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Modeling for Long-Term Cascaded Hydropower

Scheduling under Extreme Heat Events
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Abstract—The operation of hydropower plants are significantly
challenged by extreme heatwave events. This paper integrates
artificial intelligence and a physics-based model to introduce an
efficient long-term scheduling framework aimed at maximizing
hydropower generation during extreme heat events. The water
values derived from the proposed long-term scheduling model
can be used in developing effective strategies for short-term hy-
dropower scheduling. A physics-based evaporation model (PEM),
which captures key land-atmosphere interactions, is developed
to account for significant variations in reservoir evaporation
rates during extreme heat events. A multivariate long short-
term memory (M-LSTM) forecasting model is also utilized to
predict the key input parameters required for both the PEM and
the long-term scheduling problem. A regression-based machine
learning algorithm is also utilized to estimate the hydropower
production function, which enables linear integration of the
nonlinear and nonconvex behavior of hydropower plant in the
mixed-integer linear formulation of the scheduling problem. The
proposed model is applied to a case study of eleven cascaded
hydropower units located on the Columbia river. The numerical
results demonstrate that the proposed long-term scheduling
model effectively manages reservoir operations, mitigating the
adverse impacts of extreme heat events on hydropower generation
and operator profitability.

Index Terms—Extreme heat events, hydropower, long-term
scheduling, artificial intelligence, physics-based evaporation
model.

NOMENCLATURE

Indices and Sets

h, H Index and set of hydropower plants
t, T Index and set of time (hours of a day)
n, N Index and set of days
i, Ih Index and set of upstream hydropower plants

Variables

qinn,h,t, q
out
n,h,t Inflow, Outflow [m3 s−1]

qSn,h,t, q
B
n,h,t Spillage, Bypass flow [m3 s−1]

qnetn,h,t, q
D
n,h,t Net, Discharge flow [m3 s−1]

pH,D
n,t Power sold in day-ahead market [MW]

pHn,h,t Hydropower generation [MW]
Vn,h,t Storage volume [m3]
HD

n,h,t Hydraulic head [m]
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Zf
n,h,t, Z

t
n,h,t Forebay, Tail water level [m]

lH,LS
n,t Load shedding [MW]

Binary variables

Un,h,t Commitment indicator
uc
n,h,t,k Cluster selection indicator

Su
n,h,t, S

d
n,h,t Startup, Shutdown of hydropower plant

Parameters

ηh Turbine efficiency
ρ Density of Water [kgm−3]
g Acceleration due to Gravity [ms−2]
kc Crop coefficient
qWn,h,t Water demand [m3 s−1]
In,h,t Natural inflow to the reservoir [m3 s−1]
αb Albedo
α Aerodynamic coefficient
αe Empirical coefficient
ac Unit conversion coefficient
β Empirical coefficient
Rn,h,t Net radiation [MJm−2]
Gn,h,t Ground heat flux [MJm−2]
Tn,h,t, T

d
n,h,t Temperature, Dew point temperature [◦C]

ur
n,h,t Hourly u component of wind speed measured

at the height of the reservoir [ms−1]
us
n,h,t Hourly u component of wind speed measured

at the height of 2 meters [ms−1]
e0 Reference saturation vapor pressure [kPa]
esn,h,t, e

a
n,h,t Saturation, Actual vapor pressure [kPa]

∆n,h,t Slope of the vapor pressure-temperature curve
[kPa ◦C−1]

δ Time interval [s]
γ Psychrometric constant [kPa ◦C−1]
ϵm Ratio of molecular weight of water vapor

[MJkg−1 ◦C−1]
An,h,t Surface area of reservoir [m3]
En,h,t Reservoir evaporation volume [m3]
P v
n,h,t Reservoir precipitation volume [m3]

a Conversion factor
b Scaling factor
c Temperature conversion factor
Eref

n,h,t Reference reservoir evaporation [mm]
P ref
n,h,t Reference reservoir precipitation [mm]

Lv Latent heat of vaporization [MJkg−1]
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ER
n,h,t Radiative evaporation [mm3 h−1]

EA
n,h,t Aerodynamic evaporation [mm3 h−1]

T 0 Reference temperature [◦C]
Z0 Roughness length [m]
K0 Reference height [m]
Kr Reservoir height [m]
Ψ Empirical vapor pressure coefficient
Sp
n,h,t Surface pressure [kPa]

Cp Specific heat [MJkg−1 ◦C]
λD
n,t Electricity price [$/MWh]

λC
n,t Contract price [$/MWh]

PH,C
n,t Contracted power [MW]

cBh Penalty for bypassed water [$/m3]
cSh Penalty for spilled water [$/m3]
cSU
h , cSD

h Startup/Shutdown cost [$]
wv

n,h,t Water value [$/m3]
SW ↓

n,h,t Shortwave down radiation [Jm−2]
LW ↑, LW ↓ Up/down thermal radiation [Jm−2]
qDh ,qDh Max/min discharge limits [m3 s−1]
qBh ,qBh Max/min bypass limits [m3 s−1]
qSh ,qSh Max/min spillage limits [m3 s−1]
V H
h ,V H

h Max/min storage volume limits [m3]
Ph,Ph Max/min hydropower generation [MW]
HD

h , HD
h Max/min hydraulic head limits [m]

I. INTRODUCTION

A. Motivation

HEATWAVE events are increasing in frequency, severity,
and duration [1], causing heightened power demand and

diminished power production, which presents a significant
challenge to power grid resilience. On the power demand
side, elevated temperatures associated with heatwaves lead to
a significant increase in energy consumption, primarily driven
by the heightened use of air conditioners for cooling purposes
[2]. This increase in demand often translates into higher
electricity prices and an increased risk of power outages. On
the power production side, heatwaves affect nuclear, coal, and
gas-fired power plants that depend on large volumes of water
for cooling, as elevated water temperatures reduce cooling
efficiency and impair power generation. Heatwaves also impact
renewable energy generation and efficiency, further lowering
energy production. This complex interplay between rising
demand, falling supply and strained infrastructure highlights
the challenges power systems face during heatwaves [3].

Hydropower accounted for 29% of the U.S. renewable
electricity in 2022, supplying over 70% of the Northwest’s
electricity, while providing long duration storage capacity
that is crucial for ensuring system reliability during extreme
weather events [4]. Unlike traditional fuel-based power plants,
hydropower’s capacity is dependent on reservoir water levels,
which fluctuate due to weather conditions [5]. Heatwave events
increase water demand for municipal and irrigation purposes
while simultaneously reducing water availability due to higher
evaporation rates [6]. For instance, annual reservoir evapora-
tion can account for approximately 5-10% of the total storage
capacity in the western U.S. [7]. Altered precipitation patterns

further exacerbate water scarcity, significantly decreasing wa-
ter capacity. This leads to hydropower shortages, necessitating
greater dependence on other renewable energy sources and
potentially fossil fuels as energy demand rises with increasing
temperature [8]. When the supply of hydropower is low, the
revenue for hydropower plants, which sell their electricity
to the grid or to customers through various mechanisms,
also decreases. For instance, between 2018 and 2021, federal
hydropower plants in the Southwest experienced a 20% drop
in revenue compared to previous averages, primarily due to
decreased sale volumes brought on by drought conditions.
Similarly, in 2021, drought conditions in the Pacific Northwest
led to a 14% reduction in hydropower generation. In summary,
extreme heat events can lead to lower hydropower sales
volumes due to limited water availability in storage.

B. Literature Review

Various studies have employed diverse modeling approaches
to explore the effects of heatwaves on different facets of power
systems. The model in [9] translate heatwave vulnerability
into a feeder level metric and embed it in a distribution
network model to guide distributed energy resources invest-
ments that reduce overheating risk for the most vulnerable
customers. A model to optimally site and size cost-effective
solar-battery resilience hubs that maintain cooling and power
during heatwave outages is presented in [10]. The work in
[11] presents an operational strategy for transmission systems
during heatwave conditions, accounting for the influence of
hourly temperature variations on load patterns, capacity and
efficiency of power sources and transmission lines. Heatwaves
not only impose stress on power infrastructure and the capacity
of power generation units but also contribute to increased
costs associated with power generation. In addressing these
challenges, a production cost model is developed in [12] that
considers the impact of heatwaves on power grid operation and
incorporates temperature-dependent loads and generators. An-
other study in [13] found that heatwaves increase the electricity
prices by 11% on average, and more during peak demand, due
to the reduced production capacity of thermoelectric power
plants that depend on cooling water.

Hydropower generation is also significantly affected by
changing weather; therefore, robust hydropower scheduling is
essential. In this regard, authors in [14] formulate a stochastic
continuous-time hydro-thermal coordination model that bal-
ances wind power uncertainty across cascaded hydropower
plants and thermal units. A model for coordinated scheduling
of cascaded hydro and thermal plants under sequential heavy
precipitation is proposed in [15] to enhance the power system
resilience. Long-term scheduling of resources emerges as a
crucial strategy to address the complex interplay between ex-
treme heat events and power system operations. By extending
the scheduling horizon, operators can better anticipate and
mitigate the impacts of extreme climate conditions and ensure
a reliable and efficient operation. In this regard, authors in
[16] develop a long-term complementary scheduling model for
hydro-wind-solar systems under extreme drought conditions.
A framework is proposed in [17] to analyze long-term impacts
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of climate change on hydropower generation in Brazil using
multi-stage stochastic optimization. The authors in [18] derive
steady-state operating policies for distinct climate regimes
(dry, normal, wet) to optimize long-term hydropower and
irrigation supply. The study in [19] analyzes the impacts of
climate change on hydropower generation, electricity demand,
and greenhouse gas emissions, with a focus on long-term
scheduling and compound extremes such as droughts and
heatwaves. A hydrologically-driven methodology for assessing
the adaptive capacity of multi-reservoir water resource systems
in the context of long-term hydrological persistence under
climate change is proposed in [20]. An efficient water level
optimal control method for long-term hydropower scheduling
is proposed in [21], which considers reservoir evaporation and
leakage losses. A model is presented in [22] for hydrother-
mal scheduling that incorporates head-dependent hydropower
production and considers evaporation as a linear function of
average reservoir storage.

Long-term forecasting is essential for identifying seasonal
patterns and trends in water availability, which play a crucial
role in long-term hydropower scheduling [23]. Authors in
[24] evaluate encoder-decoder models for long-term reservoir
inflow forecasting, identifying regular long short-term memory
(LSTM) with 16 nodes as the optimal model, outperform-
ing statistical models like seasonal auto-regressive integrated
moving average and vector auto-regression. A semi-distributed
hydrological model is used in [25] for river flow forecasting. A
novel ensemble forecasting model for long-term hydropower
forecasting is proposed in [26] that combines auto-regressive
integrated moving average (ARIMA) and bidirectional LSTM
(BiLSTM) models. Authors in [27] propose a multivariate
probabilistic forecasting framework using vector autoregres-
sive integrated moving average (VARIMA) and dynamic copu-
las to capture the linear and nonlinear relationships in monthly
runoff and wind speed data, integrating these forecasts into a
stochastic optimization model for the long-term joint dispatch
of a hydro-wind hybrid system. A novel convolutional neu-
ral network (CNN)-BiLSTM model combined with transfer
learning for forecasting power generation in run-of-the-river
hydropower plants is presented in [28]. LSTM is also utilized
in [29] to develop an inflow prediction model aimed at
enhancing long-term hydropower scheduling.

Despite significant advancements in hydropower scheduling
models, several research gaps remain unaddressed. While most
studies acknowledge the increasing frequency of compound
climate events, e.g., droughts and heatwaves, the operational
strategies for mitigating these impacts on hydropower genera-
tion are not fully explored. Although the literature has exam-
ined the weather impact on long-term hydropower scheduling,
the existing studies are often limited to monthly resolutions,
which do not capture short-term variations, including hourly
fluctuations in demand, price, and temperature, even though
these variations are critical for addressing operational chal-
lenges. In addition, other studies have evaluated system-level
impacts, e.g., [17], but they often rely on simplified mod-
els that aggregate individual hydropower plants, overlooking
plant-specific operational dynamics. Further, the literature on
hydropower modeling lacks both detailed representation and

effective linearization of hydropower production function for
reducing the computational complexity of long-term schedul-
ing. Although evaporation is acknowledged as a critical factor
influencing water balance, its treatment is often oversimplified,
relying on linear models that fail to account for spatial varia-
tions across basins or the complexity of watershed dynamics.
Moreover, the literature predominantly rely on forecasting
reservoir inflows alone, overlooking other essential parameters
that could enhance the accuracy of hydropower scheduling.

C. Contributions and Paper Structure

With increasing concern over extreme weather events, inte-
grating land-atmosphere interactions into hydropower model-
ing is essential for more accurate hydropower operations. In
this context, accurately representing evaporation trends during
periods of drought or heatwaves is crucial, as it enhances
the effectiveness of long-term hydropower scheduling. This
paper focuses on the specific implications of heatwaves that
affects the hydropower generation, and develops a framework
that leverages machine learning to model the hydropower
operation and forecast the necessary inputs for long-term
scheduling problem more accurately. More specifically, the key
contributions of this paper are as follows:

• A comprehensive long-term hydropower scheduling
framework is developed that enables hydropower op-
erators to optimize their self-scheduling strategies to
participate in the day-ahead energy market. The derived
water values from the long-term scheduling problem can
be leveraged to improve short-term scheduling decisions,
ensuring that hydropower operations are both resilient and
economically optimized in the face of variable market and
weather conditions.

• A physics-based evaporation model (PEM), capturing
land-atmosphere interactions, is integrated in the long-
term scheduling problem to accurately model the evapo-
ration rates from hydropower reservoirs.

• A multivariate LSTM (M-LSTM) forecasting model is
employed to predict the key input parameters required
for both PEM and the long-term scheduling problem.

The remainder of this paper is structured as follows: Section
II provides on the problem description and Section III outlines
the formulation of the proposed long-term scheduling problem.
The case study based on the Columbia river basin is presented
in Section IV, and Section V provides the conclusions.

II. PROBLEM DESCRIPTION

This section provides the problem description, highlighting
the importance of proposed long-term hydropower scheduling
framework integrated with PEM.

A. Hydropower Market Mechanism

Hydropower is marketed through various mechanisms de-
pending on the region and the regulatory framework, including
long-term power purchase agreements, short-term bilateral
contracts, or participation in day-ahead and real-time whole-
sale markets. Market operations vary globally; in the U.S.,



4

electricity markets are managed by Independent System Oper-
ators (ISOs) and Regional Transmission Organizations (RTOs),
whereas in Europe, they are coordinated by nominated electric-
ity market operators and power exchanges such as European
power exchange and Nord Pool. In regions with cascaded
hydropower plants in the U.S., Power Marketing Administra-
tions (PMAs) manage the sale and dispatch of hydropower
generation [30]. By pooling resources from multiple cascaded
hydropower systems, PMAs aim to optimize collective benefits
from day-ahead market participation. For instance, the Bon-
neville Power Administration (BPA), a prominent PMA in the
Northwestern U.S., manages extensive hydropower resources
in the Columbia River Basin, addressing the complexities
of marketing wholesale electricity produced by 31 federal
hydroelectric projects. In addition to participating in electricity
markets, BPA and other PMAs sell power directly to publicly
and privately owned utilities under long-term contracts. Their
primary objective is to meet these contractual obligations
while strategically marketing any surplus generation capacity
in the day-ahead market to maximize overall profitability. In
Europe, power exchanges like Nord Pool facilitate compet-
itive trading of hydropower across national borders. Despite
differences in market operators and hydropower ownership and
operations, the day-ahead market structure is present in most
regions worldwide. In many day-ahead electricity markets, so-
called self-schedulers must submit generation commitments
for each hour of the following day, one day in advance. For
an optimal generation scheduling and market participation,
hydropower operators must accurately forecast key parameters
such as electricity prices, inflows, and contracted demand.
This highlights the strong need for advanced forecasting and
scheduling strategies that equip hydro operators with insights
into the profits they can achieve through informed long-
term scheduling and strategic participation in the day-ahead
electricity markets.

B. Impact of Extreme Heat Challenges on Water Availability
and Hydropower Production

The availability of water for electricity generation at each
hydropower plant is significantly constrained by the storage
capacities of reservoirs and the projected future inflows within
the river basins where these reservoirs are located. The effect
of high temperatures and heatwaves further complicates this
dynamic, potentially reducing water availability due to in-
creased evaporation rates and changing precipitation patterns,
which can alter the volume of water stored in reservoirs.
Land-atmosphere interactions play a critical role in shaping
the intensity, duration, and frequency of heatwaves, directly
influencing water availability for hydropower generation [31].
Increased vapor pressure deficit during heatwaves accelerates
water loss from both soil and open water bodies, leading to
a reinforcing feedback loop of drier conditions and increased
evaporation. Quantifying evaporation is particularly challeng-
ing due to its dependence on multiple interrelated meteorolog-
ical variables, including air temperature, humidity, wind speed,
solar radiation, and atmospheric pressure. These factors exhibit
complex nonlinear interactions, making evaporation patterns
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Fig. 1: Diagram of the proposed long-term scheduling framework.

difficult to predict with high precision under varying climate
conditions. By integrating advanced forecasting techniques
with physics-based evaporation models, hydropower operators
can optimize water-energy management decisions.

III. PROBLEM FORMULATION

This section presents the proposed forecasting algorithm,
the PEM, and the mathematical framework for long-term
hydropower scheduling, as shown in Fig. 1. The input data to
the forecasting model includes historical records of weather
components, such as temperature, solar radiation, precipita-
tion, as well as market components, e.g., electricity price.
It also incorporates hydropower data, such as reservoir in-
flow and contracted demand. The weather forecasts were
incorporated into PEM to estimate the evaporation rates of
the reservoir. The evaporation rates, along with forecasted
precipitation, inflow, electricity price, and demand, are then
fed into the optimization model. The output of the optimization
are the optimal decisions, water value estimations, and profit
projections gained from day-ahead market participation.

A. The Proposed M-LSTM Forecasting Algorithm

1) Multivariate LSTM forecasting model: LSTM networks
improve recurrent neural networks by introducing mechanisms
to retain information over long time horizons, thus addressing
the vanishing gradient problem. Each LSTM cell comprises
multiple gates that regulate the flow of information as detailed
in (1)–(6). The forget gate (ft) in (1) decides how much of
the old memory to retain by utilizing the sigmoid activation
function (σ) to assign values between 0 and 1, where 1
indicates retaining the information and 0 represents forgetting.
The input gate (it) regulates which new information from the
current input (xt) is added to the cell state. It also employs
the sigmoid activation function to control the flow of new
information into the memory as shown in (2). Candidate cell
state (c̃t) in (3), represents the potential new information that
can update the cell state. The cell state (ct) in (4) acts as the
memory of the LSTM and combines the previous cell state
(ct−1) with the candidate cell state. It uses the hyperbolic
tangent activation function (tanh) to assign values between 1
and -1, allowing both positive and negative contributions to the
information flow. The output gate (ot) in (5) controls which
portion of the updated cell state contributes to the hidden state
(nh

t ), which will be passed to the next layer or used for final
predictions. The hidden state in (6) is the final output of the
LSTM cell and is generated by applying the hyperbolic tangent
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function to the updated cell state, followed by modulation
through the output gate. These gating mechanisms play a
critical role in learning the weights (wf , wi, wc, wo) and
biases (bf , bi, bc, bo) which are essential for the LSTM’s ability
to regulate information flow effectively.

ft = σ(wf .[nh
t−1, xt] + bf ) (1)

it = σ(wi.[nh
t−1, xt] + bi) (2)

c̃t = tanh(wc.[nh
t−1, xt] + bc) (3)

ct = ft ∗ ct−1 + it ∗ c̃t (4)

ot = σ(wo.[nh
t−1, xt] + bo) (5)

nh
t = ot ∗ tanh(ct) (6)

The proposed forecasting model uses a M-LSTM network,
which takes multiple inputs and predicts multiple output
targets. The primary input features for the forecasting model
include electricity price, demand and inflow, complemented
by weather parameters such as temperature, wind speed,
surface pressure, net solar radiation, net thermal radiation,
dew point temperature, and precipitation. To enhance the
forecast, additional external features are considered, including
the hour of the day, day of the week, weekends, months,
and seasons. The data processing phase involves addressing
missing data, cleaning datasets, scaling data, and applying one-
hot encoding to non-numerical data. The processed data are
then fed into LSTM layers that include several hidden layers
and a dropout layer to prevent overfitting. The architecture
concludes with a dense layer, leading to an output layer that
produces forecasts for target variables including; temperature,
wind speed, electricity price, demand, etc. This approach
allows for a more accurate prediction by accounting for the
intricate interdependencies among the variables. The diagram
of the proposed M-LSTM model is represented in Fig. 2.

2) Evaluation criteria: The performance and accuracy of
forecasting models can be assessed through various evalua-
tion metrics, each providing unique insights into the model’s
predictive accuracy. Among the commonly used metrics are
mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE) [26]. These
metrics provide different perspectives on how well the model
performs, highlighting errors, variability, and overall fit. In
this study, the accuracy of the proposed forecasting model is
evaluated primarily using MAPE and RMSE. However, for
features that have low value ranges, close to zero, MAE is
applied instead of MAPE. MAPE can yield misleading results
for such features due to potential division by small or near-
zero values, making it less appropriate in these cases. These
metrics are presented in (7)–(9):

MAPE =
100%

m

m∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , (7)

RMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (8)

MAE =
1

m

m∑
i=1

|yi − ŷi| , (9)

where (yi) and (ŷi) denote the actual and predicted values,
respectively, and (m) denotes the number of predicted samples.
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Fig. 2: Multivariate LSTM forecasting algorithm

B. Physics-Based Evaporation Model (PEM)

Accurate estimation of evaporation rates is essential for op-
timizing hydropower operations and maintaining reservoir lev-
els. Higher temperatures will lead to increased evaporation and
higher water loss from vegetation. The developed evaporation
model calculates the hourly evaporation at hydropower reser-
voir locations. This model uses meteorological data including
temperature, dewpoint temperature, wind speed, net radiation,
ground heat flux, and atmospheric pressure. Reference evap-
oration for each reservoir area is estimated using Penman
equation in (10)–(12), validated in many studies including
[32]– [33]. The evaporation from each reservoir (12) is the sum
of the radiative (10) and the aerodynamic (11) components
[33]. The net radiation is a critical component of the surface
energy balance, representing the difference between incoming
and outgoing radiation at the Earth’s surface, calculated in
(13). Ground heat flux accounts for the heat exchange between
the water surface and its surroundings. In this model, the
ground heat flux is approximated based on the net radiation.
This approximation is a simplified representation suitable for
the context of open water surfaces where the ground heat flux
can be considered similar to the heat exchange at the water
surface. The calculation of ground heat flux is detailed in (14),
where αe is an empirical coefficient. When the net radiation
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is positive (daytime), about 10% of it contributes to ground
heat flux. Conversely, when the net radiation is negative
(nighttime), approximately 50% contributes to ground heat
flux, reflecting the cooling effect. Other essential parameters
to calculate evaporation are saturation vapor pressure esn,h,t
and actual vapor pressure ean,h,t. The former defined in (15),
represents the potential for air to hold moisture at a given tem-
perature, while the latter, given in (16), measures the existing
amount of water vapor in the air and is determined by the
dewpoint temperature, which is the point at which air becomes
saturated and condensation begins. Another crucial parameter
in calculating evaporation is slope of the saturation vapor
pressure curve. This parameter, represents the rate of change of
the saturation vapor pressure with respect to temperature and is
calculated in (17). To calculate evaporation, the u-component
of the wind speed must be adjusted from the reservoir height
(Kr) to the standard height of 2 meters above the surface (K0).
This adjustment is performed in (18) using the logarithmic
law, a widely used analytical model for estimating the wind
profile [34]. The roughness length denoted by Z0 is a key
parameter in the logarithmic law. It represents the height above
the surface at which the wind speed theoretically becomes zero
due to surface friction. For open water bodies like reservoirs, is
typically small, e.g., 200 µm, reflecting the relatively smooth
surface. The psychrometric constant in (19), accounts for the
influence of air pressure and humidity on the evaporation.

ER
n,h,t =

a∆n,h,t(Rn,h,t −Gn,h,t)

∆n,h,t + γn,h,t(1 + α us
n,h,t)

(10)

EA
n,h,t =

γn,h,t
b

Tn,h,t+cu
s
n,h,t(e

s
n,h,t − ean,h,t)

∆n,h,t + γn,h,t(1 + α us
n,h,t)

(11)

Eref
n,h,t = ER

n,h,t + EA
n,h,t (12)

Rn,h,t = SW ↓
n,h,t(1− αb) + LW ↓

n,h,t − LW ↑
n,h,t (13)

Gn,h,t = αeRn,h,t (14)

esn,h,t = e0 exp

(
βTn,h,t

Tn,h,t + T 0

)
(15)

ean,h,t = e0 exp

(
βT d

n,h,t

T d
n,h,t + T 0

)
(16)

∆n,h,t =
Ψesn,h,t

(Tn,h,t + T 0)2
(17)

us
n,h,t = ur

n,h,t

ln
(

K0

Z0

)
ln
(
Kr

Z0

) (18)

γn,h,t =
Sp
n,h,tC

p

ϵmLv
(19)

C. Long-term Hydropower Scheduling Problem

The objective of the long-term hydropower scheduling
problem in (20) is to maximize the profit of the hydropower
operator through participation in the day-ahead energy market.
In this paper, the hydropower operator is considered a price
taker, aiming to optimize decisions by participating in the
day-ahead market and making direct sales to both public and
private utilities. The profit is calculated by subtracting total

operational costs from the total revenue generated through
market participation and direct utility sales as follows:

max
∑
n∈N

∑
t∈T

[
λD
n,tp

H,D
n,t + λC

n,tP
H,C
n,t − lH,LS

n,t

−
∑
h∈H

(cBh q
B
n,h,t+ cShq

S
n,h,t+ cSU

h Su
n,h,t+ cSD

h Sd
n,h,t)

]
. (20)

The objective function in (20) is constrained to (21)–(38),
presented next.

1) Cascade constraints: Long-term scheduling of cascade
hydropower systems, where dams are hydraulically linked
along a river, is a complex task due to upstream-downstream
dependencies. Water releases from upstream reservoirs directly
affect downstream availability, requiring coordinated operation
to maximize overall power generation and profit across the
system. The mathematical formulations provided in (21)–
(26) outline the constraints associated with the topology of
a cascaded system considering the management of water
resources. The water inflow to each reservoir is equal to the
sum of the outflow, spillage and the water bypass from the
upstream reservoir, as formulated in (21). The net flow to
the reservoir in (22) represents the balance between incoming
and outgoing water flows. Incoming flow includes both release
from upstream dams and natural inflow, while outgoing flow
comprises outflow and water demand. Essentially, a portion
of the reservoir’s storage is utilized to satisfy water demands
for purposes such as irrigation and drinking [35]. Total water
released from reservoirs, which is the combined flow of
bypassed, discharge and spilled water is represented in (23).
Constraint (24) implies that the discharge from dams must
lie within a specified range when the plant is on. The water
bypassed, which is essential for preserving aquatic habitats,
e.g., fish passage, is bounded in (25). The spillage water is
bounded in (26) to avoid gas dissolution downstream.

qinn,h,t =
∑
i∈Ih

qDn,i,t +
∑
i∈Ih

qSn,i,t +
∑
i∈Ih

qBn,i,t (21)

qnetn,h,t = In,h,t + qinn,h,t − qoutn,h,t − qWn,h,t (22)

qoutn,h,t = qBn,h,t + qDn,h,t + qSn,h,t (23)

qDh Un,h,t ≤ qDn,h,t ≤ qDh Un,h,t (24)

qBh ≤ qBn,h,t ≤ qBh (25)

0 ≤ qSn,h,t ≤ qSh (26)

2) Water balance: The water balance, as detailed in (27),
represents the equilibrium between the volume of water in
reservoirs, accounting for the effects of evaporation, precipita-
tion, and net flow [36]. The hourly volumetric rates of reservoir
evaporation and precipitation are determined by multiplying
the surface area of the reservoir by the hourly evaporation
and precipitation rate in (28) and (29). The surface area of
reservoirs An,h,t is obtained from the global reservoir surface
area dataset (GRSAD), which provides global reservoir data
derived primarily from Earth observation satellite imagery
[37]. The volume of each reservoir is bounded by an upper
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limit to keep storage for flood control and a lower limit to
preserve water for drought conditions (30).

Vn,h,t − Vn,h,t−1 = qnetn,h,tδ + P v
n,h,t − En,h,t : w

v
n,h,t (27)

P v
n,h,t = acP ref

n,h,tAn,h,t (28)

En,h,t = ackcE
ref
n,h,tAn,h,t (29)

V H
h ≤ Vn,h,t ≤ V H

h (30)

3) Hydropower modeling: The dynamics of the water flow
and the pressure head in a hydropower system is given by (31).
The hydraulic head in (32) is defined as the difference between
the average water level in the forebay and the tailwater at
a given time [15]. The forebay water level is a function of
the water volume as shown in (33). Also, tailwater level is
influenced by the rate at which water is discharged from
the hydro plant, indicated in (34). Accurate modeling of the
tailwater level is crucial for assessing the downstream impact
of hydro operations and for optimizing the overall performance
of the cascade hydropower system. Functions represented in
(33) and (34) are inherently non-linear and nonconvex, often
modeled using higher-order polynomials. In this paper, these
nonlinear relationships, including the HPF detailed in (31),
are approximated using a piecewise linear regression-based
machine learning approach. To effectively manage hydropower
plant operations, the scheduling model must determine the
optimal on/off status. According to (35), the output power of
each hydropower plant lies within its minimum and maximum
capacity limits when the plant is on. Constraint (36) ensures
that if a plant transitions from off to on, it corresponds to a
startup event. Conversely, if a plant transitions from on to off,
it corresponds to a shutdown event. Constraint (37) ensures
that a plant cannot start up and shut down simultaneously.

pHn,h,t = ηhρ g qDn,h,tH
D
n,h,t (31)

HD
n,h,t = 1/2 (Zf

n,h,t + Zf
n,h,t−1)− Zt

n,h,t (32)

Zf
n,h,t = ff

h (Vn,h,t) (33)

Zt
n,h,t = f t

h(q
D
n,h,t) (34)

PhUn,h,t ≤ pHn,h,t ≤ PhUn,h,t (35)

Su
n,h,t − Sd

n,h,t = Un,h,t − Un,h,t−1 (36)

Su
n,h,t + Sd

n,h,t ≤ 1 (37)

4) Power balance: The total power generated from hy-
dropower plants is intended to meet the annual demand as
defined by contracts between hydropower operator and public
and private utilities. Any surplus power can be sold in the
market. In (38), the total power generated equals the sum of
the contracted power and the power sold in the electricity
market, and any power-balance shortfall is captured by the
load shedding term.∑

h∈H

pHn,h,t = pH,D
n,t + PH,C

n,t − lH,LS
n,t (38)

D. Water Value Calculation

The water value, which represents the change in a hy-
dropower operator’s profit due to a marginal change in water

storage volume, is crucial for decision-making regarding the
use of water in hydropower reservoirs. Ignoring water value in
day-ahead scheduling can lead to inefficient use of reservoir
storage, potentially consuming resources, and resulting in
suboptimal scheduling. This paper aims to calculate water
values to provide hydropower operators with valuable insights
for future resource management. Specifically, the water value
determined by the proposed long-term scheduling model can
be used as an input for day-ahead generation scheduling. In
this paper, water values are determined using the dual vari-
ables (Lagrange multiplier) associated with the water balance
constraint, represented by wv

n,h,t in (27) following the method-
ology outlined in [38]. To balance accuracy and computational
efficiency, a deterministic optimization approach is employed.
While this approach expedites calculations, adopting a stochas-
tic approach in future research could further refine water value
estimates taking into account uncertain operating conditions.

E. Piece-Wise Linearization Approach

To capture the nonlinear relationship between discharge
flow, hydraulic head and hydropower production in a tractable
manner, a piecewise linearization strategy is employed [39].
First, the set of observed qDn,h,t, HD

n,h,t data points is seg-
mented into k distinct clusters using the K-means clustering
algorithm. K-means clustering is an unsupervised machine
learning algorithm that minimizes the sum of squared distances
between data points and their corresponding centroids, thereby
classifying the data into k clusters [40]. The optimal number
of clusters is obtained using elbow method as outlined by [41].
Here, each K-means cluster’s Voronoi region is approximated
with an enclosing bounding box for simpler MILP encoding.
Each cluster corresponds to a region Ωk in the qD, HD plane.
More explicitly, each cluster defines a subset of the joint
domain of (qDn,h,t, H

D
n,h,t), denoted by Ωk. Suppose that for

cluster k we have breakpoints for discharge
(
qmin
k,h , qmax

k,h

)
and

for head
(
Hmin

k,h , Hmax
k,h

)
. Then, Ωk is defined as:

Ωk =
{
(qDn,h,t, H

D
n,h,t)

∣∣∣ qmin
k,h ≤ qDn,h,t ≤ qmax

k,h ,

Hmin
k,h ≤ HD

n,h,t ≤ Hmax
k,h

}
. (39)

Within each region Ωk in (39), a linear function of the
form (40) is applied. The Coefficients αh,k, βh,k and γh,k,
which define the local linear relationship, are estimated via
piecewise multiple linear regression [42]. Constraints (41)
and (42) impose the piecewise linear relationship for the
hydropower production pHn,h,t. When uc

n,h,t,k = 0 for a given
cluster k, the big-M technique effectively switches off that
segment, so only the active cluster, i.e., uc

n,h,t,k = 1, enforces
its linear relation on pHn,h,t. Here, big-M denotes a sufficiently
large positive constant M that relaxes the constraint whenever
the segment is inactive. Constraint (43) restricts the discharge
qDn,h,t to the bounding box ( qmin

k,h , qmax
k,h

)
of the chosen cluster;

if the plant is off, qDn,h,t is forced to zero. Constraints (44)–(45)
confine HD

n,h,t to the active cluster’s range (Hmin
k,h , Hmax

k,h

)
when plant is on and relax the bound to the global limits
(HD

h , HD
h ) when plant is off. This implies that even when

the hydropower plant is off, the hydraulic head may remain
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nonzero due to reservoir volume changes and inflow/outflow
variations. Finally, constraint (46) ensures that exactly one
cluster can be selected when the plant is on (Un,h,t = 1)
and no cluster is chosen when the plant is off (Un,h,t = 0).

fH
n,h,t,k = αh,kq

D
n,h,t + βh,kH

D
n,h,t + γh,k (40)

pHn,h,t ≥
∑
k

(
fH
n,h,t,k −M(1− uc

n,h,t,k)

)
(41)

pHn,h,t ≤
∑
k

(
fH
n,h,t,k +M(1− uc

n,h,t,k)

)
(42)∑

k

qmin
k,h uc

n,h,t,k ≤ qDn,h,t ≤
∑
k

qmax
k,h uc

n,h,t,k (43)

HD
n,h,t ≤

∑
k

Hmax
k,h uc

n,h,t,k +HD
h (1− Un,h,t) (44)

HD
n,h,t ≥

∑
k

Hmin
k,h uc

n,h,t,k +HD
h (1− Un,h,t) (45)∑

k

uc
n,h,t,k = Un,h,t (46)

Next, to implement piecewise linearization on (33) and (34),
we partition the domains of Vn,h,t and qDn,h,t into m

′
and

m breakpoints, shown by V1, V2, . . . , Vm′ and q1, q2, . . . , qm,
respectively. Each segment is then assigned a linear function
with distinct coefficients, thereby describing the relationships
between forebay water level and volume, as well as tailwater
level and discharge flow, as shown in (47) and (48). A year
long data for water volume and forebay level is used to predict
af
h,m′ and bf

h,m′ and data for discharge and tailwater level
was used to approximate the coefficients ath,m and bth,m. The
model, trained on input-output data, captures this relationship
by implementing a piecewise linear regression, effectively
learning the underlying dynamics of the system in a data-
driven manner. Additionally, the big-M method and binary
variables, as introduced previously, are employed to allow the
optimization problem to select one piecewise segment at a
time and switch among segments when appropriate.

ff
h (Vn,h,t) =


bfh,1 + afh,1Vn,h,t, Vn,h,t ∈ [V0, V1)

bfh,2 + afh,2Vn,h,t, Vn,h,t ∈ [V1, V2)
...
bf
h,m′ + af

h,m′Vn,h,t, Vn,h,t ∈ [Vm′−1, Vm′ ].

(47)

f t
h(q

D
n,h,t) =


bth,1 + ath,1q

D
n,h,t, qDn,h,t ∈ [q0, q1)

bth,2 + ath,2q
D
n,h,t, qDn,h,t ∈ [q1, q2)

...
bth,m + ath,mqDn,h,t, qDn,h,t∈ [qm−1, qm].

(48)

IV. CASE STUDY

The proposed long-term scheduling framework is evalu-
ated by comparing its performance against various cases and
through analysis across five scenarios involving varying levels
of extreme heat events. The proposed optimization problem
is formulated as Mixed-Integer Linear Programming (MILP)
problem and solved using CPLEX in GAMS on a desktop

computer with a 4.0-GHz i7 processor and 32 GB of RAM.
For benchmarking purposes, the corresponding mixed-integer
nonlinear programming (MINLP) formulation is solved using
DICOPT in GAMS on the same hardware configuration. The
optimization is performed on an hourly basis throughout the
year, ensuring that temporal variations in the market and
hydropower operations are accurately captured. The M-LSTM
model used data from 2016-2022 for training, reserving 2023
for testing. Two LSTM layers with 50 and 30 units are
utilized. The first LSTM layer captures the initial temporal
dependencies and passes to the second LSTM layer, which
further refines the sequence patterns. The model is compiled
with the Adam optimizer and uses the mean squared error as
the loss function.

A. Data Description

The case study consists of 11 cascaded hydropower units
including Grand Coulee, Chief Joseph, Wells, Rocky Reach,
Rock Island, Wanapum, and Priest Rapids located in Washing-
ton State, and McNary, John Day, Dalles, and Bonneville dams
located on the border between Washington and Oregon. The
studied cascade hydropower system is shown in Fig. 3. The
meteorological components of this study are derived from the
ERA5-Land dataset, a comprehensive meteorological data set
released by European Centre for medium-range weather fore-
casts [43]. The electricity price and demand data are derived
from the California Independent System Operator [44]. The
price for contracted energy sales have been sourced from the
BPA’s official documentation [45]. Hourly inflow data, as well
as the technical parameters of the hydropower plants, such as
generation capacity, are sourced from the Columbia river basin
water management database, maintained by the Northwestern
Division of the U.S. Army Corps of Engineers [46]. The three
sets of simulation results, including the forecasting results, the
PEM results, and the optimization results are presented next.

B. Results: Multivariate LSTM Forecasting

The M-LSTM model used in this study provides single-
point predictions for the target variables. The performance of
the model is measured using the evaluation metrics mentioned
in Section III, and is shown in Table I. Figure 4 compares
the daily average forecasted and actual values for some of
the features such as wind speed, dew point temperature,
temperature, solar radiation, electricity price, load, inflow, and
precipitation. The load profile is relatively smooth without
any sharp spikes. The precipitation pattern is slightly unpre-
dictable, deviating from previous years due to its complex
dynamics. Furthermore, the electricity price profile shows a
spike during the summer, primarily driven by extreme heat
events, consistent with trends observed in recent years despite
the limited availability of long-term historical data. Overall,
the M-LSTM model has effectively captured the patterns of
these diverse features, delivering forecasts with acceptable
levels of accuracy and error. The performance of the model
demonstrates its ability to handle both stable and volatile vari-
ables, thus supporting its robustness in long-term scheduling
under extreme heat events.
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Fig. 3: Visualization of the Columbia River cascade hydropower
system. Background map sourced from OpenStreetMap contributors.

Analyzing the performance of a forecasting algorithm re-
quires evaluating its forecast value, as relying solely on
quality-oriented metrics such as RMSE is insufficient [47].
To assess forecasting performance, two widely used time-
series forecasting models are implemented and compared. The
results are evaluated by running the scheduling model with
actual data, representing perfect knowledge, as a benchmark.
The profit generated by hydropower operators under each
forecasting algorithm is determined, and the absolute profit
deviation from perfect knowledge is calculated to assess
the performance of the forecasting algorithms in terms of
their economic value. Inspired by [48], the gated recurrent
unit (GRU) is utilized. GRU is a type of recurrent neural
network that addresses the vanishing gradient problem and
enhances learning efficiency by employing gating mechanisms
including reset and update gates. Additionally, the VARIMA
is employed for further comparison [27]. VARIMA extends
the classical ARIMA by handling multivariate time series,
allowing it to model interdependencies between multiple vari-
ables. By incorporating both GRU and VARIMA, the analysis
provides a robust comparison framework. GRU represents a
deep learning-based approach adept at capturing non-linear
and complex temporal relationships, while VARIMA offers
a traditional statistical perspective that excels in modeling
linear relationships and inter-variable dependencies. This dual
comparison enables a comprehensive evaluation of the pro-
posed M-LSTM’s effectiveness in forecasting input parameters
required for the hydropower scheduling problem. The results

are summarized in Table II. The proposed M-LSTM model
outperforms other forecasting approaches, VARIMA and GRU,
by providing more accurate profit estimates for hydropower
operators. VARIMA offers higher profit deviation indicates
limitations in capturing the nonlinear and complex temporal
relationships inherent in hydropower data. GRU’s ability to
handle nonlinear dependencies results in a significant improve-
ment, while maintaining faster computational performance.
The proposed M-LSTM model delivers the best performance.
The computation time for M-LSTM is comparable to GRU,
demonstrating its efficiency alongside superior accuracy. Here,
the computation time is the sum of both optimization and
forecasting times.

TABLE I: Forecasting accuracy for target features

Target Features Performance Metric Units Value

U component of wind speed RMSE [m/s] 0.350
MAPE [%] 19.65

Dew point temperature RMSE [k] 0.742
MAPE [%] 0.19

Temperature RMSE [k] 0.768
MAPE [%] 0.21

Solar radiation RMSE [j/m2] 357858
MAPE [%] 7.79

Thermal radiation RMSE [j/m2] 226932
MAPE [%] 4.99

Surface pressure RMSE [Pa] 48.53
MAPE [%] 0.04

Electricity price RMSE [$/MWh] 21.12
MAPE [%] 17.15

Load RMSE [MW ] 474.08
MAPE [%] 1.44

Inflow RMSE [kcfs] 8.33
MAPE [%] 7.41

Precipitation RMSE [mm] 0.02
MAE [mm] 0.0144

TABLE II: Performance comparison of forecasting models in terms
of profit, profit deviation, and computational time.

Forecast Model Profit (Billion $) Absolute Profit
Deviation (%)

Computing
Time (s)

VARIMA 14.994 17.59 269.66
GRU 16.825 7.52 236.71
Perfect Knowledge 18.195 — 109.05
Proposed 18.758 3.09 239.29

C. Results: Physics-Based Evaporation Model (PEM)

The proposed PEM is employed to estimate evaporation
at the sites of storage hydropower plants, with the Grand
Coulee Dam and Chief Joseph Dam, among the 11 cas-
caded plants, standing out as key storage reservoirs where
this estimation is particularly critical. Figure 5 shows the
model’s performance in capturing evaporation trends over a
15-day period in August 2023, characterized by sustained
high temperatures around 314K. This period is particularly
noteworthy for its impact on evaporation rates due to the sus-
tained high temperatures.Temperature and net radiation have
been identified as the most influential parameters affecting
the rate of evaporation. The data reveals a strong correlation
between elevated temperatures and increased net radiation with
higher rates of evaporation. During heat events, increased net
radiation contributes to higher surface temperatures, thereby
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Fig. 4: Daily average actual and predicted values for target features.

enhancing the evaporation. Figure 6 illustrates the changes in
evaporation and net radiation during 15 days.
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Fig. 5: Evaporation versus temperature trends over a 15-day period.
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Fig. 6: Evaporation versus net radiation trends over a 15-day period.

D. Results: Long-Term Hydropower Scheduling

The hydropower plants operate strategically under long-
term scheduling framework to not only meet demand but
also maximize participation in the day-ahead market. This
approach ensures that power generation aligns with market
opportunities, to maximize profit. To this end, the hydropower
operator conserves its water storage for periods when electric-
ity prices are higher, thus maximizing its market participation
during those times. Figure 7 illustrates the importance of long-
term scheduling in this strategy. The total power generated is
allocated to fulfill the contracted demand, with any surplus
being sold in the day-ahead electricity market. To evalu-
ate the effectiveness of the proposed long-term scheduling
framework, its performance is compared across two cases
(Cases 1 and 2), focusing on key metrics such as the profit
obtained by hydropower operators and computational time,
which reflects computational times for both forecasting and
optimization tasks. This comparison highlights the necessity
of incorporating PEM and the linearization of the hydropower
production function (LHPF). The results are summarized in
Table III, where the ”Modeling Features” column highlights
the distinctions between the cases. For instance, the proposed
model integrates PEM, the LHPF, and the M-LSTM for fore-
casting, showcasing a comprehensive approach to long-term
hydropower scheduling. In contrast, Case 1 excludes the evap-
oration modeling component and LHPF from the proposed
framework, simplifying the representation of water losses due
to evaporation. Specifically, the nonlinear hydropower model
is implemented through the constraint defined in (31), and
polynomial regression is employed to represent the nonlinear
functions presented in (33) and (34). The profit achieved by
hydropower operators in Case 1 is higher than that in the
proposed model because evaporation losses are not considered.
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Fig. 7: Comparison of electricity price, total power generation, and
power sold in the day-ahead market over a one-year period.

TABLE III: Comparison of the proposed long-term hydropower
scheduling framework with other cases

Cases Modeling Features Profit
(Billion $)

Computing
Time(s)PEM Forecast model LHPF

Case 1 × M-LSTM × 18.980 559.06
Case 2 ✓ M-LSTM × 18.760 562.22
Proposed ✓ M-LSTM ✓ 18.758 239.29

This highlights the significance of accounting for evaporation
losses to provide a more realistic profit estimation for hy-
dropower operators. Additionally, ignoring LHPF significantly
increases computational time, as demonstrated in Case 1
and 2, due to the added complexity of solving a nonlinear
optimization problem.

To further evaluate the proposed long-term scheduling
model, five scenarios are applied over days 151–310 of the
scheduling period. Each scenario simulates a severe heat pe-
riod by demonstrating a specific temperature rise. Specifically,
Scenarios 1, 2, 3, 4, and 5 represent temperature rises of 2°C,
4°C, 6°C, 8°C, and 10°C, respectively. To accurately capture
the effects of temperature rise on electricity demand and
prices, polynomial regression was employed to establish rela-
tionships between temperature and load, as well as temperature
and price. This method quantifies the changes in demand and
price associated with each 1°C increase in temperature. These
relationships were used to create scenarios that realistically
capture variations in demand and electricity prices, enabling
a thorough evaluation of the model’s performance under
heatwave conditions. The water values associated with each
scenario are depicted in Fig. 8, where Scenario 5 exhibits the
highest water value during the summer period. This outcome
is reasonable, as both electricity prices and demand reach
their peak values during this time. Consequently, the model
assigns a high water value to these periods to ensure that the
hydropower operator reserves sufficient water in the reservoir.
Figure 9 illustrates the storage volume associated with each
scenario. The base case has the highest storage volume during
the heat event, while Scenario 5, which is the most severe sce-
nario, has the least. This is because Scenario 5 experiences the
most extreme temperatures, leading to the highest evaporation
rates and increased demand. Consequently, this results in less
water being stored in the reservoirs. The market participation
of the hydropower operator and total water stored in the dams
across different scenarios is illustrated in Fig. 10, where the

base case considers 100% participation. In Fig. 10, market par-
ticipation in Scenario 5 is the lowest due to insufficient power
generation during the extreme heat period. Despite high prices
during this time, the reduced market participation highlights
the adverse market conditions caused by extreme heat events.
Elevated temperatures significantly increase evaporation rates,
reducing water availability in reservoirs and subsequently
limiting the hydropower generation capacity. Furthermore, the
increased demand during heatwaves further constrains the
capacity available for market participation. Even with the
potential for higher revenue, the hydropower operator struggles
to participate more in the market due to the limited power
generation capacity. These findings highlight the challenging
and often unfavorable conditions in electricity markets during
extreme events.
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V. CONCLUSION

This paper presented an integrated artificial intelligence and
physics-based modeling framework for long-term scheduling
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of hydropower under various extreme heat scenarios, focusing
on maximizing the profit of the hydropower operator. By
integrating a physics-based evaporation model and multivariate
LSTM forecasting technique, the study improved the accuracy
of long-term scheduling, addressing key challenges posed by
extreme heat events. The regression-based machine learning
technique was used to transform the non-linear and non-
convex behavior of the hydropower generation function into a
mixed integer linear formulation. The results demonstrated the
effectiveness of the proposed long-term scheduling framework
in enhancing market participation during extreme events. The
performance of the model was evaluated against various cases,
each highlighting the significance of specific components
within the framework. These comparisons underscored the
limitations of alternative approaches, such as models that
lack evaporation modeling, higher computational time due
to nonlinear hydropower modeling, or rely on alternative
forecasting methods like VARIMA and GRU. Notably, the
proposed framework achieved profits closest to those obtained
with perfect knowledge, further validating its efficiency and
robustness. Additionally, the water values derived from the
proposed framework emerge as a strategic tool, can em-
power operators to make more informed short-term scheduling
decisions. While the formulation in this paper employs a
deterministic approach to ensure computational tractability,
future research may include exploring stochastic optimization
methods to explicitly incorporate uncertainty in inflow, de-
mand and market prices in the long-term scheduling problem.
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