2024 |EEE High Performance Extreme Computing Conference (HPEC) | 979-8-3503-8713-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/HPEC62836.2024.10938472

Investigating Resilience of Loops in HPC
Programs: A Semantic Approach with LLMs

Hailong Jiang!”, Jianfeng Zhu'!, Bo Fang?, Chao Chen® and Qiang Guan'*
'Department of Computer Science, Kent State University, Kent, OH, USA
{hjiang13, jzhul0, qguan}@kent.edu
2Paciﬁc Northwest National Laboratory, Richland, WA, USA
bo.fang@pnnl.gov
3Intel Corporation, Santa Clara, CA, USA
chao.chen@intel.com

Abstract—Transient hardware faults, resulting from
particle strikes, are significant concerns in High-
Performance Computing (HPC) systems. As these sys-
tems scale, the likelihood of soft errors rises. Traditional
methods like Error-Correcting Codes (ECCs) and check-
pointing address many of these errors, but some evade
detection, leading to silent data corruptions (SDCs). This
paper evaluates the resilience of HPC program loops,
which are crucial for performance and error handling,
by analyzing their computational patterns, known as the
thirteen dwarfs of parallelism. We employ fault injection
techniques to quantify SDC rates and utilize Large
Language Models (LLMs) with prompt engineering to
identify the loop semantics of the dwarfs in real source
code. Our contributions include defining and summa-
rizing loop patterns for each dwarf, quantifying their
resilience, and leveraging LLMs for precise identification
of these patterns. These insights enhance the understand-
ing of loop resilience, aiding in the development of more
resilient HPC applications.

Index Terms—Resilience, Soft errors, Loops, HPC
programs, Large Language Models

I. INTRODUCTION

Transient hardware faults, often resulting from
particle strikes, are significant concerns in High-
Performance Computing (HPC) systems [1]. As HPC
systems continue to scale, the likelihood of soft errors
also rises [2]. While hardware-level and system-level
mechanisms, such as Error-Correcting Codes (ECCs)
and checkpointing/restart schemes, can detect and cor-
rect many soft errors, some errors evade these mea-
sures and propagate to applications [3]. These unde-
tected errors can lead to application failures and severe
outcomes, including silent data corruptions (SDCs).
Therefore, implementing resilience approaches to en-
sure the correctness of HPC programs is crucial.

The duplication technique is a space-time trade-off
method that executes the program twice to compare
results and detect errors [4]. However, the duplication
approach requires up to twice the resources. The
challenge of applying duplication in HPC programs is
to reduce the volume of duplication needed. Through
experiments, Hussain [5] demonstrates that partial du-
plication for HPC programs typically yields higher per-

Thanks to the support partially from NSF #2217104 #2212465.

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

formance under different node failure rates compared
to full duplication. However, the partial duplication
scheme necessitates an understanding of which parts
of the program are more error-prone.

HPC applications typically consist of many loops.
A main computation loop in a scientific simulation
workload often dominates the execution time. Within
this main loop, several inner loops are typically used
to update large data objects (e.g., a mesh structure in
computational fluid dynamics) and perform iterative
computations to determine the properties of these
objects, such as the energy of particles. Since loops
in HPC programs consume the most execution time
and resources, it is reasonable to allocate limited du-
plication resources to the most critical loops. However,
there remains a gap in implementing partial duplication
for loops: determining the vulnerability ranking of
loops within a program.

Previous research has demonstrated that the seman-
tics of code significantly influence the resilience of
HPC programs by affecting error propagation [6]. B.
Fang et al. [7] showed that the variability in the SDC
rate is closely related to the computational patterns
of applications. Their study categorized benchmarks
into five resilience categories based on the ’seven
dwarfs of parallelism,” which are common computa-
tional patterns in parallel applications [8]. They found
that benchmarks within the same dwarf exhibit similar
SDC rates. By measuring the SDC rates, Fang et al.
[7] quantified the resilience of specific computational
patterns. Since these dwarfs are primarily realized
through loops, identifying loops that correspond to
specific dwarfs enables the prediction of the SDC rate
for those loops. However, they did not establish a
mapping between loop patterns and

To improve scalability across diverse codebases and
leverage advanced natural language processing tech-
niques for more precise and automated analysis of
these patterns, we introduce Large Language Models
(LLMs), especially those based on the transformer
architecture like GPT-4 [9]. Recent studies [10]-
[15] have demonstrated the effectiveness of LLMs
in various programming tasks (e.g., code generation,

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

translation, completion), yielding impressive results.
Pioneering studies [13], [16] have begun to explore
the application of LLMs in the HPC domain, such
as parallel code generation, indicating a promising
synergy between large language models and HPC [17].
A recent survey [18] highlights the need for more chal-
lenging tasks to evaluate LLMs’ reasoning abilities,
particularly in vulnerability detection. This capability
has profound implications for potential applications
of LLMs in other tasks requiring understanding and
reasoning about code semantics. Furthermore, LLMs
are ushering in a new era of prompt engineering,
which demands new skills from software engineers.
Researchers have proposed methods like Automatic
Semantic Augmentation of Prompts for software en-
gineering tasks [19].

While prior work has established a link between
code semantics and resilience, no studies have specif-
ically assessed loop resilience in HPC programs
through a semantic approach using LLMs. This paper
aims to fill the gap by evaluating the resilience of loops
from a semantic perspective. We aim to answer the
following research questions:

m RQI: How can computational patterns, known as
dwarfs, be identified from source code using their
loop semantics?

RQ2: How do SDC rates vary among HPC com-
putational patterns, and what does this reveal about
their resilience to soft errors?

RQ3: How can Large Language Models (LLMs) be
used to accurately identify the loop semantics of the
13 dwarfs in real HPC applications?

To answer these questions, we need to undertake
several key steps. First, we must define and summarize
the loop patterns that correspond to each of the thirteen
dwarfs of parallelism. Second, we will employ fault
injection (FI) techniques to quantify the SDC rates of
each of the thirteen dwarfs. Lastly, we will leverage
Large Language Models (LLMs) with prompt engi-
neering to identify these dwarfs in real source code.
This approach will enable us to automatically detect
and categorize loop patterns within HPC applications,
facilitating the prediction and enhancement of their
resilience to soft errors.

Our work makes the following contributions:
Mapping between Loop Patterns and Dwarfs:
We systematically define and summarize the loop
patterns associated with each of the thirteen dwarfs
of parallelism.

SDC Rate Inspection across Computational Pat-
terns: We measured the SDC rates of thirteen com-
putational patterns (dwarfs) to provide a detailed
analysis of their resilience to soft errors.
Identification of Dwarfs by LLMs: Our language
models (LLMs), with prompt engineering, accu-
rately identify and categorize loop patterns within
real source code and IR code compiled from LLVM.
The rest of this paper is organized as follows:

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

2

Section II covers background information. Section III
summarizes the patterns and loops associated with the
thirteen dwarfs of parallelism. Section IV details our
methodology for SDC rate analysis across computa-
tional patterns. Section V describes our approach to
identifying dwarfs in real source code using Large
Language Models (LLMs) with prompt engineering.
Section VI discusses our findings and implications, and
Section VII presents our conclusions.

II. BACKGROUND

In this section, we describe the background of loops,
the terms related to resilience, the fault model, and the
concept of loop semantics.

A. Fault Model

In this paper, we consider soft errors that occur in
the computational elements of the processor, including
the pipeline register and functional units. We do not
consider faults in the memory or caches, as we assume
these are protected with error correction codes (ECC).
The study by Sangchoolie et al. [20] demonstrates
that the consequences of multi-bit errors are similar
to those of single-bit errors, leading us to prioritize
single-bit errors in our analysis. Additionally, we focus
on single-bit errors to ensure clarity and precision in
our research approach. Our fault model is in line with
other work in the area [21]-[23].

B. Common Metrics for Measuring Resilience

Fault Injection (FI) [24]-[32] is the dominant tech-
nique for evaluating the resilience of applications
against errors in HPC systems. This method involves
numerous random fault injections, each of which ran-
domly targets an instruction and triggers bit flips in
the input or output operands during the application’s
execution. The results of these injections are classified
into three categories:

o Benign: The program output matches the error-
free execution;

« Silent Data Corruption (SDC): The output de-
viates from the error-free result, but the program
does not terminate;

o Crash: The error causes the operating system to
terminate the program.

The application’s resilience is then measured pri-
marily by assessing the SDC rate with
of SDC instances

of Fls M)

Rspc =

In this study, we primarily focus on Silent Data
Corruption (SDC) rates, as SDCs represent the most
concerning form of error in HPC applications. SDCs
are particularly insidious because they cause incorrect
data to be produced without detection, leading to
potentially significant inaccuracies in computational
results.

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

C. Loop Terminology

A loop is a sequence of instructions that is con-
tinually repeated until a certain condition is met. In
programming, loops are used to perform repetitive
tasks efficiently.

There are three types of loops in HPC programs:

1) For Loops: lterate a set number of times, often
used for processing arrays or matrices.

2) While Loops: Continue to iterate as long as a
specified condition remains true.

3) Do-While Loops: Execute the loop body at least
once before testing the condition.

D. Concept of Loop Semantics

1) Computational Patterns: Computational patterns
are recurring structures in algorithms that solve com-
mon problems in parallel computing. Understanding
these patterns helps optimize code for performance and
resilience in HPC applications.

2) Dwarfs: The 13 Dwarfs of parallel computing
were introduced by the Berkeley View team [8]. Each
dwarf represents a high-level computational pattern
that captures the essence of a broad class of appli-
cations, as listed in Table 1.

3) Loop Semantics: Loop semantics refers to the
specific computational behavior and purpose of loops
within a program, often aligning with recognized com-
putational patterns. Loops are the primary constructs
that implement the computational patterns represented
by the dwarfs. By analyzing loop semantics, we can
categorize loops into these dwarfs. Different loop
semantics (or computational patterns) exhibit varying
resilience characteristics.

4) Relationships Among Computational Patterns,
Dwarfs, and Loop Semantics: Computational patterns
are high-level algorithmic structures that solve com-
mon problems in parallel computing, represented by
the 13 dwarfs. Loop semantics describes the spe-
cific behaviors and purposes of loops that implement
these computational patterns, directly influencing the
resilience of HPC applications.

III. SEMANTIC ANALYSIS OF LOOPS

In this section, we focus on understanding the
resilience of loops based on their semantic charac-
teristics, particularly by examining their association
with common computational patterns known as dwarfs.
By categorizing loops according to these dwarfs, we
aim to establish a connection between the semantic
properties of loops and their resilience. This analysis,
although not exhaustive, provides valuable insights
into how different types of computational patterns
affect the robustness of loops in HPC programs.

A. Identification of Loop Semantics

To identify the semantic characteristics of loops,
we categorize them based on their alignment with
the well-established computational patterns known as

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

3

dwarfs. These dwarfs represent common motifs in
high-performance computing, as listed below.

Each of these patterns embodies specific computa-
tional behaviors that influence a loop’s resilience to
soft errors. By classifying loops according to these
patterns, we can systematically analyze their semantic
properties and draw connections to their resilience
characteristics.

We propose the following ideas to identify the
dwarfs by loop semantics:

1y

Dense Linear Algebra: Operations on dense
matrices and vectors.

e Look for loops performing matrix and vec-
tor operations, such as matrix-matrix multipli-
cation, matrix-vector multiplication, or linear
transformations.

2) Sparse Linear Algebra: Operations on sparse
matrices and vectors.

« Identify loops working on sparse matrices and
vectors, typically involving conditionals to han-
dle non-zero elements.

3) Spectral Methods: Computation of Fourier trans-
forms and related operations.

o Search for loops implementing Fourier trans-
forms or other spectral techniques.
4) N-Body Methods: Simulations involving a large

number of interacting particles.

« Detect loops simulating interactions between a
large number of particles, such as gravitational
or molecular dynamics simulations.

5) Structured Grids: Computations on regular,
structured grids.

« Identify loops iterating over regular, structured
grids, commonly used in finite difference or
finite volume methods.

6) Unstructured Grids: Computations on irregular,
unstructured grids.

o Recognize loops operating on irregular, un-
structured grids, typical in finite element meth-
ods.

7) Map Reduce: Processing large data sets with a
distributed algorithm on a cluster.

e Look for map and reduce operations, often
implemented as separate loops for processing
data chunks and aggregating results.

8) Combinational Logic: Operations on combina-
tional circuits.

« Identify loops performing bitwise operations,
logic gates, or simple arithmetic operations.
9) Graph Traversal: Operations on graphs, includ-

ing search algorithms.

« Search for loops iterating over graph nodes and
edges, implementing algorithms like breadth-
first search, depth-first search, or shortest path.

10) Dynamic Programming: Solving problems by

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

breaking them down into simpler subproblems.

o Identify nested loops filling in a table of solu-
tions to subproblems, characteristic of dynamic
programming algorithms.

11) Backtrack and Branch-and-Bound: Techniques

for combinatorial optimization problems.

o Recognize loops generating and testing solu-
tion candidates, often involving recursive calls
and backtracking.

12) Finite State Machines: State transition-based

computations.

o Look for loops iterating over input events or
characters, managing state transitions within
the loop body.

13) Graphical Models: Probabilistic models repre-

senting complex dependencies among variables.

o Identify loops updating probabilities or per-
forming inference in probabilistic models like
Bayesian networks or Markov random fields.

More detailed information is listed in Appendix
A. We mapped each core loop in the selected HPC
benchmarks to one of these categories based on its
computational pattern.

IV. ANALYSIS OF SDC RATES ACROSS
COMPUTATIONAL PATTERNS

To quantify the resilience of the computational
patterns represented by the 13 dwarfs, we conducted
a series of fault injection experiments and statistical
analyses. This section outlines the methodology used
to measure and analyze the resilience of these patterns.

A. Statistical Analysis

Benchmark Selection: We selected a diverse set of
HPC benchmark programs, ensuring that each of the
13 dwarfs was well-represented. The benchmarks in-
cluded EEMBC, SPEC2006, Rodinia [33], NPB [34],
and LULESH [35].

Fault Injection Setup: Our fault injection (FI)
tool of choice is LLFI [36], a low-level fault injec-
tor that operates at the LLVM (LLVM 13) Interme-
diate Representation (IR) level. LLFI leverages the
LLVM compiler to translate programs written in high-
level programming languages like C/C++ into LLVM
IR. For each benchmark application, we conducted
3,000 fault injection runs to generate a comprehensive
dataset.

The FI experiments were conducted on a Dell
Workstation equipped with 32 Intel(R) Xeon(R) CPUs
E5-2620 v4 @ 2.10GHz. The hardware operates on
x86-64 architectures with a 64-bit system. We adapted
LLFI for LLVM 13, running on Ubuntu 18.04.

Measurement of Resilience: Resilience was quanti-
fied by measuring the rates of Silent Data Corruptions
(SDCs). The SDC rates represent the resilience at
the application level. Since the dwarfs occupy the
majority of the execution time, the application-level

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

4

resilience can be considered equivalent to the dwarf-
level resilience.

B. Results and Interpretation

Table I presents a detailed summary of Silent Data
Corruption (SDC) rates across various computational
patterns, referred to as “dwarfs,” and their benchmarks
in High-Performance Computing (HPC). The SDC
rates represent the resilience of these computational
patterns to soft errors, providing valuable insights into
their susceptibility to such faults.

We refer to the results of Sparse and Dense Linear
Algebra, Structured Grids and Unstructured Grids,
Map Reduce, Backtrack and Branch-and-Bound,
and Graphical Models from [7]. The detailed anal-
ysis has been described in [7]. The results from our
experiments are comparable to theirs since we used
the same LLFI tool for fault injection and adhered to
the same definition of SDC.

Combinational Logic exhibits the highest SDC
rate. This high susceptibility is observed in applica-
tions involving hashing (SPEC 2006 CRC) and RSA,
where the intensive use of bitwise operations and
logical gates increases the likelihood of undetected
errors.

N-Body Methods, with SDC rates between 30%
and 35%, are highly susceptible to soft errors. Ex-
emplified by CoMD [41] and Lulesh [35], this high
rate can be attributed to the complex interactions and
dependencies between particles in these simulations,
where errors in one part of the computation can easily
propagate and magnify throughout the system.

Finite State Machines exhibit an SDC rate of 23%,
as seen in SPEC2006 Integer: Text processing (perl-
bench). They are moderately resilient due to structured
state transitions that help contain errors.

Dynamic Programming exhibits a relatively high
SDC rate of 30%. Errors in previously computed
subproblem solutions can easily propagate, affecting
overall resilience.

These results show that variability in the SDC rate
is related to the applications’ characteristics. For ex-
ample, N-Body Methods and Dynamic Programming,
with their high SDC rates, require more robust er-
ror detection and correction mechanisms. Conversely,
MapReduce and Backtrack and Branch-and-Bound,
with their lower SDC rates, can benefit from less
intensive resilience techniques. Future research should
focus on refining these strategies, considering the
specific resilience profiles of each dwarf. Addition-
ally, exploring the use of advanced Al techniques,
such as Large Language Models (LLMs), to predict
and enhance loop resilience could provide significant
advancements in the field.

V. SEMANTIC IDENTIFICATION BY LLMS

Instruction duplication is a method to protect ap-
plication execution. Due to its high cost, selecting

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SDC RATES ACROSS DIFFERENT COMPUTATIONAL PATTERNS AND BENCHMARKS

Dwarf

Sample Benchmarks Rspc*

Dense Linear Algebra
Sparse Linear Algebra
Spectral Methods
N-Body Methods
Structured Grids
Unstructured Grids
Map Reduce
Combinational Logic
Graph Traversal
Dynamic Programming
Backtrack and Branch-and-Bound
Finite State Machines

Graphical Models

LINPACK [37], BLAS [38]
SparseBLAS, SPARSKIT

15% - 25% [7]
15% - 25% [7]

FFT [39], NAS FT [40] 9% - 12%
CoMD [41], Lulesh [35] 30% - 35%
NAS MG, LU [40] 15% - 25% [7]
UGAWG** [42] 15% - 20%
Stencil, Monte 1% - 5% [7]
Hashing, SPEC 2006 CRC, RSA 25% - 37%
Rodinia BFS [33] 10% [7]
SPEC2006 Integer: Go (gobmk) 30%

SAT solvers, Knuth’s Dancing Links 6% [7]
SPEC2006 Integer: Text processing (perl- 23%

bench)

BUGS, Infer.NET 10% [7]

*It is the range of the SDC rate tested on benchmarks.

**These benchmarks have been re-written in C language in our work.

the “critical” instructions is essential. Different com-
putational patterns have varying SDC rates and rank
differently in terms of criticality. By identifying the
”dwarfs” sections, we can rank these sections and
select the most critical” ones. Here, we introduce
LLMs in our task and present our implementation and
results below.

With the continuous development of techniques,
large language models (LLMs) have achieved signif-
icant progress across various tasks. When software
developers use these LLMs as programming assistants,
their performance leads users to believe that the mod-
els comprehend program semantics well. However, the
question remains: can these LLMs understand the se-
mantic aspects of computational patterns, particularly
the “thirteen dwarfs of parallelism,” which categorize
common computational tasks in parallel applications?
Some previous works have confirmed that these LLMs
can understand code syntax, code static semantic struc-
tures, and code dynamic behaviors through diverse
tasks [43]. It is unclear whether these LLMs can com-
prehend the resilience of loops based on their semantic
characteristics, particularly their association with the
dwarfs. Moreover, if LLMs can identify computational
patterns, the extent to which they comprehend the
semantics is also unknown.

To address these questions, we conduct a progres-
sive analysis to explore the capability of LLMs in
comprehending program semantics in terms of com-
putational patterns. We use the GPT-40 !, the latest
flagship model. GPT-40 (“0” for “omni”) is a step
towards much more natural human-computer interac-
tion—it accepts any combination of text, audio, image,
and video inputs, and generates any combination of
text, audio, and image outputs. It can respond to
audio inputs in as little as 232 milliseconds, with an
average of 320 milliseconds, which is similar to human
response time in a conversation. It matches GPT-4
Turbo performance on text in English and code.

Ihttps://openai.com/index/hello- gpt-4o/

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

5

GPT-based models utilize the prompt-based learning
paradigm. The design of the prompt can significantly
impact the performance of the response. To design
better prompts, we drafted multiple versions and
manually evaluated the responses to observe their
differences. Based on the experience obtained from
these trials, we developed a summarized prompt
template known as the role prompt. The role prompt
assigns a specific role to LLMs, providing a task
context for the model to effectively generate the
desired output. The template is shown below:

®.

a-a:
You are [ROLE] familiar with [Domain
Knowledge]. [Task Description]. [OUTPUT
Format]. The input is [INPUT].

In this template, the placeholder [ROLE] specifies
the particular role assigned to the LLMs, such as "HPC
expert.”” The [Domain Knowledge] section defines the
domain expertise required for the task, for example,
“the 13 dwarfs.” The [Task Description] outlines the
expected task for the LLMs to perform, providing clear
guidance on what is required. The [Output Format]
section details the output specification, ensuring the
response is structured appropriately. Finally, the [IN-
PUT] denotes the programming language used for the
code analysis, which can be either source code or
Intermediate Representation (IR) code compiled from
LLVM.

In our study, we utilized this role-based prompting
approach to address RQ3. The final prompt used is as
follows:

®.

-
You are an HPC expert familiar with the
13 dwarfs/computational patterns. Analyze
the input code to identify the computational

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

@ Analysis of the Code:
1. Initialization and Random Assignment (Structured Grids)

000

void initialize_spins(int spins[L][L]) {
for (int 1 =0; 1 <L; i++) {
for (int j = 0; j < Lj j++) {

spins[i][j] = (rand() % 2) *
I

2-1;

}
}

_ 2. Energy Computation (Structured Grids)

eo0e0
double compute_energy(int spins[L][L]) {
double energy = 0.0;
for (int 1 =0; 1 <L; i++) {
for (int j = 0; j < L; j++) {
int =(1+1)%L;
(i 1) % L

int dow
lergy -

spinsi] * (spinsright][j] + spins[i]
[down]);}
}

return energy;
}
3. Monte Carlo Step (N-Body Methods and Structured Grids)
XY}
votd nonte_car
for (int

int i =
int j =

[L][L], double

int
int =(1-1+L1)%L;
int =(j+ H
intup=(j-1+L)%L;

int =2*

<=0

((double)
[LI0E) = =

() /)_MAX) < exp(-dE /
(1015

This function performs Monte Carlo steps, where each
step involves selecting a random spin and potentially
flipping it based on its neighbors. The interaction
computation (dE) can be seen as an N-Body Methods !]
pattern, while the regular 2D grid traversal fits into the b

VI. DISCUSSION AND FUTURE WORK

Our study provides insights into the resilience of
Iqops in HPC programs by analyzing the suscepti-
bylity of various computational patterns, known as
dwarfs, to soft errors, particularly Silent Data Cor-
ptions (SDCs). However, several limitations must
be acknowledged. Firstly, our method evaluates SDC
tes using entire applications rather than specific loop
ctions. This limitation implies that the resilience
aracteristics derived may not fully represent the
act behavior of the loops.

Furthermore, while our use of Large Language
odels (LLMs) demonstrated promising results in
entifying computational patterns, the accuracy and
liability of LLMs in selecting critical sections for
silience enhancement remain uncertain. The depen-
dency on LLMs introduces potential biases and limi-
tqtions, necessitating further validation to ensure their
effectiveness in real-world scenarios.

Future research should focus on narrowing the scope
of fault injection experiments to test the resilience of
specific loops. This will enable a more precise under-
anding of resilience across different loops. Addition-
Ily, future work should aim to optimize instruction
iplication techniques by leveraging the loop seman-
it understanding of LLMs. Selectively duplicating
ctitical instructions or code sections based on their
rgsilience characteristics can reduce overhead while
laintaining high levels of fault tolerance.

=2 o

=

VII. CONCLUSION

This paper addresses the critical need for resilience
High-Performance Computing (HPC) applications
v focusing on the vulnerability of program loops

Structured Grids pattern

Fig. 1. The results from ChatGPT with our prompt

patterns used. Provide the patterns identified
and specify the corresponding parts of the
code.

This approach led to more accurate and relevant re-
sponses, improving the overall quality of the semantic
analysis conducted by the LLM.

We then implemented this prompt on a dataset of
source code and IR code. We manually observed each
pattern identified with the corresponding parts of the
code. Impressively, the results were perfect, as shown
in Figure 1. This demonstrates that using LLMs to
identify the dwarfs and observe methods to pinpoint
the “dwarfs” sections allows us to develop future
methods, such as instruction duplication, to protect
application execution.

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

6

=

transient hardware faults. We systematically iden-
tified and summarized the loop patterns corresponding
to the thirteen dwarfs of parallelism, revealing the
intricate relationship between computational patterns
and resilience. Through extensive fault injection ex-
periments, we quantified the Silent Data Corruption
(SDC) rates associated with these dwarfs, providing
valuable insights into their susceptibility to soft errors.
Furthermore, our innovative use of Large Language
Models (LLMs) with prompt engineering has demon-
strated a practical approach to identifying these dwarfs
within real source code. Our findings underscore the
importance of targeted resilience strategies for the
most critical loops, enhancing the overall reliability
and performance of HPC applications. Future work
will explore the optimization of duplication techniques
and the application of our methods to a broader range
of HPC systems and applications.

ACKNOWLEDGMENT

Thanks to the support partially from NSF #2217104
#2212465.

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

[1]

[2

—

[4]

[5]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Transactions on Device
and materials reliability, vol. 5, no. 3, pp. 305-316, 2005.
M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve,
S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carl-
son et al., “Addressing failures in exascale computing,” The
International Journal of High Performance Computing Appli-
cations, vol. 28, no. 2, pp. 129-173, 2014.

H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for
robust system design,” Design Automation Conference (DAC),
2013 50th ACM/EDAC/IEEE, pp. 1-10, 2013.

P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson,
and Z. Chen, “Fault tolerant matrix-matrix multiplication:
correcting soft errors on-line,” in Proceedings of the second
workshop on Scalable algorithms for large-scale systems,
2011, pp. 25-28.

G. B. Joseph Sloan and R. Kumar, “An algorithmic approach to
error localization and partial recomputation for low-overhead
fault tolerance on parallel systems,” in DSN, 2013, pp. 1-12.
H. Jiang, J. Zhu, B. Fang, C. Chen, R. Jin, and Q. Guan,
“Happa: A modular platform for hpc application resilience
analysis with llms embedded,” Proceedings of the 43rd Inter-
national Symposium on Reliable Distributed Systems (SRDS),
2024.

B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“GPU-Qin: a methodology for evaluating the error resilience
of gpgpu applications,” in Performance Analysis of Systems
and Software (ISPASS), 2014, 2014.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from berkeley,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

R. A. Poldrack, T. Lu, and G. Begus, “Ai-assisted coding:
Experiments with gpt-4,” arXiv preprint arXiv:2304.13187,
2023.

T. Kadosh, N. Hasabnis, V. A. Vo, N. Schneider, N. Krien,
A. Wasay, N. Ahmed, T. Willke, G. Tamir, Y. Pinter et al.,
“Scope is all you need: Transforming 1lms for hpc code,” arXiv
preprint arXiv:2308.09440, 2023.

M. Shen, B. Jiang, J. Y. Zhang, and O. Koyejo, “Batch active
learning from the perspective of sparse approximation,” in
2022 Conference on Neural Information Processing Systems
(NeurIPS) Workshop on Human in the Loop Learning., 2022.
X. Ding, L. Chen, M. Emani, C. Liao, P.-H. Lin, T. Vander-
bruggen, Z. Xie, A. Cerpa, and W. Du, “Hpc-gpt: Integrating
large language model for high-performance computing,” in
Proceedings of the SC’23 Workshops of The International Con-
ference on High Performance Computing, Network, Storage,
and Analysis, 2023, pp. 951-960.

B. Jiang, Z. Zhuang, S. S. Shivakumar, D. Roth, and C. J. Tay-
lor, “Multi-agent vqa: Exploring multi-agent foundation mod-
els in zero-shot visual question answering,” in The IEEE/CVF
Conference on Computer Vision and Pattern Recognition 2024
Workshop on What is Next in Multimodal Foundation Models?,
2024.

Y. Xie, B. Jiang, T. Mallick, J. D. Bergerson, J. K. Hutchi-
son, D. R. Verner, J. Branham, M. R. Alexander, R. B.
Ross, Y. Feng, L.-A. Levy et al, “Wildfiregpt: Tailored
large language model for wildfire analysis,” arXiv preprint
arXiv:2402.07877, 2024.

D. Nichols, A. Marathe, H. Menon, T. Gamblin, and
A. Bhatele, “Modeling parallel programs using large language
models,” arXiv preprint arXiv:2306.17281, 2023.

N. K. A. Le Chen, A. Dutta et al, “The landscape
and challenges of hpc research and 1lms,” arXiv preprint
arxiv:2402.02018, 2024.

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

7

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

B. Steenhoek, M. M. Rahman, M. K. Roy, M. S. Alam, E. T.
Barr, and W. Le, “A comprehensive study of the capabilities
of large language models for vulnerability detection,” arXiv
preprint arXiv:2403.17218, 2024.

T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr, “Automatic
semantic augmentation of language model prompts (for code
summarization),” in Proceedings of the IEEE/ACM 46th Inter-
national Conference on Software Engineering, 2024, pp. 1-13.
B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit
is (not) enough: An empirical study of the impact of single
and multiple bit-flip errors,” in 2017 47th annual IEEE/IFIP
international conference on dependable systems and networks
(DSN). IEEE, 2017, pp. 97-108.

B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gu-
rumurthi, “epvf: An enhanced program vulnerability factor
methodology for cross-layer resilience analysis,” in 2016 46th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), acceptance rate = 21%, June
2016, pp. 168-179.

G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), June 2018, pp. 27-38.

S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring:
Probabilistic soft error reliability on the cheap,” SIGPLAN
Not., vol. 45, no. 3, Mar.

J. Calhoun, L. Olson, and M. Snir, “Flipit: An llvm based
fault injector for hpc,” in Euro-Par 2014: Parallel Processing
Workshops: Euro-Par 2014 International Workshops, Porto,
Portugal, August 25-26, 2014, Revised Selected Papers, Part [
20. Springer, 2014, pp. 547-558.

Z. Li, H. Menon, K. Mohror, P-T. Bremer, Y. Livant, and
V. Pascucci, “Understanding a program’s resiliency through
error propagation,” in Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, 2021, pp. 362-373.

G. Georgakoudis, I. Laguna, D. S. Nikolopoulos, and
M. Schulz, “Refine: Realistic fault injection via compiler-based
instrumentation for accuracy, portability and speed,” in Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1-14.
S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and
J. Emer, “Sassifi: An architecture-level fault injection tool for
gpu application resilience evaluation,” in 2017 IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS). 1EEE, 2017, pp. 249-258.

D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vul-
nerabilities in extreme-scale scientific applications using a
binary instrumentation tool,” in SC’12: Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2012, pp. 1-11.
J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hard-
ware faults,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. 1EEE,
2014, pp. 375-382.

X. Xu and M.-L. Li, “Understanding soft error propagation
using efficient vulnerability-driven fault injection,” in /IEEE/I-
FIP International Conference on Dependable Systems and
Networks (DSN 2012). 1EEE, 2012, pp. 1-12.

Q. Guan, X. Hu, T. Grove, B. Fang, H. Jiang, H. Yin, and
N. DeBadeleben, “Chaser: An enhanced fault injection tool for
tracing soft errors in mpi applications,” in 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 1EEE, 2020, pp. 355-363.

H. Jiang, S. Ruan, B. Fang, Y. Wang, and Q. Guan, “Visilience:
An interactive visualization framework for resilience analysis
using control-flow graph,” in 2023 IEEE 28th Pacific Rim
International Symposium on Dependable Computing (PRDC).
IEEE, 2023, pp. 250-256.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, ser. ISWC *09.

N. P. Benchmarks, “Nas parallel benchmarks,” CG and IS,
2006.

I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen,
Z. DeVito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards,

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

M. Schulz, and C. Still, “Exploring traditional and emerging
parallel programming models using a proxy application,” in
IEEE IPDPS 2013, Boston, USA.

J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantify-
ing the accuracy of high-level fault injection techniques for
hardware faults,” in DSN, June 2014.

J. J. Dongarra, “The linpack benchmark: An explanation,” in
International Conference on Supercomputing. Springer, 1987,
pp. 456-474.

S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on
fpga, cpu and gpu,” in 2010 IEEE computer society annual
symposium on VLSI. 1EEE, 2010, pp. 288-293.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and methodological
considerations,” ACM SIGARCH computer architecture news,
vol. 23, no. 2, pp. 24-36, 1995.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber et al., “The nas parallel benchmarks,”
The International Journal of Supercomputing Applications,
vol. 5, no. 3, pp. 63-73, 1991.

P. Cicotti, S. M. Mniszewski, and L. Carrington, “An evalua-
tion of threaded models for a classical md proxy application,”
in Hardware-Software Co-Design for High Performance Com-
puting (Co-HPC), 2014, Nov.

D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, and
M. Park, “First benchmark of the unstructured grid adaptation
working group,” Procedia engineering, vol. 203, pp. 154-166,
2017.

W. Ma, S. Liu, Z. Lin, W. Wang, Q. Hu, Y. Liu, C. Zhang,
L. Nie, L. Li, and Y. Liu, “Lms: Understanding code
syntax and semantics for code analysis,” arXiv preprint
arXiv:2305.12138, 2023.

T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph
algorithms in the language of sparse linear algebra,” ACM
Transactions on Mathematical Software (TOMS), vol. 45,
no. 4, pp. 1-25, 2019.

X. Liang, J. Chen, D. Tao, S. Li, P. Wu, H. Li, K. Ouyang,
Y. Liu, F. Song, and Z. Chen, “Correcting soft errors online
in fast fourier transform,” ser. SC, 2017.

E. Lindahl, B. Hess, and D. van der Spoel, “Gromacs 3.0:
a package for molecular simulation and trajectory analysis,”
Journal of Molecular Modeling, vol. 7, no. 8, p. 306-317,
Aug. 2001. [Online]. Available: http://dx.doi.org/10.1007/
s008940100045

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. In’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen et al., “Lammps-a flexible simulation
tool for particle-based materials modeling at the atomic, meso,
and continuum scales,” Computer Physics Communications,
vol. 271, p. 108171, 2022.

APPENDIX

In this Appendix, we provide definitions of compu-
tational dwarfs, their loop characteristics, sample code,
and associated benchmarks.

1) Dense Linear Algebra:

o Definition: Operations involving dense matrices,

such as matrix multiplications and factorizations.

« Loop Characteristics: Nested loops iterating on

matrix dimensions.

« Sample Code:

/I Matrix multiplication
for (int i =0; i <n;i++) {
for (int j =0; j < n; j++) {
CLIlj1 = 0;
for (int k = 0; k < n; k++) {
Clillj] += ALlIK] = BIK][j I;

979-8-3503-8713-1/24/$31.00 ©2024 |IEEE

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

8

o Benchmarks: LINPACK [37], BLAS [38]

2) Sparse Linear Algebra:

« Definition: Operations involving sparse matrices,
such as sparse matrix-vector multiplication and
iterative solvers.

o Loop Characteristics: Iteration over nonzero el-
ements, often using compressed storage formats.

o Sample Code:

/I Sparse matrix—vector multiplication
for (int i =0; i <n;i++) {
yli] = 0;
for (int j =row_ptr[i]; j < row_ptr[i
— +1]; j++) {
y[i] += values[j] * x[col_idx[j]];

}

o Benchmarks: SuiteSparse [44]

3) Spectral Methods:

o Definition: Methods that involve transformations
such as Fast Fourier Transforms (FFT).

o Loop Characteristics: Often single loop or sim-
ple nested loops, with FFT being the primary
operation.

o Sample Code:

/I FFT operation

fftw_plan plan = fftw_plan_dft_1d (n, in, out,
— FFTW_FORWARD,
— FFTW_ESTIMATE);

fftw_execute (plan);

fftw_destroy_plan (plan);

o Benchmarks: FFTW [45], NAS Parallel Bench-
marks [34]

4) N-Body Methods:

o Definition: Simulations where interactions be-
tween a large number of particles are computed,
typically involving gravitational or electrostatic
forces.

e Loop Characteristics: Double nested loops for
pairwise interactions.

o Sample Code:

/I N-body simulation
for (int i =0; i <n;i++) {
for (int j =0; j < n; j++) {
it (i 1= j) {
double dx = x[j] — x[i];
double dy = y[j] - y[il;
double dist = sqrt (dx*dx + dy=dy
=)
force[i] += G = mass[i] * mass[j]
— /[(dist = dist);

}

o Benchmarks: GROMACS [46], LAMMPS [47]
5) Structured Grids:

¢ Definition: Problems where computation is per-
formed on a regular grid, such as finite difference
methods for solving partial differential equations.

¢ Loop Characteristics: Double or triple nested

loops iterating over regular grid points.
Sample Code:

/I Finite difference method for solving heat
— equation
for (int i = 1; i < n-1;i++) {
for (int j =1; j < n-1; j++) {
u_new[i][j] =u[i][j] + alpha * (u[i
— +1[j]1 + uli-1][j] + ul[il[]
= +1] +uli][j-1] = 4=uli][j]);
}
}

« Benchmarks: NAS Parallel Benchmarks (LU,

MG) [34]

6) Unstructured Grids:

o Definition: Similar to structured grids but with

irregular connectivity, often used in finite element
analysis.

e Loop Characteristics: Nested loops iterating

over elements with irregular connectivity.
Sample Code:

// Finite element method
for (int elem = 0; elem < num_elems; elem

— ++) {

double Ke[4][4]; // Element stiffness
< matrix

assemble_element_stiffness_matrix (Ke,
— elem);

for (int i =0; i < 4; i++) {
for (int j =0; j <4 j++) {
K[global_nodes[elem][i]][
— global_nodes[elem][j]]
— += Kelillj I;
}
}
}

Benchmarks: UGAWG Cone-cone, Cube [42]

7) Map Reduce:

Definition: Distributed processing of large data
sets, involving map and reduce operations.
Loop Characteristics: Parallelizable loops with
independent computations.

Sample Code:

/I Map function
for (int i = 0; i < n; i++) {
map_output[i] = map_function(data[i]);

/' Reduce function
for (int i =0; i < n; i++) {
reduce_output = reduce_function (reduce_output
— , map_output[i]);

}

Benchmarks: Stencil, Monte

8) Combinational Logic:

Definition: Combinational Logic refers to the
type of logic circuit whose output is a pure
function of the present input only. It involves
logic gates performing bitwise operations, logic

979-8-3503-8713-1/24/$31.00 ©2024 IEEE
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

9

operations, and simple arithmetic operations, of-
ten in straightforward, un-nested loops.

Loop Characteristics: Un-nested loops focused
on bitwise operations, logical operations (AND,
OR, XOR, NOT), or simple arithmetic (addition,
subtraction). These loops typically iterate over
array elements or bits within integers.

Sample Code:

/I Bitwise AND operation on two arrays
for (int 1 =0; i < n; i++) {
C[i] = A[i] & BI[i];

/I XOR operation to check parity
for (int 1 =0; i < n; i++) {
it ((A[i] * B[i]) ==0) {
/I Do something
}

/" Simple arithmetic operation: adding two arrays
for (int 1 =0; i < n; i++) {
Cli] = Ali] + BIil;

Benchmarks: Hashing, SPEC 2006 CRC, RSA

9) Graph Traversal:

Definition: Operations on graphs, including
search algorithms like depth-first search (DFS)
and breadth-first search (BFS).

Loop Characteristics: Loops iterating over
nodes and edges, often using recursion or
queues/stacks.

Sample Code:

/I Depth—First Search (DFS)
void DFS(int v, bool visited []) {
visited [v] = true;
for (auto i = adj[v].begin(); i != adj[v].end
= (03 +H)
if (! visited [*1])
DFS(xi, visited);

}

Benchmarks: Rodinia BFS [33]

10) Dynamic Programming:

Definition: Method for solving complex prob-
lems by breaking them down into simpler sub-
problems, storing the results of subproblems to
avoid redundant computations.

Loop Characteristics: Loops filling a table based
on the results of previous computations.

Sample Code:

/I Fibonacci sequence
int fib [n+1];
fib [0] = 0;
fib[1] = 1;
for (int i =2; i <=n;i++) {
fib[i] = fib[i-1] + fib[i-2];
}

Benchmarks: SPEC2006 Integer: Go (gobmk)

11) Backtrack and Branch-and-Bound:

o Definition: Algorithmic techniques for solving for (int j =0; j < m; j++) {
combinatorial optimization problems by explor- messages[i][j] = computeMessage(i, j)
ing possible solutions incrementally and abandon- =
ing those that do not meet the criteria. } }

« Loop Characteristics: Recursion with loops try- for (int i =0; i <n;i++) {
ing out possible steps. beliefs [1] = computeBelief(i, messages);

« Sample Code: }

/I N—Queens problem)
bool solveNQueens(int board[N][N], int col) { « Benchmarks: BUGS, Infer.NET
if (col >=N)
return true ;

for (int i =0; i < N;i++) {
if (isSafe (board, i, col)) {
board[i][col] = 1;
if (solveNQueens(board, col + 1))
return true;
board[i][col] = 0;

return false ;

}

« Benchmarks: SAT solvers, Knuth’s Dancing
Links

12) Finite State Machines:

o Definition: Computations based on state transi-
tions, often used in control systems and protocol
design.

o Loop Characteristics: Loops involving state
transitions based on conditions.

« Sample Code:

/I Simple finite state machine
enum State {STATE_A, STATE_B, STATE_C};
State currentState = STATE_A;
while (true) {
switch (currentState) {
case STATE_A:
if (condition) currentState =
< STATE_B;
break;
case STATE_B:
if (condition) currentState =
< STATE_C;
break;
case STATE_C:
if (condition) currentState
— STATE_A,;
break ;

}
}

« Benchmarks: SPEC2006 Integer: Text process-
ing (perlbench)

13) Graphical Models:

o Definition: Probabilistic models representing
complex dependencies among variables, often
used in machine learning and statistics.

o Loop Characteristics: Iterative loops refining
probabilistic estimations.

« Sample Code:

/I Simple belief propagation
for (int iter = 0; iter < max_iters; iter ++) {
for (int i =0; i <n;i++) {

979-8-3503-8713-1/24/$31.00 ©2024 IEEE 10
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

