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ABSTRACT: The quantization of semiclassical strings in AdS spacetimes yields predictions for
the strong-coupling behaviour of the scaling dimensions of the corresponding operators in the
planar limit of the dual gauge theory. Finding non-planar corrections requires computing
string loops (corresponding to torus and higher genus surfaces), which is a challenging task.
It turns out that in the case of the Ui(N) x U_(N) ABJM theory there is an alternative
approach: one may semiclassically quantize M2 branes in AdSy x S”/Z;, which are wrapped
around the 11d circle of radius 1/k = A/N. Such M2 branes are the M-theory generalization
of the strings in AdS; x CP3. In this work, we show that by expanding in large M2 brane
tension Th ~ VkN for fixed k, followed by an expansion in large k, we can predict the large
A asymptotics of the non-planar corrections to the dimensions of the dual ABJM operators.
As a specific example, we consider the M2 brane configuration that generalizes the long
folded string with large spin in AdS,4, and compute the 1-loop correction to its energy. This
calculation allows us to determine non-planar corrections to the universal scaling function
or cusp anomalous dimension. We extend our analysis to the semiclassical M2 branes that
generalize the “short” and “long” circular strings with two equal angular momenta in CP3.
The “short” M2 brane corresponds to a dual operator whose dimension at strong coupling
scales as A ~ A/* 4+ ... and we derive the leading non-planar correction to it.
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1 Introduction and summary

One of the challenging problems in superconformal quantum field theories like A" =4 SYM
and ABJM [1] ones, which admit a large N expansion, is to compute the conformal dimensions
A of primary operators as functions of the 't Hooft coupling A and N. In general,

1 1

Here the planar part Ag(\) is controlled by integrability, and, expanded at large A\, it can

AN, N) = Ag(N) + As(A) + ... . (1.1)

be matched to the large tension expansion of string energies in the dual string theory (see,
e.g., [2-4]). Little, however, is known about the explicit form of the non-planar correction
A1, Ao, .... In the N =4 SYM theory the first non-planar correction to the cusp anomalous
dimension f(\, N) appearing in the large spin expansion of the dimension of an operator
like O = tr(®D3P)

Algo, =8+ F\N)logS+... (1.2)
starts at 4-loop order in the weak coupling expansion [5] (see also [6, 7])
1 1 11 . dy
AMN) = — [A— =N )\5—( )X‘ Oxﬂ 1.3
f ) (2m)? w8 T 11520 cat 5z ) A OV, (1.3)
73 1 9 31 9 )
- 3 dy = 3). (14
‘= 20160 x 64 T 820’ ®), 47 5000 x 64 T 4(2m)E° 3). (14)



The ]’\\,—2 term appears to be universal — it is the same for any matter content [8] as it
originates from the quartic Casimir of SU(N). This suggests that in all anomalous dimensions
computed at weak coupling the 1/N? correction should first appear at 4 loops, i.e. Ap in (1.1)
should be given by

A1|>\<<1:d4>\4+d6)\6—|—... . (1.5)

Indeed, similar non-planar behaviour is found for the anomalous dimensions of twist-2
operators with general Lorentz spin [9, 10]! and also for the Konishi operator [11, 12] where
dy ~ ((5) (see also [13]).

Less is known about non-planar corrections in the case of the ABJM theory.? Given
a close analogy with the N' = 4 SYM theory, it is natural to expect that here the first
non-planar correction should also appear at 4-loop order as in (1.5).

One may conjecture that it may be possible to compute Aj(A) in (1.5) to all orders
utilizing somehow the integrability of the planar theory (cf., e.g., [18-20]). If one could do
st ~ AP+
one would then determine the power p of the leading term. It could then be compared to the

this, then expanding the exact expression for Aj(\) at strong coupling, A;

dual string theory side where finding the leading non-planar correction requires computing
string 1-loop (torus) correction to string energies, a complicated open problem.

Remarkably, as we shall demonstrate below, there is a way to find the strong-coupling
asymptotics of the non-planar corrections Aj(\), Aa(A),... in the case of the ABJM model
using its duality to M-theory or theory of quantum M2 branes. It turns out that a semiclassical
M2 brane quantization in AdS; x S”/Z;, captures the leading order o/ ~ \%\ terms at each
order in the string coupling g2 ~ ﬁ expansion.

In particular, we will show that for the ABJM cusp anomalous dimension the strong-
coupling scaling of the leading non-planar correction is j\\[—z In general, the prediction for the
structure of the large \ expansion of the 1/N?* coefficients in (1.2) is

FON) = ) + 3ghiN) + o)+ folygy = VEAHR(),  (16)
fs(M)] sy =\ <a15+\%a25+...> , s=0,1,2,... . (1.7)

The few leading coefficients in the strong-coupling expansion of the planar part fo(\) can
be found (as in the AdS5 x S°case [21-25]) by quantizing the long folded spinning string
in AdS, x CP3 [26-29]. The coefficients a5 of the leading non-planar contributions will be
computed below from the 1-loop 3d world-volume correction to the energy of a semiclassical
M2 brane spinning in AdS, and wrapped on the 11d circle in S7/Zk of radius % = % The

subleading ass coefficients may be determined from the 2-loop M2 brane correction, etc.

! According to [10] at large spin at weak coupling we should expect the anomalous dimension depending on
spin as A1(S) = 24 (d4 logS +e1 + %62 +.. .), where e1, ez, like d4, are given by combinations of (-values.
We thank V. Velizhanin for a comment on this expansion and informing us that the coefficient of the %logS
term happens to be zero.

2Study of non-planar corrections at leading order at weak coupling in the ABJM theory was initiated
in [14]. In [15] the 2-loop correction to the cusp anomaly was found not to contain a non-planar part, but in
sect 4.1 [16] (cf. also [17]) the opposite was claimed. We thank M. Lagares for pointing this out.



1.1 Semiclassical expansion for M2 brane in AdS, X S7/Zk

While the M2 brane action [30, 31] is formally non-renormalizable, the semiclassical expansion
of the corresponding path integral near a “minimal-volume” solution with a non-degenerate
induced 3d metric is well defined (at least at the 1-loop order [31-36] where there is no
logarithmic UV divergences in a 3d theory). Recent work [37-42] provided a convincing
evidence that the semiclassical quantization of the M2 brane is indeed consistent. It was
demonstrated that 1-loop M2 brane corrections in AdSy x S7/Z;, and AdS; x S* match
the dual gauge theory (localization) predictions for several “supersymmetric” observables
— defect anomaly, % BPS Wilson loop and instanton contributions to the supersymmetric
partition function (superconformal index) in the 3d ABJM and also 6d (2,0) theory.

This provides a motivation to apply similar semiclassical M2 brane quantization approach
also to “non-supersymmetric” observables like non-planar corrections to ABJM anomalous
dimensions that are not controlled by integrability or localization.

Let us briefly review some basic relations and notation that we will use below. The
Ui(N) x U_(N) ABJM theory expanded at large N for fixed k is dual to M-theory on
AdSy x S7/Z;, background with the metric and 3-form given by

ds?, =12 (idsids4 + ds?s /Zk> , L = (2°72Nk)/5¢p (1.8)
dsids‘l = —cosh? pdt* + dp?® + sinh? p (da? + cos® adf?), (1.9)
dsr g, = dsgps + %(dg@ + kA)?, 0 =¢p+2m, (1.10)
dS%Pg = dz%dZg — Z,2°d2%d % A= %(Zadz“ —2%z,), Z2°=1, a=1,...,4,

(1.11)
Cs = —gLS cosh p sinh? p sinadt Adp A dB . (1.12)

Taking also k large with A = % fixed corresponds to the 't Hooft expansion of the 3d gauge
theory in which it is dual to the perturbative type IIA string theory in AdS; x CP? with
the coupling g5 and the effective dimensionless string tension T defined with respect to the
radius of the AdS, part given by (we set £p = v/a/ as in appendix A in [43])

1
052, — 17 (4dSids4 N ds%lﬁ) . L=gfL, (1.13)
3/2 5/4 1r2 \ _
gs_(L> :M7 /\:E, T 4 = é:é, =22,
klp N k 2o 2 2
(1.14)
1 AQ 2

_ % (1.15)

2T N2 8T

The M-theory expansion corresponds to & > 1 or large N for fixed k, i.e. the expansion
in the large effective dimensionless M2 brane tension

1

1
Ty = L3Ty, = =V2NEk Ty= —— .
2 2 T 9 2 (277')26?3

(1.16)



Here T5 is defined with respect to the radius of S7/Z; part so that it is related to the string

tension in (1.14) as (note also that in general %% = %)
P
127
T=-—Ts. 1.17
15 L2 (1.17)

The observables that can be computed in the semiclassical M2 brane expansion can be

written as

F = ToFy(k) 4+ Fi(k) + (T2) ' Fa(k) + ..., Ty>1. (1.18)
This corresponds to the large N expansion for fixed k. Expanding (1.18) further at large
k, it may be rewritten as a large N expansion for fixed A = % or string-theory expansion

in gs for fixed T = \/g

Below we will assume that dimensions of ABJM operators with large quantum numbers
that, in the planar expansion, are dual to semiclassical strings in AdS; x CP?, may be
computed as AdS; energies of semiclassical M2 branes in AdS, x S7/Z;, that are wrapped
on the 11d circle ¢ in (1.10). They will thus have topology ¥2 x S, i.e. will generalize the
corresponding string solutions reducing to them upon the “double dimensional reduction” [44].

Given a M2 brane solution with a non-degenerate induced 3d metric it is straightforward
to expand the corresponding path integral at large T2 (using, e.g., a static gauge as in [37—
39]). The M2 brane action is

S=Sp+Sr,  Sp=05v+Swz  Sv=-Th /ngﬁ, (1.19)
Swz = — T / 3¢ %eiﬂfcMNK(X) 9, XM, XN o, XK, (1.20)
Sp =T / d3¢ {\/? gI XM Ty D6 — %a’jkaiXManN OTynDed+...|, (1.21)
gi5 = BiXMO XN Gurn (X)), Gun = By E4, Ty =EH(X)Cs,  (1.22)

D; = ;XM Dy, Dy = 0y + iFABQAB - %(FPNKLM — 8PPNESL ) Py
(1.23)

The leading classical and 1-loop contributions to the (euclidean) M2 brane partition function
may be written as

I = / [dX df] eSO = 2, e T25%a[1 4 O(T; )], (1.24)

_ 1
Zl =€ I y Fl = 5 ;Vi log det Ol’, (125)

where S, and fluctuation operators 0; may depend on the parameter k or the inverse radius
of the 11d circle in the 11d metric (1.8), (1.10) and other parameters of a given classical
solution (like rotation frequencies, winding numbers, etc.). Then F = —log Zy2 will have
the form given in (1.18).

It is important to note that we are expanding near just one M2 brane saddle (i.e. we
are not summing over 3d topologies). Interpreted from the string theory point of view, this



world-volume loop expansion already captures contributions of all higher string loops (as well
as the dependence on the string tension). Indeed, the classical M2 brane action encodes the
dependence on the string coupling gs (cf. (1.15)) via its dependence on the parameter k of
the 11d background metric (1.8), (1.10) in which the M2 brane is embedded.

Since the membrane is assumed to have ¥2 x S! topology, in the static gauge the S*
direction may be identified with 11d direction ¢ in (1.10). Then expanding all 3d world
volume fields in Fourier modes in the S! coordinate the M2 brane action may be written
as a 2d action for the “massless” 2d fields, representing the corresponding type IIA string
action in AdS, x CP?, interacting with an infinite set (“KK tower”) of 2d fields with masses
mi = g = Pk? = 2L
These massive 2d fields decouple only in the strict gs — 0 limit, while in general their

(I =1,2,...) depending on the string coupling.

contributions will encode the string loop corrections to (1.25) or (1.18). Integrating them out
one would get an effective non-local action for the “massless” (string or [ = 0 level) modes.
That would realise the idea of having an effective string action on 2-sphere supplemented
by “handle operator” contributions that account for the usual sum over the 2d topologies
(cf. [45-47]).

1.2 Example: 1/N expansion of % BPS Wilson loop

To illustrate the above discussion let us review the case of the 1/N expansion of the %
BPS Wilson loop expectation value in the ABJM theory that can be reproduced by the
semiclassical M2 brane computation, as was demonstrated in [38]. The exact (at large N and
for k > 2) result found from localization matrix model on the gauge theory side is [48]

1 A[ERP (V- f- )]
W)= oo o (R (N = - 5) |

(1.26)

Expanded in large N at fixed k and then further in large k = % this may be written as

) — 1 eﬂﬁll_w(k%rm) 1 +0<1>1

~ 2sin & 24V2 k32 /N N
I mmae (7))
=——~e - ———+0 (=]
2sin 22 24v/2 VX N

The first expansion here may be written as a semiclassical expansion for large effective M2

(1.27)

brane tension Ty in (1.16)

(Ty) ™t + 0((T2)_2)] , (1.28)

so that it takes the form of (1.24) or, equivalently, log(WW) takes the form of (1.18)

2 2 k? + 32
log(W) = 7%Tg — log (2 sin W) - 21_]5

- (T2) L+ O((T2)7?) . (1.29)

The exponential factor in (1.28) comes from the value of the action of the M2 brane wrapped
on AdSy x S' (ending on a circle at the boundary of AdS;). The prefactor

1
2sin 2T was



reproduced in [38] as the 1-loop contribution (1.25) of the corresponding 3d fluctuations. The
subleading (T2)~! term in (1.28) should originate from the 2-loop M2 brane contribution, etc.

Expressed in terms of the string tension and the string coupling in (1.14) the prefactor
in (1.28) may be written as [49] (cf. (1.15))

2sin (/% s
(V3 %) , (1.30)
2 2 2
WTB%TP+W9y+%T<%> L

12T 1440\ T

1+O@?51.

1
25i1’12T7r
string tension (or large \) corrections at each order in g2, while the 2-loop and higher

M2 brane corrections determine the subleading in T~! ~ % terms at each order in g2.

Equivalently, (1.28) or (1.30) implies that

\/T 2T C10 952 C11 952 2 C12
MU_Z:e <%M_T+”>+I(%H”T+”>+<T>Qm+ir+m>+”"

Thus the large k expansion of the 1-loop M2 brane factor captures the leading large

(1.31)
where cg, (r = 0,1,2,...) are determined by the 1-loop M2 brane contribution, ¢, — by
the 2-loop M2 brane contribution, etc. From the perturbative AdS,; x CP? string theory
perspective, the cg, coefficients represent the leading in T~ ~ o/ terms at each order in the
string loop (genus) expansion, i.e. cgp is the 1-loop (in string world sheet sense) coefficient
on the disk, cp; is its counterpart on the disk with one handle, etc.

1.3 Cusp anomalous dimension from fast-spinning M2 brane in AdS,4

The same pattern of non-planar corrections should apply also to other observables like
anomalous dimensions, and, in particular, to the cusp anomalous dimension. Namely, the
semiclassical quantization of the M2 brane generalization of the long spinning folded string
in AdS, should lead to the following expansion for f(k,T2) in the M2 brane energy or
dimension (1.2) (cf. (1.18))

£k, T2) = £ To + qo(k) + @ (B)(T2)™" + a(k)(T2) 2 4. (1.32)

(1) 2

r pT p
a:(k) =K (" + T3 + T

+”), r=0,1,2,... . (1.33)

Since Ty ~ kv/A (cf. (1.16)) the specific large k asymptotics of ¢.(k) in (1.33) is the one
required to match the inverse string tension (%) expansion in the strict tree-level (planar)
string theory limit or to match the structure of the expected 1/N? expansion in the 't Hooft
limit on the gauge theory side (cf. (1.6), (1.7)).

Thus the condition of matching the string theory expansion like (1.31) fixes the structure
of the large k terms in the coefficient functions in the general expression for the semiclassical
expansion in (1.18). This requirement assumes that the “double dimensional reduction”

relation between the M2 theory and string theory observed at the classical action level



extends also to the quantum level. This is implied by the structure of the M2 action as an
effective 2d action containing massive KK modes in S! direction which should decouple in
the k& — oo limit (assuming that the theory turns out to be well defined in the UV). As in the
Wilson loop case reviewed above, we will explicitly verify this at the 1-loop go(k) level below.

In particular, the leading large A asymptotics of each term in the 1/N? expansion, i.e. the
coefficients aj5 in (1.7), should be the same as the coefficients p(()s) in the large k expansion
of the 1-loop M2 brane function qy(k), i.e.

w®) =0 +aok), @) =20 P04 as =p,  s=1,2,... . (1.34)

As we will find below (cf. (1.15))

(0  olog2 _ 27 273 B g2 g2 B 21A2 2304

o =" O3 Tk T T 12T TTmoTE 3N2+45N4—:135>

At the same time, the string world-sheet loop corrections that represent the % expansion of

the planar function fy in (1.6), (1.7) come from the leading large k term in the ¢, (k) functions
(with coefficient pﬁo)) in (1.32) or explicitly (cf. (1.16))

1 1 ™ \"
= — - S (0) _
fo()\)|/\>>1—a10—|-\Aago-i-(\5)2@30-}-...7 ar+170—(\/§> NN r=0,1,2,....
(1.36)
To recall, by direct perturbative large tension expansion for a long folded spinning string in

AdS; x CP? one finds that at the 1-loop [26-28] and 2-loop [29] orders

- v oloer (K 1N L (01
fo(\) = V2X 4+ fo(\) = V22X o <4w2+24>\/ﬁ+0<(ﬁ)2>’ (1.37)

where K is the Catalan’s constant. Expressed in terms of the “renormalized tension” containing

a log2 correction [50]

A log2 1

eq. (1.37) takes the same form as in the AdS; x S°(i.e. N' =4 SYM) case

3log2 K
-9 _ _
foN) = 2h() = 525 = = h

In general, the ABJM cusp anomalous dimension is expressed in terms of the SYM one
s [51]2 fo(A) = 3 fogyn (Agyn) Where one is to replace 7@3‘“\4 — h(X). According to

the conjecture of [54] the exact expression for h(\) is determined by the relation A =

sinh 27h(\) 11 1.1 3.
T3FQ (5757571757

(\) +0O0(h2(N)). (1.39)

— sinh? 27rh()\)), implying that at strong coupling

_ 1 1 log2 —27v2X
M) = Z5 A= 51— 5o +0 (e ), A1 (1.40)

3This follows from the equivalence of the BES [2] equations in the N’ =4 SYM and ABJM cases and the
fact that h(A) (which is not renormalized in the SYM case, hgyy = 7VASYM) but should be non-trivial [52, 53]

4m
to correctly interpolate between the weak and strong coupling regimes in the ABJM magnon dispersion relation

e=3/1+16h%(\)sin?Z.




The shift A — A — 3; may be related to the redefinition N — N — 5;(k—k~!) that follows [55]
from the presence of the R* A C3 term in the M-theory effective action. This shift of N
modifies the relation between L and N in (1.8) and thus the expressions for gs and T
in (1.14).* In particular, one gets A = & = A — &, (1—k2) = A— L + %, where the 1/N?
correction may be ignored in the string tree level (planar) approximation. In general, one gets

JO) = VB 4o = oA B ) e = 2 e (20— ) e The

resulting corrections to the coefficients of the k% terms in the M2 brane 1-loop contribution

in (1.35) are thus subleading at large A and will be ignored below. They will become relevant
once the 2-loop ¢i(k) term in (1.32), (1.33) is taken into account.

1.4 Non-planar corrections from semiclassical M2 branes with two spins
in S7/7

One may apply the same strategy of semiclassically quantizing M2 brane solutions to find the
leading strong-coupling asymptotics of the non-planar corrections to the dimensions of other
dual ABJM operators. The starting point, like in the familiar AdSs x S5case (for a review
see, e.g, [56, 57]), is a classical string solution in AdS; x CP? that is dual to a particular
ABJM operator with large quantum numbers. One is then to find its generalization to an
M2 brane in AdS; x S7/7Z;, which is wrapped also on the 11d circle ¢ in S7/Z;, (1.10) (so
that upon the double dimensional reduction or in the £ — oo limit it reduces to a particular
string solution for which one may be able to identify the dual gauge-theory operator).®

Considering first the string theory case, let 7, be a collection of parameters (frequencies,
etc.) of a classical solution that are fixed in the large tension expansion. Then the global
AdS energy should have the following large tension expansion

E=VAE(T) + E1(T) + = E(T) + ... T =V\T,, (1.41)

VA
A= 2712, T:ﬂzé. (1.42)
V2 o 27w

To stress the analogy with the AdS5 x S°case we introduced as in (1.14) the rescaled coupling
A (used also in [50]). In (1.41) & is the classical contribution, & is the 1-loop world-sheet
correction, etc. One can then expand & in the limit of small or large J,, express F in
terms of the spins J, = \5\\771 and compare to the dimensions of the dual gauge theory
operators. The 1-loop corrections to energies of two-spin solutions in AdS; x CP3 were
discussed in [26, 27, 50, 69, 70].

Since here VA > 1 while Jr are fixed, one has J, > 1 but one may hope that it may be
possible also to capture the strong-coupling behaviour of dimensions of “short” operators
with finite values of spins (see [70-73]).

Starting with an M2 brane solution in AdS; x S7/Z; that generalizes a spinning
string solution in AdS; x CP? the analog of the large tension expansion in (1.41) will

.. T (2))5/4 1/4 2 1/2
“Explicitly, we get g = I<N) (1 - ﬁ + 243\\72) , T= Sfr/a’ = \/g (1 - ﬁ + 24?\72) :
5(Classical rotating membrane solutions in flat and AdS spaces were previously discussed, e.g., in [58-68].



be (cf. (1.18), (1.32))°

5 A k<
E= %TQ 50(\77') + gl(jr) k) + (TQ)_152(~77"7 k) o Ty = ﬁ\& : (143)

In this expansion T is assumed to be large while &k (the parameter of the 11d background)
and 7, (the parameters of the classical M2 brane solution) are fixed. To relate this to the
small g expansion in type ITA string theory in AdS4 x CP? or to the large N expansion in
the dual ABJM gauge theory we should then expand &, in large k for fixed J, as in (1.33)

A 1 1

E(Tr k) =E(T) + ?gu(%) + Egu(jr) +o (1.44)
R k 1 1

E(Tr k) = p ETr) + ﬁg21(u7r> + ﬁg22(g7r) +., (1.45)

The strong-coupling limit of the leading non-planar correction is thus represented by the
G11 term in the 1-loop M2 brane contribution él.

One may then consider the large or small 7, limits and finally express the resulting
expressions in terms of the quantum numbers J, = \EJT to get predictions for the corre-
sponding gauge theory anomalous dimensions. The above order of limits corresponds to
operators for which their quantum numbers do not grow with N, i.e. are fixed in the large
N limit so that N~1J, ~ ﬁjr < 1.

Below we will consider the M2 brane solutions that generalize the “short” (or “slow”,
Jr < 1) and “long” (or “fast”, J, > 1) circular string solutions with two equal angular
momenta J; = J, = J in CP? ¢ §7 /Zy. These are direct analogs of the string solutions in
AdSs x S3for which 1-loop corrections to energies were discussed in [71, 74-76].

The “long” J; = J, string solution in AdSs x CP? that has the classical energy Ey =
V4.J2 + X was already studied in [69]. Here we will find also its “short” counterpart with Ey =

\V 2V/\J. The energies of the corresponding M2 branes wrapped on the 11d circle are given

by the same expressions. The dual operators having these quantum numbers should be built

out of the 4 bi-fundamental scalars of the ABJM theory as O = tr[(YlYQT)Jl (Y3Y4T)J2] +
We will first compute the 1-loop string corrections to the above classical energies. In

particular, for the “short” string solution we will find

1/2 3/2 2
Bue =2V 4 54 2 200 — ) S +0<J> . (1.46)

2 )\1/4 4 2\3/4 by

This represents a prediction for the subleading strong-coupling corrections to the dimension
A(J) of the corresponding dual “short” operator that has “flat-space” scaling A ~ VAy/J [21]
at leading order in strong coupling. The energy (1.46) has a similar structure as the small-spin
expansion for the 1-loop corrected energy of a short folded (S, J) string spinning in AdSy
and also having orbital momentum in CP? that was found in [70]”

1/2
Ear(S,J) = V2VAS — % +3 (234 STI(T +1) + gs 14 (147)

®Here T, = 3 22T, contains in addltlon to the factor 2% of the length of the 11d circle in (1.10) on which

the M2 brane is Wrapped an extra 1 due to the scale of the AdS, factor in (1.8), cf. (1.16).

"For a similar expression in the AdSs x S®case see [70, 77, 78] (see also [79]).




It would be interesting to match (1.46) to the integrability (quantum spectral curve) strong-
coupling predictions for the dimensions of the corresponding states.® These were found
previously for a few (S =2, J=1) [54] and (S =1, J = 1,2,4) [82] operators of the form
tr[DS (Y'Y[)7] in the sly sector of the ABJM theory (see also [83, 84]).2

We will then generalize the string 1-loop computations to the M2 brane ones getting
predictions for the non-planar corrections to the dimensions of the above J; = Jo operators
at strong coupling. For the “short” M2 brane solution we will find the following 1/k?
correction to (1.46)

EM2 =2/ \/XJ_{_ % + %5\—1/4J1/2 _ %C(S)j\_3/4j3/2 4 O(S\—IJQ)

1 N N < 1
+ 13 [C@)(—aN/1T=32 4 AV 12) L OV 2)| 4 0 (k4> . (1.48)
From the string theory point of view the membrane correction term ~ kig = 4{% represents

the leading large tension asymptotics of the string 1-loop (torus) contribution.

On the dual ABJM gauge theory side (1.48) should be understood as the expansion first
in 1/N? and then in large A for fixed quantum number J. The k—lz = 2‘722 = ﬁ term
in (1.48) then represents a prediction for the leading non-planar correction to the dimension
of the corresponding “short” operator.

In the “long” M2 brane case we will find

1< - 1 -
EM2 =2J+ 1)“]_1(1 - 210g2)\_1/2 +) + iclx\J_Q(l—F...) + ...

1 o3-1/2 7 oyl/2 71, 3 y3/2 -3 (1>
g SR (=8NS 222 T SN ) 10 () - (149)

Here ¢y = —0.336 and the k% = (23‘% term represents a prediction for the strong-coupling
limit of the leading non-planar correction to the dimension of the corresponding operator
with the large spin J.

The rest of this paper is organized as follows. In section 2 we will present the 1-loop M2
brane computation that generalizes the leading strong coupling AdS; x CP? string theory
contribution to the ABJM cusp anomaly to the non-planar level.

In section 3 we will consider the M2 brane generalizations of the “long” and “short”
circular string solutions with equal spins in CP? and compute the corresponding 1-loop
corrections to the AdSy energies in the large k expansion.

Some open problems will be mentioned in section 4. There are also several appendices
containing some details of the computations. In appendix D we will make some comments on
non-planar corrections to the multi-wound Wilson loop and the Brehmstrahlung function
in the ABJM theory related to the discussion in section 4.

8For a recent exposition of the strong-coupling QSC results in the AdSs x S®case see [80, 81].
9The BMN operator which is the vacuum in the sl sector corresponds to tr(YlYJ)J in the representation
[J,0,J] of SU(4). For early discussions of integrability of the ABJM theory see [52, 85, 86].
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2 1-loop correction to energy of M2 brane spinning in AdSy

In this section we will compute the 1-loop correction to the partition function (1.24) expanded
near the classical M2 brane solution in AdS; x S7/Z;, that generalizes the infinitely long
rotating folded string [21, 22, 26] in AdS4. This will determine the function go(k) in (1.32)—
(1.35), i.e. the leading large A corrections at each order in the 1/N? expansion in the cusp
anomalous dimension in the ABJM theory.

In terms of the AdSs x S7/Z;, coordinates in (1.9), (1.10) the relevant large-spin (infinitely
long) membrane solution is

t:Ké.O? p:’ié.la a=0, 5:H€07 @2527 (21>

with CP? coordinates in (1.11) being trivial and & being a constant parameter. Here &
(i = 0,1,2) are the membrane world-volume coordinates with ¢2 € (0,27). One of 4 segments
of the folded closed string is represented by ¢! = (0, 5). We will consider the limit x — oo
in which the rescaled &' — k&' can be decompactified. The corresponding classical AdSy
energy and the spin satisfy (S = % > 1)

1 (2m)? S 1
EO_S:4(7I<T:) Tg/ﬁ:\&n:\/%\logS, k=—logS>1. (2.2)
T

The dependence on the parameter s can be scaled away by redefining the coordinates &9, ¢1;
it will then appear only as an overall factor in the log of the quantum partition function or in
the quantum correction to the energy. It is useful also to perform the Euclidean continuation
€0 — €%, The resulting induced 3d metric is flat (cf. (1.8))
gij = %LQ%, Gij = (1,1, ;) : (2.3)
We will expand all 3d fluctuation fields in Fourier modes in £2 = ¢ getting an effective
2d field theory on R? with [ = 0 sector representing the modes of the type ITA string on
AdS, x CP? and the | # 0 tower being the genuine membrane modes. The derivation of the
corresponding fluctuation operators in (1.25) is very similar to the case of the AdSs x S M2
brane representing the circular Wilson loop that was discussed in [38, 87].
We will fix the static gauge setting to zero the fluctuations of ¢, p and ¢ so that the non-
zero bosonic fluctuations will be those of &@ = «, 8 = 8 — £° and of the 6 real CP? coordinates.
Extracting the overall factor iLQ the resulting fluctuation operators will contain the “free” part

y 1 1
~§90,0; = — (83 + 07 + 4k:26§> - pz—i—ZleQ, pr=pi+pt, 1=0,%£1,%2,...,
(2.4)
plus effective mass terms. Here p, are the momenta in the non-compact £° and &' directions
and [ is the mode number in the circular ¢2 direction. One finds that the 6 real CP3

fluctuations have masses
1
m? = Zkl(k:l +2) (6 modes), (2.5)

where the linear in kl term comes from the mixing between the constant dy term and kA
(which is quadratic in fluctuations) in the S”/Z metric in (1.10). The I = 0 modes in (2.5)

— 11 —



are 6 massless excitations in the corresponding folded string spectrum in AdS, x CP3. Note
that if £ = 1 we get 6 tachyonic modes with [ = —1 indicating an instability of the membrane
wrapped on a big circle of S7.'0 As we are interested in the large k = % expansion, below we
will assume that & > 1 but will return to the k = 1 case at the end of this section.

Expanding the volume [ ,/g part (1.19) of the membrane action we get for the quadratic
Lagrangian for the 2 remaining bosonic 3d fluctuations & and j3 (scaling out the iLQ factor
in (2.3))

Ly = %[sinhQ p cosh? p 83,3 + sinh? p (9'ad;& + 5?)] , (2.6)

where p = £!. After the 3d field redefinition (3,d) — (u,v)
8 = (sinh p cosh p)tu, & = (sinh p)~tw, (2.7)
and integrating by parts we get (as in the static-gauge analysis in the AdS5 x S°case [22])
Ly = %(8iu8iu + 4u? 4 "o + 207) . (2.8)

In addition, there is a contribution coming from the WZ term in the membrane action (1.20)
with C3 given by (1.12). Using (2.1) it leads to the mixing term Ly ~ vdou so that in
total we get

1 .
L(u,v) = Ly + Lwz = i(azuf}iu + 40 + "o + 20v°) — 3vdau . (2.9)

Expanding in modes in £? we have 0y — %ikl and thus diagonalizing (2.9) find two towers
of 2d scalars with the following masses (which are positive for any ki)

1 9 1 / 9
m%+ =3+ Zk212 + 1+ Zk2l2 5 ml%_ =3+ Zk‘2l2 — 1+ Zk’2l2 . (210)

For [ = 0 we reproduce the values of masses (4 and 2) of the two AdS, fluctuations in the
corresponding string theory limit.!!

Finding the quadratic fermionic Lagrangian from (1.21) is very similar to the AdSy x S1
membrane case [38] and one gets 8 fermionic towers in flat 2d space with masses

1 1
mp = ikl +1 (343 modes), mp = ikl (2 modes) . (2.11)

For [ = 0 this reproduces the spectrum of the fermionic fluctuations for the infinite folded
string in AdSs x CP? [26, 27].

10T e classical spinning membrane solution in AdSy x S7 that corresponds to a folded spinning string in
AdS4 was discussed also in [67] and this reference had comments on its instability by analogy with a string
wrapped on a circle in the sphere.

' Note that the mass of the fluctuation of the coordinate « transverse to the AdSs subspace where the
string moves is the same 2 as in the case of the AdSs string solution (where there are two such modes). The
only mass that changes is that of the fluctuation of 3 as the string is rotating in this direction. In general, the
mass of such mode is 4+ R® where R is the curvature of induced metric. For comparison, in the case of the
AdS> x S' membrane in [38] the mass terms of the corresponding fluctuations in (2.9) were both equal to 2
(due to the shift of mass term 4 by the scalar curvature R® = —2 of AdSs) and then m7 . = 2 + £21% £ 2kl.
As [ takes both positive and negative values this is equivalent to having 2 modes with m? = i(k’l —2)(kl —4).
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Integrating out 848 towers of fluctuations in R? and summing over [ we then get the 1-
loop partition function Z; in (1.25). Since all fluctuation operators have constant coefficients,
log Z; will be proportional to the 3d volume containing the x? factor from rescaling of £ and
¢! (cf. (2.1)). The 1-loop correction to the world-volume energy will then scale as x2. Since
t = k€Y the corresponding correction to the AdSy energy will scale as k = % log S leading to the
expression for the 1-loop term qg in the scaling function f(k,T2) in (1.32). Explicitly, we find

1
I'=—logZ = 3V, V= KQ/ngdgl, E1 = mqok = qolog S , (2.12)
d*p 2 — 2 =
"0:/(277)2 Qo(p?) +2>_ Qup™)| = poo + do(k), (2.13)
=1
2 2 199 9 2 1 99 9
Qup?) =log |p* +3+ K2 +\[1+ T2 | +log |p* + 3+ [k — 1+ k22
2 1 2 1 2 1 2 1
+3log |p —i—z(kl) —i—ikl +3log |p —i—z(kl) _ikl
2 1?2 2 1 \? > (1)
—3log |p +<1+2kl> —3log |p +<1—2k:l> —2log |p +<2kl> .
(2.14)

Here in (2.13) we followed (1.34) and separated the k-independent contribution pgy to
qo coming from the [ = 0 (string-theory) part @y of the integrand. Computing the 2d
momentum integral gives

d’p 2 > dp? 2 2 2 2 5log2

=[5 =/ —|l 4)+1 2)+4log p*—61 )| = -
Poo /(%)2 Qo(p) /0 pp [ log(p”+4)-+log(p*+2)+41og p>—6 log (p*+1)| 5
(2.15)

thus reproducing the value of the 1-loop correction to the cusp anomaly in string theory
in AdS; x CP? given in (1.37).

The integral of Q; with [ > 0 giving go(k) in (2.13) is also UV finite (as one can check
explicitly by doing the integral over p? between 0 and A and taking the limit A — 00)

_ S
QlE/O % ()

= —8% l—S(kzl—Z)(kzl—zl) log(kl—2) —3(ki+2) (kl+4)log(kl+2)+ (kl)*log[(kl)?]

(k)% +12+2,/9(k1)2+4
+ (k)2 +12] log [(kl)4—12(kl)2+128} +2\/m10g (k1)2+12—2/9(k1)>+4 |

(2.16)
Expanding in large k then gives
5: — 44 1616 38944 4474883 2227200 (2.17)
TRk T a(k)E T 15m(kD)S  35m(kD)®  105m(KD)O T TTa(kD)Z T T
The remaining sum over M2 modes in (2.13) thus converges, leading to
X - 2 2md 1616m° 1947277 4474887 20519936m!!
D= Q1= 352 T I5kT T T4175k0  165375K°  0823275K10 | 655530885K12 | (2.18)
=1
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This determines the non-planar coefficients pg, in ¢p in (1.34) in terms of the values of
¢(2m) = Y{°) 4, thus reproducing (1.35).

In the above derivation of (2.16) we assumed that & > 1 when (2.16) is real. Analytically
continuing @Q; to k = 1 we get an imaginary part'?

Ql,_, = —0.663 + 1.125i . (2.19)

As already noted below eq. (2.5), this reflects an instability of the membrane that rotates
only in AdS, and is wrapped on a circle inside S7 which is contractable.

3 M2 branes rotating in S7/Z,

Let us now provide an illustration of the strategy described in section 1.4 and consider 1-loop
corrections to the two membrane solutions that generalize the “short” and “long” circular
string solutions with two angular momenta J; = Js in Ry x cp? part of AdS, x S7/Zk A3
We shall first describe these string solutions in AdSy x CP? (with the “long” one previously
found in [69]) and then generalize them to M2 brane solutions in AdSy x S7/Z;, . The M2
branes will be located at the center of AdS, with ¢ = £°, wrapped on the 11d circle ¢ in (1.10)
and rotating in CP3. We shall then compute the 1-loop corrections to the energies of these
“short” and “long” M2 brane solutions and study their expansions in spins and 11d radius %

3.1 Classical solutions

It will be useful to use the explicit parametrization of S7/Z; in terms of the 7 angles choosing
the 4 complex coordinates subject to 2,2, = 1 in as

ZI_COSXCOSGGXP[ (SO ¢+¢1)} 2:cosxs1n6— exp[ <g0 L qﬁl)}

2 k 2 ’ 2 k 2 )

o= sinxeos e i (2229, oy snron % e [1(2-£22)] oy
2 k 2 ’ 2 k 2 ’

12The imaginary part is equal to 9/8 and arises from the [ = 1 term. The real part is obtained by evaluating
the sum numerically.

3These are direct counterparts of the string solutions in AdSs x S°describing a rigid circular string rotating
in two orthogonal planes in S° with J; = J» = v/AJ having two branches: “long” one with J > % and “short”
one with J < 1 [88] (see also [74, 89]). While the radius of the “long” string is fixed to be that of S° so it
is never small and admits a “fast-string” expansion J = % > 1, the “short” one may have an arbitrarily
small radius and spin and thus has a “slow-string” limit 7 < 1 when it probes the near-flat region of S°.
These are among the simplest rigid string solutions with explicitly known spectrum of small fluctuations. For
the “long” branch the 1-loop corrections to the energy were computed in the large J expansion [74-76], with
“non-analytic” terms found in [90, 91]. The 1-loop correction to the energy of the “short” solution was found
in [71-73]. Note that in addition to the circular solution there is also a folded string solution with 2 spins in S°
that has less energy for given values of spins [92]. The study of these simplest solutions played an important
role in establishing the integrability approach to the spectrum of strings in AdSs x S°.
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so that the S7/Z; metric in (1.11) takes the form

1
dsr /7, = dsgps + 72 (de + kA)?,

1
A= 3 {cos(Qx)de + sin? y cos fadgpy + cos? x cos Hldqbl} ,
dstps = dx? 2 ysin? x (di + * cosfyd 19d2 3.2
Saps = dx” + cos” xsin® x @D—Ficoslgbl—icongZ)g (3.2)
1 1
+ ) cos? X(d@% + sin? Hldqﬁ%) + ) sin? X(d@% + sin? 92d¢%> .
Here x € [0,7/2), ¢ € [0,27), ¢ € [0,27), 6; € [0,7), ¢; € [0,27).

3.1.1 String solutions

Starting with the bosonic part of the string action in AdS; x CP? we shall fix the conformal
gauge. Then the relevant R; x CP? part of the action may be written in terms of that of
the CP? sigma model as (cf. (1.11), (1.14))

)

=5 (3)

Sytr = —2T/d2§ [ i(aatﬁ + Doz * = A (12** = 1) |, T

Here a = (0,1), A(§) is a Lagrange multiplier imposing the z,z, = 1 constraint on 4 complex
coordinates z,. D, is a U(1) covariant derivative containing an auxiliary gauge field A,

Doz = 0p2% — iAn2%, 20— €20 Ay — Ay + Oae, e=¢€¢). (34

The equations of motion that follow from (3.3) are

0,0t =0, DoDY2% = —Az°, A = |Dy2%?, ZaZa =1, (3.5)
1
Ao = Z(éaﬁaz“ — 2%04%a) , |Do/<7a|2 = naﬂ [OaZa052" — (gaaaza)(zbaﬁgb)] :
(3.6)

We thus get the expressions that correspond to the metric (1.11) (with A, related to the
I-form A and 2% being the embedding coordinates of S7). In addition, we have the conformal
gauge constraints (gog is the induced metric)

1
goo+g11=0,  gn=0, Gop = _Zaataﬁt + (D02") Dgy 2" . (3.7)

The action (3.3) is invariant under the global SU(4) symmetry. We may choose its Cartan
generators as

Hy = %diag(l, ~1,0,0), Hy = %diag(0,0, 1,-1), Hy = %diag(l, 1,-1,-1),
(3.8)
which correspond to the Killing vector fields 0g,, 0g, and 0y of (3.2) respectively. The
associated conserved charges or angular momenta and the AdS,4 energy then are

21 2
J, = 2T / déy [(Doz) H,z — =1 H, Doz Fo=T [ d&oot. (39
0 0
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We shall consider a class of “rigid” string solutions for which (cf. (3.1); a =1,...,4)
= 550 ) Za = Ta ei'y,;(&) s Ya = wa§0 + ma§1 ) (3'1(])

where r,, w, and m, are constant “radii”, frequencies and winding numbers. Fixing the
U(1) gauge symmetry of (3.3) by the Ay = 0 condition,'* the equations of motion (3.5)
together with the Virasoro constraints (3.7) reduce to the system of algebraic equations
on the parameters in (3.10)

Ay =0, Aq :ngma, —wg—f—(ma—Al)Q:A, ngwa:(), (3.11)
Zwa mg — A)r2 =0, lefﬁ:za:rg( a— A1) +Zra wy za:r?lzl.
(3.12)

Evaluated on (3.10) the angular momenta in (3.9) may be written as

J1:47TT(w1r%—w2r§), J2:47TT(w37“§—w4ri), J3:47TT(w17“%+w2r%—wgrg—wﬂi).
(3.13)
We shall consider two special solutions of (3.10)—(3.12) for which J; = Jy, J3 = 0.
The first is the “short” one

1 1
r =7y =a, T3=T4=G5 T a?, M1 =mg=—mz=—my = 9 (3.14)
1 1
w] = —wo = 2m (2 — a2) , W3 = —Wy = 2ma2, k? = 32m2d® (2 — a2) ,
1 2 2 _ 1
Ap =0, A =2m(d® - 1) 9o = CNag, ¢ =2k, A=0. (3.15)
Explicitly, for z* in (3.10) we get
L1 — g eilm(1-202)€0+me? I 52— aei[fm(lanQ)&:OJr%mEl]’
23 — % — g2 ei[2ma2§of%m§1]’ 24 — % — a2 ei[72ma2§of%m§1]7 (316)

or, equivalently, in terms of the CP? angles in (3.1), (3.2)

1
cosxo=VEa, bi=bs=7. v=me, 6 —tm(5-a)& 6—tma". (37)

Here 0 <a < % and m is the winding number that takes integer values.'® The corresponding
charges are

= 1 1
J3 =0, Ji=Jo=J =V, J = 8ma* (2a2) = Zm—ll-g?,
Ey = Vak = VamVJ.

“Note that under the gauge transformation (3.4) the phases v,(£) in (3.10) are all shifted by ¢(¢). Thus
a solution found in the Ay = 0 gauge that may have Za Yo # 0 may be transformed into a gauge where

(3.18)

> o Ya = 0. Note also that the charges (3.9) are invariant under the gauge transformation (3.4).
15As €' € (0,2n) one could think that m should take only even values. Note, however, that under &' — &' 427

+imm P

we get z¢ — e which for any integer m is just an overall phase of z® which is a trivial symmetry of

CP? (global part of the U(1) gauge symmetry).
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Here the spin is bounded, ie. 0 < J < %m or 0 < J <L %m\fj\, with the maximum at
a= % and the minimum at a = 0 or a = % Note that like for the analogous solution in
AdSs5 x S° [74] the relation between the energy and spin is the same as for the corresponding
solution in flat space (i.e. for a circular string rotating in 2 orthogonal planes in R*).

To see that for a — 0 the solution reduces to its flat-space analog one is to do a U(1)
gauge transformation z, — ' 2¢ 2, that sets the a — 0 value of A; (equal to —3m in (3.14))

to zero.' Then

a—0: 2t ae™EHE 22— aem-€HE) 23— 1 , A= 1 .
V2 V2
(3.19)

The second special solution of (3.10)—(3.12) (that was already found in [69]) is a “long”
one for which J and thus J is not bounded. Here (cf. (3.11), (3.13)—(3.18))

1 1
M=T=ry=T=g, MI=Me=—m3=—my=gm, wi=—we=w3=—wy=J, (3.20)
1 1

Ayg=A1=0, /{',2:4j2+m2, gaB:C277ag, c2:1m2, A:—j2+1m2, (321)
et +imey  _Licaerimey o Lige-tmey L —ige+ime)

2 2 2 2

(3.22)

T T 1 0

X217 01:92257 ¢:m£ 5 ¢1:¢2:2\7£ 3 (323)

Js=0,  Ji=Jh=J=VAJ, Eo=VA=VIAT 4 m2=\/4J2+m2X . (3.24)

Like for the similar AdSs x S%solution [74] here the energy expanded at large J has a
familiar “fast-string” form
m2X  mia?

E(]ZQJ-I-*

- 2
4J 64.J3 * (3:25)

Note that the two solutions (3.14) and (3.20) coincide in the special case of a = 3 and J = 3m
when in both cases E = mV2\ and 2% in (3.16), (3.22) have +£° + ¢! as their phases.!”

3.1.2 M2 brane solutions

Let us now discuss how to “uplift” the above string solutions to the M2 brane solutions in
AdSy x S7/7Z;, so that the brane wrapped on 11d angle ¢ and rotating in CP3.

As is well known, the “double dimensional reduction” relates the M2 brane action in
11d supergravity background (1.19)—(1.23) to the type IIA string action in the corresponding

®Note that since ¢! € [0,27) one cannot in general transform a constant A; component of the potential
in (3.11), (3.14) to zero if 5= fd§1 A1 is not a (half) integer.

For comparison, in the AdSs x S°case [74] the “short” solution written in S® embedding coordinates
st =rEO, X1 +iXo=ae™E D Xy 10X, = ae™E ") Xy 41X, = T - 242 with k% = 4mZa® =
47, J1 = J2 = VAT, E = /4mv/AJ. For the “long” solution X; + X, = % T HmEY) X, =

LW me) | x4 iXy =0, E = AT+ meA
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10d background [44, 93, 94]. Namely, with a 1041 split of the target space coordinates and
a 241 split of the world volume coordinates one assumes that

XM= (Xt ), &€=(¢), =6, hX'=0, 9,Gun=0, 9,Cunp=0,
(3.26)
and to get the string action keeps only the zero mode in the Fourier expansion of the M2 brane
fields in £€2. In the present case of the AdSy x S7/7Z;, background (1.8)—(1.12), (3.2) where ¢ is
the isometric coordinate of the U(1)y, fiber of S7/Z; the conditions 0,Gun = 0,Cyunp =0
are indeed satisfied.
Considering an M2 brane located at the center of AdS; and moving in S7/Z;, the bosonic
part of its action may be written like in (3.3) in terms of coordinates z® of C*/Z;, with the
additional constraint z*z, = 1 imposed by a Lagrange multiplier:

— 1 _ 1 _
S = —Tg/d?)g —det g'L] |:1 — iA(ﬁ)(zaza — 1) s g'L] = —Zﬁzt8]t+ﬁ(zzaﬁj)za . (327)
Here 20 = e 2° or, equivalently, given by (3.1). The effective tension T2 was defined

in (1.16). The corresponding equations of motion are
1
V=

It is straightforward to check that they are satisfied by t = x&% and

V2t =0, V220 = —A2°, v? (%(V—gg”@-) ) Ze2t =1. (3.28)

o) = b 20(¢7), € € 0,2), (3.29)

where 2%(£%) solve the equations (3.5), (3.7) for a string in R x CP3. The induced 3d metric
gij can be written as

Gap + AgAg 1A
Gij = ( p 1Aa A kla s gaﬂzc2na,8, (330)
k4B k2
where A, and g,p are given by (3.6) and (3.7) respectively.
As in the string case, the action (3.27) is invariant under the global SU(4) symmetry
and time ¢ translations. In particular, for z%(£%) satisfying the Virasoro constraints (3.7),

the expressions for the conserved charges can be written as in (3.9)

1 2 2w 1 2 2m
J, = —Ty / et / de> [(802)THT2 - zTHT(“)oz} : Ey= —Ts / et / €2 Ayt .
k 0 0 2k 0 0
(3.31)
These coincide with the corresponding string charges (3.9) as 2T = 2% Ty (see (1.17)).
Thus the M2 brane counterparts of the “short” and “long” string solutions are represented
by (3.29) with z*(£%) given by (3.16) and (3.22) respectively and the same values of spins

and energies as in (3.18) and (3.24). For these solutions both g,g and A, are constant
(see (3.15), (3.21)) so that g;; in (3.30) is also constant

ds? = gi; d€'de? = ¢ [—(de®)? + (de")?] + %(dﬁ + kAydeh)? (3.32)
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Note that while for the “long” solution in (3.21) one has ¢? = }lm and A, = 0 so that the 3d
metric is diagonal, for the “short” one in (3.15) ¢? = 1x% and Ag = 0 but A; = 2m(a® — ) is
non-zero (and, as already mentioned above, cannot be, in general, eliminated by a redefinition
of £€2). As a result, in the “short” case g;; in (3.32) represents a non-trivial torus in the
(€1,£?) directions

ds? = —c2(d¢%)? + yd§2+ g r=mtim, o= /27, (3.33)
1
n=kA =2km <a2 — 4) = —§km\/1 —-27, =kc= 2k:ma\/f —a? = k,/%j
(3.34)

For the “long” solution one may also write the diagonal metric in the form (3.33) where

1 1
c=gm, T =179, Tzzkc:ikm. (3.35)

3.2 1-loop correction to the energy

Our aim will be to compute the 1-loop corrections to the energies of the “short” and “long”
M2 brane solutions. The first step is to find the corresponding quadratic fluctuation action
that follows from (1.19)—(1.23). This is can be done, e.g., in the static gauge as in [37-39]
(see also a discussion in appendix A). Like in the case of the long folded M2 brane solution
in section 2 the induced metric (3.32) is constant (cf. (2.3)) as are the derivatives of the
background 3d fields so that the fluctuation Lagrangian has constant coefficients and the
spectrum of fluctuation frequencies is straightforward to find.

In particular, the 8 bosonic fluctuations propagating in the induced 3-metric (3.32), (3.33)
will be described by a coupled quadratic 2-derivative action with constant coefficients. For
a single 3d scalar field X (&) with mass M the corresponding Klein-Gordon operator will
be (cf. (2.4))

(—gijﬁiﬁj + MQ)X — C_2 [83 — (61 — /<:A182)2 — ]4}2(328% + C2M2}X . (3.36)
Expanding in Fourier modes in & as

dw o0 [e.9]

XO =[5 3 Xyl e ne e, (3.37)

the frequencies w(n,!) corresponding to (3.36) may be written as (cf. (3.33))
w?(n,1) = |n — 71‘2 +M? = (n—71l)? + (ml)? + 2M? . (3.38)

Assuming that one can diagonalize the 8 x 8 matrices for the bosonic and fermionic charac-
teristic frequencies one will then get the 1-loop correction to the AdS,4 energy given by

1 (e} e}

E, = o Z Z Q(n,l), Q(n,l) = ZwB(n,l) - ZwF(n,l), (3.39)
B F

n=—00 [=—o00
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where Q(n,[) depends on the parameters of a solution, i.e. J and m. The sum over [ can
be split as in (2.13) into the | = 0 (string) contribution and that of the rest of the M2
brane [ # 0 (“KK” ) modes, i.e.

Ey = El,str + El,kka Ey str = Z Q n O El,kk = Z ZQ n, l

L —— (A 1#0

(3.40)

In practice, finding the explicit expressions for the frequencies wg(n,!) and w(n,!) and thus
Q(n,l) is hard due to non-trivial mixing of the transverse fluctuations (cf. appendix C).
One can use instead an equivalent representation for F; in terms of the 1-loop partition
function (cf. (2.12) and a discussion in [73])*®

2

w7, J
B = 25 Z Z/ logDFEj;. (3.41)

Nn=—00 |[=—00 o0 2

Here Dpr are the determinants of the quadratic fluctuation matrices for the bosons and
fermions obtained after expanding in the Fourier modes as in (3.37) and w = iw.

3.2.1 “Short” M2 brane

Below we will consider the case of the minimal winding number m = 1 (corresponding to
the state with minimal energy for given spins). Let us first discuss the contribution of the
string (I = 0) modes. For the 8=1+4342+2 bosonic modes one finds the following expressions
for the characteristic frequencies (see appendix B)

l=0: w? =n?, w? =n*+4J (3 modes),

W=t 4287 £V T+ A2 —Agn? + 2/ (1= 27) (1 + 02 — T £ VT2 + 4n? — 470?) ,
W=t 4287 £V T+ 42 —ATn? — 2/ (1= 27) (1 +n2 — T £ VT2 + 4n? — 4702) .

(3.42)
The 8 = 2 x 2 + 2 x 2 fermionic [ = 0 frequencies are
1=0: WC=14n2+T +£2V/T +n2— TIn? (2 modes),
=140 - T+2/(1-27)(T +n?) (2 modes) (3.43)

where J = 8a%(5 — a?), k? = 47 (see (3.18) with m = 1). Separating the special n = 0,1, 2
modes, Ej g, in (3.40) may be written as

Big = [19(0, 0) + Q(1,0) + Q(2,0) + fj Q(n,0)] (3.44)

1
2\/7 2 n=3

18T general, in the | = 0 string case the contributions of some low-n modes may require special treatment.
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where Q(n,0) is the total contribution of the bosonic and fermionic modes as in (3.39).
Expanding in small J we get

0(0,0) = —4+6VT +2T +T*+0(T°?),

3.45
Q(1,0)=2-2VT 4= J—EJ%O(ﬁ”), (49
Q(2,0):—7.7+E\72+(’)(j5/2),
216
§Q(O,O)+Q(1,O)+Q(2,O)—\/7+6j— w517 o), (3.46)
3 Qn,0) =T +@T2+0(T%?),
x 2 1
L DT
o= (3.47)
_223n4—29n2+10 47417%( 3)
q2—n:3 2n3 (n2—1)*
As a result,
11 9 3/ N 1 1T 9 J3? J?
Erstr = 5t iﬁ_ Z(( )T+ O (j ) 5t SOV Zc(3)W + O(}\) ., (3.48)

Combined with the classical contribution in (3.18) this gives

/ J1/2 9 J3/2 J2?

which has similar structure as the corresponding expression in the AdSs x S°case [71].

Let us now consider the I # 0 (membrane-mode) contribution E ki to the 1-loop energy
n (3.40). We will be interested in its expansion first at large k and then in small 7. If the
small 7 limit is taken before the large k one directly in Q(n,l), i.e. before summing over
n, [, this leads to inconsistencies, since the frequency lattice in (3.38) becomes degenerate
as 7o ~ J — 0 (cf. (3.34)).1 Thus it is important that the large k limit is to be taken
before the small J one.?’ This implies that

1
E>1, J<1: ngﬁkﬁ»l. (3.50)

Below we shall use the integral representation (3.41) for the 1-loop energy and treat 7 and

J as independent parameters, assuming that 7 > 1 and J < 1. We will replace 7 with
its explicit value in (3.34) at the end of the calculation.

90One can draw some analogy with what one finds for the non-holomorphic Eisenstein series E(s,T) as a
function of 7. If one considers its Fourier expansion, it can be seen that the series has a regular behaviour
for 72 — oo, while for 72 — 0 it is divergent because of the asymptotics of the modified Bessel function
K, (x) ~ 27" near zero.

20As discussed in section 1.4 this is consistent with the standard ’t Hooft large N expansion on the gauge
theory side where one should first take N large and then consider limits of small or large A and small or

J
large T
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Let us expand the integrand in (3.41) as

Dg(w?,7,J)

Dr(w?,7,7) ’J—>0 = Qo(w’,7) + VT Q1(w?, 1) + T Qa(w?, 7) + ... (3.51)

log

Using the expressions in appendix B one finds that the expressions for the determinants Dg
and Dp depend on 7 only through p? and ¢ defined as

pP=n—7l> =@+ (rl)?, g=n-—m7l. (3.52)

Explicitly, we get?!

(p2+w2)5 [pS+3ptw? +p? (—8¢%+ 3w +8w? —16) —8¢? (w?—4) + w? (w2+4)2]
[p4+2p2w2—2q2+(w2+1)2]4
8v2q\/p? — ¢2 [4p* +p? (—6¢° +14w? —17) —6¢* (w? —4) +10w* +23w? +4]
[p4 +2p2w? —2¢%+ (w2 + 1)2] [p6+3p4w2 +p?(—8¢%2+3w*+8w? —16) —8¢? (w? —4) + w? (w? +4)2] .
(3.54)

Qp=log , (3.53)

It is also straightforward to find Qs but its expression is somewhat long so we will not
present it here. Let us define

Z Z/ *Qr ,0°,q) - (3.55)

n=—00 [=—

Then combining (3.41), (3.51), (3.55) we get
Ze ) J? = Zer(f) Jr=1/2, (3.56)
r:O

where we used that according to (3.18) k = 2v/J.

To evaluate &-(7) in (3.55) we may assume that Q, with an even r is an even function of
q while Q,. with an odd r is an odd function of ¢ (we checked this property for low values
of r =0, 1,2 that we will consider below). Then the sum of odd Q, over (n,l) in (3.55) is
zero, since the terms with (n,l) and (—n, —!) contribute with an opposite sign. Thus we
may consider only &.(7) with an even r. One can further use that since the dependence of
Q, on T is only via p? and ¢, they are periodic functions of 71 and thus can be expressed
in Fourier series as

Er(n + 1,1m0) =& (11, 72), E = Z el®) (1) 2™ (3.57)

S§=—00

1 L,
Z Z / du / dr] e 2751 9, (w?, p2, '), (3.58)
27 0

n=—oo |=

where p' and ¢’ are assumed to depend on 7.

21To get the expansion in terms of 7, we have assumed that a < % and used (3.18) to express a in terms of

Jlea ———\/1—2j
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Let us first consider the [ = 0 term in the sum (which should be the string-theory

2 ie. do

22

contribution already discussed above). In this case from (3.52) we have ¢> = p? =n
not depend on 7 and thus the only non-vanishing term in (3.58) is the one with s = 0, i.e.

(Erstr)r = e (0) Z / — Q,(w? n?n). (3.59)

n=—0oo

The remaining sum over n and [ # 0 in (3.58) can be written as:

22 Z / dw /1 dr! e—?m’sf{ Qo
o Joo 1t "

lln*oo

:22 Z / dw/ dn e_zmsTlQT( |n—7'/l|2,n—7'{l)

l=1mn mod [

X 0 0 .,
:22 > 6*27”5””/0 %/ dr e ?™ N Q (w?, (1 + 73)IP,71) . (3.60)

l=1n mod [

Here we used the assumption that O, is an even function of ¢ and also the properties of the
sum and the periodicity of the integral over 7/, and finally shifted 7{ — 7 + n/I.

The integral over 74 is hard to evaluate explicitly even for Qg in (3.53). To proceed, we
shall focus on the large k expansion, i.e. assume as in (3.50) that 7 > 1. Rescaling the
integration variables w = 7y and {1 = Tz, we get for (3.60)

2 - —2misn/l > dy
275 Z Z e o

oo .
; / dr e 2™ Q (12 (2% 4+ 1)1%, moal, T3y?) . (3.61)
I=1n mod { o

We first note that if Q, is an integrable function of z, the integral over = vanishes in the
limit of 79 — o0 if s # 0 due to the Riemann-Lebesgue lemma. This suggests that for 7o > 1
the contribution e in (3.58) will be suppressed relative to e in (3.59).%

If the same is true for all terms in (3.61), i.e. the terms with s # 0 are exponentially
suppressed, then the leading-order terms in the expression for &£.(7) in (3.57) can be written

as (E1str)r in (3.59) plus (&, kk)r’ ie.

(4) (6)

)

)
57‘(7—) = (gl,str)r+(gl,kk)T s (gl,kk)T = 27—22 Z ZA / d
=1

(3.62)
Here we have assumed that Q, admits the large 7 expansion of the form Y~ _, Q&m) T,
where O = Qy(nm)( 2(2? 4+ 1)1%, roxl, 73y?) as in (3.61). We have checked explicitly that
this is true for » = 0 and 2.

22As was already alluded to above, the representation of the 1-loop correction to energy (3.39) in terms of
the integral in (3.41) is valid when the integrand in (3.41) does not have branch points on the real axis as a
function of w. As this is not true in the special cases when [ =0 and n = 0,+1,£2, we are to use instead
the representation (3.45) for these contributions. For the other values of n the results following from (3.59)
and (3.46) coincide.

23For instance, in the case of non-holomorphic Eisenstein series, such terms are exponentially suppressed.

—27misTox f(x)

This also happens for the integral ffooo dz e T ™ e2mem2lrol s 1, where f(x) is a
22422

polynomial with degree less than £ € Z and has no poles at xp € R.
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We then arrive at the following expressions for (51,kk)0 and (51,kk)2i

4C(2 152((6 8((2 10{(4
(E1p)y = — 6_(22) - 153(26 ) +..., (E1xi)y = 6_(22 ) + ;,E ) +....  (3.63)

Using (3.50), i.e. that 73 = %k2\7, and plugging (3.63) into the expansion in (3.56) we
conclude that the membrane-mode contribution to the 1-loop energy of the “short” solution
can be written as

El,kk—j_l/Q( 4,§g(j)+ )+j1/2<8k<2(j)+ )+ +O(]:4>. (3.64)

Combining this with the classical part of the energy in (3.18) and the string (I = 0) 1-loop
contribution in (3.48) or (1.46) we then get the following prediction for the 1-loop corrected
“short” M2 brane energy

— 1 1- _ _
E,, =2V V] + 5+ §>\‘1/4J1/2 —~ %C(?)))\‘?’/“J?’/? + O(A‘IJQ)

¢(2) ( —AN3/A B2 85\1/4J‘1/2> n O(;\—l/4J1/2)

+o<k4). (3.65)

Note that like in the fast-spinning M2 brane case considered in section 2 (cf. (2.17), (2.18)),
here the leading 1?12 correction is also proportional to ((2) = %2. On the dual ABJM gauge

T2

theory side (3.65) A = 272\ and ;- Z= ])\‘,2 (see (1.15)) is a prediction for the leading non-planar
24

correction to the dimension of the corresponding “short” operator.

3.2.2 “Long” M2 brane

Let us now consider a similar computation of 1-loop correction to the energy of the m =1
“long” M2 brane solution that generalizes the string solution (3.20)—(3.24). Here one has
diagonal induced 3-metric as in (2.3) (cf. (3.33))

Ay =0, K2=47%+1, ds? = 3 —(d€")? + (deh)? + %(d&Q)Q . (3.66)

The characteristic frequency polynomials for the “long” solution are given in appendix C.

24As was mentioned above (cf. (3.19)), the “short” string or “short” M2 brane solution has a direct analog
in RY® x S! flat space. There the circular M2 brane is rotating with J; = Js in two orthogonal planes in
R* ¢ R"? and is wrapped on S' of radius Ri;. To take the flat space limit we need to identify the radius of
S Las Ry = % that will be fixed in the large L ~ L limit along with the parameters x and a of the solution

n (3.19) (cf. (3.14)). To get the energy and spin in the flat space limit and relate to string theory we need to
rescale E— 1LE so that E and J will have canonical mass dimensions (1 and 0). Then using that VA = T
(cf. (1.14), (1.15)) we conclude that all string corrections to the classical term E = 2va/~1J in the first line
of (3.65) vanish, in agreement with the fact that the free superstring spectrum in flat space is not deformed by
o’ corrections. At the same time, the R?; ~ g2 dependent corrections in the second line of (3.65) survive, with
the leading one proportional to ¢(2)a’"2¢2J7%/2, ie. we get E = 2v/a/~1J [1 —@g2I 2 +. ] This
can be checked 1-loop computation of the energy of the “short” M2 solution directly in the flat space case and
may be related to the expectation that masses of massive superstring states may received 1-loop (and higher
order) corrections (cf. [95-99]). Note that a non-zero 1-loop correction to the energy of a different J; = Jo
supermembrane solution in flat space (where the membrane was rotating in 2 planes with the “radii” being
periodic functions of ¢' and £ but was not wrapped on S') was found also in [35].
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Like in the “short” case let us first consider the string theory [ = 0 contribution. We
find as in [69] that there are 8 = 1 + 3 4+ 2 X 2 bosonic

1=0: wWw=n?4+47%-1, WE=n?+47%+1 (3 modes),

W = 0?4+ 277 /471 + (472 + 1)n? (2 x 2 modes),  (3.67)

and 8 = 2 x 2 4+ 4 fermionic fluctuation frequencies

1
I=0:  W'=n?457%+ 4 VT2 + 1)AT? + n2) (2 x 2 modes),
1
Wwr=n?4+ 7%+ 1 (4 modes). (3.68)

These frequencies agree with (3.42), (3.43) for J = 5 when the “short” and “long” solutions
become equivalent. Note that in contrast to what happens in the AdS5 x S°case (where the
m = 1 solution is unstable [88]) these frequencies are always real, i.e. the J; = J solution
in AdSs x CP? is stable for any J.

The 1-loop energy string energy E «, is given again by the general expressions in (3.39),
(3.40). Here we will be interested in its expansion in the large spin limit J > 1. Like
in the AdSs x S°case [90, 91, 100], in addition to the “analytic” contributions (with even
powers of J 1) discussed already in [69], there are also “non-analytic” terms (with odd
powers of J~1), i.e. for large J

1 - an non -
B = 5- > Qn,0,7) =E" + B} + 0(e™7) . (3.69)

n=—oo

To sum up the series over n we apply the Abel-Plana summation formula (with a slight
modification due to an additional branch cut coming from the bosonic modes).?> As a

result (here k = V472 +1)

Bt = ,i/oldscot(ﬂs) [\/4J2+1+(s—i\/@)2—\/4J2+1+(s+iv1—82)2] (3.70)

1|1 & 1 1 13 &/3 1
e 2_1_,2 I B 24 2_ - 2
=572 4+nz:1(n\/n 1 n—|—2> 8j4[16+7lz:1<8 n-+nvn 1<2+n ))]

wo(z)

E{“m:i[2/Oood5\/2j2+s2+\/4J4+s2(452+1)+2/100dS\/252+82—\/4J4+82(452+1)

+/oodt<3\/s2+4j2+1+\/s2+4j2—1—4,/s2+‘72+i—4\/s2+4j2>1 . (3.71)
0

2To get ET°™ in [101] an alternative method using the Sommerfeld-Watson transform was applied.
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The sums that appear in (3.70) converge, and, in particular, the coefficient of the leading
% term is the same as in [69]%°

_1 - / 2 1

Evaluating the integrals in (3.71) and expanding for J, we get 1/J and 1/J?2 contributions
with log2 coefficients. Then the combined result for (3.69) is

log 2 c1 log 2 ( 1 )
=— O\ —= 3.73
T —00 2J +2j2+16j3+ JL) (3:73)

This is to be added to the large J expansion of the classical energy in (3.24)

El,str

_ 31/2 2 _\1/2
Eo=X"2V472+1= )\ 17 s 75

20 + 7=~ o +0(1>1. (3.74)

As a result, the 1-loop string energy can be put into the form

o o
oy ) AR

Esur T—o0 4.7 2J2  64J3

(3.75)

where J = A/27 and h(\) = 27h()) = A2 —log2 + ... with h()\) that appeared
n (1.38), (1.40). A similar result that the replacement VA — h()) happens only for
the coefficients of the “odd” 1/J**! terms in the expansion of the energy (that are then

directly related to those in the AdS; x S°case) was found in [50] for a circular rotating string
with spins S and J stretched in both AdS; and CP3.

Let us now turn to the [ # 0 membrane mode contribution E yx in (3.40). Using the
integral representation (3.41) we get

k .

N |

aw 2 _ g DB, T)
n_z:oo;%/ 5 s ()%, 7). &= los Dr(w? m2,0)

(3.76)
While the induced metric in (3.66) is diagonal, to keep the analogy with the “short” M2
case (cf. (3.50), (3.51)) we introduced as in (3.35) the coefficient T = 3k that will be again
large in the £ > 1 limit we are interested in.

Here we should first expand in large 7o and then in large J. As follows from the explicit
form of the determinants Dp and Dy in appendix C the integrand £ in (3.76) turns out to
be an even function of both n and I. To compute (3.76) in the large 7o limit we may try
to follow the same strategy as in the “short” M2 brane case discussed above. For that we
may formally introduce a parameter 71 (to be taken to zero at the end) shifting n — n — 7l
as in (3.51), (3.52). Then we can take | # 0 and consider first the sum over n following
the same steps as in (3.58)—(3.62). Like in the string case, one may split the sum into the
integral part and finite series and the expectation is that the contribution of the latter is

26The % correction is essentially the same as in the AdSs x S°case [76] (in general, with the winding
numbers related by m — tm).

— 26 —



exponentially will be suppressed when k£ > 1 and | # 0. This suggests that like in (3.62)
the sum over n can be effectively replaced by an integral

1 0 o 00
> 1: Bijcm — Z/ o / dn€(w?n?, (B2, J) . (3.77)
=1 0 —00

Assuming that J/m < 1 we may rescale the integration variables in (3.77) as w = 7y,
n = 7z (cf. (3.61))

2 X o 00 2 4
By = ;—i&;/o dy/_Oo dx lé’(;gj) + 5(7)_5(1‘7) +...0, (3.78)
where we can further expand the integrand at large J. As a result (cf. (3.64))
Bk zci?(w%+ 64?373 +) +§£§)(11J3+...) +O(Tl26>
_441{7(22) (_ 2T — 2} + 64?’73 T .. ) + 16224) (ilj3 +.. ) +0 (;6) . (3.79)
Combining this with the string part (3.75) we get (cf. (3.65))
B, =2J+ i(1 —2log2A7 Y2 4+ .) +c1i(1 o)+
4J 2J?
+k12C(2)(—85\1/2J—2)\<1]/2+?1§;]/§+...>+(’)(];> : (3.80)
Here the 1%2 = (275\% term represents the prediction for the strong-coupling limit of the

leading non-planar correction to the dimension of the corresponding operator with the
large spin J.

4 Concluding remarks

In this paper we discussed the AdSy x S7/Z;, M2 brane counterparts of the computations of
1-loop corrections to energies of the three string solutions in AdS, x CP3: “long” folded string
with large spin in AdS, and “short” and “long” circular strings with equal angular momenta
Ji = Jo in CP3. As a result, we obtained predictions for the leading non-planar corrections
to scaling dimensions of the corresponding dual ABJM operators at strong coupling.

In all cases the 1/N? term is proportional to ¢(2) = %2. This is related to the fact that
% = % is the radius of the 11d circle ¢ which is identified with the cylindrical M2 brane
dimension €2 so that the dependence on the corresponding Fourier mode number [ is via kl.
As a result, the coeflicient of the kiz term is proportional to °7°, 172 = ((2).

There are several obvious generalizations. One may consider the M2 brane analog of the
folded spinning string in AdS, with an extra orbital momentum J in CP3. Taking the limit
when S > J > VA > 1 with @ In %zﬁxed determines the generalized cusp anomaly or
scaling function. In the AdS5 x S°string case this solution was studied in [102, 103]. In this
limit the resulting string fluctuation Lagrangian has constant coefficients and thus finding the
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quantum corrections to the classical energy is straightforward.?” For the string in AdS, x CP?
the 1-loop correction to the energy of such (.S, J) solution was already found in [26, 27] and a
generalization to the M2 brane case in AdS; x S”/Z; should not be a problem.

One can also consider a M2 brane analog of another (S, J) string solution where the
string is wrapped on a circle in both AdS, and CP? part (here S = mJ where m is a wrapping
number). This is the direct analog of the solution in AdSs x S®studied in [76, 89, 104]. The
1-loop correction to the energy of this circular (S,.J) string in AdS, x CP? was computed
in [50] and a generalization to the M2 brane case should be again straightforward. Expanding
in small S/.J one may relate [73, 105] the leading term in the string energy (or in the dimension
of the dual operator) to the so called slope function which, in the planar limit, is known
exactly from the integrability [54, 106, 107].

The slope function turns out to be very similar to the Brehmstrahlung function that
can be found from localization (via circular BPS WL connection) and, in the planar limit,
from the integrability (see [108-110]). Assuming the analogy between the slope function
and the Brehmstrahlung function continues also in the ABJM case, ref. [54] suggested a
conjecture for the h(\) function that enters the ABJM magnon dispersion relation (1.40),
and it passed all tests so far.?® It would be interesting to use the above M2 brane approach
to find a prediction for non-planar corrections to the slope function at strong coupling, and
then to compare it to the known expression for the Brehmstrahlung function B(\, N) in
the ABJM theory (see [111-118]). One may also consider a direct M2 brane computation
of non-planar corrections to the Brehmstrahlung function following the approach of [38]
and generalizing to the case of non-trivial wrapping number w. One may then get the
Brehmstrahlung function by taking a derivative over w of the large N expansion of the log
of the Wilson loop expectation value (see a discussion in appendix D).

At a more conceptual level, it would be remarkable to find a way to do similar computa-
tions of non-planar corrections in the type IIB AdSs x S°superstring dual to N = 4 SYM
theory. While we utilized the fact that the type ITA string theory has an uplift to M-theory,
allowing to apply the semiclassical M2 brane approach, there is no obvious analog of this
procedure in the type IIB string theory. At the same time, the exact localization results for
the expectation values of the % BPS Wilson loops in SYM and ABJM theories exhibit very
similar structure when expanded in 1/N [38, 119]. Expressing (W) in terms of the string
coupling gs and the string tension T in the ABJM theory we have (see (1.30))

2
(W) = 2T 1+7T952+77T2(952) + T—,/2
ABRL 2 gs 12T = 1440\ T T 2’ (4.1)
VT o (54 N
s = Y (2)\)%/4, A=,
9s = (2N ’

In the case of N' =4 SYM theory, expressing (W) in (D.2) in terms of the corresponding

#"Moreover, in the AdSs x S®case the (S, J) solution in this limit is related by an analytic continuation to
the circular 2-spin solution in S°, implying a relation between the fluctuation frequencies [102].

*In [54] the comparison was made between the structure of the integral representation for the ¢ BPS WL
and the ABJM slope function found there.
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gs and T gives

\/T 2n'T

e VA _ Q%M
2mgs

T= " —
b ) gS 47"'7

2 2, 2\2
e (L)

2
12T 283\ T A= gyl

<W>SYM =

(4.2)
Remarkably, the two expansions in (4.1) and (4.2) have the same universal form, and, moreover,
the leading 1-loop g2 string correction terms happen to have the same coefficients [119].

Surprisingly, the same coefficient of the % term is found also for the leading non-planar
correction to the ABJM cusp anomalous dimension f(A, N) in (1.2), (1.32) coming from the
1-loop M2 brane contribution we computed in section 2. Including also the leading string
contributions, we get from (1.34) and (1.35)

1 T g2 m

5 2 g2 2
T,g) =—|2aT — log2+O(T™!) + -2+ —— (=) +...
fABJM(  gs) ﬂlﬂ— 9 0g2 + O )+12T+1440(T) +

1 5 1 22 N2 o3\t
== 2\ — —log 2 — AT AT 4.
”lw 5 log +O<ﬁ>+3N2+45N4+ (4.3)

If we make a bold conjecture that the coincidence of the order g2 string 1-loop coefficients
observed in the Wilson loop expressions in (4.1) and (4.2) should extend also to the cusp
anomaly, we may then make a prediction that in the SYM theory the analog of (4.3)
should read

1 1 T g 2( 92 ?
- s s
fSYM(T,gs):W[QﬂT—3lOg2+O(T )—FET—F’}@TI’ (T) + ...

1 1 1 \3/2 23
:W[\E\—i’)logZ%—O()—0——i-’y1 +... (4.4)

V) T 12 N2 T 36 N4

Here the 1/N? term should be representing the strong coupling limit of the leading non-planar
correction and we introduce v, as a coefficient of the subleading non-planar term. It would
be very interesting to confirm this prediction that the leading non-planar correction to the
SYM cusp anomalous dimension that scales as A* at weak coupling (see (1.3)) should scale
as A3/2 at strong coupling.
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A Quadratic fluctuation action

To find the 1-loop correction to the energy one needs to expand the M2 brane action (1.19)—
(1.23) in the AdS; x S7/Z; background near a given classical solution. The spectrum of
bosonic fluctuations will in general contain 8 physical (“transverse”) modes and 3 unphysical
(“longitudinal”) modes. The latter can be eliminated by imposing a static gauge. Alternatively,
one can just isolate the fluctuations in the normal directions to the surface (see, e.g, [120—-123]
for similar discussions).

Viewing the membrane as a surface in 11d spacetime, one can define an orthonormal basis
e; on the membrane world volume (here 7,7 = 0,1,2 and A, B are tangent-space 11d indices)

(eire5) = ef'elnap = ni; . (A1)

For a pair of tangent vector fields X,Y and the Levi-Civita connection V in the target
space one can define the connection VT on the brane (corresponding to the induced metric
gij) and the extrinsic curvature K as VxY = VLY + K(X,Y). For a vector X in the
normal bundle we also define: VxX = —Ax(X) + V£X where V= is the connection on the
normal bundle and Ax(X) is the Weingarten operator, related to the extrinsic curvature as
(Ax(X),Y) = (K(X,Y),X). The bosonic equations of motion for the M2 brane following
from (1.19), (1.20) can be written as (here K;; = K(e;, €5))

7’]ij (K )A + %Ewk FABCDE (ei)EC(ej)ED(ek) =0 y (A2>
where E4 is a basis of the target space 1-forms. The quadratic fluctuation part of the bosonic
M2 brane action for the fluctuations X in the normal directions is then (d*V = d3¢,/—g)

SB2:—T2/d3V 17 (VEX, VLX) +07 (R(X, €)X, €)= (K7, X) Ky, X)+ (07 (K5, X))

+= Tg/d?’V Mt (3FpapcXP (Ve XM)eP e +(V L Fapop)XEXP EA(e:) BP (e B (ex)]

(A.3)
where R is the Riemann curvature.?’ Using an orthonormal basis n, (p = 1,...,8) in the
normal bundle we get

Spo=—T) / &V [ (VEX)P(VEX), + XPMygX?| + (Fy-terms ), (A.4)
Mpq = (R(np, €i)ng, €j>77ij - <Kija np) (Kij ng) + (tr K, np)(trK,ng) ,  trK = n” . (A5)

The quadratic fermionic part of the M2 brane action in (1.21) can be written also as (see,
g, [39, 87))

Spo =T / BViiia(1 - T)p:D,,0, (A.6)

1. . S
pi=ENe)Ta, {pipi}=2myls, T = §€”kmﬂjﬂk7 r?=1, pT=Tp = §€Z]kpjk-
(A7)

2When a membrane is not coupled to Cs in (1.20), (A.2) it becomes the equation for a minimal surface in
the target space, i.e. n¥K;; = 0 and then (2.5) follows from a known expression for the second variation of the
minimal volume action (see, e.g., [124]).
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To lowest order the k-symmetry acts as 66 = (14+T')k. A convenient choice of the k-symmetry
gauge is (1 + 10 = 0.

For an M2 brane with non-trivial dynamics only in the S7/Z; part of 11d space one
can use the induced metric (3.30) in local coordinates in (3.29) to define the orthonormal
frame on the world volume as (9; = 9/9¢Y)

e = (7 (On — kAas), kDy) . (A.8)

Then C3 in (1.12) does not contribute to the membrane equations of motion (A.2) which are
equivalent t0? nYK;; = nK(e;,e;) = 0. Then (A.4) may be written as:

Spa——Th / PV [ (VEX,VEX) + o (R(X, e)X, e) — (KT, X) (K. X)) . (A9)
Using an orthonormal basis n, in the normal bundle we have

NN =Xy, (np, ng) = g, (Kij,np) = (Ve,€5,1p) (A.10)

Vo X = Vo (10,XP) = 0y (0, XP) + 1407, (€;)XP Qgplei) = (g, Venyp) . (AL

The fermionic part (1.12) is determined by the operator:
) . 1 1
P =p'De., = p'|Ve, + EEf“(el-)(rAm —3F44)|, Ve, =0, + 1Qf‘“?f(ei)FAB, (A.12)

1 1
F4 = IFABCDFABCD, F4A = gFABCDFBCD . (A.13)

Here Q4B is the spin connection on AdSy x S7/Z;, , Fy = dCs is proportional to the volume
form of AdS, and E4 is a coframe in AdSy x S7/Zy. . Using the orthonormal frame (e;, np)
one may split the T4-matrices as (p;,7p).

For the metric in explicit coordinates in (3.2) we may determine (e;,n,) in terms of
the local coordinate basis in AdSy x S7/Zy, as follows. For the “short” membrane solution

corresponding to (3.14), (3.29) we get (we set m = 1)
1

eg=c ! (m?t +(2- 4a2)8¢1 + 4a28¢2) , ep=c ! <6¢ —k (2&2 - 2> 8§0> , es = kO,

1 71/2
n; = 8,]¢, ng = 8X, ng = \/ga_lagl, ng = \@<2 — a2> 692,

n7 = 2(0g, — Ops ) ng = 20; + 2V 1 — 2a2a™ 19y, + da(l — 2a2)_1/28¢2, (A.14)

where Kk = 4\/5&«/% —a? and ¢ = 2a,/% —a2.3! For the “long” membrane solution with
m = 1 corresponding to (3.23), (3.26) we get

eo = ¢ (KO + 2T (0, + ) e1=c 1y, es = ko, ,
n; = 8ni N ng = 8X s N5 = 2\/5891 N Ng = 2\/5892 y
ny = 2(6¢1 - 3(;52) s ng = 4j8t + 2/&(8@ + 8¢2)) , (A.15)

where kK = V472 +1 and ¢ = %

30To make the connection with (A.3) explicit, one may view the M2 brane world volume as a 3-surface M
in R x C* and use that M C R x S” C R x C*.
31Here n; = 0y, (i = 1,2,3) correspond to the normal directions in AdSs where n* are the “Cartesian” part

2,2 . .
of coordinates in AdSy, i.e. d52Ad54 = - 83’]2;2 dt® + (17‘;2)2 dn'dn".
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In both cases, the non-zero part of the fermionic operator (A.12) takes the form:

) . 3 1
D=p'D,, =p'Vy - Z(HS)t'YS’Yl’YQ'YS : Ve =0, + Zqu(ei)’qu - (A.16)

We note that the part with p’p/Q;,(e;) is zero since
PP’ Qjp(ei) = p'p’{€j, Venp) = —p'p! (Ve,€5,mp) = _5{/) 0 HKij,np) = —(tr K)p =0,
(A.17)

and also that the projection of the connection VT on the M2 brane vanishes because the
induced metric is flat.

B Fluctuation frequency polynomials for “short” M2 brane

The determinant of the 8 x 8 bosonic fluctuation operator (with m = 1) in the Fourier
representation (3.37) that appears in (3.41) may be written as (cf. (3.38), (3.34), (3.52))

DB = (_w2 + 4\7 +p2)3 PB((‘U?n: l77—7 j) ) (Bl)
1 1
p2 = (n*Tll)2+(72l)2, qg=n-—-ml, T = *§]€W7 T2 = ﬁk\/? .
(B.2)

Here Pg is an order 10 polynomial in w

Pe=w+w?(127 —5p*—8)

1205 [18j274j(5p272q2+6)74\/W\FJQ\/p27q2+5p4+12p274q2+8}

+wt [24v2=4T 732\ [p? — @2 +327° — 472 (119" +12¢*+4) + 8V T V2—47 (3p* — 4)q\/p* —¢2
+87[6p" +9?(7—6¢%)+11¢%] — 2[5p°+12p" +p*(8—12¢%) +16¢7]|

+u? [— 16V2—4T T3 2q\/p? — 2 (32 +2¢2 —2) — 16v/2— 4T T 2q\ [ p2 — 2+ 3273 (q2—2p2)
(B.3)

+472(-9p" +85° (24 +3) +4¢% (47— 5) |- 8V2— 4T VTP (3> ~8) 4y />~ 2
—87[3p°—6p* (¢*+1) +p* (224> +4) +2¢% (¢* —2) | +5p"+8p° — 8p* (3¢2+2) +64p%¢?|
— (6T +° ) [16v27%/2 (4435 \p2 — 2 +8v2T Y2 (2" +3p7 40 ) \ [~ ?
+1677 (p* ~5p?g*+4q*) —8V2/Tp'ay/pr ¢
—2.7 [59°+p" (4-84%) —120%¢> +8¢* | +p° +4p° —8p'¢?] .
For the fermionic fluctuations we find

Dp = [Pr(w,n,1,7,7)], (B.4)
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where Pr is 4-th order polynomial in w?

Pe=
B (1P 1) W [6.7 44 (P 4202 —2) —4V2— 4TV T g\ [p? — g+ 6p" + 87— g’ 46|
12 [16V2— 47732\ [p2 — g2 1675+ 47 (3p° 807 3) +8VIV2—4T (p*+1) 0\ /p? —a?

—8J[p*+p? (2q2+1) —92]-4 (p2—|—1> <p4—2q2+1)} (B.5)
82 AT 22— (3p* +qP —4) ~60V2— 4TI g\ [pR g2+ 97" ~127° (5p° ~104° +2)
+272 [~5pt+4p? (5024 7) + 80" ~ 624>+ 11| + 4V T2~ 4Tq (—p* +24> 1) N

14 [p6+p4 (2q2+1) _p? (4q2+3) —5q4+10q2—2] + (p4—2q2+1)2 .

C Fluctuation frequency polynomials for “lonng” M2 brane

Let us start with the bosonic fluctuations. We will specify to the case of the minimal winding
m = 1. The determinant of the 8 x 8 fluctuation operator in the Fourier representation (3.37)
that appears in (3.41) may be written as (cf. (3.38))

1
Dp = (—w? +47% +n* + ¢* + 1)® Ps(w,n,q,T), qETglzikl, (C.1)
where Pp given by
n?+q?-w?—1 0 0 2% Tw 0
0 AT?+n +q* —w? 0 —Ha) LB F2(ntq)
P =det 0 0 472 4+n?+q% —w? —i(il/%q) 2iV8T?+2(n—q)
-2iJw Hotka) dra) n24q? —w? 0
0 LivBT?+2(n+q) —3ivBTT+2(n—q) 0 2 42—

(C.2)
It is a polynomial of order 5 in w? with the explicit form being
Pg=
w'+w® (=127 —5n" —5q° +1)+w®[48J+8.J% (50" +5q* — 1) +2(n” +q%) (5n° +5¢° —3)]
—2w*[32J%+8.7% (50 +5¢° —1)+8.J2 (n*+q%) (3n°+ 3¢ =2)+(n*+q%) 2 (5n’+5¢>—6) +n’+q?)]
+w? [32J4(n2+q2—1)(n2+q2)+8J2 [3n%+nt(9q* —4) +n?(9q* —10q* +1)+3¢° —4q* +q?]
+5n8+10n6(2q2—1)+5n4(6q4—6qq2+1)+n2(20q6—30q4+6q2)+5q4(q2—1)2}

—(n? 442 =1) [n0 (472 +4q% - 2) +n'[47% (30> 1) +6q" ~60% + 1]

—|—2n2q2[6J2(q2—2)—|—2q4—3q2—1}+q4(q2—1)(4J2+q2—1)—|—n8} . (C.3)

The characteristic frequencies are solutions of Dg = 0. The 3 decoupled modes with

w:\/4j2—|—n2—|—q2+1. (C4)

correspond to the transverse fluctuations of the M2 brane in the AdS, directions.
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Similarly, for the fermionic fluctuations we find

Dr = [Pr(w,n,q, 7)), (C.5)

where Py is 4-th order polynomial in w?

Pr=

3
wi+wb (1272 —4n? —4q% 1)+ {30J4+J2(32n2+32q2+5)+6(n2+q2)2+2n2+2q2+8

1
—w2(4J2+4n2+4q2+1){7J4+6J2(n2+q2)+(n2+q2)2+16}

1
+®+4q5 (2% +n?) +q* {22J4+2J2(24n2+1)+6n4— 8} (C.6)

1
-l—ZqQ 96J6+16J4(11n2—|—1)+J2(96n4+24n2—2)+16n6+3n2]

1
+ ﬁ(4J2+4n2+1)2(12J2+4n2 —1)?

Thus each w that is solves Dr = 0 has degeneracy two.

D Non-planar corrections to ABJM Brehmstrahlung function

In the case of the N/ =4 SU(N) SYM theory the Brehmstrahlung function may be found
from the exact localization result [125] for the expectation value of the % BPS circular
Wilson loop as [108]

BSYM = ﬁAa log<W>SYM ) (D'l)
(N A 2N 1 X3/2 I(v/\)
Wgyy = N lesnz UL <—>:I VI|1+ o +o,
(D.2)
- 1 )\3/2
Byyn (A N) = BéYIV)l()\) + 12872 N2 e
(D.3)

_ﬂfz(\ﬁ\)_ﬁ 3

(00) (1) — _ VA3
B = T r o e e T

To get the Brehmstrahlung function one may use the original definition as a derivative over
the angle of a small cusp or one may start with the expression for the % BPS Wilson loop

wrapped w times on the circle and then [111]

1 0
B(AN)=-——1 . D.4
AN) = 155 log(W)| (D4)
In the N/ =4 SYM case this leads to the same expression as in (D.2) since the dependence
on w can be incorporated into (W) in (D.2) by VA — wv/\.
Ref. [111] has shown that (D.4) applies also in the ABJM case for the Brehmstrahlung

function given in terms of the é BPS Wilson loop defined on a small cusp. One may also find
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the Brehmstrahlung function corresponding to either % or % BPS Wilson loops by using a
generalization of the identity [108] that expresses B(A, N) as a derivative of the logarithm
of the latitude Wilson loop with respect to the small latitude angle [112, 115, 126, 127].32
In the planar (N = oo) limit one finds the following strong coupling expansion for the

Brehmstrahlung function corresponding to the % BPS Wilson loop [115]

1 /A 1 11
() — — )2 - - = 4 D.5
ABIM — or\l 9 42 967r\/ﬂ+ ’ (D-5)

which matches the string theory prediction at the two leading orders [79, 113]. Finding
non-planar corrections in this approach is hard as the exact localization result is not known
for a non-trivial cusp angle. An alternative approach was suggested in [117, 118].

One may conjecture that in general the multi-wrapped Wilson loop expectation value is
the same as the one for the loop in the w-fundamental representation. The corresponding
localization result was found in [48] and is a simple generalization of the expression given
above in (1.26)

L a0 (v g -]
2sin 2% Aj [(%Qk.)l/?) (N_ﬁ_i)]

<W>ABJM = (D.6)

We have checked explicitly that using (D.6) in (D.4) one gets the result for the corresponding
Brehmstrahlung function which is equivalent to the one found using other definitions of
B(A,N) in the 3 BPS Wilson loop case [115, 116, 118] (see eq. (7.14) in [118]).

The expansion of (D.6) at large N for fixed k is similar to the one in (1.27)

1 s JIE mw (k% + 24w +8) 1 1
<W>ABJM = 5 omw € k ll - 24\/5/?3/2 \/N +0 (N) ] . (D.7)

2sin %
Using this in (D.4) and expanding in large k& we then get

B 1 |2N 1 t27r+ 1 /A 1 R 1 +4w2+32w4+
=—y\——-——ct—+..=—\|/z-———S+. .. sttt =+ ..
ABIM  gr |k 2wk k 27\ 2 4n? 3k2  45k%  945k6
A2 42 % 3974\
=B+ sv2 T asNd T ogsne T (D-8)

It is interesting to note that the coefficients of the first two leading non-planar corrections here
are the same (up to an overall 27 factor) as in the cusp anomaly function in (1.35), (2.18).

It would be important to explain the dependence of (D.7) on w from the semiclassical
M2 brane point of view. One possible approach is to generalize the discussion in [38] to
the case when the minimal surface is wrapped w times on the boundary circle. While the
dependence of exponential in (D.7) on w then follows simply from the value of the classical

32For %

corresponding Brehmstrahlung function it was first introduced and then proved exactly in [127]. In the %

BPS Wilson loop this identity was proposed and proved perturbatively in [126], and for the
BPS Wilson loop case a similar identity for the Brehmstrahlung function was proved in [112] and further

elaborated on in [115]. For a review of the Brehmstrahlung function in the ABJM theory see the contribution
of L. Bianchi in [128] and also [129].
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action, it is not clear how a particular w-dependence of the ﬁ prefactor in (D.6), (D.7) may
come out of the 1-loop M2 brane contribution generalizing w = 1 one in [38].

N
Somewhat surprisingly, the dependence of the tree-level e™ V * and 1-loop m
k

prefactors in (D.7) on w is actually the same as in the case when the M2 brane is wrapped

w times not on the AdS4 boundary circle but on the 11d circle p. In this case we have

effectively ¢ — we and thus the radius 1/k in (1.10) is rescaled to w/k. This leads to
2w

2% — =7% in the M2 brane 1-loop correction. The factor of w in the exponent in (D.7) then

also has an obvious origin: the classical M2 brane action is proportional to the length of the
11d circle, i.e. %TW, with the additional dependence on N and k coming from the effective
M2 brane tension factor Ty in (1.16). However, the w-dependence of the subleading terms
in (D.7) (that should originate from the two and higher loop M2 brane corrections) does

not appear to have a similar simple explanation.
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