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Abstract: The quantization of semiclassical strings in AdS spacetimes yields predictions for
the strong-coupling behaviour of the scaling dimensions of the corresponding operators in the
planar limit of the dual gauge theory. Finding non-planar corrections requires computing
string loops (corresponding to torus and higher genus surfaces), which is a challenging task.
It turns out that in the case of the Uk(N)× U−k(N) ABJM theory there is an alternative
approach: one may semiclassically quantize M2 branes in AdS4 × S7/Zk which are wrapped
around the 11d circle of radius 1/k = λ/N . Such M2 branes are the M-theory generalization
of the strings in AdS4 × CP3. In this work, we show that by expanding in large M2 brane
tension T2 ∼

√
kN for fixed k, followed by an expansion in large k, we can predict the large

λ asymptotics of the non-planar corrections to the dimensions of the dual ABJM operators.
As a specific example, we consider the M2 brane configuration that generalizes the long
folded string with large spin in AdS4, and compute the 1-loop correction to its energy. This
calculation allows us to determine non-planar corrections to the universal scaling function
or cusp anomalous dimension. We extend our analysis to the semiclassical M2 branes that
generalize the “short” and “long” circular strings with two equal angular momenta in CP3.
The “short” M2 brane corresponds to a dual operator whose dimension at strong coupling
scales as ∆ ∼ λ1/4 + . . ., and we derive the leading non-planar correction to it.
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1 Introduction and summary

One of the challenging problems in superconformal quantum field theories like N = 4 SYM
and ABJM [1] ones, which admit a large N expansion, is to compute the conformal dimensions
∆ of primary operators as functions of the ’t Hooft coupling λ and N . In general,

∆(λ,N) = ∆0(λ) +
1
N2∆1(λ) +

1
N4∆2(λ) + . . . . (1.1)

Here the planar part ∆0(λ) is controlled by integrability, and, expanded at large λ, it can
be matched to the large tension expansion of string energies in the dual string theory (see,
e.g., [2–4]). Little, however, is known about the explicit form of the non-planar correction
∆1, ∆2, . . . . In the N = 4 SYM theory the first non-planar correction to the cusp anomalous
dimension f(λ,N) appearing in the large spin expansion of the dimension of an operator
like O = tr(ΦDS

+Φ)

∆
∣∣
S≫1 = S + f(λ,N) logS + . . . (1.2)

starts at 4-loop order in the weak coupling expansion [5] (see also [6, 7])

f(λ,N) = 1
(2π)2

[
λ− 1

48λ
2 + 11

11520λ
3 −

(
c4 +

d4
N2

)
λ4 +O(λ5)

]
, (1.3)

c4 =
73

20160× 64 + 1
8(2π)6 ζ

2(3) , d4 =
31

5040× 64 + 9
4(2π)6 ζ

2(3) . (1.4)
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The λ4

N2 term appears to be universal — it is the same for any matter content [8] as it
originates from the quartic Casimir of SU(N). This suggests that in all anomalous dimensions
computed at weak coupling the 1/N2 correction should first appear at 4 loops, i.e. ∆1 in (1.1)
should be given by

∆1
∣∣
λ≪1 = d4λ

4 + d6λ
6 + . . . . (1.5)

Indeed, similar non-planar behaviour is found for the anomalous dimensions of twist-2
operators with general Lorentz spin [9, 10]1 and also for the Konishi operator [11, 12] where
d4 ∼ ζ(5) (see also [13]).

Less is known about non-planar corrections in the case of the ABJM theory.2 Given
a close analogy with the N = 4 SYM theory, it is natural to expect that here the first
non-planar correction should also appear at 4-loop order as in (1.5).

One may conjecture that it may be possible to compute ∆1(λ) in (1.5) to all orders
utilizing somehow the integrability of the planar theory (cf., e.g., [18–20]). If one could do
this, then expanding the exact expression for ∆1(λ) at strong coupling, ∆1

∣∣
λ≫1 ∼ λp + . . .,

one would then determine the power p of the leading term. It could then be compared to the
dual string theory side where finding the leading non-planar correction requires computing
string 1-loop (torus) correction to string energies, a complicated open problem.

Remarkably, as we shall demonstrate below, there is a way to find the strong-coupling
asymptotics of the non-planar corrections ∆1(λ),∆2(λ), . . . in the case of the ABJM model
using its duality to M-theory or theory of quantum M2 branes. It turns out that a semiclassical
M2 brane quantization in AdS4 × S7/Zk captures the leading order α′ ∼ 1√

λ
terms at each

order in the string coupling g2s ∼ 1
N2 expansion.

In particular, we will show that for the ABJM cusp anomalous dimension the strong-
coupling scaling of the leading non-planar correction is λ2

N2 . In general, the prediction for the
structure of the large λ expansion of the 1/N2s coefficients in (1.2) is

f(λ,N) = f0(λ) +
1
N2 f1(λ) +

1
N4 f2(λ) + . . . , f0

∣∣
λ≫1 =

√
2λ+ f0(λ) , (1.6)

fs(λ)
∣∣
λ≫1 = λ2r

(
a1s +

1√
λ
a2s + . . .

)
, s = 0, 1, 2, . . . . (1.7)

The few leading coefficients in the strong-coupling expansion of the planar part f0(λ) can
be found (as in the AdS5 × S5case [21–25]) by quantizing the long folded spinning string
in AdS4 × CP3 [26–29]. The coefficients a1s of the leading non-planar contributions will be
computed below from the 1-loop 3d world-volume correction to the energy of a semiclassical
M2 brane spinning in AdS4 and wrapped on the 11d circle in S7/Zk of radius 1

k = λ
N . The

subleading a2s coefficients may be determined from the 2-loop M2 brane correction, etc.
1According to [10] at large spin at weak coupling we should expect the anomalous dimension depending on

spin as ∆1(S) = λ4(d4 log S + e1 + 1
S

e2 + . . .
)
, where e1, e2, like d4, are given by combinations of ζ-values.

We thank V. Velizhanin for a comment on this expansion and informing us that the coefficient of the 1
S

log S

term happens to be zero.
2Study of non-planar corrections at leading order at weak coupling in the ABJM theory was initiated

in [14]. In [15] the 2-loop correction to the cusp anomaly was found not to contain a non-planar part, but in
sect 4.1 [16] (cf. also [17]) the opposite was claimed. We thank M. Lagares for pointing this out.
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1.1 Semiclassical expansion for M2 brane in AdS4 × S7/Zk

While the M2 brane action [30, 31] is formally non-renormalizable, the semiclassical expansion
of the corresponding path integral near a “minimal-volume” solution with a non-degenerate
induced 3d metric is well defined (at least at the 1-loop order [31–36] where there is no
logarithmic UV divergences in a 3d theory). Recent work [37–42] provided a convincing
evidence that the semiclassical quantization of the M2 brane is indeed consistent. It was
demonstrated that 1-loop M2 brane corrections in AdS4 × S7/Zk and AdS7 × S4 match
the dual gauge theory (localization) predictions for several “supersymmetric” observables

— defect anomaly, 1
2 BPS Wilson loop and instanton contributions to the supersymmetric

partition function (superconformal index) in the 3d ABJM and also 6d (2,0) theory.
This provides a motivation to apply similar semiclassical M2 brane quantization approach

also to “non-supersymmetric” observables like non-planar corrections to ABJM anomalous
dimensions that are not controlled by integrability or localization.

Let us briefly review some basic relations and notation that we will use below. The
Uk(N) × U−k(N) ABJM theory expanded at large N for fixed k is dual to M-theory on
AdS4 × S7/Zk background with the metric and 3-form given by

ds211 = L2
(1
4ds

2
AdS4 + ds2S7/Zk

)
, L = (25π2Nk)1/6ℓP , (1.8)

ds2AdS4 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dα2 + cos2 αdβ2), (1.9)

ds2S7/Zk
= ds2CP3 +

1
k2

(dφ+ kA)2 , φ ≡ φ+ 2π , (1.10)

ds2CP3 = dzadz̄a − z̄az
bdzadz̄b , A = 1

2i(z̄adz
a − zadz̄a) , z̄az

a = 1, a = 1, . . . , 4 ,

(1.11)

C3 = −3
8L

3 cosh ρ sinh2 ρ sinαdt ∧ dρ ∧ dβ . (1.12)

Taking also k large with λ ≡ N
k fixed corresponds to the ’t Hooft expansion of the 3d gauge

theory in which it is dual to the perturbative type IIA string theory in AdS4 × CP3 with
the coupling gs and the effective dimensionless string tension T defined with respect to the
radius of the AdS4 part given by (we set ℓP =

√
α′ as in appendix A in [43])

ds210 = L2
(1
4ds

2
AdS4 + ds2CP3

)
, L = g1/3s L , (1.13)

gs =
( L
k ℓP

)3/2
=

√
π (2λ)5/4

N
, λ = N

k
, T =

1
4L

2

2πα′ =

√
λ

2 =
√
λ̄

2π , λ̄ ≡ 2π2λ ,

(1.14)
1
k2

= λ2

N2 = g2s
8πT . (1.15)

The M-theory expansion corresponds to L
ℓP

≫ 1 or large N for fixed k, i.e. the expansion
in the large effective dimensionless M2 brane tension

T2 ≡ L3T2 =
1
π

√
2Nk , T2 =

1
(2π)2ℓ3P

. (1.16)
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Here T2 is defined with respect to the radius of S7/Zk part so that it is related to the string
tension in (1.14) as (note also that in general 1

k
L3

ℓ3P
= L2

α′ )

T = 1
4
2π
k
T2 . (1.17)

The observables that can be computed in the semiclassical M2 brane expansion can be
written as

F = T2F0(k) + F1(k) + (T2)−1F2(k) + . . . , T2 ≫ 1 . (1.18)

This corresponds to the large N expansion for fixed k. Expanding (1.18) further at large
k, it may be rewritten as a large N expansion for fixed λ = N

k or string-theory expansion
in gs for fixed T =

√
λ
2 .

Below we will assume that dimensions of ABJM operators with large quantum numbers
that, in the planar expansion, are dual to semiclassical strings in AdS4 × CP3, may be
computed as AdS4 energies of semiclassical M2 branes in AdS4 × S7/Zk that are wrapped
on the 11d circle φ in (1.10). They will thus have topology Σ2 × S1, i.e. will generalize the
corresponding string solutions reducing to them upon the “double dimensional reduction” [44].

Given a M2 brane solution with a non-degenerate induced 3d metric it is straightforward
to expand the corresponding path integral at large T2 (using, e.g., a static gauge as in [37–
39]). The M2 brane action is

S = SB + SF , SB = SV + SWZ, SV = −T2
∫
d3ξ

√
−g , (1.19)

SWZ = −T2

∫
d3ξ

1
3!ϵ

ijkCMNK(X) ∂iXM∂jX
N∂kX

K , (1.20)

SF = T2

∫
d3ξ

[√
−g gij∂iXM θ̄ ΓMD̂jθ −

1
2ϵ

ijk∂iX
M∂jX

N θ̄ ΓMND̂kθ + . . .

]
, (1.21)

gij = ∂iX
M∂jX

NGMN (X), GMN = EAME
A
N , ΓM = EAM (X)ΓA , (1.22)

D̂i = ∂iX
MD̂M , D̂M = ∂M + 1

4ΓABΩ
AB
M − 1

288(Γ
PNKL

M − 8ΓPNKδLM )FPNKL .

(1.23)

The leading classical and 1-loop contributions to the (euclidean) M2 brane partition function
may be written as

ZM2 =
∫
[dX dθ] e−S[X,θ] = Z1 e

−T2S̄cl
[
1 +O(T−1

2 )
]
, (1.24)

Z1 = e−Γ1 , Γ1 =
1
2
∑
i

νi log detOi , (1.25)

where S̄cl and fluctuation operators Oi may depend on the parameter k or the inverse radius
of the 11d circle in the 11d metric (1.8), (1.10) and other parameters of a given classical
solution (like rotation frequencies, winding numbers, etc.). Then F = − log ZM2 will have
the form given in (1.18).

It is important to note that we are expanding near just one M2 brane saddle (i.e. we
are not summing over 3d topologies). Interpreted from the string theory point of view, this

– 4 –
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world-volume loop expansion already captures contributions of all higher string loops (as well
as the dependence on the string tension). Indeed, the classical M2 brane action encodes the
dependence on the string coupling gs (cf. (1.15)) via its dependence on the parameter k of
the 11d background metric (1.8), (1.10) in which the M2 brane is embedded.

Since the membrane is assumed to have Σ2 × S1 topology, in the static gauge the S1

direction may be identified with 11d direction φ in (1.10). Then expanding all 3d world
volume fields in Fourier modes in the S1 coordinate the M2 brane action may be written
as a 2d action for the “massless” 2d fields, representing the corresponding type IIA string
action in AdS4 × CP3, interacting with an infinite set (“KK tower”) of 2d fields with masses
m2
l = l2

R2
11

= l2k2 = l2 8πT
g2

s
(l = 1, 2, . . .) depending on the string coupling.

These massive 2d fields decouple only in the strict gs → 0 limit, while in general their
contributions will encode the string loop corrections to (1.25) or (1.18). Integrating them out
one would get an effective non-local action for the “massless” (string or l = 0 level) modes.
That would realise the idea of having an effective string action on 2-sphere supplemented
by “handle operator” contributions that account for the usual sum over the 2d topologies
(cf. [45–47]).

1.2 Example: 1/N expansion of 1
2 BPS Wilson loop

To illustrate the above discussion let us review the case of the 1/N expansion of the 1
2

BPS Wilson loop expectation value in the ABJM theory that can be reproduced by the
semiclassical M2 brane computation, as was demonstrated in [38]. The exact (at large N and
for k > 2) result found from localization matrix model on the gauge theory side is [48]

⟨W ⟩ = 1
2 sin 2π

k

Ai
[
(π2

2 k)
1/3
(
N − k

24 − 7
3k

)]
Ai
[
(π2

2 k)1/3
(
N − k

24 − 1
3k

)] . (1.26)

Expanded in large N at fixed k and then further in large k = N
λ this may be written as

⟨W ⟩ = 1
2 sin 2π

k

eπ
√

2N
k

[
1− π

(
k2 + 32

)
24
√
2 k3/2

1√
N

+O
( 1
N

)]

= 1
2 sin 2πλ

N

eπ
√
2λ
[
1− π

24
√
2

1√
λ
+O

( 1
N

)]
.

(1.27)

The first expansion here may be written as a semiclassical expansion for large effective M2
brane tension T2 in (1.16)

⟨W ⟩ = 1
2 sin 2π

k

e
π2
k
T2

[
1− k2 + 32

24k (T2)−1 +O
(
(T2)−2)] , (1.28)

so that it takes the form of (1.24) or, equivalently, log⟨W ⟩ takes the form of (1.18)

log⟨W ⟩ = π2

k
T2 − log

(
2 sin 2π

k

)
− k2 + 32

24k (T2)−1 +O((T2)−2) . (1.29)

The exponential factor in (1.28) comes from the value of the action of the M2 brane wrapped
on AdS2 × S1 (ending on a circle at the boundary of AdS4). The prefactor 1

2 sin 2π
k

was

– 5 –
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reproduced in [38] as the 1-loop contribution (1.25) of the corresponding 3d fluctuations. The
subleading (T2)−1 term in (1.28) should originate from the 2-loop M2 brane contribution, etc.

Expressed in terms of the string tension and the string coupling in (1.14) the prefactor
in (1.28) may be written as [49] (cf. (1.15))

⟨W ⟩ = 1
2 sin

(√
π
2

gs√
T

) e2πT
[
1 +O(T−1)

]

=
√
T√

2πgs
e2π T

[
1 + π

12
g2s
T + 7π2

1440

(
g2s
T

)2

+ . . .

][
1 +O(T−1)

]
.

(1.30)

Thus the large k expansion of the 1-loop M2 brane factor 1
2 sin 2π

k

captures the leading large
string tension (or large λ) corrections at each order in g2s , while the 2-loop and higher
M2 brane corrections determine the subleading in T−1 ∼ 1√

λ
terms at each order in g2s .

Equivalently, (1.28) or (1.30) implies that

⟨W ⟩ =
√
T
gs
e2πT

[(
c00+

c10
T + . . .

)
+ g2s

T

(
c01+

c11
T + . . .

)
+
(
g2s
T

)2(
c02+

c12
T + . . .

)
+ . . .

]
,

(1.31)
where c0r (r = 0, 1, 2, . . .) are determined by the 1-loop M2 brane contribution, c1r — by
the 2-loop M2 brane contribution, etc. From the perturbative AdS4 × CP3 string theory
perspective, the c0r coefficients represent the leading in T−1 ∼ α′ terms at each order in the
string loop (genus) expansion, i.e. c00 is the 1-loop (in string world sheet sense) coefficient
on the disk, c01 is its counterpart on the disk with one handle, etc.

1.3 Cusp anomalous dimension from fast-spinning M2 brane in AdS4

The same pattern of non-planar corrections should apply also to other observables like
anomalous dimensions, and, in particular, to the cusp anomalous dimension. Namely, the
semiclassical quantization of the M2 brane generalization of the long spinning folded string
in AdS4 should lead to the following expansion for f(k,T2) in the M2 brane energy or
dimension (1.2) (cf. (1.18))

f(k,T2) =
π

k
T2 + q0(k) + q1(k)(T2)−1 + q2(k)(T2)−2 + . . . , (1.32)

qr(k) = kr
(
p(0)r + p

(1)
r

k2
+ p

(2)
r

k4
+ . . .

)
, r = 0, 1, 2, . . . . (1.33)

Since T2 ∼ k
√
λ (cf. (1.16)) the specific large k asymptotics of qr(k) in (1.33) is the one

required to match the inverse string tension ( 1√
λ
) expansion in the strict tree-level (planar)

string theory limit or to match the structure of the expected 1/N2 expansion in the ’t Hooft
limit on the gauge theory side (cf. (1.6), (1.7)).

Thus the condition of matching the string theory expansion like (1.31) fixes the structure
of the large k terms in the coefficient functions in the general expression for the semiclassical
expansion in (1.18). This requirement assumes that the “double dimensional reduction”
relation between the M2 theory and string theory observed at the classical action level

– 6 –
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extends also to the quantum level. This is implied by the structure of the M2 action as an
effective 2d action containing massive KK modes in S1 direction which should decouple in
the k → ∞ limit (assuming that the theory turns out to be well defined in the UV). As in the
Wilson loop case reviewed above, we will explicitly verify this at the 1-loop q0(k) level below.

In particular, the leading large λ asymptotics of each term in the 1/N2 expansion, i.e. the
coefficients a1s in (1.7), should be the same as the coefficients p(s)0 in the large k expansion
of the 1-loop M2 brane function q0(k), i.e.

q0(k) = p
(0)
0 + q̄0(k) , q̄0(k) =

p
(1)
0
k2

+ p
(2)
0
k4

+ . . . , a1s = p
(s)
0 , s = 1, 2, . . . . (1.34)

As we will find below (cf. (1.15))

p
(0)
0 = −5 log 2

2π , q̄0 =
2π
3k2 +

2π3

45k4 + . . . =
g2s
12T + πg2s

1440T2 + . . . =
2πλ2

3N2 + 2π3λ4

45N4 + . . . .
(1.35)

At the same time, the string world-sheet loop corrections that represent the 1√
λ

expansion of
the planar function f0 in (1.6), (1.7) come from the leading large k term in the qr(k) functions
(with coefficient p(0)r ) in (1.32) or explicitly (cf. (1.16))

f0(λ)
∣∣
λ≫1 = a10+

1√
λ
a20+

1
(
√
λ)2

a30+ . . . , ar+1,0 =
(
π√
2

)r
p(0)r , r = 0, 1, 2, . . . .

(1.36)
To recall, by direct perturbative large tension expansion for a long folded spinning string in
AdS4 × CP3 one finds that at the 1-loop [26–28] and 2-loop [29] orders

f0(λ) =
√
2λ+ f0(λ) =

√
2λ− 5 log 2

2π −
(
K

4π2 + 1
24

) 1√
2λ

+O
(

1
(
√
λ)2

)
, (1.37)

whereK is the Catalan’s constant. Expressed in terms of the “renormalized tension” containing
a log 2 correction [50]

h(λ)
∣∣
λ≫1 =

√
λ

2 − log 2
2π − 1

48
√
2λ

+ . . . , (1.38)

eq. (1.37) takes the same form as in the AdS5 × S5(i.e. N = 4 SYM) case

f0(λ) = 2h(λ)− 3 log 2
2π − K

8π2 h
−1(λ) +O

(
h−2(λ)

)
. (1.39)

In general, the ABJM cusp anomalous dimension is expressed in terms of the SYM one
as [51]:3 f0(λ) = 1

2 f0SYM(λSYM) where one is to replace
√
λSYM
4π → h(λ) . According to

the conjecture of [54] the exact expression for h(λ) is determined by the relation λ =
sinh 2πh(λ)

2π 3F2
(
1
2 ,

1
2 ,

1
2 ; 1,

3
2 ;− sinh2 2πh(λ)

)
, implying that at strong coupling

h(λ) = 1√
2

√
λ− 1

24 − log 2
2π +O

(
e−2π

√
2λ
)
, λ≫ 1 . (1.40)

3This follows from the equivalence of the BES [2] equations in the N = 4 SYM and ABJM cases and the
fact that h(λ) (which is not renormalized in the SYM case, hSYM =

√
λSYM
4π

) but should be non-trivial [52, 53]
to correctly interpolate between the weak and strong coupling regimes in the ABJM magnon dispersion relation
ϵ = 1

2

√
1 + 16 h2(λ) sin2 p

2 .

– 7 –
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The shift λ→ λ− 1
24 may be related to the redefinition N → N− 1

24(k−k
−1) that follows [55]

from the presence of the R4 ∧ C3 term in the M-theory effective action. This shift of N
modifies the relation between L and N in (1.8) and thus the expressions for gs and T
in (1.14).4 In particular, one gets λ = N

k → λ− 1
24(1− k

−2) = λ− 1
24 +

λ2

24N2 , where the 1/N2

correction may be ignored in the string tree level (planar) approximation. In general, one gets
f(λ) =

√
2λ + . . . →

√
2λ− 1

12(1−
1
k2 ) + . . . =

√
2λ− 1

12 + 1
12k2

(√
2λ− 1

12
)−1 + . . .. The

resulting corrections to the coefficients of the 1
k2n terms in the M2 brane 1-loop contribution

in (1.35) are thus subleading at large λ and will be ignored below. They will become relevant
once the 2-loop q1(k) term in (1.32), (1.33) is taken into account.

1.4 Non-planar corrections from semiclassical M2 branes with two spins
in S7/Zk

One may apply the same strategy of semiclassically quantizing M2 brane solutions to find the
leading strong-coupling asymptotics of the non-planar corrections to the dimensions of other
dual ABJM operators. The starting point, like in the familiar AdS5 × S5case (for a review
see, e.g, [56, 57]), is a classical string solution in AdS4 × CP3 that is dual to a particular
ABJM operator with large quantum numbers. One is then to find its generalization to an
M2 brane in AdS4 × S7/Zk which is wrapped also on the 11d circle φ in S7/Zk (1.10) (so
that upon the double dimensional reduction or in the k → ∞ limit it reduces to a particular
string solution for which one may be able to identify the dual gauge-theory operator).5

Considering first the string theory case, let Jr be a collection of parameters (frequencies,
etc.) of a classical solution that are fixed in the large tension expansion. Then the global
AdS energy should have the following large tension expansion

E =
√
λ̄ E0(Jr) + E1(Jr) +

1√
λ̄
E2(Jr) + . . . , Jr =

√
λ̄Jr , (1.41)

λ̄ ≡ 2π2λ , T =
√
λ√
2
=

√
λ̄

2π . (1.42)

To stress the analogy with the AdS5×S5case we introduced as in (1.14) the rescaled coupling
λ̄ (used also in [50]). In (1.41) E0 is the classical contribution, E1 is the 1-loop world-sheet
correction, etc. One can then expand Eℓ in the limit of small or large Jr, express E in
terms of the spins Jr =

√
λ̄Jr and compare to the dimensions of the dual gauge theory

operators. The 1-loop corrections to energies of two-spin solutions in AdS4 × CP3 were
discussed in [26, 27, 50, 69, 70].

Since here
√
λ̄≫ 1 while Jr are fixed, one has Jr ≫ 1 but one may hope that it may be

possible also to capture the strong-coupling behaviour of dimensions of “short” operators
with finite values of spins (see [70–73]).

Starting with an M2 brane solution in AdS4 × S7/Zk that generalizes a spinning
string solution in AdS4 × CP3 the analog of the large tension expansion in (1.41) will

4Explicitly, we get gs =
√

π (2λ)5/4

N

(
1 − 1

24λ
+ λ

24N2

)1/4
, T = L2

8πα′ =
√

λ
2

(
1 − 1

24λ
+ λ

24N2

)1/2 .
5Classical rotating membrane solutions in flat and AdS spaces were previously discussed, e.g., in [58–68].
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be (cf. (1.18), (1.32))6

E = π

k
T2 E0(Jr) + Ê1(Jr, k) + (T2)−1Ê2(Jr, k) + . . . , T2 =

k

π2

√
λ̄ . (1.43)

In this expansion T2 is assumed to be large while k (the parameter of the 11d background)
and Jr (the parameters of the classical M2 brane solution) are fixed. To relate this to the
small gs expansion in type IIA string theory in AdS4 × CP3 or to the large N expansion in
the dual ABJM gauge theory we should then expand Êr in large k for fixed Jr as in (1.33)

Ê1(Jr, k) = E1(Jr) +
1
k2

G11(Jr) +
1
k4

G12(Jr) + . . . , (1.44)

Ê2(Jr, k) =
k

π

[
E2(Jr) +

1
k2

G21(Jr) +
1
k4

G22(Jr) + . . .

]
, . . . . (1.45)

The strong-coupling limit of the leading non-planar correction is thus represented by the
G11 term in the 1-loop M2 brane contribution Ê1.

One may then consider the large or small Jr limits and finally express the resulting
expressions in terms of the quantum numbers Jr =

√
λ̄Jr to get predictions for the corre-

sponding gauge theory anomalous dimensions. The above order of limits corresponds to
operators for which their quantum numbers do not grow with N , i.e. are fixed in the large
N limit so that N−1Jr ∼ 1√

k
Jr ≪ 1.

Below we will consider the M2 brane solutions that generalize the “short” (or “slow”,
Jr ≪ 1) and “long” (or “fast”, Jr ≫ 1) circular string solutions with two equal angular
momenta J1 = J2 ≡ J in CP3 ⊂ S7/Zk. These are direct analogs of the string solutions in
AdS5 × S5for which 1-loop corrections to energies were discussed in [71, 74–76].

The “long” J1 = J2 string solution in AdS4 × CP3 that has the classical energy E0 =√
4J2 + λ̄ was already studied in [69]. Here we will find also its “short” counterpart with E0 =√
2
√
λ̄J . The energies of the corresponding M2 branes wrapped on the 11d circle are given

by the same expressions. The dual operators having these quantum numbers should be built
out of the 4 bi-fundamental scalars of the ABJM theory as O = tr

[
(Y 1Y †

2 )J1(Y 3Y †
4 )J2

]
+ . . ..

We will first compute the 1-loop string corrections to the above classical energies. In
particular, for the “short” string solution we will find

Estr = 2
√√

λ̄J + 1
2 + 1

2
J1/2

λ̄1/4
− 9

4ζ(3)
J3/2

λ̄3/4
+O

(
J2

λ̄

)
. (1.46)

This represents a prediction for the subleading strong-coupling corrections to the dimension
∆(J) of the corresponding dual “short” operator that has “flat-space” scaling ∆ ∼ 4√

λ̄
√
J [21]

at leading order in strong coupling. The energy (1.46) has a similar structure as the small-spin
expansion for the 1-loop corrected energy of a short folded (S, J) string spinning in AdS4
and also having orbital momentum in CP3 that was found in [70]7

Estr(S, J) =
√
2
√
λ̄S − 1

2 + 1
4
(2S)1/2

λ̄1/4

[
S−1J(J + 1) + 3

2S − 1
]
+ . . . . (1.47)

6Here π
k

T2 = 1
2

2π
k

T2 contains in addition to the factor 2π
k

of the length of the 11d circle in (1.10) on which
the M2 brane is wrapped an extra 1

2 due to the scale of the AdS4 factor in (1.8), cf. (1.16).
7For a similar expression in the AdS5 × S5case see [70, 77, 78] (see also [79]).
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It would be interesting to match (1.46) to the integrability (quantum spectral curve) strong-
coupling predictions for the dimensions of the corresponding states.8 These were found
previously for a few (S = 2, J = 1) [54] and (S = 1, J = 1, 2, 4) [82] operators of the form
tr
[
DS

+(Y 1Y †
4 )J

]
in the sl2 sector of the ABJM theory (see also [83, 84]).9

We will then generalize the string 1-loop computations to the M2 brane ones getting
predictions for the non-planar corrections to the dimensions of the above J1 = J2 operators
at strong coupling. For the “short” M2 brane solution we will find the following 1/k2

correction to (1.46)

EM2 =2
√√

λ̄J + 1
2 + 1

2 λ̄
−1/4J1/2 − 9

4ζ(3)λ̄
−3/4J3/2 +O

(
λ̄−1J2)

+ 1
k2

[
ζ(2)

(
− 4λ̄3/4J−3/2 + 8λ̄1/4J−1/2)+O

(
λ̄−1/4J1/2)]+O

( 1
k4

)
. (1.48)

From the string theory point of view the membrane correction term ∼ 1
k2 = g2

s
4
√
λ̄

represents
the leading large tension asymptotics of the string 1-loop (torus) contribution.

On the dual ABJM gauge theory side (1.48) should be understood as the expansion first
in 1/N2 and then in large λ for fixed quantum number J . The 1

k2 = λ2

N2 = λ̄2

(2π2)2N2 term
in (1.48) then represents a prediction for the leading non-planar correction to the dimension
of the corresponding “short” operator.

In the “long” M2 brane case we will find

EM2 = 2J + 1
4 λ̄J

−1(1− 2 log 2 λ̄−1/2 + . . .) + 1
2c1λ̄J

−2(1 + . . .) + . . .

+ 1
k2
ζ(2)

(
− 8λ̄−1/2J − 2λ̄1/2J−1 + 3

16 λ̄
3/2J−3 + . . .

)
+O

( 1
k4

)
. (1.49)

Here c1 ≈ −0.336 and the 1
k2 = λ̄2

(2π2)2N2 term represents a prediction for the strong-coupling
limit of the leading non-planar correction to the dimension of the corresponding operator
with the large spin J .

The rest of this paper is organized as follows. In section 2 we will present the 1-loop M2
brane computation that generalizes the leading strong coupling AdS4 × CP3 string theory
contribution to the ABJM cusp anomaly to the non-planar level.

In section 3 we will consider the M2 brane generalizations of the “long” and “short”
circular string solutions with equal spins in CP3 and compute the corresponding 1-loop
corrections to the AdS4 energies in the large k expansion.

Some open problems will be mentioned in section 4. There are also several appendices
containing some details of the computations. In appendix D we will make some comments on
non-planar corrections to the multi-wound Wilson loop and the Brehmstrahlung function
in the ABJM theory related to the discussion in section 4.

8For a recent exposition of the strong-coupling QSC results in the AdS5 × S5case see [80, 81].
9The BMN operator which is the vacuum in the sl2 sector corresponds to tr(Y 1Y †

4 )J in the representation
[J, 0, J ] of SU(4). For early discussions of integrability of the ABJM theory see [52, 85, 86].
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2 1-loop correction to energy of M2 brane spinning in AdS4

In this section we will compute the 1-loop correction to the partition function (1.24) expanded
near the classical M2 brane solution in AdS4 × S7/Zk that generalizes the infinitely long
rotating folded string [21, 22, 26] in AdS4. This will determine the function q0(k) in (1.32)–
(1.35), i.e. the leading large λ corrections at each order in the 1/N2 expansion in the cusp
anomalous dimension in the ABJM theory.

In terms of the AdS4×S7/Zk coordinates in (1.9), (1.10) the relevant large-spin (infinitely
long) membrane solution is

t = κ ξ0, ρ = κ ξ1, α = 0 , β = κ ξ0, φ = ξ2 , (2.1)

with CP3 coordinates in (1.11) being trivial and κ being a constant parameter. Here ξi

(i = 0, 1, 2) are the membrane world-volume coordinates with ξ2 ∈ (0, 2π). One of 4 segments
of the folded closed string is represented by ξ1 = (0, π2 ). We will consider the limit κ→ ∞
in which the rescaled ξ1 → κξ1 can be decompactified. The corresponding classical AdS4
energy and the spin satisfy (S = S√

λ̄
≫ 1)

E0 − S = 1
4
(2π)2

k
T2 κ =

√
λ̄ κ =

√
2λ logS , κ = 1

π
logS ≫ 1 . (2.2)

The dependence on the parameter κ can be scaled away by redefining the coordinates ξ0, ξ1;
it will then appear only as an overall factor in the log of the quantum partition function or in
the quantum correction to the energy. It is useful also to perform the Euclidean continuation
ξ0 → iξ0. The resulting induced 3d metric is flat (cf. (1.8))

gij =
1
4L

2ḡij , ḡij =
(
1, 1, 4

k2

)
. (2.3)

We will expand all 3d fluctuation fields in Fourier modes in ξ2 = φ getting an effective
2d field theory on R2 with l = 0 sector representing the modes of the type IIA string on
AdS4 × CP3 and the l ̸= 0 tower being the genuine membrane modes. The derivation of the
corresponding fluctuation operators in (1.25) is very similar to the case of the AdS2 × S1 M2
brane representing the circular Wilson loop that was discussed in [38, 87].

We will fix the static gauge setting to zero the fluctuations of t, ρ and φ so that the non-
zero bosonic fluctuations will be those of α̃ = α, β̃ = β− ξ0 and of the 6 real CP3 coordinates.
Extracting the overall factor 1

4L
2 the resulting fluctuation operators will contain the “free” part

−ḡij∂i∂j = −
(
∂20 + ∂21 +

1
4k

2∂22

)
→ p2+ 1

4k
2l2 , p2 = p20+p21 , l = 0,±1,±2, . . . ,

(2.4)
plus effective mass terms. Here pα are the momenta in the non-compact ξ0 and ξ1 directions
and l is the mode number in the circular ξ2 direction. One finds that the 6 real CP3

fluctuations have masses

m2
l =

1
4kl(kl + 2) (6 modes), (2.5)

where the linear in kl term comes from the mixing between the constant dφ term and kA
(which is quadratic in fluctuations) in the S7/Zk metric in (1.10). The l = 0 modes in (2.5)
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are 6 massless excitations in the corresponding folded string spectrum in AdS4 × CP3. Note
that if k = 1 we get 6 tachyonic modes with l = −1 indicating an instability of the membrane
wrapped on a big circle of S7.10 As we are interested in the large k = N

λ expansion, below we
will assume that k > 1 but will return to the k = 1 case at the end of this section.

Expanding the volume
∫ √

g part (1.19) of the membrane action we get for the quadratic
Lagrangian for the 2 remaining bosonic 3d fluctuations α̃ and β̃ (scaling out the 1

4L
2 factor

in (2.3))

LV = 1
2
[
sinh2 ρ cosh2 ρ ∂iβ̃∂iβ̃ + sinh2 ρ (∂iα̃∂iα̃+ α̃2)

]
, (2.6)

where ρ = ξ1. After the 3d field redefinition (β̃, α̃) → (u, v)

β̃ = (sinh ρ cosh ρ)−1u , α̃ = (sinh ρ)−1v , (2.7)

and integrating by parts we get (as in the static-gauge analysis in the AdS5 × S5case [22])

LV = 1
2
(
∂iu∂iu+ 4u2 + ∂iv∂iv + 2v2

)
. (2.8)

In addition, there is a contribution coming from the WZ term in the membrane action (1.20)
with C3 given by (1.12). Using (2.1) it leads to the mixing term LWZ ∼ v∂2u so that in
total we get

L(u, v) = LV + LWZ = 1
2
(
∂iu∂iu+ 4u2 + ∂iv∂iv + 2v2

)
− 3v∂2u . (2.9)

Expanding in modes in ξ2 we have ∂2 → 1
2 ikl and thus diagonalizing (2.9) find two towers

of 2d scalars with the following masses (which are positive for any kl)

m2
l,+ = 3 + 1

4k
2l2 +

√
1 + 9

4k
2l2 , m2

l,− = 3 + 1
4k

2l2 −
√
1 + 9

4k
2l2 . (2.10)

For l = 0 we reproduce the values of masses (4 and 2) of the two AdS4 fluctuations in the
corresponding string theory limit.11

Finding the quadratic fermionic Lagrangian from (1.21) is very similar to the AdS2 × S1

membrane case [38] and one gets 8 fermionic towers in flat 2d space with masses

ml =
1
2kl ± 1 (3+3 modes) , ml =

1
2kl (2 modes) . (2.11)

For l = 0 this reproduces the spectrum of the fermionic fluctuations for the infinite folded
string in AdS4 × CP3 [26, 27].

10The classical spinning membrane solution in AdS4 × S7 that corresponds to a folded spinning string in
AdS4 was discussed also in [67] and this reference had comments on its instability by analogy with a string
wrapped on a circle in the sphere.

11Note that the mass of the fluctuation of the coordinate α transverse to the AdS3 subspace where the
string moves is the same 2 as in the case of the AdS5 string solution (where there are two such modes). The
only mass that changes is that of the fluctuation of β as the string is rotating in this direction. In general, the
mass of such mode is 4 + R(2) where R(2) is the curvature of induced metric. For comparison, in the case of the
AdS2 × S1 membrane in [38] the mass terms of the corresponding fluctuations in (2.9) were both equal to 2
(due to the shift of mass term 4 by the scalar curvature R(2) = −2 of AdS3) and then m2

l,± = 2 + 1
4 k2l2 ± 3

3 kl.
As l takes both positive and negative values this is equivalent to having 2 modes with m2

l = 1
4 (kl − 2)(kl − 4).
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Integrating out 8+8 towers of fluctuations in R2 and summing over l we then get the 1-
loop partition function Z1 in (1.25). Since all fluctuation operators have constant coefficients,
logZ1 will be proportional to the 3d volume containing the κ2 factor from rescaling of ξ0 and
ξ1 (cf. (2.1)). The 1-loop correction to the world-volume energy will then scale as κ2. Since
t = κξ0 the corresponding correction to the AdS4 energy will scale as κ = 1

π logS leading to the
expression for the 1-loop term q0 in the scaling function f(k,T2) in (1.32). Explicitly, we find

Γ1 = − logZ1 =
1
2V q0, V = κ2

∫
dξ0dξ1, E1 = πq0κ = q0 logS , (2.12)

q0 =
∫

d2p

(2π)2

[
Q0(p2) + 2

∞∑
l=1

Ql(p2)
]
= p00 + q̄0(k) , (2.13)

Ql(p2) = log
[
p2 + 3 + 1

4k
2l2 +

√
1 + 9

4k
2l2

]
+ log

[
p2 + 3 + 1

4k
2l2 −

√
1 + 9

4k
2l2

]

+ 3 log
[
p2 + 1

4(kl)
2 + 1

2kl
]
+ 3 log

[
p2 + 1

4(kl)
2 − 1

2kl
]

− 3 log
[
p2 +

(
1 + 1

2kl
)2
]
− 3 log

[
p2 +

(
1− 1

2kl
)2
]
− 2 log

[
p2 +

(1
2kl

)2
]
.

(2.14)

Here in (2.13) we followed (1.34) and separated the k-independent contribution p00 to
q0 coming from the l = 0 (string-theory) part Q0 of the integrand. Computing the 2d
momentum integral gives

p00 =
∫

d2p

(2π)2 Q0(p2) =
∫ ∞

0

dp2

4π
[
log(p2+4)+log(p2+2)+4 log p2−6 log(p2+1)

]
= −5 log 2

2π ,

(2.15)
thus reproducing the value of the 1-loop correction to the cusp anomaly in string theory
in AdS4 × CP3 given in (1.37).

The integral of Ql with l > 0 giving q̄0(k) in (2.13) is also UV finite (as one can check
explicitly by doing the integral over p2 between 0 and Λ and taking the limit Λ → ∞)

Q̄l≡
∫ ∞

0

dp2

2π Ql(p2)

=− 1
8π

[
−3(kl−2)(kl−4) log(kl−2)−3(kl+2)(kl+4)log(kl+2)+(kl)2 log[(kl)2]

+
[
(kl)2+12

]
log
[
(kl)4−12(kl)2+128

]
+2
√
9(kl)2+4log (kl)

2+12+2
√
9(kl)2+4

(kl)2+12−2
√
9(kl)2+4

]
.

(2.16)

Expanding in large k then gives

Q̄l =
4

π(kl)2 + 4
π(kl)4 − 1616

15π(kl)6 − 38944
35π(kl)8 − 447488

105π(kl)10 + 2227200
77π(kl)12 + . . . . (2.17)

The remaining sum over M2 modes in (2.13) thus converges, leading to

q̄0=
∞∑
l=1

Q̄l=
2π
3k2+

2π3

45k4−
1616π5

14175k6−
19472π7

165375k8−
447488π9

9823275k10+
20519936π11

655539885k12+. . . . (2.18)
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This determines the non-planar coefficients p0r in q̄0 in (1.34) in terms of the values of
ζ(2m) =

∑∞
l=1

1
l2m , thus reproducing (1.35).

In the above derivation of (2.16) we assumed that k > 1 when (2.16) is real. Analytically
continuing Q̄l to k = 1 we get an imaginary part12

q̄0
∣∣
k=1 = −0.663 + 1.125i . (2.19)

As already noted below eq. (2.5), this reflects an instability of the membrane that rotates
only in AdS4 and is wrapped on a circle inside S7 which is contractable.

3 M2 branes rotating in S7/Zk

Let us now provide an illustration of the strategy described in section 1.4 and consider 1-loop
corrections to the two membrane solutions that generalize the “short” and “long” circular
string solutions with two angular momenta J1 = J2 in Rt × CP3 part of AdS4 × S7/Zk .13

We shall first describe these string solutions in AdS4 × CP3 (with the “long” one previously
found in [69]) and then generalize them to M2 brane solutions in AdS4 × S7/Zk . The M2
branes will be located at the center of AdS4 with t = ξ0, wrapped on the 11d circle φ in (1.10)
and rotating in CP3. We shall then compute the 1-loop corrections to the energies of these
“short” and “long” M2 brane solutions and study their expansions in spins and 11d radius 1

k .

3.1 Classical solutions

It will be useful to use the explicit parametrization of S7/Zk in terms of the 7 angles choosing
the 4 complex coordinates subject to zaz̄a = 1 in as

z1 = cosχ cos θ12 exp
[
i

(
φ

k
+ ψ + ϕ1

2

)]
, z2 = cosχ sin θ12 exp

[
i

(
φ

k
+ ψ − ϕ1

2

)]
,

z3 = sinχ cos θ22 exp
[
i

(
φ

k
− ψ − ϕ2

2

)]
, z4 = sinχ sin θ22 exp

[
i

(
φ

k
− ψ + ϕ2

2

)]
, (3.1)

12The imaginary part is equal to 9/8 and arises from the l = 1 term. The real part is obtained by evaluating
the sum numerically.

13These are direct counterparts of the string solutions in AdS5 ×S5describing a rigid circular string rotating
in two orthogonal planes in S5 with J1 = J2 =

√
λJ having two branches: “long” one with J ≥ 1

2 and “short”
one with J ≤ 1

2 [88] (see also [74, 89]). While the radius of the “long” string is fixed to be that of S5 so it
is never small and admits a “fast-string” expansion J = J√

λ
≫ 1, the “short” one may have an arbitrarily

small radius and spin and thus has a “slow-string” limit J ≪ 1 when it probes the near-flat region of S5.
These are among the simplest rigid string solutions with explicitly known spectrum of small fluctuations. For
the “long” branch the 1-loop corrections to the energy were computed in the large J expansion [74–76], with
“non-analytic” terms found in [90, 91]. The 1-loop correction to the energy of the “short” solution was found
in [71–73]. Note that in addition to the circular solution there is also a folded string solution with 2 spins in S5

that has less energy for given values of spins [92]. The study of these simplest solutions played an important
role in establishing the integrability approach to the spectrum of strings in AdS5 × S5.
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so that the S7/Zk metric in (1.11) takes the form

ds2S7/Zk
= ds2CP3 +

1
k2

(dφ+ kA)2 ,

A = 1
2

[
cos(2χ)dψ + sin2 χ cos θ2dϕ2 + cos2 χ cos θ1dϕ1

]
,

ds2CP3 = dχ2 + cos2 χ sin2 χ
(
dψ + 1

2 cos θ1dϕ1 −
1
2 cos θ2dϕ2

)2
(3.2)

+ 1
4 cos2 χ

(
dθ21 + sin2 θ1dϕ21

)
+ 1

4 sin2 χ
(
dθ22 + sin2 θ2dϕ22

)
.

Here χ ∈ [0, π/2), φ ∈ [0, 2π), ψ ∈ [0, 2π), θi ∈ [0, π), ϕi ∈ [0, 2π).

3.1.1 String solutions

Starting with the bosonic part of the string action in AdS4 × CP3 we shall fix the conformal
gauge. Then the relevant Rt × CP3 part of the action may be written in terms of that of
the CP3 sigma model as (cf. (1.11), (1.14))

Sstr = −2T
∫
d2ξ

[
− 1

4(∂αt)
2 + |Dαz

a|2 − Λ(ξ)
(
|za|2 − 1

)]
, T =

√
λ̄

2π . (3.3)

Here α = (0, 1), Λ(ξ) is a Lagrange multiplier imposing the z̄aza = 1 constraint on 4 complex
coordinates za. Dα is a U(1) covariant derivative containing an auxiliary gauge field Aα

Dαz
a = ∂αz

a − iAαz
a , za → eiϵza , Aα → Aα + ∂αϵ , ϵ = ϵ(ξ) . (3.4)

The equations of motion that follow from (3.3) are

∂α∂
αt = 0 , DαD

αza = −Λza , Λ = |Dαz
a|2 , z̄aza = 1 , (3.5)

Aα = 1
2i
(
z̄a∂αz

a − za∂αz̄a
)
, |Dαz

a|2 = ηαβ
[
∂αz̄a∂βz

a − (z̄a∂αza)(zb∂β z̄b)
]
.

(3.6)

We thus get the expressions that correspond to the metric (1.11) (with Aα related to the
1-form A and za being the embedding coordinates of S7). In addition, we have the conformal
gauge constraints (gαβ is the induced metric)

g00 + g11 = 0 , g01 = 0 , gαβ = −1
4∂αt∂βt+ (D(αz

a)†Dβ)z
a . (3.7)

The action (3.3) is invariant under the global SU(4) symmetry. We may choose its Cartan
generators as

H1 =
i

2 diag(1,−1, 0, 0) , H2 =
i

2 diag(0, 0, 1,−1) , H3 =
i

2 diag(1, 1,−1,−1) ,
(3.8)

which correspond to the Killing vector fields ∂ϕ1 , ∂ϕ2 and ∂ψ of (3.2) respectively. The
associated conserved charges or angular momenta and the AdS4 energy then are

Jr = 2T
∫ 2π

0
dξ1

[
(D0z)†Hrz − z†HrD0z

]
, E0 = T

∫ 2π

0
dξ1 ∂0t . (3.9)
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We shall consider a class of “rigid” string solutions for which (cf. (3.1); a = 1, . . . , 4)

t = κ ξ0 , za = ra e
iγa(ξ) , γa = waξ

0 +maξ
1 , (3.10)

where ra, wa and ma are constant “radii”, frequencies and winding numbers. Fixing the
U(1) gauge symmetry of (3.3) by the A0 = 0 condition,14 the equations of motion (3.5)
together with the Virasoro constraints (3.7) reduce to the system of algebraic equations
on the parameters in (3.10)

A0 = 0, A1 =
∑
a

r2ama , − w2
a + (ma −A1)2 = Λ ,

∑
a

r2awa = 0 , (3.11)

∑
a

wa(ma −A1)r2a = 0 , 1
4κ

2 =
∑
a

r2a(ma −A1)2 +
∑
a

r2aw
2
a ,

∑
a

r2a = 1 .

(3.12)

Evaluated on (3.10) the angular momenta in (3.9) may be written as

J1=4πT
(
w1r

2
1−w2r

2
2
)
, J2=4πT

(
w3r

2
3−w4r

2
4
)
, J3=4πT

(
w1r

2
1+w2r

2
2−w3r

2
3−w4r

2
4
)
.

(3.13)
We shall consider two special solutions of (3.10)–(3.12) for which J1 = J2, J3 = 0.

The first is the “short” one

r1 = r2 ≡ a, r3 = r4 =
√

1
2 − a2, m1 = m2 = −m3 = −m4 ≡

1
2m, (3.14)

w1 = −w2 = 2m
(1
2 − a2

)
, w3 = −w4 = 2ma2, κ2 = 32m2a2

(1
2 − a2

)
,

A0 = 0, A1 = 2m
(
a2 − 1

4

)
, gαβ = c2ηαβ , c2 = 1

8κ
2, Λ = 0. (3.15)

Explicitly, for za in (3.10) we get

z1 = a ei[m(1−2a2)ξ0+ 1
2mξ

1], z2 = aei[−m(1−2a2)ξ0+ 1
2mξ

1],

z3 =
√

1
2 − a2 ei[2ma

2ξ0− 1
2mξ

1], z4 =
√

1
2 − a2 ei[−2ma2ξ0− 1

2mξ
1], (3.16)

or, equivalently, in terms of the CP3 angles in (3.1), (3.2)

cosχ0 =
√
2a, θ1 = θ2 =

π

2 , ψ = mξ1, ϕ1 = 4m
(1
2 − a2

)
ξ0, ϕ2 = 4ma2ξ0 . (3.17)

Here 0 ≤ a ≤ 1√
2 and m is the winding number that takes integer values.15 The corresponding

charges are

J3 = 0, J1 = J2 ≡ J =
√
λ̄J , J = 8ma2

(1
2 − a2

)
= 1

4m
−1κ2,

E0 =
√
λ̄κ =

√
4m
√
λ̄J.

(3.18)

14Note that under the gauge transformation (3.4) the phases γa(ξ) in (3.10) are all shifted by ϵ(ξ). Thus
a solution found in the A0 = 0 gauge that may have

∑
a

γa ̸= 0 may be transformed into a gauge where∑
a

γa = 0. Note also that the charges (3.9) are invariant under the gauge transformation (3.4).
15As ξ1 ∈ (0, 2π) one could think that m should take only even values. Note, however, that under ξ1 → ξ1+2π

we get za → e±imπza which for any integer m is just an overall phase of za which is a trivial symmetry of
CP3 (global part of the U(1) gauge symmetry).
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Here the spin is bounded, i.e. 0 ≤ J ≤ 1
2m or 0 ≤ J ≤ 1

2m
√
λ̄, with the maximum at

a = 1
2 and the minimum at a = 0 or a = 1√

2 . Note that like for the analogous solution in
AdS5 × S5 [74] the relation between the energy and spin is the same as for the corresponding
solution in flat space (i.e. for a circular string rotating in 2 orthogonal planes in R4).

To see that for a → 0 the solution reduces to its flat-space analog one is to do a U(1)
gauge transformation za → ei

m
2 ξ

1
za that sets the a→ 0 value of A1 (equal to −1

2m in (3.14))
to zero.16 Then

a→ 0 : z1 → a eim(ξ0+ξ1) , z2 → a eim(−ξ0+ξ1) , z3 → 1√
2
, z4 → 1√

2
.

(3.19)

The second special solution of (3.10)–(3.12) (that was already found in [69]) is a “long”
one for which J and thus J is not bounded. Here (cf. (3.11), (3.13)–(3.18))

r1=r2=r3=r4=
1
2 , m1=m2=−m3=−m4≡

1
2m, w1=−w2=w3=−w4=J , (3.20)

A0=A1=0, κ2=4J 2+m2 , gαβ=c2ηαβ , c2=1
4m

2 , Λ=−J 2+1
4m

2 , (3.21)

z1=
1
2 e

i(J ξ0+ 1
2mξ

1) , z2=
1
2 e

i(−J ξ0+ 1
2mξ

1) , z3=
1
2 e

i(J ξ0− 1
2mξ

1) , z4=
1
2 e

−i(J ξ0+ 1
2mξ

1) ,

(3.22)

χ=π

4 , θ1=θ2=
π

2 , ψ=mξ1 , ϕ1=ϕ2=2J ξ0 , (3.23)

J3=0, J1=J2=J=
√
λ̄J , E0=

√
λ̄κ=

√
λ̄
√
4J 2+m2=

√
4J2+m2λ̄ . (3.24)

Like for the similar AdS5 × S5solution [74] here the energy expanded at large J has a
familiar “fast-string” form

E0 = 2J + m2λ̄

4J − m4λ̄2

64J3 + . . . . (3.25)

Note that the two solutions (3.14) and (3.20) coincide in the special case of a = 1
2 and J = 1

2m

when in both cases E = m
√
2λ̄ and za in (3.16), (3.22) have ±ξ0 ± ξ1 as their phases.17

3.1.2 M2 brane solutions

Let us now discuss how to “uplift” the above string solutions to the M2 brane solutions in
AdS4 × S7/Zk so that the brane wrapped on 11d angle φ and rotating in CP3.

As is well known, the “double dimensional reduction” relates the M2 brane action in
11d supergravity background (1.19)–(1.23) to the type IIA string action in the corresponding

16Note that since ξ1 ∈ [0, 2π) one cannot in general transform a constant A1 component of the potential
in (3.11), (3.14) to zero if 1

2π

∫
dξ1 A1 is not a (half) integer.

17For comparison, in the AdS5 × S5case [74] the “short” solution written in S5 embedding coordinates
is t = κξ0, X1 + iX2 = a eim(ξ0+ξ1), X3 + iX4 = a eim(ξ0−ξ1), X3 + iX4 =

√
1 − 2a2 with κ2 = 4m2a2 =

4J , J1 = J2 =
√

λJ , E =
√

4m
√

λJ . For the “long” solution X1 + iX2 = 1√
2 ei(J ξ0+mξ1), X3 + iX4 =

1√
2 ei(J ξ0−mξ1), X3 + iX4 = 0, E =

√
4J2 + m2λ.
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10d background [44, 93, 94]. Namely, with a 10+1 split of the target space coordinates and
a 2+1 split of the world volume coordinates one assumes that

XM = (Xµ, φ) , ξi = (ξα, ξ2) , φ = ξ2 , ∂2X
µ = 0 , ∂φGMN = 0 , ∂φCMNP = 0 ,

(3.26)
and to get the string action keeps only the zero mode in the Fourier expansion of the M2 brane
fields in ξ2. In the present case of the AdS4×S7/Zk background (1.8)–(1.12), (3.2) where φ is
the isometric coordinate of the U(1)k fiber of S7/Zk the conditions ∂φGMN = ∂φCMNP = 0
are indeed satisfied.

Considering an M2 brane located at the center of AdS4 and moving in S7/Zk the bosonic
part of its action may be written like in (3.3) in terms of coordinates za of C4/Zk with the
additional constraint zaz̄a = 1 imposed by a Lagrange multiplier:

S = −T2

∫
d3ξ

√
− det gij

[
1− 1

2Λ(ξ)(z̄az
a−1)

]
, gij = −1

4∂it∂jt+∂(iz̄a∂j)z
a . (3.27)

Here za ≡ e
2πi

k za or, equivalently, given by (3.1). The effective tension T2 was defined
in (1.16). The corresponding equations of motion are

∇2t = 0 , ∇2za = −Λza , ∇2 = 1√
−g

∂i(
√
−ggij∂j) , z̄az

a = 1 . (3.28)

It is straightforward to check that they are satisfied by t = κξ0 and

za(ξi) = e
i
k
ξ2
za(ξα) , ξ2 ∈ [0, 2π) , (3.29)

where za(ξα) solve the equations (3.5), (3.7) for a string in R× CP3. The induced 3d metric
gij can be written as

gij =
(
gαβ +AαAβ

1
kAα

1
kAβ

1
k2

)
, gαβ = c2ηαβ , (3.30)

where Aα and gαβ are given by (3.6) and (3.7) respectively.
As in the string case, the action (3.27) is invariant under the global SU(4) symmetry

and time t translations. In particular, for za(ξα) satisfying the Virasoro constraints (3.7),
the expressions for the conserved charges can be written as in (3.9)

Jr =
1
k
T2

∫ 2π

0
dξ1

∫ 2π

0
dξ2
[
(∂0z)†Hrz − z†Hr∂0z

]
, E0 =

1
2kT2

∫ 2π

0
dξ1

∫ 2π

0
dξ2 ∂0t .

(3.31)

These coincide with the corresponding string charges (3.9) as 2T = 2π
k T2 (see (1.17)).

Thus the M2 brane counterparts of the “short” and “long” string solutions are represented
by (3.29) with za(ξα) given by (3.16) and (3.22) respectively and the same values of spins
and energies as in (3.18) and (3.24). For these solutions both gαβ and Aα are constant
(see (3.15), (3.21)) so that gij in (3.30) is also constant

ds23 = gij dξ
idξj = c2 [−(dξ0)2 + (dξ1)2] + 1

k2
(
dξ2 + kA1dξ

1)2 . (3.32)
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Note that while for the “long” solution in (3.21) one has c2 = 1
4m

2 and Aα = 0 so that the 3d
metric is diagonal, for the “short” one in (3.15) c2 = 1

8κ
2 and A0 = 0 but A1 = 2m(a2 − 1

4) is
non-zero (and, as already mentioned above, cannot be, in general, eliminated by a redefinition
of ξ2). As a result, in the “short” case gij in (3.32) represents a non-trivial torus in the
(ξ1, ξ2) directions

ds23 = −c2(dξ0)2 + 1
k2
∣∣dξ2 + τdξ1

∣∣2, τ = τ1 + iτ2, c =
√
m

2 J , (3.33)

τ1 = k A1 = 2km
(
a2 − 1

4

)
= −1

2km
√
1− 2J , τ2 = k c = 2kma

√
1
2 − a2 = k

√
m

2 J .

(3.34)

For the “long” solution one may also write the diagonal metric in the form (3.33) where

c = 1
2m, τ = iτ2 , τ2 = k c = 1

2km . (3.35)

3.2 1-loop correction to the energy

Our aim will be to compute the 1-loop corrections to the energies of the “short” and “long”
M2 brane solutions. The first step is to find the corresponding quadratic fluctuation action
that follows from (1.19)–(1.23). This is can be done, e.g., in the static gauge as in [37–39]
(see also a discussion in appendix A). Like in the case of the long folded M2 brane solution
in section 2 the induced metric (3.32) is constant (cf. (2.3)) as are the derivatives of the
background 3d fields so that the fluctuation Lagrangian has constant coefficients and the
spectrum of fluctuation frequencies is straightforward to find.

In particular, the 8 bosonic fluctuations propagating in the induced 3-metric (3.32), (3.33)
will be described by a coupled quadratic 2-derivative action with constant coefficients. For
a single 3d scalar field X(ξ) with mass M the corresponding Klein-Gordon operator will
be (cf. (2.4))

(−gij∂i∂j +M2)X → c−2[∂20 − (∂1 − kA1∂2)2 − k2c2∂22 + c2M2]X . (3.36)

Expanding in Fourier modes in ξi as

X(ξ) =
∫
dω

2π

∞∑
n=−∞

∞∑
l=−∞

X̃nl(ω) ei(ωξ
0+nξ1+lξ2) , (3.37)

the frequencies ω(n, l) corresponding to (3.36) may be written as (cf. (3.33))

ω2(n, l) =
∣∣n− τ l

∣∣2 + c2M2 = (n− τ1l)2 + (τ2l)2 + c2M2 . (3.38)

Assuming that one can diagonalize the 8× 8 matrices for the bosonic and fermionic charac-
teristic frequencies one will then get the 1-loop correction to the AdS4 energy given by

E1 =
1
2κ

∞∑
n=−∞

∞∑
l=−∞

Ω(n, l) , Ω(n, l) =
∑
B

ωB(n, l)−
∑
F

ωF(n, l) , (3.39)
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where Ω(n, l) depends on the parameters of a solution, i.e. J and m. The sum over l can
be split as in (2.13) into the l = 0 (string) contribution and that of the rest of the M2
brane l ̸= 0 (“KK” ) modes, i.e.

E1 = E1,str + E1,kk , E1,str =
1
2κ

∞∑
n=−∞

Ω(n, 0) , E1,kk = 1
2κ

∞∑
n=−∞

∑
l ̸=0

Ω(n, l) .

(3.40)

In practice, finding the explicit expressions for the frequencies ωB(n, l) and ωF(n, l) and thus
Ω(n, l) is hard due to non-trivial mixing of the transverse fluctuations (cf. appendix C).
One can use instead an equivalent representation for E1 in terms of the 1-loop partition
function (cf. (2.12) and a discussion in [73])18

E1 =
1
2κ

∞∑
n=−∞

∞∑
l=−∞

∫ ∞

−∞

dw

2π log DB(w2, τ,J )
DF(w2, τ,J ) . (3.41)

Here DB,F are the determinants of the quadratic fluctuation matrices for the bosons and
fermions obtained after expanding in the Fourier modes as in (3.37) and w = iω.

3.2.1 “Short” M2 brane

Below we will consider the case of the minimal winding number m = 1 (corresponding to
the state with minimal energy for given spins). Let us first discuss the contribution of the
string (l = 0) modes. For the 8=1+3+2+2 bosonic modes one finds the following expressions
for the characteristic frequencies (see appendix B)

l = 0 : ω2 = n2 , ω2 = n2 + 4J (3 modes) ,

ω2 = n2 + 2− 3J ±
√
J 2 + 4n2 − 4J n2 + 2

√
(1− 2J )

(
1 + n2 − J ±

√
J 2 + 4n2 − 4J n2

)
,

ω2 = n2 + 2− 3J ±
√
J 2 + 4n2 − 4J n2 − 2

√
(1− 2J )

(
1 + n2 − J ±

√
J 2 + 4n2 − 4J n2

)
.

(3.42)

The 8 = 2 × 2 + 2 × 2 fermionic l = 0 frequencies are

l = 0 : ω2 = 1 + n2 + J ± 2
√
J + n2 − J n2 (2 modes) ,

ω2 = 1 + n2 − J ± 2
√
(1− 2J ) (J + n2) (2 modes) , (3.43)

where J = 8a2(12 − a2), κ2 = 4J (see (3.18) with m = 1). Separating the special n = 0, 1, 2
modes, E1,str in (3.40) may be written as

E1,str =
1

2
√
J

[
1
2Ω(0, 0) + Ω(1, 0) + Ω(2, 0) +

∞∑
n=3

Ω(n, 0)
]
, (3.44)

18In general, in the l = 0 string case the contributions of some low-n modes may require special treatment.
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where Ω(n, 0) is the total contribution of the bosonic and fermionic modes as in (3.39).
Expanding in small J we get

Ω(0,0)=−4+6
√
J +2J +J 2+O

(
J 5/2) ,

Ω(1,0)=2−2
√
J +1

2J − 211
32 J 2+O

(
J 5/2) , (3.45)

Ω(2,0)=−1
3J +131

216J
2+O

(
J 5/2) ,

1
2Ω(0,0)+Ω(1,0)+Ω(2,0)=

√
J +7

6J − 4741
864 J 2+O

(
J 5/2),

∞∑
n=3

Ω(n,0)= q1J +q2J 2+O
(
J 5/2) ,

(3.46)

q1=−
∞∑
n=3

2
n(n2−1) =−1

6 ,

q2=
∞∑
n=3

23n4−29n2+10
2n3 (n2−1)3

= 4741
864 − 9

2ζ(3) .
(3.47)

As a result,

E1,str =
1
2 + 1

2
√
J − 9

4ζ(3)J
3/2 +O

(
J 2
)
= 1

2 + 1
2

√
J

λ̄1/4
− 9

4ζ(3)
J3/2

λ̄3/4
+O

(
J2

λ̄

)
, (3.48)

Combined with the classical contribution in (3.18) this gives

Estr = 2
√√

λ̄J + 1
2 + 1

2
J1/2

λ̄1/4
− 9

4ζ(3)
J3/2

λ̄3/4
+O

(
J2

λ̄

)
, (3.49)

which has similar structure as the corresponding expression in the AdS5 × S5case [71].

Let us now consider the l ̸= 0 (membrane-mode) contribution E1,kk to the 1-loop energy
in (3.40). We will be interested in its expansion first at large k and then in small J . If the
small J limit is taken before the large k one directly in Ω(n, l), i.e. before summing over
n, l, this leads to inconsistencies, since the frequency lattice in (3.38) becomes degenerate
as τ2 ∼ J → 0 (cf. (3.34)).19 Thus it is important that the large k limit is to be taken
before the small J one.20 This implies that

k ≫ 1, J ≪ 1 : τ2 =
1√
2
k
√
J ≫ 1 . (3.50)

Below we shall use the integral representation (3.41) for the 1-loop energy and treat τ and
J as independent parameters, assuming that τ2 ≫ 1 and J ≪ 1. We will replace τ with
its explicit value in (3.34) at the end of the calculation.

19One can draw some analogy with what one finds for the non-holomorphic Eisenstein series E(s, τ) as a
function of τ . If one considers its Fourier expansion, it can be seen that the series has a regular behaviour
for τ2 → ∞, while for τ2 → 0 it is divergent because of the asymptotics of the modified Bessel function
Kν(x) ∼ x−ν near zero.

20As discussed in section 1.4 this is consistent with the standard ’t Hooft large N expansion on the gauge
theory side where one should first take N large and then consider limits of small or large λ and small or
large J√

λ
.
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Let us expand the integrand in (3.41) as

log DB(w2, τ,J )
DF(w2, τ,J )

∣∣∣
J→0

= Q0(w2, τ) +
√
JQ1(w2, τ) + JQ2(w2, τ) + . . . (3.51)

Using the expressions in appendix B one finds that the expressions for the determinants DB
and DF depend on τ only through p2 and q defined as

p2 ≡ |n− τ l|2 = q2 + (τ2l)2 , q ≡ n− τ1l . (3.52)

Explicitly, we get21

Q0=log
(
p2+w2)5[

p6+3p4w2+p2(−8q2+3w4+8w2−16
)
−8q2(w2−4

)
+w2(w2+4

)2][
p4+2p2w2−2q2+(w2+1)2]4 , (3.53)

Q1=
8
√
2q
√
p2−q2

[
4p4+p2(−6q2+14w2−17

)
−6q2(w2−4

)
+10w4+23w2+4

][
p4+2p2w2−2q2+(w2+1)2][

p6+3p4w2+p2(−8q2+3w4+8w2−16)−8q2(w2−4)+w2(w2+4)2] .
(3.54)

It is also straightforward to find Q2 but its expression is somewhat long so we will not
present it here. Let us define

Er(τ) =
∞∑

n=−∞

∞∑
l=−∞

∫ ∞

0

dw

2π Qr(w2, p2, q) . (3.55)

Then combining (3.41), (3.51), (3.55) we get

E1 =
1
κ

∞∑
r=0

Er(τ)J r/2 = 1
2

∞∑
r=0

Er(τ)J (r−1)/2 , (3.56)

where we used that according to (3.18) κ = 2
√
J .

To evaluate Er(τ) in (3.55) we may assume that Qr with an even r is an even function of
q while Qr with an odd r is an odd function of q (we checked this property for low values
of r = 0, 1, 2 that we will consider below). Then the sum of odd Qr over (n, l) in (3.55) is
zero, since the terms with (n, l) and (−n,−l) contribute with an opposite sign. Thus we
may consider only Er(τ) with an even r. One can further use that since the dependence of
Qr on τ is only via p2 and q, they are periodic functions of τ1 and thus can be expressed
in Fourier series as

Er(τ1 + 1, τ2) = Er(τ1, τ2) , Er =
∞∑

s=−∞
e(s)r (τ2) e2πisτ1 , (3.57)

e(s)r (τ2) =
∞∑

n=−∞

∞∑
l=−∞

∫ ∞

0

dw

2π

∫ 1

0
dτ ′1 e

−2πisτ ′1 Qr(w2, p′2, q′) , (3.58)

where p′ and q′ are assumed to depend on τ ′1.
21To get the expansion in terms of J , we have assumed that a < 1

2 and used (3.18) to express a in terms of
J , i.e. a2 = 1

4 − 1
4
√

1 − 2J .
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Let us first consider the l = 0 term in the sum (which should be the string-theory
contribution already discussed above). In this case from (3.52) we have q2 = p2 = n2, i.e. do
not depend on τ and thus the only non-vanishing term in (3.58) is the one with s = 0, i.e.22

(E1,str)r = e(0)r (0) =
∞∑

n=−∞

∫ ∞

0

dw

2π Qr(w2, n2, n) . (3.59)

The remaining sum over n and l ̸= 0 in (3.58) can be written as:

2
∞∑
l=1

∞∑
n=−∞

∫ ∞

0

dw

2π

∫ 1

0
dτ ′1 e

−2πisτ ′1 Qr

= 2
∞∑
l=1

∑
n mod l

∫ ∞

0

dw

2π

∫ ∞

−∞
dτ1 e

−2πisτ ′1Qr
(
w2, |n− τ ′l|2, n− τ ′1l

)
= 2

∞∑
l=1

∑
n mod l

e−2πisn/l
∫ ∞

0

dw

2π

∫ ∞

−∞
dτ ′1 e

−2πisτ ′1Qr
(
w2, (τ ′21 + τ22 )l2, τ ′1l

)
. (3.60)

Here we used the assumption that Qr is an even function of q and also the properties of the
sum and the periodicity of the integral over τ ′1, and finally shifted τ ′1 → τ ′1 + n/l.

The integral over τ ′1 is hard to evaluate explicitly even for Q0 in (3.53). To proceed, we
shall focus on the large k expansion, i.e. assume as in (3.50) that τ2 ≫ 1. Rescaling the
integration variables w = τ2y and τ ′1 = τ2x, we get for (3.60)

2τ22
∞∑
l=1

∑
n mod l

e−2πisn/l
∫ ∞

0

dy

2π

∫ ∞

−∞
dx e−2πisτ2x Qr

(
τ22 (x2 + 1)l2, τ2xl, τ22 y2

)
. (3.61)

We first note that if Qr is an integrable function of x, the integral over x vanishes in the
limit of τ2 → ∞ if s ̸= 0 due to the Riemann-Lebesgue lemma. This suggests that for τ2 ≫ 1
the contribution e

(s ̸=0)
r in (3.58) will be suppressed relative to e(0)r in (3.59).23

If the same is true for all terms in (3.61), i.e. the terms with s ̸= 0 are exponentially
suppressed, then the leading-order terms in the expression for Er(τ) in (3.57) can be written
as (E1,str)r in (3.59) plus

(
E1, kk

)
r
, i.e.

Er(τ) = (E1,str)r+
(
E1,kk

)
r
,

(
E1,kk

)
r
= 2τ22

∞∑
l=1

l

∫ ∞

0

dy

2π

∫ ∞

−∞
dx
(Q̂(4)

r

τ42
+ Q̂(6)

r

τ62
+. . .

)
+. . . .

(3.62)
Here we have assumed that Qr admits the large τ2 expansion of the form

∑∞
m=4 Q̂

(m)
r τ−m2 ,

where Q̂(m)
r = Q̂(m)

r
(
τ22 (x2 + 1)l2, τ2xl, τ22 y2

)
as in (3.61). We have checked explicitly that

this is true for r = 0 and 2.
22As was already alluded to above, the representation of the 1-loop correction to energy (3.39) in terms of

the integral in (3.41) is valid when the integrand in (3.41) does not have branch points on the real axis as a
function of w. As this is not true in the special cases when l = 0 and n = 0,±1,±2, we are to use instead
the representation (3.45) for these contributions. For the other values of n the results following from (3.59)
and (3.46) coincide.

23For instance, in the case of non-holomorphic Eisenstein series, such terms are exponentially suppressed.
This also happens for the integral

∫∞
−∞ dx e−2πisτ2x f(x)

(x2+x2
0)ℓ ∼ e−2πsτ2|x0| , τ2 ≫ 1 , where f(x) is a

polynomial with degree less than ℓ ∈ Z and has no poles at x0 ∈ R.
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We then arrive at the following expressions for
(
E1,kk

)
0 and

(
E1,kk

)
2:(

E1,kk
)
0 = −4ζ(2)

τ22
− 152ζ(6)

15τ62
+ . . . ,

(
E1,kk

)
2 =

8ζ(2)
τ22

+ 10ζ(4)
τ42

+ . . . . (3.63)

Using (3.50), i.e. that τ22 = 1
2k

2J , and plugging (3.63) into the expansion in (3.56) we
conclude that the membrane-mode contribution to the 1-loop energy of the “short” solution
can be written as

E1,kk = J −1/2
(
− 4ζ(2)

k2J
+ . . .

)
+ J 1/2

(8ζ(2)
k2J

+ . . .

)
+ . . .+O

( 1
k4

)
. (3.64)

Combining this with the classical part of the energy in (3.18) and the string (l = 0) 1-loop
contribution in (3.48) or (1.46) we then get the following prediction for the 1-loop corrected
“short” M2 brane energy

EM2 =2
√√

λ̄J + 1
2 + 1

2 λ̄
−1/4J1/2 − 9

4ζ(3)λ̄
−3/4J3/2 +O

(
λ̄−1J2

)

+ 1
k2

[
ζ(2)

(
− 4λ̄3/4J−3/2 + 8λ̄1/4J−1/2

)
+O

(
λ̄−1/4J1/2

)]
+O

( 1
k4

)
. (3.65)

Note that like in the fast-spinning M2 brane case considered in section 2 (cf. (2.17), (2.18)),
here the leading 1

k2 correction is also proportional to ζ(2) = π2

6 . On the dual ABJM gauge
theory side (3.65) λ̄ = 2π2λ and 1

k2 = λ2

N2 (see (1.15)) is a prediction for the leading non-planar
correction to the dimension of the corresponding “short” operator.24

3.2.2 “Long” M2 brane

Let us now consider a similar computation of 1-loop correction to the energy of the m = 1
“long” M2 brane solution that generalizes the string solution (3.20)–(3.24). Here one has
diagonal induced 3-metric as in (2.3) (cf. (3.33))

Aα = 0 , κ2 = 4J 2 + 1 , ds23 =
1
4

[
−(dξ0)2 + (dξ1)2 + 4

k2
(dξ2)2

]
. (3.66)

The characteristic frequency polynomials for the “long” solution are given in appendix C.
24As was mentioned above (cf. (3.19)), the “short” string or “short” M2 brane solution has a direct analog

in R1,9 × S1 flat space. There the circular M2 brane is rotating with J1 = J2 in two orthogonal planes in
R4 ⊂ R1,9 and is wrapped on S1 of radius R11. To take the flat space limit we need to identify the radius of
S1 as R11 = L

k
that will be fixed in the large L ∼ L limit along with the parameters κ and a of the solution

in (3.19) (cf. (3.14)). To get the energy and spin in the flat space limit and relate to string theory we need to
rescale E → 1

2 LE so that E and J will have canonical mass dimensions (1 and 0). Then using that
√

λ̄ = L2

4α′

(cf. (1.14), (1.15)) we conclude that all string corrections to the classical term E = 2
√

α′−1J in the first line
of (3.65) vanish, in agreement with the fact that the free superstring spectrum in flat space is not deformed by
α′ corrections. At the same time, the R2

11 ∼ g2
s dependent corrections in the second line of (3.65) survive, with

the leading one proportional to ζ(2)α′−1/2g2
s J−3/2, i.e. we get E = 2

√
α′−1J

[
1 − 1

2 ζ(2)g2
s J−2 + . . .

]
. This

can be checked 1-loop computation of the energy of the “short” M2 solution directly in the flat space case and
may be related to the expectation that masses of massive superstring states may received 1-loop (and higher
order) corrections (cf. [95–99]). Note that a non-zero 1-loop correction to the energy of a different J1 = J2

supermembrane solution in flat space (where the membrane was rotating in 2 planes with the “radii” being
periodic functions of ξ1 and ξ2 but was not wrapped on S1) was found also in [35].
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Like in the “short” case let us first consider the string theory l = 0 contribution. We
find as in [69] that there are 8 = 1 + 3 + 2 × 2 bosonic

l = 0 : ω2 = n2 + 4J 2 − 1 , ω2 = n2 + 4J 2 + 1 (3 modes),

ω2 = n2 + 2J 2 ±
√
4J 4 + (4J 2 + 1)n2 (2× 2 modes), (3.67)

and 8 = 2 × 2 + 4 fermionic fluctuation frequencies

l = 0 : ω2 = n2 + 5J 2 + 1
4 ±

√
(4J 2 + 1)(4J 2 + n2) (2× 2 modes),

ω2 = n2 + J 2 + 1
4 (4 modes). (3.68)

These frequencies agree with (3.42), (3.43) for J = 1
2 when the “short” and “long” solutions

become equivalent. Note that in contrast to what happens in the AdS5 × S5case (where the
m = 1 solution is unstable [88]) these frequencies are always real, i.e. the J1 = J2 solution
in AdS4 × CP3 is stable for any J .

The 1-loop energy string energy E1,str is given again by the general expressions in (3.39),
(3.40). Here we will be interested in its expansion in the large spin limit J ≫ 1. Like
in the AdS5 × S5case [90, 91, 100], in addition to the “analytic” contributions (with even
powers of J −1) discussed already in [69], there are also “non-analytic” terms (with odd
powers of J −1), i.e. for large J

E1,str =
1
2κ

∞∑
n=−∞

Ω(n, 0;J ) = Ean
1 + Enon

1 +O(e−J ) . (3.69)

To sum up the series over n we apply the Abel-Plana summation formula (with a slight
modification due to an additional branch cut coming from the bosonic modes).25 As a
result (here κ =

√
4J 2 + 1)

Ean
1 = i

κ

∫ 1

0
dscot(πs)

[√
4J 2+1+(s−i

√
1−s2)2−

√
4J 2+1+(s+i

√
1−s2)2

]
(3.70)

= 1
2J 2

[
1
4+

∞∑
n=1

(
n
√
n2−1−n2+1

2

)]
− 1
8J 4

[
3
16+

∞∑
n=1

(3
8−n

4+n
√
n2−1

(1
2+n

2
))]

+O
( 1
J 6

)
,

Enon
1 = 1

κ

[
2
∫ ∞

0
ds

√
2J 2+s2+

√
4J 4+s2(4J 2+1)+2

∫ ∞

1
ds

√
2J 2+s2−

√
4J 4+s2(4J 2+1)

+
∫ ∞

0
dt

(
3
√
s2+4J 2+1+

√
s2+4J 2−1−4

√
s2+J 2+1

4−4
√
s2+4J 2

)]
. (3.71)

25To get Enon
1 in [101] an alternative method using the Sommerfeld-Watson transform was applied.
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The sums that appear in (3.70) converge, and, in particular, the coefficient of the leading
1
J 2 term is the same as in [69]26

c1 ≡
1
4 +

∞∑
n=1

(
n
√
n2 − 1− n2 + 1

2

)
≈ −0.336 . (3.72)

Evaluating the integrals in (3.71) and expanding for J , we get 1/J and 1/J 3 contributions
with log 2 coefficients. Then the combined result for (3.69) is

E1,str
∣∣∣
J→∞

= − log 2
2J + c1

2J 2 + log 2
16J 3 +O

( 1
J 4

)
, (3.73)

This is to be added to the large J expansion of the classical energy in (3.24)

E0 = λ̄1/2
√
4J 2 + 1 = λ̄1/2

[
2J + 1

4J − 1
64J 3 +O

( 1
J 5

)]
. (3.74)

As a result, the 1-loop string energy can be put into the form

Estr
∣∣∣
J→∞

= 2J + h̄2(λ̄)
4J + c1

λ̄

2J2 − h̄4(λ̄)
64J3 + . . . , (3.75)

where J = λ̄1/2J and h̄(λ̄) ≡ 2πh(λ) = λ̄1/2 − log 2 + . . . with h(λ) that appeared
in (1.38), (1.40). A similar result that the replacement

√
λ̄ → h̄(λ̄) happens only for

the coefficients of the “odd” 1/J2r+1 terms in the expansion of the energy (that are then
directly related to those in the AdS5 × S5case) was found in [50] for a circular rotating string
with spins S and J stretched in both AdS4 and CP3.

Let us now turn to the l ̸= 0 membrane mode contribution E1,kk in (3.40). Using the
integral representation (3.41) we get

E1,kk = 1
κ

∞∑
n=−∞

∑
l ̸=0

∫ ∞

0

dw

2π E
(
w2, n2, (τ2l)2,J

)
, E = log DB(w2, τ2,J )

DF(w2, τ2,J ) , τ2 ≡
1
2k .

(3.76)
While the induced metric in (3.66) is diagonal, to keep the analogy with the “short” M2
case (cf. (3.50), (3.51)) we introduced as in (3.35) the coefficient τ2 = 1

2k that will be again
large in the k ≫ 1 limit we are interested in.

Here we should first expand in large τ2 and then in large J . As follows from the explicit
form of the determinants DB and DF in appendix C the integrand E in (3.76) turns out to
be an even function of both n and l. To compute (3.76) in the large τ2 limit we may try
to follow the same strategy as in the “short” M2 brane case discussed above. For that we
may formally introduce a parameter τ1 (to be taken to zero at the end) shifting n→ n− τ1l

as in (3.51), (3.52). Then we can take l ̸= 0 and consider first the sum over n following
the same steps as in (3.58)–(3.62). Like in the string case, one may split the sum into the
integral part and finite series and the expectation is that the contribution of the latter is

26The 1
J 2 correction is essentially the same as in the AdS5 × S5case [76] (in general, with the winding

numbers related by m → 1
2 m).
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exponentially will be suppressed when k ≫ 1 and l ̸= 0. This suggests that like in (3.62)
the sum over n can be effectively replaced by an integral

τ2 ≫ 1 : E1,kk ≈ 1
κ

∞∑
l=1

∫ ∞

0

dw

π

∫ ∞

−∞
dn E

(
w2, n2, (τ2l)2,J

)
. (3.77)

Assuming that J /τ2 ≪ 1 we may rescale the integration variables in (3.77) as w = τ2y,
n = τ2x (cf. (3.61))

E1,kk = τ22
πκ

∞∑
l=1

∫ ∞

0
dy

∫ ∞

−∞
dx

[
E(2)(J )
τ22

+ E(4)(J )
τ42

+ . . .

]
, (3.78)

where we can further expand the integrand at large J . As a result (cf. (3.64))

E1,kk =ζ(2)
τ22

(
− 2J − 1

2J + 3
64J 3 + . . .

)
+ ζ(4)

τ42

(21
4 J 3 + . . .

)
+O

( 1
τ62

)
=4ζ(2)

k2

(
− 2J − 1

2J + 3
64J 3 + . . .

)
+ 16ζ(4)

k4

(21
4 J 3 + . . .

)
+O

( 1
k6

)
. (3.79)

Combining this with the string part (3.75) we get (cf. (3.65))

EM2 = 2J + λ̄

4J (1− 2 log 2 λ̄−1/2 + . . .) + c1
λ̄

2J2 (1 + . . .) + . . .

+ 1
k2
ζ(2)

(
− 8λ̄−1/2J − 2 λ̄

1/2

J
+ 3λ̄3/2

16J3 + . . .

)
+O

( 1
k4

)
. (3.80)

Here the 1
k2 = λ̄2

(2π2)2N2 term represents the prediction for the strong-coupling limit of the
leading non-planar correction to the dimension of the corresponding operator with the
large spin J .

4 Concluding remarks

In this paper we discussed the AdS4 × S7/Zk M2 brane counterparts of the computations of
1-loop corrections to energies of the three string solutions in AdS4×CP3: “long” folded string
with large spin in AdS4 and “short” and “long” circular strings with equal angular momenta
J1 = J2 in CP3. As a result, we obtained predictions for the leading non-planar corrections
to scaling dimensions of the corresponding dual ABJM operators at strong coupling.

In all cases the 1/N2 term is proportional to ζ(2) = π2

6 . This is related to the fact that
1
k = λ

N is the radius of the 11d circle φ which is identified with the cylindrical M2 brane
dimension ξ2 so that the dependence on the corresponding Fourier mode number l is via kl.
As a result, the coefficient of the 1

k2 term is proportional to
∑∞
l=1 l

−2 = ζ(2).
There are several obvious generalizations. One may consider the M2 brane analog of the

folded spinning string in AdS4 with an extra orbital momentum J in CP3. Taking the limit
when S ≫ J ≫

√
λ ≫ 1 with

√
λ
J ln S

J=fixed determines the generalized cusp anomaly or
scaling function. In the AdS5 × S5string case this solution was studied in [102, 103]. In this
limit the resulting string fluctuation Lagrangian has constant coefficients and thus finding the
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quantum corrections to the classical energy is straightforward.27 For the string in AdS4×CP3

the 1-loop correction to the energy of such (S, J) solution was already found in [26, 27] and a
generalization to the M2 brane case in AdS4 × S7/Zk should not be a problem.

One can also consider a M2 brane analog of another (S, J) string solution where the
string is wrapped on a circle in both AdS4 and CP3 part (here S = mJ where m is a wrapping
number). This is the direct analog of the solution in AdS5 × S5studied in [76, 89, 104]. The
1-loop correction to the energy of this circular (S, J) string in AdS4 × CP3 was computed
in [50] and a generalization to the M2 brane case should be again straightforward. Expanding
in small S/J one may relate [73, 105] the leading term in the string energy (or in the dimension
of the dual operator) to the so called slope function which, in the planar limit, is known
exactly from the integrability [54, 106, 107].

The slope function turns out to be very similar to the Brehmstrahlung function that
can be found from localization (via circular BPS WL connection) and, in the planar limit,
from the integrability (see [108–110]). Assuming the analogy between the slope function
and the Brehmstrahlung function continues also in the ABJM case, ref. [54] suggested a
conjecture for the h(λ) function that enters the ABJM magnon dispersion relation (1.40),
and it passed all tests so far.28 It would be interesting to use the above M2 brane approach
to find a prediction for non-planar corrections to the slope function at strong coupling, and
then to compare it to the known expression for the Brehmstrahlung function B(λ,N) in
the ABJM theory (see [111–118]). One may also consider a direct M2 brane computation
of non-planar corrections to the Brehmstrahlung function following the approach of [38]
and generalizing to the case of non-trivial wrapping number w. One may then get the
Brehmstrahlung function by taking a derivative over w of the large N expansion of the log
of the Wilson loop expectation value (see a discussion in appendix D).

At a more conceptual level, it would be remarkable to find a way to do similar computa-
tions of non-planar corrections in the type IIB AdS5 × S5superstring dual to N = 4 SYM
theory. While we utilized the fact that the type IIA string theory has an uplift to M-theory,
allowing to apply the semiclassical M2 brane approach, there is no obvious analog of this
procedure in the type IIB string theory. At the same time, the exact localization results for
the expectation values of the 1

2 BPS Wilson loops in SYM and ABJM theories exhibit very
similar structure when expanded in 1/N [38, 119]. Expressing ⟨W ⟩ in terms of the string
coupling gs and the string tension T in the ABJM theory we have (see (1.30))

⟨W ⟩ABJM =
√
T√

2πgs
e2π T

[
1 + π

12
g2s
T + 7π2

1440

(
g2s
T

)2
+ . . .

]
, T =

√
λ

2 ,

gs =
√
π

N
(2λ)5/4, λ = N

k
.

(4.1)

In the case of N = 4 SYM theory, expressing ⟨W ⟩ in (D.2) in terms of the corresponding

27Moreover, in the AdS5 × S5case the (S, J) solution in this limit is related by an analytic continuation to
the circular 2-spin solution in S5, implying a relation between the fluctuation frequencies [102].

28In [54] the comparison was made between the structure of the integral representation for the 1
6 BPS WL

and the ABJM slope function found there.

– 28 –



J
H
E
P
1
1
(
2
0
2
4
)
0
5
6

gs and T gives

⟨W ⟩SYM =
√
T

2πgs
e2π T

[
1+ π

12
g2s
T + π2

288

(
g2s
T

)2
+. . .

]
, T =

√
λ

2π , gs =
g2YM
4π , λ = g2YMN.

(4.2)
Remarkably, the two expansions in (4.1) and (4.2) have the same universal form, and, moreover,
the leading 1-loop g2s string correction terms happen to have the same coefficients [119].

Surprisingly, the same coefficient of the g2
s
T term is found also for the leading non-planar

correction to the ABJM cusp anomalous dimension f(λ,N) in (1.2), (1.32) coming from the
1-loop M2 brane contribution we computed in section 2. Including also the leading string
contributions, we get from (1.34) and (1.35)

fABJM(T, gs) =
1
π

[
2πT− 5

2 log 2 +O(T−1) + π

12
g2s
T + π2

1440

(
g2s
T

)2
+ . . .

]

= 1
π

[
π
√
2λ− 5

2 log 2 +O
( 1√

λ

)
+ 2π2

3
λ2

N2 + 2π3

45
λ4

N4 + . . .

]
. (4.3)

If we make a bold conjecture that the coincidence of the order g2s string 1-loop coefficients
observed in the Wilson loop expressions in (4.1) and (4.2) should extend also to the cusp
anomaly, we may then make a prediction that in the SYM theory the analog of (4.3)
should read

fSYM(T, gs) =
1
π

[
2πT− 3 log 2 +O(T−1) + π

12
g2s
T + γ1π

2
(
g2s
T

)2
+ . . .

]

= 1
π

[
√
λ− 3 log 2 +O

( 1√
λ

)
+ 1

12
λ3/2

N2 + γ1
36

λ3

N4 + . . .

]
. (4.4)

Here the 1/N2 term should be representing the strong coupling limit of the leading non-planar
correction and we introduce γ1 as a coefficient of the subleading non-planar term. It would
be very interesting to confirm this prediction that the leading non-planar correction to the
SYM cusp anomalous dimension that scales as λ4 at weak coupling (see (1.3)) should scale
as λ3/2 at strong coupling.
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A Quadratic fluctuation action

To find the 1-loop correction to the energy one needs to expand the M2 brane action (1.19)–
(1.23) in the AdS4 × S7/Zk background near a given classical solution. The spectrum of
bosonic fluctuations will in general contain 8 physical (“transverse”) modes and 3 unphysical
(“longitudinal”) modes. The latter can be eliminated by imposing a static gauge. Alternatively,
one can just isolate the fluctuations in the normal directions to the surface (see, e.g, [120–123]
for similar discussions).

Viewing the membrane as a surface in 11d spacetime, one can define an orthonormal basis
ei on the membrane world volume (here i, j = 0, 1, 2 and A,B are tangent-space 11d indices)

⟨ei, ej⟩ = eAi e
B
j ηAB = ηij . (A.1)

For a pair of tangent vector fields X,Y and the Levi-Civita connection ∇ in the target
space one can define the connection ∇T on the brane (corresponding to the induced metric
gij) and the extrinsic curvature K as ∇XY = ∇T

XY + K(X,Y ). For a vector X in the
normal bundle we also define: ∇XX = −AX(X) +∇⊥

XX where ∇⊥ is the connection on the
normal bundle and AX(X) is the Weingarten operator, related to the extrinsic curvature as
⟨AX(X), Y ⟩ = ⟨K(X,Y ),X⟩. The bosonic equations of motion for the M2 brane following
from (1.19), (1.20) can be written as (here Kij = K(ei, ej))

ηij(Kij)A + 1
3!ϵ

ijk FABCDE
B(ei)EC(ej)ED(ek) = 0 , (A.2)

where EA is a basis of the target space 1-forms. The quadratic fluctuation part of the bosonic
M2 brane action for the fluctuations X in the normal directions is then (d3V = d3ξ

√
−g)

SB,2=−T2
∫
d3V

[
ηij⟨∇⊥

ei
X,∇⊥

ej
X⟩+ηij⟨R(X,ei)X,ej⟩−⟨Kij ,X⟩⟨Kij ,X⟩+

(
ηij⟨Kij ,X⟩

)2]
+ 1
3!T2

∫
d3V ϵijk

[
(3FDABCXD(∇eiXA)eBj eCk +(∇LFABCD)XLXDEA(ei)EB(ej)EC(ek)

]
,

(A.3)

where R is the Riemann curvature.29 Using an orthonormal basis np (p = 1, . . . , 8) in the
normal bundle we get

SB,2 = −T2
∫
d3V

[
ηij(∇⊥

ei
X)p(∇⊥

ej
X)p +XpMpqXq

]
+ (F4-terms ) , (A.4)

Mpq = ⟨R(np, ei)nq, ej⟩ηij − ⟨Kij , np⟩⟨Kij , nq⟩+ ⟨trK, np⟩⟨trK, nq⟩ , trK = ηijKij . (A.5)

The quadratic fermionic part of the M2 brane action in (1.21) can be written also as (see,
e.g., [39, 87])

SF,2 = T2

∫
d3V ηij θ̄(1− Γ)ρiDejθ, (A.6)

ρi = EA(ei)ΓA, {ρi, ρj} = 2ηij132, Γ = 1
3!ϵ

ijkρiρjρk, Γ2 = 1, ρiΓ = Γρi = 1
2ϵ

ijkρjk.

(A.7)
29When a membrane is not coupled to C3 in (1.20), (A.2) it becomes the equation for a minimal surface in

the target space, i.e. ηijKij = 0 and then (2.5) follows from a known expression for the second variation of the
minimal volume action (see, e.g., [124]).
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To lowest order the κ-symmetry acts as δθ = (1+Γ)κ. A convenient choice of the κ-symmetry
gauge is (1 + Γ)θ = 0.

For an M2 brane with non-trivial dynamics only in the S7/Zk part of 11d space one
can use the induced metric (3.30) in local coordinates in (3.29) to define the orthonormal
frame on the world volume as (∂i = ∂/∂ξi)

ei =
(
c−1(∂α − kAα∂2

)
, k∂2

)
. (A.8)

Then C3 in (1.12) does not contribute to the membrane equations of motion (A.2) which are
equivalent to30 ηijKij = ηijK(ei, ej) = 0. Then (A.4) may be written as:

SB,2 = −T2
∫
d3V

[
ηij⟨∇⊥

ei
X,∇⊥

ej
X⟩+ ηij⟨R(X, ei)X, ej⟩ − ⟨Kij ,X⟩⟨Kij ,X⟩

]
. (A.9)

Using an orthonormal basis np in the normal bundle we have

NN = Xpnp , ⟨np, nq⟩ = δpq , ⟨Kij , np⟩ = ⟨∇eiej , np⟩ , (A.10)
∇⊥
ei
X = ∇⊥

ei
(npXp) = np(∂eiXp) + nqΩqp(ei)Xp , Ωqp(ei) = ⟨nq,∇einp⟩ . (A.11)

The fermionic part (1.12) is determined by the operator:

/D = ρiDei = ρi
[
∇ei +

1
12E

A(ei)(ΓAF4 − 3F4A)
]
, ∇ei = ∂ei +

1
4Ω

AB(ei)ΓAB , (A.12)

F4 ≡
1
4!FABCDΓ

ABCD , F4A ≡ 1
3!FABCDΓ

BCD . (A.13)

Here ΩAB is the spin connection on AdS4 × S7/Zk , F4 = dC3 is proportional to the volume
form of AdS4 and EA is a coframe in AdS4 × S7/Zk . Using the orthonormal frame (ei,np)
one may split the ΓA-matrices as (ρi, γp).

For the metric in explicit coordinates in (3.2) we may determine (ei,np) in terms of
the local coordinate basis in AdS4 × S7/Zk as follows. For the “short” membrane solution
corresponding to (3.14), (3.29) we get (we set m = 1)

e0 = c−1
(
κ∂t + (2− 4a2)∂ϕ1 + 4a2∂ϕ2

)
, e1 = c−1

(
∂ψ − k

(
2a2 − 1

2

)
∂φ

)
, e2 = k∂φ,

ni = ∂ηi , n4 = ∂χ, n5 =
√
2a−1∂θ1 , n6 =

√
2
(1
2 − a2

)−1/2
∂θ2 ,

n7 = 2(∂ϕ1 − ∂ϕ2), n8 = 2∂t + 2
√
1− 2a2a−1∂ϕ1 + 4a(1− 2a2)−1/2∂ϕ2 , (A.14)

where κ = 4
√
2a
√

1
2 − a2 and c = 2a

√
1
2 − a2.31 For the “long” membrane solution with

m = 1 corresponding to (3.23), (3.26) we get

e0 = c−1(κ∂t + 2J (∂ϕ1 + ∂ϕ2)
)
, e1 = c−1∂ψ , e2 = k∂φ ,

ni = ∂ηi , n4 = ∂χ , n5 = 2
√
2∂θ1 , n6 = 2

√
2∂θ2 ,

n7 = 2(∂ϕ1 − ∂ϕ2) , n8 = 4J ∂t + 2κ(∂ϕ1 + ∂ϕ2)
)
, (A.15)

where κ =
√
4J 2 + 1 and c = 1

2 .
30To make the connection with (A.3) explicit, one may view the M2 brane world volume as a 3-surface M

in R× C4 and use that M ⊂ R× S7 ⊂ R× C4.
31Here ni = ∂ηi (i = 1, 2, 3) correspond to the normal directions in AdS4 where ηi are the “Cartesian” part

of coordinates in AdS4, i.e. ds2
AdS4 = − (1+η2)2

(1−η2)2 dt2 + 4
(1−η2)2 dηidηi.
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In both cases, the non-zero part of the fermionic operator (A.12) takes the form:

/D = ρiDei = ρi∇⊥
ei
− 3

4(n8)
tγ8γ1γ2γ3 , ∇⊥

ei
= ∂ei +

1
4Ω

pq(ei)γpq . (A.16)

We note that the part with ρiρjΩjp(ei) is zero since

ρiρjΩjp(ei) = ρiρj⟨ej ,∇einp⟩ = −ρiρj⟨∇eiej , np⟩ = −1
2{ρ

i, ρj}⟨Kij , np⟩ = −(tr K)p = 0 ,
(A.17)

and also that the projection of the connection ∇T on the M2 brane vanishes because the
induced metric is flat.

B Fluctuation frequency polynomials for “short” M2 brane

The determinant of the 8 × 8 bosonic fluctuation operator (with m = 1) in the Fourier
representation (3.37) that appears in (3.41) may be written as (cf. (3.38), (3.34), (3.52))

DB = (−ω2 + 4J + p2)3 PB(ω, n, l, τ,J ) , (B.1)

p2 = (n− τ1l)2 + (τ2l)2 , q = n− τ1l , τ1 = −1
2k

√
1− 2J , τ2 =

1√
2
k
√
J .

(B.2)

Here PB is an order 10 polynomial in ω

PB=ω10+ω8(12J −5p2−8)

+2ω6
[
18J 2−4J (5p2−2q2+6)−4

√
2−4J

√
J q
√
p2−q2+5p4+12p2−4q2+8

]
+ω4

[
24

√
2−4JJ 3/2q

√
p2−q2+32J 3−4J 2(11p2+12q2+4)+8

√
J
√
2−4J (3p2−4)q

√
p2−q2

+8J [6p4+p2(7−6q2)+11q2]−2[5p6+12p4+p2(8−12q2)+16q2]
]

+ω2
[
−16

√
2−4JJ 3/2q

√
p2−q2(3p2+2q2−2)−16

√
2−4JJ 5/2q

√
p2−q2+32J 3

(
q2−2p2

)
(B.3)

+4J 2[−9p4+8p2
(
2q2+3

)
+4q2

(
4q2−5

)
]−8

√
2−4J

√
J p2

(
3p2−8

)
q
√
p2−q2

−8J [3p6−6p4
(
q2+1

)
+p2

(
22q2+4

)
+2q2

(
q2−2

)
]+5p8+8p6−8p4

(
3q2+2

)
+64p2q2

]
−(6J +p2−4)

[
16
√
2J 5/2q

(
4q2−3p2

)√
p2−q2+8

√
2J 3/2q

(
2p4+3p2−4q2

)√
p2−q2

+16J 2
(
p4−5p2q2+4q4

)
−8

√
2
√
J p4q

√
p2−q2

−2J
[
5p6+p4

(
4−8q2

)
−12p2q2+8q4

]
+p8+4p6−8p4q2

]
.

For the fermionic fluctuations we find

DF =
[
PF(ω, n, l, τ,J )

]2
, (B.4)
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where PF is 4-th order polynomial in ω2

PF=

ω8−4
(
p2+1

)
ω6+ω4

[
6J2+4J

(
p2+2q2−2

)
−4

√
2−4J

√
Jq
√
p2−q2+6p4+8p2−4q2+6

]
+ω2

[
16

√
2−4JJ3/2q

√
p2−q2−16J3+4J2

(
3p2−8q2−3

)
+8

√
J
√
2−4J

(
p2+1

)
q
√
p2−q2

−8J [p4+p2
(
2q2+1

)
−2]−4

(
p2+1

)(
p4−2q2+1

)]
(B.5)

−8
√
2−4JJ3/2q

√
p2−q2

(
3p2+q2−4

)
−60

√
2−4JJ5/2q

√
p2−q2+9J4−12J3

(
5p2−10q2+2

)
+2J2

[
−5p4+4p2

(
5q2+7

)
+8q4−62q2+11

]
+4

√
J
√
2−4Jq

(
−p4+2q2−1

)√
p2−q2

+4J
[
p6+p4

(
2q2+1

)
−p2

(
4q2+3

)
−5q4+10q2−2

]
+
(
p4−2q2+1

)2
.

C Fluctuation frequency polynomials for “lonng” M2 brane

Let us start with the bosonic fluctuations. We will specify to the case of the minimal winding
m = 1. The determinant of the 8× 8 fluctuation operator in the Fourier representation (3.37)
that appears in (3.41) may be written as (cf. (3.38))

DB = (−ω2 + 4J 2 + n2 + q2 + 1)3 PB(ω, n, q,J ) , q ≡ τ2l =
1
2kl , (C.1)

where PB given by

PB =det


n2+q2−ω2−1 0 0 2iJω 0

0 4J 2+n2+q2−ω2 0 − i(n+q)√
2 − 1

2 i
√
8J 2+2(n+q)

0 0 4J 2+n2+q2−ω2 − i(n−q)√
2

1
2 i
√
8J 2+2(n−q)

−2iJω i(n+q)√
2

i(n−q)√
2 n2+q2−ω2 0

0 1
2 i
√
8J 2+2(n+q) − 1

2 i
√
8J 2+2(n−q) 0 n2+q2−ω2


(C.2)

It is a polynomial of order 5 in ω2 with the explicit form being

PB=
ω10+ω8(−12J2−5n2−5q2+1)+ω6[48J4+8J2(5n2+5q2−1)+2(n2+q2)(5n2+5q2−3)

]
−2ω4[32J6+8J4(5n2+5q2−1)+8J2(n2+q2)(3n2+3q2−2)+(n2+q2)2(5n2+5q2−6)+n2+q2)

]
+ω2

[
32J4(n2+q2−1)(n2+q2)+8J2[3n6+n4(9q2−4)+n2(9q4−10q2+1)+3q6−4q4+q2

]
+5n8+10n6(2q2−1)+5n4(6q4−6qq2+1)+n2(20q6−30q4+6q2)+5q4(q2−1)2

]
−(n2+q2−1)

[
n6(4J2+4q2−2)+n4[4J2(3q2−1)+6q4−6q2+1]

+2n2q2
[
6J2(q2−2)+2q4−3q2−1

]
+q4(q2−1)(4J2+q2−1)+n8

]
. (C.3)

The characteristic frequencies are solutions of DB = 0. The 3 decoupled modes with

ω =
√
4J 2 + n2 + q2 + 1 . (C.4)

correspond to the transverse fluctuations of the M2 brane in the AdS4 directions.
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Similarly, for the fermionic fluctuations we find

DF =
[
PF(ω, n, q,J )

]2
, (C.5)

where PF is 4-th order polynomial in ω2

PF=

ω8+ω6(−12J2−4n2−4q2−1)+ω4
[
30J4+J2(32n2+32q2+5)+6(n2+q2)2+2n2+2q2+3

8

]
−ω2(4J2+4n2+4q2+1)

[
7J4+6J2(n2+q2)+(n2+q2)2+ 1

16

]
+q8+4q6(2J2+n2)+q4

[
22J4+2J2(24n2+1)+6n4− 1

8

]
(C.6)

+1
4q

2
[
96J6+16J4(11n2+1)+J2(96n4+24n2−2)+16n6+3n2

]
+ 1
256(4J

2+4n2+1)2(12J2+4n2−1)2

Thus each ω that is solves DF = 0 has degeneracy two.

D Non-planar corrections to ABJM Brehmstrahlung function

In the case of the N = 4 SU(N) SYM theory the Brehmstrahlung function may be found
from the exact localization result [125] for the expectation value of the 1

2 BPS circular
Wilson loop as [108]

BSYM = 1
2π2λ

∂

∂λ
log⟨W ⟩SYM , (D.1)

⟨W ⟩SYM = N−1e
λ

8N2 (N−1)L1
N−1

(
− λ

4N

)
= 2N√

λ
I1(

√
λ)
[
1 + 1

96
λ3/2

N2
I2(

√
λ)

I1(
√
λ)

+ . . .

]
,

(D.2)

BSYM(λ,N) = B(∞)
SYM(λ) + 1

128π2
λ3/2

N2 + . . . ,

B(∞)
SYM(λ) =

√
λ

4π2
I2(

√
λ)

I1(
√
λ)

=
√
λ

4π2 − 3
8π2 + . . . .

(D.3)

To get the Brehmstrahlung function one may use the original definition as a derivative over
the angle of a small cusp or one may start with the expression for the 1

2 BPS Wilson loop
wrapped w times on the circle and then [111]

B(λ,N) = 1
4π2

∂

∂w log⟨W ⟩
∣∣∣
w=1

. (D.4)

In the N = 4 SYM case this leads to the same expression as in (D.2) since the dependence
on w can be incorporated into ⟨W ⟩ in (D.2) by

√
λ → w

√
λ.

Ref. [111] has shown that (D.4) applies also in the ABJM case for the Brehmstrahlung
function given in terms of the 1

6 BPS Wilson loop defined on a small cusp. One may also find
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the Brehmstrahlung function corresponding to either 1
2 or 1

6 BPS Wilson loops by using a
generalization of the identity [108] that expresses B(λ,N) as a derivative of the logarithm
of the latitude Wilson loop with respect to the small latitude angle [112, 115, 126, 127].32

In the planar (N = ∞) limit one finds the following strong coupling expansion for the
Brehmstrahlung function corresponding to the 1

2 BPS Wilson loop [115]

B(∞)
ABJM = 1

2π

√
λ

2 − 1
4π2 − 1

96π
1√
2λ

+ . . . , (D.5)

which matches the string theory prediction at the two leading orders [79, 113]. Finding
non-planar corrections in this approach is hard as the exact localization result is not known
for a non-trivial cusp angle. An alternative approach was suggested in [117, 118].

One may conjecture that in general the multi-wrapped Wilson loop expectation value is
the same as the one for the loop in the w-fundamental representation. The corresponding
localization result was found in [48] and is a simple generalization of the expression given
above in (1.26)

⟨W ⟩ABJM = 1
2 sin 2πw

k

Ai
[
(π2

2 k)
1/3
(
N − k

24 − 1
3k − 2w

k

)]
Ai
[
(π2

2 k)1/3
(
N − k

24 − 1
3k

)] . (D.6)

We have checked explicitly that using (D.6) in (D.4) one gets the result for the corresponding
Brehmstrahlung function which is equivalent to the one found using other definitions of
B(λ,N) in the 1

2 BPS Wilson loop case [115, 116, 118] (see eq. (7.14) in [118]).
The expansion of (D.6) at large N for fixed k is similar to the one in (1.27)

⟨W ⟩ABJM = 1
2 sin 2πw

k

eπw
√

2N
k

[
1− πw

(
k2 + 24w + 8

)
24
√
2 k3/2

1√
N

+O

( 1
N

)]
. (D.7)

Using this in (D.4) and expanding in large k we then get

BABJM = 1
4π

√
2N
k

− 1
2πk cot 2π

k
+ . . . = 1

2π

√
λ

2 − 1
4π2 + . . .+ 1

3k2 + 4π2

45k4 + 32π4

945k6 + . . .

= B(∞)
ABJM + λ2

3N2 + 4π2λ4

45N4 + 32π4λ6

945N6 + . . . . (D.8)

It is interesting to note that the coefficients of the first two leading non-planar corrections here
are the same (up to an overall 2π factor) as in the cusp anomaly function in (1.35), (2.18).

It would be important to explain the dependence of (D.7) on w from the semiclassical
M2 brane point of view. One possible approach is to generalize the discussion in [38] to
the case when the minimal surface is wrapped w times on the boundary circle. While the
dependence of exponential in (D.7) on w then follows simply from the value of the classical

32For 1
2 BPS Wilson loop this identity was proposed and proved perturbatively in [126], and for the

corresponding Brehmstrahlung function it was first introduced and then proved exactly in [127]. In the 1
6

BPS Wilson loop case a similar identity for the Brehmstrahlung function was proved in [112] and further
elaborated on in [115]. For a review of the Brehmstrahlung function in the ABJM theory see the contribution
of L. Bianchi in [128] and also [129].
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action, it is not clear how a particular w-dependence of the 1
sin prefactor in (D.6), (D.7) may

come out of the 1-loop M2 brane contribution generalizing w = 1 one in [38].
Somewhat surprisingly, the dependence of the tree-level eπw

√
2N
k and 1-loop 1

2 sin 2πw
k

prefactors in (D.7) on w is actually the same as in the case when the M2 brane is wrapped
w times not on the AdS4 boundary circle but on the 11d circle φ. In this case we have
effectively φ → wφ and thus the radius 1/k in (1.10) is rescaled to w/k. This leads to
2π
k → 2πw

k in the M2 brane 1-loop correction. The factor of w in the exponent in (D.7) then
also has an obvious origin: the classical M2 brane action is proportional to the length of the
11d circle, i.e. 2πw

k , with the additional dependence on N and k coming from the effective
M2 brane tension factor T2 in (1.16). However, the w-dependence of the subleading terms
in (D.7) (that should originate from the two and higher loop M2 brane corrections) does
not appear to have a similar simple explanation.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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