
Investigating Resilience of Loops in HPC

Programs: A Semantic Approach with LLMs

Hailong Jiang1*, Jianfeng Zhu1, Bo Fang2, Chao Chen3 and Qiang Guan1*

1Department of Computer Science, Kent State University, Kent, OH, USA

{hjiang13, jzhu10, qguan}@kent.edu
2Pacific Northwest National Laboratory, Richland, WA, USA

bo.fang@pnnl.gov
3Intel Corporation, Santa Clara, CA, USA

chao.chen@intel.com

Abstract—Transient hardware faults, resulting from
particle strikes, are significant concerns in High-
Performance Computing (HPC) systems. As these sys-
tems scale, the likelihood of soft errors rises. Traditional
methods like Error-Correcting Codes (ECCs) and check-
pointing address many of these errors, but some evade
detection, leading to silent data corruptions (SDCs). This
paper evaluates the resilience of HPC program loops,
which are crucial for performance and error handling,
by analyzing their computational patterns, known as the
thirteen dwarfs of parallelism. We employ fault injection
techniques to quantify SDC rates and utilize Large
Language Models (LLMs) with prompt engineering to
identify the loop semantics of the dwarfs in real source
code. Our contributions include defining and summa-
rizing loop patterns for each dwarf, quantifying their
resilience, and leveraging LLMs for precise identification
of these patterns. These insights enhance the understand-
ing of loop resilience, aiding in the development of more
resilient HPC applications.

Index Terms—Resilience, Soft errors, Loops, HPC
programs, Large Language Models

I. INTRODUCTION

Transient hardware faults, often resulting from

particle strikes, are significant concerns in High-

Performance Computing (HPC) systems [1]. As HPC

systems continue to scale, the likelihood of soft errors

also rises [2]. While hardware-level and system-level

mechanisms, such as Error-Correcting Codes (ECCs)

and checkpointing/restart schemes, can detect and cor-

rect many soft errors, some errors evade these mea-

sures and propagate to applications [3]. These unde-

tected errors can lead to application failures and severe

outcomes, including silent data corruptions (SDCs).

Therefore, implementing resilience approaches to en-

sure the correctness of HPC programs is crucial.

The duplication technique is a space-time trade-off

method that executes the program twice to compare

results and detect errors [4]. However, the duplication

approach requires up to twice the resources. The

challenge of applying duplication in HPC programs is

to reduce the volume of duplication needed. Through

experiments, Hussain [5] demonstrates that partial du-

plication for HPC programs typically yields higher per-

Thanks to the support partially from NSF #2217104 #2212465.

formance under different node failure rates compared

to full duplication. However, the partial duplication

scheme necessitates an understanding of which parts

of the program are more error-prone.

HPC applications typically consist of many loops.

A main computation loop in a scientific simulation

workload often dominates the execution time. Within

this main loop, several inner loops are typically used

to update large data objects (e.g., a mesh structure in

computational fluid dynamics) and perform iterative

computations to determine the properties of these

objects, such as the energy of particles. Since loops

in HPC programs consume the most execution time

and resources, it is reasonable to allocate limited du-

plication resources to the most critical loops. However,

there remains a gap in implementing partial duplication

for loops: determining the vulnerability ranking of

loops within a program.

Previous research has demonstrated that the seman-

tics of code significantly influence the resilience of

HPC programs by affecting error propagation [6]. B.

Fang et al. [7] showed that the variability in the SDC

rate is closely related to the computational patterns

of applications. Their study categorized benchmarks

into five resilience categories based on the ’seven

dwarfs of parallelism,’ which are common computa-

tional patterns in parallel applications [8]. They found

that benchmarks within the same dwarf exhibit similar

SDC rates. By measuring the SDC rates, Fang et al.

[7] quantified the resilience of specific computational

patterns. Since these dwarfs are primarily realized

through loops, identifying loops that correspond to

specific dwarfs enables the prediction of the SDC rate

for those loops. However, they did not establish a

mapping between loop patterns and

To improve scalability across diverse codebases and

leverage advanced natural language processing tech-

niques for more precise and automated analysis of

these patterns, we introduce Large Language Models

(LLMs), especially those based on the transformer

architecture like GPT-4 [9]. Recent studies [10]–

[15] have demonstrated the effectiveness of LLMs

in various programming tasks (e.g., code generation,

20
24

 IE
EE

 H
ig

h
Pe

rfo
rm

an
ce

 E
xt

re
m

e
Co

m
pu

tin
g

Co
nf

er
en

ce
 (H

PE
C)

 |
 9

79
-8

-3
50

3-
87

13
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

OI
: 1

0.
11

09
/H

PE
C6

28
36

.2
02

4.
10

93
84

72

Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

translation, completion), yielding impressive results.

Pioneering studies [13], [16] have begun to explore

the application of LLMs in the HPC domain, such

as parallel code generation, indicating a promising

synergy between large language models and HPC [17].

A recent survey [18] highlights the need for more chal-

lenging tasks to evaluate LLMs’ reasoning abilities,

particularly in vulnerability detection. This capability

has profound implications for potential applications

of LLMs in other tasks requiring understanding and

reasoning about code semantics. Furthermore, LLMs

are ushering in a new era of prompt engineering,

which demands new skills from software engineers.

Researchers have proposed methods like Automatic

Semantic Augmentation of Prompts for software en-

gineering tasks [19].

While prior work has established a link between

code semantics and resilience, no studies have specif-

ically assessed loop resilience in HPC programs

through a semantic approach using LLMs. This paper

aims to fill the gap by evaluating the resilience of loops

from a semantic perspective. We aim to answer the

following research questions:

■ RQ1: How can computational patterns, known as

dwarfs, be identified from source code using their

loop semantics?

■ RQ2: How do SDC rates vary among HPC com-

putational patterns, and what does this reveal about

their resilience to soft errors?

■ RQ3: How can Large Language Models (LLMs) be

used to accurately identify the loop semantics of the

13 dwarfs in real HPC applications?

To answer these questions, we need to undertake

several key steps. First, we must define and summarize

the loop patterns that correspond to each of the thirteen

dwarfs of parallelism. Second, we will employ fault

injection (FI) techniques to quantify the SDC rates of

each of the thirteen dwarfs. Lastly, we will leverage

Large Language Models (LLMs) with prompt engi-

neering to identify these dwarfs in real source code.

This approach will enable us to automatically detect

and categorize loop patterns within HPC applications,

facilitating the prediction and enhancement of their

resilience to soft errors.

Our work makes the following contributions:

■ Mapping between Loop Patterns and Dwarfs:

We systematically define and summarize the loop

patterns associated with each of the thirteen dwarfs

of parallelism.

■ SDC Rate Inspection across Computational Pat-

terns: We measured the SDC rates of thirteen com-

putational patterns (dwarfs) to provide a detailed

analysis of their resilience to soft errors.

■ Identification of Dwarfs by LLMs: Our language

models (LLMs), with prompt engineering, accu-

rately identify and categorize loop patterns within

real source code and IR code compiled from LLVM.

The rest of this paper is organized as follows:

Section II covers background information. Section III

summarizes the patterns and loops associated with the

thirteen dwarfs of parallelism. Section IV details our

methodology for SDC rate analysis across computa-

tional patterns. Section V describes our approach to

identifying dwarfs in real source code using Large

Language Models (LLMs) with prompt engineering.

Section VI discusses our findings and implications, and

Section VII presents our conclusions.

II. BACKGROUND

In this section, we describe the background of loops,

the terms related to resilience, the fault model, and the

concept of loop semantics.

A. Fault Model

In this paper, we consider soft errors that occur in

the computational elements of the processor, including

the pipeline register and functional units. We do not

consider faults in the memory or caches, as we assume

these are protected with error correction codes (ECC).

The study by Sangchoolie et al. [20] demonstrates

that the consequences of multi-bit errors are similar

to those of single-bit errors, leading us to prioritize

single-bit errors in our analysis. Additionally, we focus

on single-bit errors to ensure clarity and precision in

our research approach. Our fault model is in line with

other work in the area [21]–[23].

B. Common Metrics for Measuring Resilience

Fault Injection (FI) [24]–[32] is the dominant tech-

nique for evaluating the resilience of applications

against errors in HPC systems. This method involves

numerous random fault injections, each of which ran-

domly targets an instruction and triggers bit flips in

the input or output operands during the application’s

execution. The results of these injections are classified

into three categories:

• Benign: The program output matches the error-

free execution;

• Silent Data Corruption (SDC): The output de-

viates from the error-free result, but the program

does not terminate;

• Crash: The error causes the operating system to

terminate the program.

The application’s resilience is then measured pri-

marily by assessing the SDC rate with

RSDC =
of SDC instances

of FIs
(1)

In this study, we primarily focus on Silent Data

Corruption (SDC) rates, as SDCs represent the most

concerning form of error in HPC applications. SDCs

are particularly insidious because they cause incorrect

data to be produced without detection, leading to

potentially significant inaccuracies in computational

results.

2
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

C. Loop Terminology

A loop is a sequence of instructions that is con-

tinually repeated until a certain condition is met. In

programming, loops are used to perform repetitive

tasks efficiently.

There are three types of loops in HPC programs:

1) For Loops: Iterate a set number of times, often

used for processing arrays or matrices.

2) While Loops: Continue to iterate as long as a

specified condition remains true.

3) Do-While Loops: Execute the loop body at least

once before testing the condition.

D. Concept of Loop Semantics

1) Computational Patterns: Computational patterns

are recurring structures in algorithms that solve com-

mon problems in parallel computing. Understanding

these patterns helps optimize code for performance and

resilience in HPC applications.

2) Dwarfs: The 13 Dwarfs of parallel computing

were introduced by the Berkeley View team [8]. Each

dwarf represents a high-level computational pattern

that captures the essence of a broad class of appli-

cations, as listed in Table I.

3) Loop Semantics: Loop semantics refers to the

specific computational behavior and purpose of loops

within a program, often aligning with recognized com-

putational patterns. Loops are the primary constructs

that implement the computational patterns represented

by the dwarfs. By analyzing loop semantics, we can

categorize loops into these dwarfs. Different loop

semantics (or computational patterns) exhibit varying

resilience characteristics.

4) Relationships Among Computational Patterns,

Dwarfs, and Loop Semantics: Computational patterns

are high-level algorithmic structures that solve com-

mon problems in parallel computing, represented by

the 13 dwarfs. Loop semantics describes the spe-

cific behaviors and purposes of loops that implement

these computational patterns, directly influencing the

resilience of HPC applications.

III. SEMANTIC ANALYSIS OF LOOPS

In this section, we focus on understanding the

resilience of loops based on their semantic charac-

teristics, particularly by examining their association

with common computational patterns known as dwarfs.

By categorizing loops according to these dwarfs, we

aim to establish a connection between the semantic

properties of loops and their resilience. This analysis,

although not exhaustive, provides valuable insights

into how different types of computational patterns

affect the robustness of loops in HPC programs.

A. Identification of Loop Semantics

To identify the semantic characteristics of loops,

we categorize them based on their alignment with

the well-established computational patterns known as

dwarfs. These dwarfs represent common motifs in

high-performance computing, as listed below.

Each of these patterns embodies specific computa-

tional behaviors that influence a loop’s resilience to

soft errors. By classifying loops according to these

patterns, we can systematically analyze their semantic

properties and draw connections to their resilience

characteristics.

We propose the following ideas to identify the

dwarfs by loop semantics:

1) Dense Linear Algebra: Operations on dense

matrices and vectors.

• Look for loops performing matrix and vec-

tor operations, such as matrix-matrix multipli-

cation, matrix-vector multiplication, or linear

transformations.

2) Sparse Linear Algebra: Operations on sparse

matrices and vectors.

• Identify loops working on sparse matrices and

vectors, typically involving conditionals to han-

dle non-zero elements.

3) Spectral Methods: Computation of Fourier trans-

forms and related operations.

• Search for loops implementing Fourier trans-

forms or other spectral techniques.

4) N-Body Methods: Simulations involving a large

number of interacting particles.

• Detect loops simulating interactions between a

large number of particles, such as gravitational

or molecular dynamics simulations.

5) Structured Grids: Computations on regular,

structured grids.

• Identify loops iterating over regular, structured

grids, commonly used in finite difference or

finite volume methods.

6) Unstructured Grids: Computations on irregular,

unstructured grids.

• Recognize loops operating on irregular, un-

structured grids, typical in finite element meth-

ods.

7) Map Reduce: Processing large data sets with a

distributed algorithm on a cluster.

• Look for map and reduce operations, often

implemented as separate loops for processing

data chunks and aggregating results.

8) Combinational Logic: Operations on combina-

tional circuits.

• Identify loops performing bitwise operations,

logic gates, or simple arithmetic operations.

9) Graph Traversal: Operations on graphs, includ-

ing search algorithms.

• Search for loops iterating over graph nodes and

edges, implementing algorithms like breadth-

first search, depth-first search, or shortest path.

10) Dynamic Programming: Solving problems by

3
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

breaking them down into simpler subproblems.

• Identify nested loops filling in a table of solu-

tions to subproblems, characteristic of dynamic

programming algorithms.

11) Backtrack and Branch-and-Bound: Techniques

for combinatorial optimization problems.

• Recognize loops generating and testing solu-

tion candidates, often involving recursive calls

and backtracking.

12) Finite State Machines: State transition-based

computations.

• Look for loops iterating over input events or

characters, managing state transitions within

the loop body.

13) Graphical Models: Probabilistic models repre-

senting complex dependencies among variables.

• Identify loops updating probabilities or per-

forming inference in probabilistic models like

Bayesian networks or Markov random fields.

More detailed information is listed in Appendix

A. We mapped each core loop in the selected HPC

benchmarks to one of these categories based on its

computational pattern.

IV. ANALYSIS OF SDC RATES ACROSS

COMPUTATIONAL PATTERNS

To quantify the resilience of the computational

patterns represented by the 13 dwarfs, we conducted

a series of fault injection experiments and statistical

analyses. This section outlines the methodology used

to measure and analyze the resilience of these patterns.

A. Statistical Analysis

Benchmark Selection: We selected a diverse set of

HPC benchmark programs, ensuring that each of the

13 dwarfs was well-represented. The benchmarks in-

cluded EEMBC, SPEC2006, Rodinia [33], NPB [34],

and LULESH [35].

Fault Injection Setup: Our fault injection (FI)

tool of choice is LLFI [36], a low-level fault injec-

tor that operates at the LLVM (LLVM 13) Interme-

diate Representation (IR) level. LLFI leverages the

LLVM compiler to translate programs written in high-

level programming languages like C/C++ into LLVM

IR. For each benchmark application, we conducted

3,000 fault injection runs to generate a comprehensive

dataset.

The FI experiments were conducted on a Dell

Workstation equipped with 32 Intel(R) Xeon(R) CPUs

E5-2620 v4 @ 2.10GHz. The hardware operates on

x86-64 architectures with a 64-bit system. We adapted

LLFI for LLVM 13, running on Ubuntu 18.04.

Measurement of Resilience: Resilience was quanti-

fied by measuring the rates of Silent Data Corruptions

(SDCs). The SDC rates represent the resilience at

the application level. Since the dwarfs occupy the

majority of the execution time, the application-level

resilience can be considered equivalent to the dwarf-

level resilience.

B. Results and Interpretation

Table I presents a detailed summary of Silent Data

Corruption (SDC) rates across various computational

patterns, referred to as ”dwarfs,” and their benchmarks

in High-Performance Computing (HPC). The SDC

rates represent the resilience of these computational

patterns to soft errors, providing valuable insights into

their susceptibility to such faults.

We refer to the results of Sparse and Dense Linear

Algebra, Structured Grids and Unstructured Grids,

Map Reduce, Backtrack and Branch-and-Bound,

and Graphical Models from [7]. The detailed anal-

ysis has been described in [7]. The results from our

experiments are comparable to theirs since we used

the same LLFI tool for fault injection and adhered to

the same definition of SDC.

Combinational Logic exhibits the highest SDC

rate. This high susceptibility is observed in applica-

tions involving hashing (SPEC 2006 CRC) and RSA,

where the intensive use of bitwise operations and

logical gates increases the likelihood of undetected

errors.

N-Body Methods, with SDC rates between 30%

and 35%, are highly susceptible to soft errors. Ex-

emplified by CoMD [41] and Lulesh [35], this high

rate can be attributed to the complex interactions and

dependencies between particles in these simulations,

where errors in one part of the computation can easily

propagate and magnify throughout the system.

Finite State Machines exhibit an SDC rate of 23%,

as seen in SPEC2006 Integer: Text processing (perl-

bench). They are moderately resilient due to structured

state transitions that help contain errors.

Dynamic Programming exhibits a relatively high

SDC rate of 30%. Errors in previously computed

subproblem solutions can easily propagate, affecting

overall resilience.

These results show that variability in the SDC rate

is related to the applications’ characteristics. For ex-

ample, N-Body Methods and Dynamic Programming,

with their high SDC rates, require more robust er-

ror detection and correction mechanisms. Conversely,

MapReduce and Backtrack and Branch-and-Bound,

with their lower SDC rates, can benefit from less

intensive resilience techniques. Future research should

focus on refining these strategies, considering the

specific resilience profiles of each dwarf. Addition-

ally, exploring the use of advanced AI techniques,

such as Large Language Models (LLMs), to predict

and enhance loop resilience could provide significant

advancements in the field.

V. SEMANTIC IDENTIFICATION BY LLMS

Instruction duplication is a method to protect ap-

plication execution. Due to its high cost, selecting

4
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SDC RATES ACROSS DIFFERENT COMPUTATIONAL PATTERNS AND BENCHMARKS

Dwarf Sample Benchmarks RSDC*

Dense Linear Algebra LINPACK [37], BLAS [38] 15% - 25% [7]
Sparse Linear Algebra SparseBLAS, SPARSKIT 15% - 25% [7]
Spectral Methods FFT [39], NAS FT [40] 9% - 12%
N-Body Methods CoMD [41], Lulesh [35] 30% - 35%
Structured Grids NAS MG, LU [40] 15% - 25% [7]
Unstructured Grids UGAWG** [42] 15% - 20%
Map Reduce Stencil, Monte 1% - 5% [7]
Combinational Logic Hashing, SPEC 2006 CRC, RSA 25% - 37%
Graph Traversal Rodinia BFS [33] 10% [7]
Dynamic Programming SPEC2006 Integer: Go (gobmk) 30%
Backtrack and Branch-and-Bound SAT solvers, Knuth’s Dancing Links 6% [7]
Finite State Machines SPEC2006 Integer: Text processing (perl-

bench)
23%

Graphical Models BUGS, Infer.NET 10% [7]

*It is the range of the SDC rate tested on benchmarks.
**These benchmarks have been re-written in C language in our work.

the ”critical” instructions is essential. Different com-

putational patterns have varying SDC rates and rank

differently in terms of criticality. By identifying the

”dwarfs” sections, we can rank these sections and

select the most ”critical” ones. Here, we introduce

LLMs in our task and present our implementation and

results below.

With the continuous development of techniques,

large language models (LLMs) have achieved signif-

icant progress across various tasks. When software

developers use these LLMs as programming assistants,

their performance leads users to believe that the mod-

els comprehend program semantics well. However, the

question remains: can these LLMs understand the se-

mantic aspects of computational patterns, particularly

the ”thirteen dwarfs of parallelism,” which categorize

common computational tasks in parallel applications?

Some previous works have confirmed that these LLMs

can understand code syntax, code static semantic struc-

tures, and code dynamic behaviors through diverse

tasks [43]. It is unclear whether these LLMs can com-

prehend the resilience of loops based on their semantic

characteristics, particularly their association with the

dwarfs. Moreover, if LLMs can identify computational

patterns, the extent to which they comprehend the

semantics is also unknown.

To address these questions, we conduct a progres-

sive analysis to explore the capability of LLMs in

comprehending program semantics in terms of com-

putational patterns. We use the GPT-4o 1, the latest

flagship model. GPT-4o (“o” for “omni”) is a step

towards much more natural human-computer interac-

tion—it accepts any combination of text, audio, image,

and video inputs, and generates any combination of

text, audio, and image outputs. It can respond to

audio inputs in as little as 232 milliseconds, with an

average of 320 milliseconds, which is similar to human

response time in a conversation. It matches GPT-4

Turbo performance on text in English and code.

1https://openai.com/index/hello-gpt-4o/

GPT-based models utilize the prompt-based learning

paradigm. The design of the prompt can significantly

impact the performance of the response. To design

better prompts, we drafted multiple versions and

manually evaluated the responses to observe their

differences. Based on the experience obtained from

these trials, we developed a summarized prompt

template known as the role prompt. The role prompt

assigns a specific role to LLMs, providing a task

context for the model to effectively generate the

desired output. The template is shown below:

 :

You are [ROLE] familiar with [Domain

Knowledge]. [Task Description]. [OUTPUT

Format]. The input is [INPUT].

In this template, the placeholder [ROLE] specifies

the particular role assigned to the LLMs, such as ”HPC

expert.” The [Domain Knowledge] section defines the

domain expertise required for the task, for example,

”the 13 dwarfs.” The [Task Description] outlines the

expected task for the LLMs to perform, providing clear

guidance on what is required. The [Output Format]

section details the output specification, ensuring the

response is structured appropriately. Finally, the [IN-

PUT] denotes the programming language used for the

code analysis, which can be either source code or

Intermediate Representation (IR) code compiled from

LLVM.

In our study, we utilized this role-based prompting

approach to address RQ3. The final prompt used is as

follows:

 :

You are an HPC expert familiar with the

13 dwarfs/computational patterns. Analyze

the input code to identify the computational

5
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

Analysis of the Code:

1. Initialization and Random Assignment (Structured Grids)

2. Energy Computation (Structured Grids)

3. Monte Carlo Step (N-Body Methods and Structured Grids)

This function performs Monte Carlo steps, where each
step involves selecting a random spin and potentially
flipping it based on its neighbors. The interaction
computation (dE) can be seen as an N-Body Methods
pattern, while the regular 2D grid traversal fits into the
Structured Grids pattern

Fig. 1. The results from ChatGPT with our prompt

patterns used. Provide the patterns identified

and specify the corresponding parts of the

code.

This approach led to more accurate and relevant re-

sponses, improving the overall quality of the semantic

analysis conducted by the LLM.

We then implemented this prompt on a dataset of

source code and IR code. We manually observed each

pattern identified with the corresponding parts of the

code. Impressively, the results were perfect, as shown

in Figure 1. This demonstrates that using LLMs to

identify the dwarfs and observe methods to pinpoint

the ”dwarfs” sections allows us to develop future

methods, such as instruction duplication, to protect

application execution.

VI. DISCUSSION AND FUTURE WORK

Our study provides insights into the resilience of

loops in HPC programs by analyzing the suscepti-

bility of various computational patterns, known as

dwarfs, to soft errors, particularly Silent Data Cor-

ruptions (SDCs). However, several limitations must

be acknowledged. Firstly, our method evaluates SDC

rates using entire applications rather than specific loop

sections. This limitation implies that the resilience

characteristics derived may not fully represent the

exact behavior of the loops.

Furthermore, while our use of Large Language

Models (LLMs) demonstrated promising results in

identifying computational patterns, the accuracy and

reliability of LLMs in selecting critical sections for

resilience enhancement remain uncertain. The depen-

dency on LLMs introduces potential biases and limi-

tations, necessitating further validation to ensure their

effectiveness in real-world scenarios.

Future research should focus on narrowing the scope

of fault injection experiments to test the resilience of

specific loops. This will enable a more precise under-

standing of resilience across different loops. Addition-

ally, future work should aim to optimize instruction

duplication techniques by leveraging the loop seman-

tic understanding of LLMs. Selectively duplicating

critical instructions or code sections based on their

resilience characteristics can reduce overhead while

maintaining high levels of fault tolerance.

VII. CONCLUSION

This paper addresses the critical need for resilience

in High-Performance Computing (HPC) applications

by focusing on the vulnerability of program loops

to transient hardware faults. We systematically iden-

tified and summarized the loop patterns corresponding

to the thirteen dwarfs of parallelism, revealing the

intricate relationship between computational patterns

and resilience. Through extensive fault injection ex-

periments, we quantified the Silent Data Corruption

(SDC) rates associated with these dwarfs, providing

valuable insights into their susceptibility to soft errors.

Furthermore, our innovative use of Large Language

Models (LLMs) with prompt engineering has demon-

strated a practical approach to identifying these dwarfs

within real source code. Our findings underscore the

importance of targeted resilience strategies for the

most critical loops, enhancing the overall reliability

and performance of HPC applications. Future work

will explore the optimization of duplication techniques

and the application of our methods to a broader range

of HPC systems and applications.

ACKNOWLEDGMENT

Thanks to the support partially from NSF #2217104

#2212465.

6
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Transactions on Device

and materials reliability, vol. 5, no. 3, pp. 305–316, 2005.

[2] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve,
S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carl-
son et al., “Addressing failures in exascale computing,” The

International Journal of High Performance Computing Appli-

cations, vol. 28, no. 2, pp. 129–173, 2014.

[3] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for
robust system design,” Design Automation Conference (DAC),

2013 50th ACM/EDAC/IEEE, pp. 1–10, 2013.

[4] P. Wu, C. Ding, L. Chen, F. Gao, T. Davies, C. Karlsson,
and Z. Chen, “Fault tolerant matrix-matrix multiplication:
correcting soft errors on-line,” in Proceedings of the second

workshop on Scalable algorithms for large-scale systems,
2011, pp. 25–28.

[5] G. B. Joseph Sloan and R. Kumar, “An algorithmic approach to
error localization and partial recomputation for low-overhead
fault tolerance on parallel systems,” in DSN, 2013, pp. 1–12.

[6] H. Jiang, J. Zhu, B. Fang, C. Chen, R. Jin, and Q. Guan,
“Happa: A modular platform for hpc application resilience
analysis with llms embedded,” Proceedings of the 43rd Inter-

national Symposium on Reliable Distributed Systems (SRDS),
2024.

[7] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,
“GPU-Qin: a methodology for evaluating the error resilience
of gpgpu applications,” in Performance Analysis of Systems

and Software (ISPASS), 2014, 2014.

[8] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape
of parallel computing research: A view from berkeley,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/
EECS-2006-183.html

[9] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint

arXiv:2303.08774, 2023.

[10] R. A. Poldrack, T. Lu, and G. Beguš, “Ai-assisted coding:
Experiments with gpt-4,” arXiv preprint arXiv:2304.13187,
2023.

[11] T. Kadosh, N. Hasabnis, V. A. Vo, N. Schneider, N. Krien,
A. Wasay, N. Ahmed, T. Willke, G. Tamir, Y. Pinter et al.,
“Scope is all you need: Transforming llms for hpc code,” arXiv

preprint arXiv:2308.09440, 2023.

[12] M. Shen, B. Jiang, J. Y. Zhang, and O. Koyejo, “Batch active
learning from the perspective of sparse approximation,” in
2022 Conference on Neural Information Processing Systems

(NeurIPS) Workshop on Human in the Loop Learning., 2022.

[13] X. Ding, L. Chen, M. Emani, C. Liao, P.-H. Lin, T. Vander-
bruggen, Z. Xie, A. Cerpa, and W. Du, “Hpc-gpt: Integrating
large language model for high-performance computing,” in
Proceedings of the SC’23 Workshops of The International Con-

ference on High Performance Computing, Network, Storage,

and Analysis, 2023, pp. 951–960.

[14] B. Jiang, Z. Zhuang, S. S. Shivakumar, D. Roth, and C. J. Tay-
lor, “Multi-agent vqa: Exploring multi-agent foundation mod-
els in zero-shot visual question answering,” in The IEEE/CVF

Conference on Computer Vision and Pattern Recognition 2024

Workshop on What is Next in Multimodal Foundation Models?,
2024.

[15] Y. Xie, B. Jiang, T. Mallick, J. D. Bergerson, J. K. Hutchi-
son, D. R. Verner, J. Branham, M. R. Alexander, R. B.
Ross, Y. Feng, L.-A. Levy et al., “Wildfiregpt: Tailored
large language model for wildfire analysis,” arXiv preprint

arXiv:2402.07877, 2024.

[16] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and
A. Bhatele, “Modeling parallel programs using large language
models,” arXiv preprint arXiv:2306.17281, 2023.

[17] N. K. A. Le Chen, A. Dutta et al., “The landscape
and challenges of hpc research and llms,” arXiv preprint

arxiv:2402.02018, 2024.

[18] B. Steenhoek, M. M. Rahman, M. K. Roy, M. S. Alam, E. T.
Barr, and W. Le, “A comprehensive study of the capabilities
of large language models for vulnerability detection,” arXiv

preprint arXiv:2403.17218, 2024.

[19] T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr, “Automatic
semantic augmentation of language model prompts (for code
summarization),” in Proceedings of the IEEE/ACM 46th Inter-

national Conference on Software Engineering, 2024, pp. 1–13.

[20] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit
is (not) enough: An empirical study of the impact of single
and multiple bit-flip errors,” in 2017 47th annual IEEE/IFIP

international conference on dependable systems and networks

(DSN). IEEE, 2017, pp. 97–108.

[21] B. Fang, Q. Lu, K. Pattabiraman, M. Ripeanu, and S. Gu-
rumurthi, “epvf: An enhanced program vulnerability factor
methodology for cross-layer resilience analysis,” in 2016 46th

Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), acceptance rate = 21%, June
2016, pp. 168–179.

[22] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai,
“Modeling soft-error propagation in programs,” in 2018 48th

Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), June 2018, pp. 27–38.

[23] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring:
Probabilistic soft error reliability on the cheap,” SIGPLAN

Not., vol. 45, no. 3, Mar.

[24] J. Calhoun, L. Olson, and M. Snir, “Flipit: An llvm based
fault injector for hpc,” in Euro-Par 2014: Parallel Processing

Workshops: Euro-Par 2014 International Workshops, Porto,

Portugal, August 25-26, 2014, Revised Selected Papers, Part I

20. Springer, 2014, pp. 547–558.

[25] Z. Li, H. Menon, K. Mohror, P.-T. Bremer, Y. Livant, and
V. Pascucci, “Understanding a program’s resiliency through
error propagation,” in Proceedings of the 26th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Program-

ming, 2021, pp. 362–373.

[26] G. Georgakoudis, I. Laguna, D. S. Nikolopoulos, and
M. Schulz, “Refine: Realistic fault injection via compiler-based
instrumentation for accuracy, portability and speed,” in Pro-

ceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2017, pp. 1–14.

[27] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and
J. Emer, “Sassifi: An architecture-level fault injection tool for
gpu application resilience evaluation,” in 2017 IEEE Interna-

tional Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 2017, pp. 249–258.

[28] D. Li, J. S. Vetter, and W. Yu, “Classifying soft error vul-
nerabilities in extreme-scale scientific applications using a
binary instrumentation tool,” in SC’12: Proceedings of the

International Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[29] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying
the accuracy of high-level fault injection techniques for hard-
ware faults,” in 2014 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks. IEEE,
2014, pp. 375–382.

[30] X. Xu and M.-L. Li, “Understanding soft error propagation
using efficient vulnerability-driven fault injection,” in IEEE/I-

FIP International Conference on Dependable Systems and

Networks (DSN 2012). IEEE, 2012, pp. 1–12.

[31] Q. Guan, X. Hu, T. Grove, B. Fang, H. Jiang, H. Yin, and
N. DeBadeleben, “Chaser: An enhanced fault injection tool for
tracing soft errors in mpi applications,” in 2020 50th Annual

IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). IEEE, 2020, pp. 355–363.

[32] H. Jiang, S. Ruan, B. Fang, Y. Wang, and Q. Guan, “Visilience:
An interactive visualization framework for resilience analysis
using control-flow graph,” in 2023 IEEE 28th Pacific Rim

International Symposium on Dependable Computing (PRDC).
IEEE, 2023, pp. 250–256.

[33] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, ser. IISWC ’09.

[34] N. P. Benchmarks, “Nas parallel benchmarks,” CG and IS,
2006.

[35] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen,
Z. DeVito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards,

7
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

M. Schulz, and C. Still, “Exploring traditional and emerging
parallel programming models using a proxy application,” in
IEEE IPDPS 2013, Boston, USA.

[36] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantify-
ing the accuracy of high-level fault injection techniques for
hardware faults,” in DSN, June 2014.

[37] J. J. Dongarra, “The linpack benchmark: An explanation,” in
International Conference on Supercomputing. Springer, 1987,
pp. 456–474.

[38] S. Kestur, J. D. Davis, and O. Williams, “Blas comparison on
fpga, cpu and gpu,” in 2010 IEEE computer society annual

symposium on VLSI. IEEE, 2010, pp. 288–293.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The splash-2 programs: Characterization and methodological
considerations,” ACM SIGARCH computer architecture news,
vol. 23, no. 2, pp. 24–36, 1995.

[40] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber et al., “The nas parallel benchmarks,”
The International Journal of Supercomputing Applications,
vol. 5, no. 3, pp. 63–73, 1991.

[41] P. Cicotti, S. M. Mniszewski, and L. Carrington, “An evalua-
tion of threaded models for a classical md proxy application,”
in Hardware-Software Co-Design for High Performance Com-

puting (Co-HPC), 2014, Nov.

[42] D. Ibanez, N. Barral, J. Krakos, A. Loseille, T. Michal, and
M. Park, “First benchmark of the unstructured grid adaptation
working group,” Procedia engineering, vol. 203, pp. 154–166,
2017.

[43] W. Ma, S. Liu, Z. Lin, W. Wang, Q. Hu, Y. Liu, C. Zhang,
L. Nie, L. Li, and Y. Liu, “Lms: Understanding code
syntax and semantics for code analysis,” arXiv preprint

arXiv:2305.12138, 2023.

[44] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph
algorithms in the language of sparse linear algebra,” ACM

Transactions on Mathematical Software (TOMS), vol. 45,
no. 4, pp. 1–25, 2019.

[45] X. Liang, J. Chen, D. Tao, S. Li, P. Wu, H. Li, K. Ouyang,
Y. Liu, F. Song, and Z. Chen, “Correcting soft errors online
in fast fourier transform,” ser. SC, 2017.

[46] E. Lindahl, B. Hess, and D. van der Spoel, “Gromacs 3.0:
a package for molecular simulation and trajectory analysis,”
Journal of Molecular Modeling, vol. 7, no. 8, p. 306–317,
Aug. 2001. [Online]. Available: http://dx.doi.org/10.1007/
s008940100045

[47] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. In’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen et al., “Lammps-a flexible simulation
tool for particle-based materials modeling at the atomic, meso,
and continuum scales,” Computer Physics Communications,
vol. 271, p. 108171, 2022.

APPENDIX

In this Appendix, we provide definitions of compu-

tational dwarfs, their loop characteristics, sample code,

and associated benchmarks.

1) Dense Linear Algebra:

• Definition: Operations involving dense matrices,

such as matrix multiplications and factorizations.

• Loop Characteristics: Nested loops iterating on

matrix dimensions.

• Sample Code:

// Matrix multiplication
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
C[i][j] = 0;
for (int k = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

• Benchmarks: LINPACK [37], BLAS [38]

2) Sparse Linear Algebra:

• Definition: Operations involving sparse matrices,

such as sparse matrix-vector multiplication and

iterative solvers.

• Loop Characteristics: Iteration over nonzero el-

ements, often using compressed storage formats.

• Sample Code:

// Sparse matrix−vector multiplication
for (int i = 0; i < n; i++) {

y[i] = 0;
for (int j = row ptr[i]; j < row ptr[i

↪→ +1]; j++) {
y[i] += values[j] * x[col idx [j]];

}
}

• Benchmarks: SuiteSparse [44]

3) Spectral Methods:

• Definition: Methods that involve transformations

such as Fast Fourier Transforms (FFT).

• Loop Characteristics: Often single loop or sim-

ple nested loops, with FFT being the primary

operation.

• Sample Code:

// FFT operation
fftw plan plan = fftw plan dft 1d (n, in , out ,

↪→ FFTW FORWARD,
↪→ FFTW ESTIMATE);

fftw execute (plan) ;
fftw destroy plan (plan) ;

• Benchmarks: FFTW [45], NAS Parallel Bench-

marks [34]

4) N-Body Methods:

• Definition: Simulations where interactions be-

tween a large number of particles are computed,

typically involving gravitational or electrostatic

forces.

• Loop Characteristics: Double nested loops for

pairwise interactions.

• Sample Code:

// N−body simulation
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
if (i != j) {

double dx = x[j] − x[i];
double dy = y[j] − y[i];
double dist = sqrt (dx*dx + dy*dy

↪→);
force [i] += G * mass[i] * mass[j]

↪→ / (dist * dist) ;
}

}
}

• Benchmarks: GROMACS [46], LAMMPS [47]

5) Structured Grids:

• Definition: Problems where computation is per-

formed on a regular grid, such as finite difference

methods for solving partial differential equations.

8
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

• Loop Characteristics: Double or triple nested

loops iterating over regular grid points.

• Sample Code:

// Finite difference method for solving heat
↪→ equation

for (int i = 1; i < n−1; i++) {
for (int j = 1; j < n−1; j++) {

u new[i][j] = u[i][j] + alpha * (u[i
↪→ +1][j] + u[i−1][j] + u[i][j
↪→ +1] + u[i][j−1] − 4*u[i][j]) ;

}
}

• Benchmarks: NAS Parallel Benchmarks (LU,

MG) [34]

6) Unstructured Grids:

• Definition: Similar to structured grids but with

irregular connectivity, often used in finite element

analysis.

• Loop Characteristics: Nested loops iterating

over elements with irregular connectivity.

• Sample Code:

// Finite element method
for (int elem = 0; elem < num elems; elem

↪→ ++) {
double Ke [4][4]; // Element stiffness

↪→ matrix
assemble element stiffness matrix (Ke,

↪→ elem);
for (int i = 0; i < 4; i++) {

for (int j = 0; j < 4; j++) {
K[global nodes[elem][i]][

↪→ global nodes[elem][j]]
↪→ += Ke[i][j];

}
}

}

• Benchmarks: UGAWG Cone-cone, Cube [42]

7) Map Reduce:

• Definition: Distributed processing of large data

sets, involving map and reduce operations.

• Loop Characteristics: Parallelizable loops with

independent computations.

• Sample Code:

// Map function
for (int i = 0; i < n; i++) {

map output[i] = map function(data[i]) ;
}
// Reduce function
for (int i = 0; i < n; i++) {

reduce output = reduce function (reduce output
↪→ , map output[i]) ;

}

• Benchmarks: Stencil, Monte

8) Combinational Logic:

• Definition: Combinational Logic refers to the

type of logic circuit whose output is a pure

function of the present input only. It involves

logic gates performing bitwise operations, logic

operations, and simple arithmetic operations, of-

ten in straightforward, un-nested loops.

• Loop Characteristics: Un-nested loops focused

on bitwise operations, logical operations (AND,

OR, XOR, NOT), or simple arithmetic (addition,

subtraction). These loops typically iterate over

array elements or bits within integers.

• Sample Code:

// Bitwise AND operation on two arrays
for (int i = 0; i < n; i++) {

C[i] = A[i] & B[i];
}
// XOR operation to check parity
for (int i = 0; i < n; i++) {

if ((A[i] ˆ B[i]) == 0) {
// Do something

}
}
// Simple arithmetic operation : adding two arrays
for (int i = 0; i < n; i++) {

C[i] = A[i] + B[i];
}

• Benchmarks: Hashing, SPEC 2006 CRC, RSA

9) Graph Traversal:

• Definition: Operations on graphs, including

search algorithms like depth-first search (DFS)

and breadth-first search (BFS).

• Loop Characteristics: Loops iterating over

nodes and edges, often using recursion or

queues/stacks.

• Sample Code:

// Depth−First Search (DFS)
void DFS(int v, bool visited []) {

visited [v] = true ;
for (auto i = adj [v]. begin () ; i != adj [v]. end

↪→ () ; ++i)
if (! visited [* i])

DFS(*i, visited) ;
}

• Benchmarks: Rodinia BFS [33]

10) Dynamic Programming:

• Definition: Method for solving complex prob-

lems by breaking them down into simpler sub-

problems, storing the results of subproblems to

avoid redundant computations.

• Loop Characteristics: Loops filling a table based

on the results of previous computations.

• Sample Code:

// Fibonacci sequence
int fib [n+1];
fib [0] = 0;
fib [1] = 1;
for (int i = 2; i <= n; i++) {

fib [i] = fib [i−1] + fib [i −2];
}

• Benchmarks: SPEC2006 Integer: Go (gobmk)

11) Backtrack and Branch-and-Bound:

9
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

• Definition: Algorithmic techniques for solving

combinatorial optimization problems by explor-

ing possible solutions incrementally and abandon-

ing those that do not meet the criteria.

• Loop Characteristics: Recursion with loops try-

ing out possible steps.

• Sample Code:

// N−Queens problem
bool solveNQueens(int board[N][N], int col) {

if (col >= N)
return true ;

for (int i = 0; i < N; i++) {
if (isSafe (board, i , col)) {

board[i][col] = 1;
if (solveNQueens(board, col + 1))

return true ;
board[i][col] = 0;

}
}
return false ;

}

• Benchmarks: SAT solvers, Knuth’s Dancing

Links

12) Finite State Machines:

• Definition: Computations based on state transi-

tions, often used in control systems and protocol

design.

• Loop Characteristics: Loops involving state

transitions based on conditions.

• Sample Code:

// Simple finite state machine
enum State {STATE A, STATE B, STATE C};
State currentState = STATE A;
while (true) {

switch (currentState) {
case STATE A:

if (condition) currentState =
↪→ STATE B;

break;
case STATE B:

if (condition) currentState =
↪→ STATE C;

break;
case STATE C:

if (condition) currentState =
↪→ STATE A;

break;
}

}

• Benchmarks: SPEC2006 Integer: Text process-

ing (perlbench)

13) Graphical Models:

• Definition: Probabilistic models representing

complex dependencies among variables, often

used in machine learning and statistics.

• Loop Characteristics: Iterative loops refining

probabilistic estimations.

• Sample Code:

// Simple belief propagation
for (int iter = 0; iter < max iters; iter ++) {

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
messages[i][j] = computeMessage(i, j)

↪→ ;
}

}
for (int i = 0; i < n; i++) {

beliefs [i] = computeBelief(i , messages);
}

}

• Benchmarks: BUGS, Infer.NET

10
Authorized licensed use limited to: Kent State University Libraries. Downloaded on October 25,2025 at 14:28:34 UTC from IEEE Xplore. Restrictions apply.

