calculated by

Brps(r) = r2In(r) (6)

Four RBF feature dimensions (5, 10, 25, and 50) were
investigated to determine the optimal parameters for the
Koopman model. These values were chosen to provide a
structured comparison across a range of model complexities,
while keeping computational cost manageable. The dimension
with the lowest average RMSE was selected as the optimal
model. Considering a trade-off between prediction accuracy
and computational cost, an RBF dimension of 25 was selected
as optimal. An RBF dimension of 100 was also tested but was
discarded, as it led to overfitting.

3.1.2 Time-Delay Embedding as Basis Function

Delay embedding is the process of lifting a time series signal
x(t) into a higher dimensional space by stacking it with time-
shifted copies of itself x(t-t) (Dylewsky et al., 2020). To
implement Koopman with delay embedding the states of the
system are arranged into snapshot matrices as shown in (7) and

8).
o Xp-1] (7)
X' = [x3, %3, e, Xp] ®)

X = [xl,xz,..

The subscripts represent the time step. For instance, xj, is the
state at time step h. New augmented data matrices are created
with the form:

X1 X2 Xh-d
N
X2 X3 Xh-d+1 9)
I I I
Xa  Xd+1 Xh-1
I I I
X2 X3 o Xh-d+1
P O I
X3 X4 Xh-d+2 (10)
I I I
Xd+1  Xd+2z o Xh

The input matrix though not augmented, is time-shifted
according to

(11

Yonitted = [Ua+1, Uz, o) Up1]
in which d is the number of delay embeddings.

Two hyperparameters are key in time-delay embeddings: the
number of delay embeddings d and the embedding period T<.
For uniformly sampled data, the embedding period is given by
T = dAt, where At is the sampling interval. In this study, At
is set to 0.5s to align with sampling rate of the in-built
controller of the PEM fuel cell stack. Four different delay
embeddings (5, 10, 15, 20) were tested, selected to explore
how varying embedding length impacts prediction accuracy. It
was found that 10 delays representing a 5-second embedding
period provided the best balance of accuracy and
computational efficiency.

3.1.3 State Space Model Determination

Once the lifted states are obtained, the DMD with control
(DMDc) algorithm can then be applied to determine the system
matrices. For system identification with DMDec, the following
steps are required (Proctor et al., 2014).

First, the lifted state variables are collected into a snapshot pair
of matrices

(12)
(13)

Z = 21,22, ) Zy_1]

Z' =2y, 23, o, Zp]
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where Z represents the lifted data for the current time step and
Z' represents the time-shifted lifted states. The inputs to the
system are similarly arranged into a single matrix given by

Y = [ul, uz, ...,uh_l] (14)

For time-delay embedding, Ysp;fteq as described in Equation
(11) is used. An augmented matrix is then built as below

7' = [AB] []Z[] = GO (15)

A truncated singular value decomposition (SVD) is then
performed on the input space ( with truncation p set to match
the number of rows in () for this study.

Q~UEV” (16)
G can then be approximated as
G~ Z'VE'D" amn
Similarly, A and B can be approximated as
A= Z'VET"
B~ Z'VE'UY (18)

where U, € RV? | [T, € R* and U = [0, T,]"
The matrix C can be computed by (Williams et al., 2015)
(19)

where X is the data for the current time step for the original
states as described in Equation (7) and t denotes the
pseudoinverse. In the case of time-delay embeddings, the
matrix C is computed by

c=xzt

C= XshiftedZ-r (20)
where Xgpifteq i the time-shifted version of X according to the
number of delay embeddings. Xgp;rreq is structured as

€2y

Xsniftea = [X1, %2, o) Xp_al

3.2 NARX Neural Network Model

A NARX model is a recurrent dynamic network that relates
current value of a time series to past values of the target and
input. The defining equation of NARX is given by
Ve = f i1, Ve-2r v Ye—pr Xt—1, Xt —2, ---'xt—q) (22)
where y is the target, x is the input, subscripts denote
timesteps, and p and q are the respective delays applied to the
target and input. The target values y can either be the true
output values or the network's predicted outputs. Feeding true
values back into the network creates a series-parallel (open-
loop) configuration, while using predicted outputs define a
parallel (closed-loop) configuration.

The NARX model was developed using MATLAB's Deep
Learning toolbox. The model utilizes current (I;;), PWM,
stack temperature (Ts;), hydrogen inlet mass flow rate (my,),

and hydrogen pressure (Py,) as input, with anode relative
humidity (RH,,) and stack voltage (V) as target outputs. The
choice of these inputs was informed by the system's physical
behavior. Training employed the Levenberg-Marquardt
algorithm with both random and indexed division approaches
to assess robustness. For random division, the entire dataset
was split randomly into 70%, 15% and 15% for training,
validation and testing tests respectively. For indexed division,
datasets 1 and 2 were dedicated to training and validation, with
dataset 3 reserved for testing to ensure no overlap between
training and test sets, like the Koopman approach. The model
architectures explored ranged from 2 to 16 neurons ( 2", n =1
to 4) and delays 5,10 and 25 on the inputs and targets. Each
architecture was trained 10 times to account for variability due
to random weight initialization, and the model with the lowest
mean squared error (MSE) on the validation set was selected
as the optimal model. Early stopping in the toolbox helped
prevent overfitting by halting training when validation loss
plateaued. The optimal architecture for the indexed division
utilized 4 neurons with 5 delays, while the random division
performed best with 8 neurons and 5 delays.

4. RESULTS AND DISCUSSION

4.1 Koopman Test Results

The optimal RBF EDMD and Time-Delay EDMD models
were evaluated on dataset 3 across four prediction horizons,
and the average RMSE are summarized in Table 1. The
prediction horizon determines how much the model relies on
its own predictions for forecasting. Shorter horizons are more
dependent on true data, minimizing error, while longer
horizons may lead to error accumulation due to increased
reliance on the model’s own predictions. The time-delay
EDMD consistently outperformed RBF EDMD in predictive
accuracy across all prediction horizons. Specifically for a 5-
step horizon, the RBF EDMD recorded an RMSE of 0.61%
and 1.17V for relative humidity and stack voltage respectively.
Remarkably, the time-delay EDMD with a 5s embedding
period RMSE on the order of 10™*2 for both outputs. Figures
3 and 4 illustrate the models’ predictions over the 5-step
prediction horizon for anode relative humidity and stack
voltage respectively. While increasing the number of delays
could improve performance further, it comes at a significant
computational cost. For example, using 50 delays at a 50-step
horizon reduces error to as low as 0.0014 but requires over 150
seconds of computation, an impractical time for real-time
control. In contrast, RBF EDMD is limited by overfitting as
dimensionality increases. Thus, when computational resources
permit, time-delay EDMD presents a promising basis for
achieving significantly higher accuracy.

In terms of computational cost, the RBF model requires more
training time due to RBF center optimization, but its
computation time is low once trained. Conversely, time-delay
embedding involves a shorter training time but can incur
higher computational demands on the trained model,
particularly as the number of delay embeddings increases. On



Adwoa S. Adunyah et al. / IFAC PapersOnLine 59-5 (2025) 85-90 89

80 T T 80

!

@
S

@
=}

=
=
Current (A)

Experimentall
EDMD (Time-dslay) \ 130
EDMD (RBF) \
Current \

—
za’—,i

0
0 500 1000 1500 2000 2500
Time (s)

s
=]

Anode Relative Humidity (%)

w
S

Figure 3: Anode humidity prediction for Koopman models
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Figure 4: Stack voltage prediction for Koopman models

average, the 25-dimensional optimal RBF EDMD took Ss to
compute across all prediction horizons while the time-delay
EDMD with 10 delay embeddings took 6.31s (Table 2).
However, the marked improvement in accuracy offered by
time-delay EDMD may justify this slight increase in
computation time. The computations were done on a 1.7GHz
Intel Core i7 with 16GB RAM

4.2 NARX Network Test Results

Figures 5 and 6 depicts the results of NARX model in closed-
loop mode using indexed and random division over a 5-step
prediction horizon for anode relative humidity and stack
voltage respectively. When the data are randomly divided, the
model performs better, benefiting from exposure to a diverse
set of temporal patterns that appear in both training and test
sets, enhancing generalization. In contrast, indexed division,
where the training and test data are sequentially separated,
limits the model’s exposure to relevant patterns in the test data,
leading to decreased performance. For anode relative
humidity, the RMSE decreases from 2.97% with indexed
division to 0.77% with random division, and for stack voltage,
it drops from 2.01V to 1.05V. Particularly with indexed
division, the anode relative humidity exhibits noisier
predictions. This likely stems from the model being trained on
one set of temporal patterns and tested on another, reducing
the ability to capture the data’s variability. In contrast, stack

Table 1: Normalized combined RMSE for test set

Model Prediction horizon
5 10 25 50

RBF 0.0177 | 0.0192 0.0230 0.0262
EDMD

Time-Delay | 0.0000 | 0.0147 0.0159 0.0209
EDMD

NARX 0.0206 | 0.0218 0.0266 0.0375
(random)

NARX 0.0452 | 0.0614 0.0835 0.0973
(indexed)

Table 2: Computation time for models

Model Prediction Horizon

5 10 25 50
RBF 4.40s 4.95s 4.97s 5.71s
EDMD
Time-Delay 5.59s 5.70s 6.42s 7.54s
EDMD
NARX 20.43s | 9.56s 5.58s 4.96s
(random)
NARX 18.80s | 9.00s 5.06s 4.81s
(indexed)

voltage is less affected which may be due to its overall
dynamics following a broader pattern that the model can
capture, enabling better generalization even with indexed
division. A possible solution is to train separate NARX models
for each output, allowing model parameters to be tuned
according to the specific dynamics of each target.

4.3 Comparison of Koopman and NARX models

The results reveal that the NARX network, when employing a
random data division approach, demonstrates comparable
performance to the Koopman operator with RBF as basis. This
suggests that exposing the NARX model to portions of the test
data during training enables it to effectively capture the
system's dynamics. However, the computation time of the
NARX network is significantly higher for shorter prediction
horizons. However, as the prediction horizon increases, the
NARX model becomes more computationally efficient. This
is because, at longer horizons, the NARX model requires fewer
resets, reducing the overall computational burden. For
indexed data division, the NARX model struggles to match the
performance of Koopman-based methods, as it lacks exposure
to the test set patterns during training. In comparison,
Koopman approaches maintain consistent performance even
when tested on completely unseen data. Furthermore, the
NARX model lacks interpretability, whereas Koopman-based
methods provide a clear framework for analyzing important
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system properties such as stability and controllability. The
linearity of the Koopman operator also makes it easier to
integrate with linear control strategies.

5. CONCLUSION

In this study, the performance of the Koopman-based models
with RBF and time-delay embedding as basis functions, and
the NARX neural network for predicting anode relative
humidity and stack voltage of a SkW open-cathode PEM fuel
cell stack is evaluated. Time-delay EDMD achieves the
highest accuracy outperforming both RBF EDMD and the
NARX model. RBF EDMD struggles with overfitting, while
NARX model performs well with random division but lacks
interpretability and struggles with generalization under
indexed indivision. While time-delay EDMD may have a
slightly higher computational cost compared to RBF EDMD,
it still offers significant benefits in terms of accuracy and
system insights. Overall, the Koopman approach, particularly
with time-delay as basis, provides consistent performance and
easier integration with linear control strategies, making it more
suitable for real-time control applications.

80 T T 180
70
60
60 |

50

50 40

Current (A)

Anode Relative Humidity (%)
8

=3

20

Time (s)

Figure 5: Anode relative humidity prediction for NARX model

130 80
120 | 70
160
10§
=
e J—— " 50
@ y——— <
& 100 e z
E 0 5
3 % 3
% 30

80 |

70

80
0

Figure 6: Stack voltage prediction for NARX model
ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation, United States under Grant No. 2135735.

REFERENCES

Cho, Y., Hwang, G., Gbadago, D.Q. & Hwang, S. (2022).
Artificial neural-network-based model predictive control
for optimal operating conditions in proton-exchange
membrane fuel cells. Journal of Cleaner Production,
380(2), 135049.

Da Costa Lopes, F., Watanabe, E. H., & Rolim, L. G. B. (2015).
A Control-Oriented Model of a PEM Fuel Cell Stack
Based on NARX and NOE Neural Networks. /EEE
Transactions on Industrial Electronics, 62(8), 5155-5163.

Dylewsky, D., Kaiser, E., Brunton, S. L., & Kutz, J. N. (2020).
Principal component trajectories for modeling spectrally-
continuous dynamics as forced linear systems.

Han, I., & Chung, C. (2016). Performance prediction and
analysis of a PEM fuel cell operating on pure oxygen
using data-driven models : A comparison of artificial
neural network and support vector machine. International
Journal of Hydrogen Energy, 2—11.

Headley, A. J. (2013). Dynamic Subdivided Relative Humidity
Model of a Polymer Electrolyte Membrane Fuel Cell
APPROVED BY SUPERVISING COMMITTEE : May.

Huo, D., Peng, Q., & Hall, C. M. (2023). Koopman-Based
Modeling of an Open Cathode Proton Exchange
Membrane Fuel Cell Stack. IFAC-PapersOnLine, 56(3),
67-72.

Huo, H., Chen, J., Wang, K., Wang, F., Jin, G., & Chen, F.
(2023). State Estimation of Membrane Water Content of
PEMFC Based on GA-BP Neural Network. Sustainability
(Switzerland), 15(11).

Koopman, B. O., & Neumann, J. V. (1932). Dynamical Systems
of Continuous Spectra (Vol. 18, Issue 3).

Korda, M., & Mezi¢, 1. (2016). Linear predictors for nonlinear
dynamical systems: Koopman operator meets model
predictive control.

Legala, A., Zhao, J., & Li, X. (2022). Machine learning
modeling for proton exchange membrane fuel cell
performance. Energy and Al, 10(July), 100183.

Morner, S. O., & Klein, S. A. (2001). Experimental evaluation
of the dynamic behavior of an air-breathing fuel cell stack.
Journal of Solar Energy Engineering, Transactions of the
ASME, 123(3), 225-231.

Pan, S., & Duraisamy, K. (2020). On the structure of time-delay
embedding in linear models of non-linear dynamical
systems. Chaos, 30(7).

Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2014). Dynamic
mode decomposition with control.

Pukrushpan, J. T., Peng, H., & Stefanopoulou, A. G. (2004).
Control-oriented modeling and analysis for automotive
fuel cell systems. Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME,
126(1), 14-25.

Takens, F. (1980). Detecting strange attractors in turbulence.

Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A
data-driven approximation of the Koopman operator:
Extending dynamic mode decomposition. Journal of
Nonlinear Science,25, 1307-1346.

Zeng, T., Zhang, C., Huang, Z., Li, M., Chan, S. H., Li, Q., &
Wu, X. (2019). Experimental investigation on the
mechanism of variable fan speed control in Open cathode
PEM fuel cell. International Journal of Hydrogen Energy,
44(43), 24017-24027.



