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1 Introduction

In a conformal field theory (CFT), correlation functions of local operators are fully determined
by the CFT data. Consequently, the most commonly studied correlators in CFTs are two- and
three-point functions, which define the scaling dimensions and operator product expansion
(OPE) coefficients that together constitute the CFT data, and four-point functions, which
obey crossing relations that constrain the CFT data and form the basis of the conformal
bootstrap. In comparison, higher-point functions have been explored relatively little. On the
one hand, this is understandable since the higher-point functions involve extra complexity
(e.g., they are functions of more independent cross-ratios of the positions of the external
operators), while in principle not providing new information not already contained in the
full set of lower-point functions. On the other hand, the full set of lower-point functions
is usually out of reach, and hence one expects that higher-point functions are nonetheless
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useful observables that efficiently repackage certain information about the CFT. Recent
explorations along these lines include studies of higher-point out-of-time-order correlators
(OTOCs) as more refined diagnostics of quantum chaos [1–3], studies of the decomposition
of higher-point functions into conformal blocks of different topologies (see, e.g., [4–9]), and
studies of structure constants of multiple spinning operators through the bootstrap analysis
of higher point functions [10–13].

In this work, we study a certain six-point function in the Wilson line defect CFT in N = 4
super Yang-Mills (SYM). The half-BPS Wilson line in N = 4 SYM defines a rich example
of a one-dimensional conformal defect that has been studied extensively in recent years
using a variety of non-perturbative methods, including AdS/CFT [14], integrability [15–20],
supersymmetric localization [21–23], the conformal bootstrap [24, 25]. Correlators in the
one-dimensional CFT can be defined by inserting adjoint operators Oi along the Wilson
line. Concretely:

⟨⟨O1(x1) . . . On(xn)⟩⟩ =
⟨PO1(x1) . . . On(xn)e

∫
(iA0+Φ6)dx⟩

⟨W⟩
, (1.1)

where W = P e
∫
(iA0+Φ6)dx is the half-BPS Wilson line without insertions. Here, Aµ is the

gauge field, ΦI , I = 1, . . . , 6 are the six scalars of N = 4 SYM, the ‘P’ indicates that the
operators and intermediate Wilson line segments are path ordered, and we have taken the
spacetime contour in R4 to lie along the xµ = δ0µ axis and the contour in S5 embedded
in R6 to sit at the point θI = δI6.

Recently, [26, 27] studied multi-point correlators on the Wilson line of arbitrary scalars
(including the five protected scalars ΦI with I = 1, . . . , 5 and the unprotected scalar Φ6
that couples to the Wilson line) in the planar limit (N → ∞ with λ = g2YMN fixed) at
weak coupling (λ ≪ 1). In this paper, in a complementary direction to that work, we study
the leading contribution at strong coupling (λ ≫ 1) to the connected six point function
of identical scalars,

⟨⟨Φ(x1) . . .Φ(x6)⟩⟩conn., (1.2)

where Φ ≡ Φ1 is one of the protected scalars.
At strong coupling in the planar limit, the Wilson line is dual to a classical fundamental

string in AdS5 × S5 that is incident on the straight line on the boundary and has AdS2
geometry [28–30]. Furthermore, insertions of local operators along the Wilson line are dual
to small fluctuations of the string. One approach to computing the Wilson line correlators at
strong coupling is to study the dual string in static gauge [14], in which case the longitudinal
modes of the string are non-dynamical and the transverse fluctuations of the string can be
treated as scalar fields in AdS2 governed by a tower of interactions. One can then compute the
connected correlators perturbatively by evaluating Witten diagrams in AdS2 [14, 31], which
at leading order are tree-level. For example, the leading connected six-point function includes
contributions from both six-point contact diagrams and four-point exchange diagrams. This
approach can be thought of as “holography on the worldsheet” and is similar to the standard
supergravity computations of correlators of single trace operators in the four-dimensional CFT.

By contrast, in this work we build on the developments in [32] and compute the six-point
function in (1.2) by studying the dual string in conformal gauge. Working in conformal gauge
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gives rise to a dynamical reparametrization mode on the boundary of the string that mediates
the interactions of the string transverse fluctuations. Perturbation theory in conformal gauge
looks qualitatively rather different than in static gauge, and in fact more closely resembles
perturbation theory in the Schwarzian theory [1, 33–35] that governs the boundary graviton
in Jackiw-Teitelboim (JT) gravity, which is also represented by a reparametrization of the
boundary of AdS2. One advantage of the conformal gauge approach is that, at least in the
simplest setting where only one transverse coordinate is turned on, one does not have to
evaluate Witten diagrams with (possibly multiple) integrations of the bulk points in AdS2.
On the other hand, the effective action for the boundary reparametrization mode is not
known in closed form and needs to be evaluated perturbatively in small fluctuations about
its saddle point. The reparametrization action was derived to quadratic order in [32, 36–38],
and we derive the cubic order correction in the present paper. From this perspective, the
six-point function in (1.2) is interesting because it is the simplest correlator that is sensitive
to the self-interaction of the reparametrization modes. As a check of the consistency of
the conformal gauge and static gauge approaches, we will also set up the computation of
the six-point function in (1.2) in static gauge and evaluate the relevant Witten diagrams
numerically for a sample of external points, finding agreement with the analytic result from
the conformal gauge approach.

When the defect correlators on the Wilson line at strong coupling are continued to
Lorentzian configurations, they are related to scattering amplitudes on the string worldsheet.
For example, the four-point function corresponds to the simplest 2-to-2 scattering process.
Thus, another motivation for studying the six-point function is that it should correspond to
3-to-3 scattering, the simplest scattering process that can in principle probe the integrability
of the worldsheet. As a simple instantiation of this idea, we will analytically continue the
euclidean six-point function to an out-of-time-order configuration corresponding to high-
energy 3-to-3 scattering on the worldsheet, which is expected to be essentially determined
by the scattering amplitude on the long string in flat space [39]. This will provide another
check of our result for the six point function via conformal gauge.

The rest of the paper is organized as follows. In section 2, we review the conformal gauge
setup [32] for the calculation of the boundary correlation functions. In section 3, we discuss
the reparametrization action arising from the longitudinal modes of the string, working up to
cubic order in small fluctuations around the saddle point. We then present our derivation of
the connected tree-level six-point function in section 4. In section 5, we study the analytic
continuation of the six-point function to the out-of-time-order configuration, and discuss its
relation to 3-to-3 flat space scattering. In section 6, we compute the six-point function using
the static gauge approach, and numerically verify agreement with the analytic conformal
gauge result. We make some concluding remarks and discuss open problems and future
directions in section 7. Some additional details and discussions less essential to the main
thread of the paper are relegated to appendices.

2 Correlators on the AdS2 string in conformal gauge

We begin by reviewing the computation of boundary correlators on the AdS2 string in the
conformal gauge, which was worked out in [32].
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2.1 Classical string in conformal gauge

Consider an open string Σ in AdS2 × S1 (which can be a subspace of AdS5 × S5) that is
incident on a curve γ on the boundary. Let x ∈ R, z ∈ [0,∞) be Poincaré coordinates on AdS2
and let y ∈ [0, 2π] be an angular coordinate on S1 so that the target space metric is given by

ds2 = dx2 + dz2

z2
+ dy2. (2.1)

Let σα = (s, t) be the worldsheet coordinates, such that the boundary is at s = 0. Then,
the string can be represented by a map Σ : (s, t) 7→ (x(s, t), z(s, t), y(s, t)) and the curve on
the boundary by a map γ : α 7→ (x = α, y = ỹ(α)). We take ỹ to be small, meaning that
the boundary curve is approximately straight.

The string partition function is given by a sigma model path integral whose boundary
conditions are set by the function ỹ(α) that specifies the shape of the boundary curve. At
zero string coupling (gs = 0) the string worldsheet has the topology of a disk and at large
string tension (Ts ≫ 1) the path integral is dominated by its saddle point. We will focus
on this regime, in which case the string partition function is determined by the action of
the classical string:

Z[ỹ] ≈ e−Scl[ỹ]. (2.2)

In terms of the dual CFT, this is the planar strong coupling approximation for the expectation
value of the Wilson operator W in N = 4 SYM whose contour is γ. As an explicit example,
we may take the spacetime contour in R4 to be the straight line xµ(x) = xδµ0 and the contour
in S5 in embedding coordinates to be θI(x) = cos ỹ(x)δI6 + sin ỹ(x)δI1.

Transverse displacements of the boundary curve can be interpreted as insertions of local
operators along the curve. Concretely, correlators of the boundary operators are defined by
taking variational derivatives of the string partition function with respect to ỹ:

⟨y(x1) . . . y(xn)⟩ =
1
Z

δnZ

δỹ(x1) . . . δỹ(xn)

∣∣∣∣
ỹ=0

. (2.3)

Setting ỹ = 0 after taking the derivatives means that we take the curve without perturbations
to be a straight line. The corresponding classical string without perturbations forms an AdS2
subspace of AdS2 × S1. The string boundary correlator in (2.3) is related to the Wilson line
defect correlator defined in (1.1) by the dictionary [14]

⟨y(x1) . . . y(xn)⟩ = ⟨⟨Φ(x1) . . .Φ(xn)⟩⟩, (2.4)

where Φ ≡ Φ1. In the classical approximation, eq. (2.2), the correlators are tree level.
To compute the boundary correlators, we therefore need to determine the classical string

action as a function of the boundary curve. The string action is:

S[x, z, y] = Ts

2

∫
d2σ

√
hhαβ

[
∂αx∂βx + ∂αz∂βz

z2
+ ∂αy∂βy

]
. (2.5)

Here, hαβ is the auxiliary metric on the worldsheet. We need to pick a gauge to fix the
diffeomorphism symmetry of the action. The classical action and the tree-level four-point
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functions were analyzed in static gauge in [14]. In this work, we continue the developments
of [32] and instead study the classical action and tree-level correlators in the conformal gauge,
where we choose worldsheet coordinates such that the auxiliary metric is the AdS2 metric:

hαβdσαdσβ = ds2 + dt2

s2
. (2.6)

With this choice, the string action becomes

S[x, z, y] = SL[x, z] + ST [y] + TsA, (2.7)

where we have split the action into the contributions from the longitudinal modes x, z and
the transverse mode y, which are given explicitly by:

SL[x, z] = Ts

2

∫
d2σ

[
∂αx∂αx + ∂αz∂αz

z2
− 2

s2

]
, (2.8)

ST [y] =
Ts

2

∫
d2σ∂αy∂αy. (2.9)

We also separated out the area piece TsA = Ts
∫ d2σ

s2 from the longitudinal action in (2.7)
and (2.8) to make the latter finite. After suitable regularization, A = 0.

The string being incident on the boundary curve γ imposes the Dirichlet boundary
conditions

z(0, t) = 0, x(0, t) = α(t), (2.10)

for the longitudinal modes and

y(0, t) = ỹ(α(t)), (2.11)

for the tranverse mode. Here, α(t) represents a general reparametrization of the boundary
curve (i.e., a one-to-one map on R, which we take to be positively oriented, α̇ > 0). Unlike
in the static gauge, in the conformal gauge the boundary reparametrization is dynamical.
This is necessary because the worldsheet coordinate transformation that puts the auxiliary
metric into the conformal form will in general act non-trivially on the boundary (see for
instance [37, 40, 41]).

A nice feature of the conformal gauge is that the longitudinal and transverse actions
in (2.7) are decoupled. The longitudinal and transverse modes are only coupled through
the reparametrization mode α(t) that appears in the boundary conditions and through the
Virasoro constraint. This means that in the classical approximation we can proceed as follows:
first, solve the equations of motion for x and z and determine the longitudinal action as a
function of α(t); second, solve the equation of motion for y and determine the transverse
action as a function of ỹ(α(t)); and, third, fix α(t) by imposing the Virasoro constraint. This
can be summarized by writing the classical action as:

Scl[ỹ] = SL[α(t)] + ST [ỹ(α(t))]
∣∣∣∣
Virasoro

, (2.12)

where

ST [ỹ(α(t))] =
Ts

2

∫
d2σ∂αy∂αy

∣∣∣∣ extremize y
y(0,t)=ỹ(α(t))

, (2.13)
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is the “on-shell” transverse action and

SL[α] =
Ts

2

∫
d2σ

[
∂αx∂αx + ∂αz∂αz

z2
− 2

s2

] ∣∣∣∣ extremize z,x
z(0,t)=0, x(0,t)=α(t)

(2.14)

is the “on-shell” longitudinal action, both of which we have expressed in terms of classical
boundary value problems. Meanwhile, the Virasoro constraint is simply the equation of
motion for the metric in (2.5), which imposes that the total stress tensor — the sum of the
longitudinal and the transverse stress tensors — on the worldsheet is zero. As reviewed in [32],
imposing the Virasoro constraint is also equivalent to extremizing over the reparametrization
mode α. Thus, another way to write (2.12) is

Scl[ỹ] = SL[α(t)] + ST [ỹ(α(t))]
∣∣∣∣
extremize α

. (2.15)

As a final step, we promote the string partition function in (2.2) to a path integral over
boundary reparametrizations:

Z[ỹ] =
∫

Dαe−SL[α(t)]−ST [ỹ(α(t))]. (2.16)

For the purposes of this paper, writing the partition function in this way is simply a convenient,
aesthetic way to package the classical analysis in the conformal gauge. This is because we will
work exclusively in the saddle point approximation to the path integral, in which case (2.16)
reduces to (2.2) together with (2.15).1

In order to compute boundary correlators using (2.16), we need to determine the on-
shell transverse and longitudinal actions. The transverse action is simple because y is a
free massless scalar field on AdS2. Classically, it satisfies the equation of motion ∂2y = 0
with the boundary condition in eq. (2.11), whose solution for y(s, t) can be expressed using
the boundary-to-bulk propagator, K(s, t, t′) = 1

π
s

s2+(t−t′)2 . The action in (2.13) takes the
following closed form (see, e.g., [32]):

ST [ỹ(α(t))] = −Ts

2 lim
s→0

∫
dt1dt2∂sK(s, t1, t2)ỹ(α(t1))ỹ(α(t2))

= −Ts

2π

∫
dtdt′

ỹ(α(t))ỹ(α(t′))
|t − t′|2+η

= Ts

4π

∫
dtdt′

(ỹ(α(t))− ỹ(α(t′)))2

(t − t′)2 . (2.17)

We have given two expressions for the transverse action in the second line. The first is defined
via analytic continuation in the exponent η → 0, and is more practical for many purposes.
The second is manifestly finite. We can get from one to the other using integration by parts
and the identity

∫
dt|t|−2−η = 0 in analytic regularization. This and other integrals we will

use throughout the paper are collected in appendix C.
Meanwhile, the longitudinal modes x, z satisfy non-linear equations of motion. It would

be interesting to find a closed-form expression for the longitudinal action for arbitrary α

(although it may be that (2.14) is its most explicit representation). Instead, we will work
perturbatively in section 3 and derive explicit expressions for the action at quadratic and
cubic order in small fluctuations about the saddle point α(t) = t. This will be sufficient to
compute the tree-level six-point functions, as we will see in section 4.

1An important question is whether the reparametrization path integral can be defined precisely and
computed beyond the saddle point approximation.
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2.2 Correlators in the reparametrization path integral

We now recall how the boundary correlators defined in (2.3) are expressed in terms of the
reparametrization path integral in (2.16). The function ỹ specifying the boundary curve only
appears in the reparametrization path integral through the transverse action, ST . To take
variational derivatives, it is useful to change the integration variables in (2.17) from t and t′

to x = α(t) and x′ = α(t′), so that the transverse action becomes:

ST [ỹ(α(t))] = −Ts

2π

∫
dxdx′ β̇(x)β̇(x′)

|β(x)− β(x′)|2+η
ỹ(x)ỹ(x′), (2.18)

where β is the inverse of α (i.e., α(β(x)) = x and β(α(t)) = t). Thus, for instance, taking
two variational derivatives of the transverse action yields:

− δ2ST

δỹ(x1)δỹ(x2)
= Ts

π
B(x1, x2), (2.19)

where we have introduced the following bi-local object:

B(x1, x2) =
β̇(x1)β̇(x2)

(β(x1)− β(x2))2
. (2.20)

This object, which is familiar from Schwarzian quantum mechanics (see e.g., [33, 42]), is
a conformal two-point function of scaling dimension ∆ = 1 “dressed” by the boundary
reparametrization mode. From (2.3), (2.16) and (2.19), it follows that, for example, the two-
and four-point boundary correlators are expressed in the language of the reparametrization
integral as:

⟨y(x1)y(x2)⟩ =
Ts

π

1
Z

∫
Dαe−SL[α]B(x1, x2), (2.21)

⟨y(x1)y(x2)y(x3)y(x4)⟩ =
T 2

s

π2
1
Z

∫
Dαe−SL[α]

[
B(x1, x2)B(x3, x4) + B(x1, x3)B(x2, x4)

+ B(x1, x4)B(x2, x3)
]

, (2.22)

and similarly for higher-point functions. We see that the longitudinal action plays the role of
an effective action for the boundary reparametrization mode, and will therefore use the terms
“longitudinal action” and “reparametrization action” interchangeably. We should also note
that we can equivalently identify either α or β ≡ α−1 as the boundary reparametrization
mode that is integrated over in the path integral. If we work with α, then its inverse α−1

appears in the dressed two-point function B(x1, x2) in (2.20). If we work with β, then its
inverse β−1 appears in the longitudinal action in (2.14). In section 6 of [32], we found it
convenient to switch from α to β in the reparametrization path integral in order to make
the comparison with the Schwarzian theory more direct, but in the present paper we will
continue working with α.

Instead of studying the correlators of the y operators directly, it is convenient as a
book-keeping trick to introduce the “fictitious” operators U , V , W with conformal dimensions

– 7 –
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∆U = ∆V = ∆W = 1, whose two-, four-, and six-point functions we define to be:2

⟨U(x1)U(x2)⟩ =
1
Z

∫
Dαe−SL[α]B(x1, x2) (2.23)

⟨U(x1)U(x2)V (x3)V (x4)⟩ =
1
Z

∫
Dαe−SL[α]B(x1, x2)B(x3, x4) (2.24)

⟨U(x1)U(x2)V (x3)V (x4)W (x5)W (x6)⟩ =
1
Z

∫
Dαe−SL[α]B(x1, x2)B(x3, x4)B(x5, x6)

(2.25)

The advantage of working with U , V and W is that, because we can consider distinct pairs of
operators in the correlators, it reduces the number of terms in expressions for the correlators.
(We have also absorbed the factor Ts

π appearing in the transverse action in (2.18) into the
operators.) We can always translate the U , V , and W correlators back to correlators for
the transverse direction y by permuting over the external points. For example, for the
six-point function,

⟨y(x1)y(x2)y(x3)y(x4)y(x5)y(x6)⟩ =
T 3

s

π3

[
⟨U(x1)U(x2)V (x3)V (x4)W (x5)W (x6)⟩

+ 14 more permutations
]
. (2.26)

In addition, we are going to focus on the leading (i.e., tree-level) contribution to the connected
part of the six-point function, ⟨UUV V WW ⟩c, which is related to the full six-point function by:

⟨U1U2V3V4W5W6⟩ = ⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩+ ⟨U1U2W5W6⟩c⟨V3V4⟩+ ⟨V3V4W5W6⟩c⟨U1U2⟩
+ ⟨U1U2V3V4⟩c⟨W5W6⟩+ ⟨U1U2V3V4W5W6⟩c, (2.27)

where Un ≡ U(xn), etc. Finally, one lesson of [32] worth reviewing is that the AdS2 string in
conformal gauge has two SL(2,R) symmetries, which have different implications for computing
correlators via the reparametrization path integral. Let f(t) = at+b

ct+d with a, b, c, d ∈ R and
ad− bc = 1 denote a general SL(2,R) transformation. The first SL(2,R) symmetry arises due
to the isometries of AdS2, acts on the target space coordinates x and z as x+ iz → f(x+ iz),
and is physical — meaning that it gives rise to Ward identities for the correlators. The second
SL(2,R) symmetry arises due to the residual transformations of the worldsheet coordinates
that leave the auxiliary metric invariant up to a Weyl rescaling, acts on the worldsheet
coordinates t and s as t + is → f(t + is) and is gauged— meaning that it needs to be gauge
fixed when we integrate over reparametrizations.

More concretely, the action of the physical SL(2,R) symmetry on the reparametriza-
tion mode and its inverse is α(t) → f(α(t)), β(x) → β(f−1(x)), and the action of the
gauged SL(2,R) symmetry is α(t) → α(f(t)), β(x) → f−1(β(x)). The reparametriza-
tion action in (2.14) is invariant under both transformations. The dressed two-point

2The correlators in (2.23)–(2.25) can arise in the path integral in (2.16) if we let the transverse action
be equal to the sum of three effective actions for three independent modes U , V and W : ST [ỹ(α(t)] →
π

Ts
[ST [ũ(α(t))] + ST [ṽ(α(t))] + ST [w̃(α(t))]]. Then U , V , and W are inserted in the correlators by taking

variational derivatives with respect to ũ, ṽ and w̃, respectively. These effective actions for the three modes
would arise, for instance, if we studied the open string in AdS2 × S1 × S1 × S1.
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function in (2.20) (and the transverse action in (2.18)) is also invariant under the gauge
SL(2,R) transformation, while under the physical SL(2,R) it transforms covariantly as
B(x1, x2) → ḟ−1(x1)ḟ−1(x2)B(f−1(x1), f−1(x2)). This property implies the Ward identity

⟨y(x1)y(x2) . . . y(xn)⟩ = ḟ(x1) . . . ḟ(xn)⟨y(f(x1))y(f(x2)) . . . y(f(xn))⟩, (2.28)

which is consistent with the interpretation of these correlators as defining a 1d defect CFT. The
Ward identity fixes the form of two- and three-point functions, the four-point functions up to a
function of a single cross ratio, and the six-point function up to a function of three cross ratios.

2.3 Mapping between the line and circle

In our discussion of the AdS2 string thus far, we have used Poincaré half-plane coordinates x

and z on the AdS2 target space and t and s on the string worldsheet (see (2.1) and (2.6)),
and have viewed the boundary of the string as the line, R. We can equivalently use Poincaré
disk coordinates r ∈ [0,∞) and θ ∈ [0, 2π] on the AdS2 target space so that the target
space metric is

ds2 = dr2 + dθ2

sinh2 r
+ dy2, (2.29)

and disk coordinates σ ∈ [0,∞) and τ ∈ [0, 2π] on the worldsheet so that the auxiliary
metric is:

hαβdσαdσβ = dσ2 + dτ2

sinh2 σ
. (2.30)

In these coordinates, we view the boundary of the string as the circle, S1.
Everything that we do on the half-plane can be repeated on the disk, but the actions

and correlators on the disk can also be deduced from those on the half-plane by using a
coordinate transformation to map the half-plane to the disk on both the target space and
the worldsheet. This is achieved by the pair of transformations:

e−σ+iτ = − t + i(s − 1)
t + i(s + 1) , e−r+iθ = −x + i(z − 1)

x + i(z + 1) . (2.31)

In particular, when restricted to the boundary this identifies

t = tan τ

2 , x = tan θ

2 . (2.32)

If α(t) and β(x) are the reparametrization mode and its inverse on the line, and α̃(τ) and
β̃(θ) are the reparametrization mode and its inverse on the circle, then they are related by

α(t) = tan
(

α̃(τ)
2

)
, β(x) = tan

(
β̃(θ)
2

)
. (2.33)

It follows then that the reparametrization actions on the line and circle satisfy

Scircle
L [α̃(τ)] = Sline

L [α(t)], (2.34)

and the dressed two-point functions satisfy

Bcircle(θ1, θ2) =
dx1
dθ1

dx2
dθ2

Bline(x1, x2) =
˙̃β(θ1) ˙̃β(θ2)[

2 sin
(

β̃(θ1)−β̃(θ2)
2

)]2 . (2.35)
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(The dx
dθ prefactors are the usual conformal factors for operators with dimension ∆ = 1;

alternatively, they come from changing integration variables from x to θ in (2.18)). Finally, if
the correlators on the circle are defined in analogy with (2.3) by taking variational derivatives
of the string partition function with respect to ỹ(τ) instead of ỹ(t), which inserts copies of
Bcircle instead of Bline, then the correlators on the circle and line satisfy

⟨y(θ1) . . . y(θn)⟩circle =
dx1
dθ1

. . .
dxn

dθn
⟨y(x1), . . . y(xn)⟩line. (2.36)

Translating between correlators on the line and circle then reduces to interchanging euclidean
and chordal distances: x12 ↔ sin θ12

2 .

3 Reparametrization action

In this section, we study the on-shell longitudinal action in detail. We begin by noting the
classical equations of motion for the longitudinal modes that follow from (2.14):

0 = z(ẍ + x′′)− 2(żẋ + z′x′), 0 = z(z̈ + z′′) + (ẋ2 + x′2)− (ż2 + z′
2). (3.1)

Here, ḟ ≡ ∂tf and f ′ ≡ ∂sf . The equations of motion are supplemented by the boundary
conditions in (2.10).

We do not know the general solution to (3.1). However, one family of solutions, which
includes the saddle point of the reparametrization path integral about which we will consider
small fluctuations in our perturbative analysis, consists of SL(2,R) transformations on the
upper half plane:

x(s, t) + iz(s, t) = a(t + is) + b

c(t + is) + d
, (3.2)

where a, b, c, d ∈ R and ad − bc = 1. These satisfy the boundary conditions with the
reparametrization mode given by:

α(t) = at + b

ct + d
, (3.3)

which is an SL(2,R) transformation on the line. These solutions are the saddle points
of (2.16) because extremizing over α in (2.15) without transverse modes (i.e., with ỹ = 0)
imposes the Virasoro constraint on only the longitudinal modes. As explained in [32], the
longitudinal stress tensor being zero forces x + iz to be a holomorphic function of t + is,
which, combined with the requirement that the function be invertible, implies that it is
an SL(2,R) transformation.

It is also useful to note the behavior of x and z near the boundary for a general α(t):

x(s, t) = α(t)− α̈(t)
2 s2 + O(s3), z(s, t) = α̇(t) + O(s3) (3.4)

As explained in [36, 43], this follows from (3.1) after expanding z(s, t) and x(s, t) as series
in s. As shown in [32], one consequence of (3.4) is that the on-shell longitudinal action
in (2.14) is finite.
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Now we proceed to the perturbative analysis about the saddle point. We will expand
around the solution α(t) = t, x(s, t) = t, z(s, t) = s, which corresponds to the gauge choice
a = d = 1 and b = c = 0 in (3.3). (This choice gives rise to three SL(2,R) zero modes
that we will have to handle appropriately in the path integral later.) Thus, we write the
boundary reparametrization as

α(t) = t + λϵ(t), (3.5)

where ϵ(t) is an arbitrary function on the real line that vanishes sufficiently quickly as
t → ±∞, and λ is a small book-keeping parameter. We then expand the longitudinal
modes in powers of λ,

x(s, t) = t + λx1(s, t) + λ2x2(s, t) + . . . , (3.6)
z(s, t) = s + λz1(s, t) + λ2z2(s, t) + . . . , (3.7)

and also expand the Lagrangian of the reparametrization action in (2.8) in powers of λ:

L= ∂βx∂βx+∂βz∂βz

2z2
− 1

s2
=λL1+λ2L2+. . .︸ ︷︷ ︸

≈0 by e.o.m.

+λ2L12+λ3 (L13+L1,2)+. . . (3.8)

Here, the notation L1a,2b,... denotes the part of the Lagrangian that is of ath order in x1 and
z1, bth order in x2 and z2, etc. As noted in (3.8), the contributions of L1, L2, etc. to the
action are zero by the equations of motion because they represent first order variations about
the saddle point. Thus, the expansion of the longitudinal action is given by:

SL[t + λϵ(t)] = λ2SL,2[ϵ] + λ3SL,3[ϵ] + . . . , (3.9)

where

SL,2[ϵ] = Ts

∫
dsdtL12 , (3.10)

SL,3[ϵ] = Ts

∫
dsdt(L13 + L1,2), (3.11)

and so on. For our analysis of the tree-level six-point functions, it is sufficient to determine
the action to cubic order in λ. The explicit expressions for contributions to the Lagrangian
that we will need are:

L12 =−2z1z
′
1

s3
+3z21

s4
− 2z1ẋ1

s3
+ ẋ2

1+x′
1
2+ż21+z′1

2

2s2
, (3.12)

L13 =−4z31
s5

+3z21 ẋ1
s4

− z1ẋ
2
1

s3
− z1ż

2
1

s3
− z1x

′
1
2

s3
+3z21z′1

s4
− z1z

′
1
2

s3
, (3.13)

L1,2=
6z1z2

s4
− 2z2z

′
1

s3
− 2z1z

′
2

s3
− 2z2ẋ1

s3
− 2z1ẋ2

s3
+ 1

s2
(
ẋ1ẋ2+ż1ż2+x′

1x
′
2+z′1z

′
2
)
. (3.14)

We also note that the boundary condition in (2.10) perturbatively becomes x1(0, t) = ϵ(t),
z1(0, t) = 0 at first order and xn(0, t) = zn(0, t) = 0 for n ≥ 2, and the general behavior
near the boundary in (3.4) becomes

x1(s, t) = ϵ(t)− ϵ̈(t)
2 s2 + O(s3), z1(s, t) = ϵ̇(t)s + O(s3), (3.15)
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at first order and

xn(s, t) = O(s3), zn(s, t) = O(s3), (3.16)

for n ≥ 2.
This completes the set-up of the perturbative analysis. Now we carry out the details,

starting by finding the longitudinal modes to linear order and the longitudinal action to
quadratic order, which was worked out in [32]. The equations of motion in (3.1) at first
order are

0 = s(ẍ1 + x′′
1)− 2(x′

1 + ż1), 0 = s(z̈1 + z′′1 ) + 2(ẋ1 − z′1), (3.17)

with the boundary conditions x1(0, t) = ϵ(t), z1(0, t) = 0. These can be solved using
“boundary-to-bulk” propagators for x and z:

x1(s, t) =
∫

dt′Kx(s, t, t′)ϵ(t′), z1(s, t) =
∫

dt′Kz(s, t, t′)ϵ(t′), (3.18)

where

Kx(s, t, t′) = 4
π

s3(s2 − (t − t′)2)
(s2 + (t − t′)2)3 , Kz(s, t, t′) = − 8

π

s4(t − t′)
(s2 + (t − t′)2)3 . (3.19)

These propagators solve (3.17), become sharply peaked at t = t′ as s → 0, and satisfy∫
dt′Kx(s, t, t′) = 1 and

∫
dt′Kz(s, t, t′) = 0 for any s. Finally, the quadratic Lagrangian

in (3.12) can be written as a sum of total derivatives which means the quadratic action
reduces to an integral over the boundary at s = 0, whose finiteness is guaranteed by the
behavior in (3.15). The explicit expression for the action takes the following bi-local form [32]
(see also [36–38]):

SL,2[ϵ] = −Ts

4 lim
s→0

∫
dt1dt2∂

3
s Kx(s, t1, t2)ϵ(t1)ϵ(t2)

= 6Ts

π

∫
dt1dt2

ϵ(t1)ϵ(t2)
|t12|4+η

= Ts

2π

∫
dt1dt2

(ϵ̇(t1)− ϵ̇(t2))2

t212
. (3.20)

To get from the first to second line we used ∂3
s Kx(0, t1, t2) = −24

π
1

t4
12

and exchanged the s → 0
regulator for the more convenient analytic regulator η → 0. In the second line, we give both
the analytically regularized expression and a manifestly finite expression for the action. The
quadratic action also takes a simple form in Fourier space. Writing

ϵ(t) =
∫

dω

2π
e−iωtϵ(ω), (3.21)

and applying the identity in (C.2) in appendix C yields:

SL,2[ϵ] =
Ts

2π

∫
dωϵ(ω)ϵ(−ω)|ω|3. (3.22)

Next, we turn to the cubic order action in (3.11). A nice simplification of the analysis
is that we do not need to solve for x2 and z2 because the integral of L1,2 — the only term
in the cubic order Lagrangian that contains x2 and z2 — is zero:∫

dsdtL1,2 = 0. (3.23)
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To see this, we note that eq. (3.14) can be rewritten as:

L1,2 = −2∂s

(
z1z2
s3

)
− 2∂t

(
z1x2
s3

)
+ ∂t

(
ẋ1x2 + ż1z2

s2

)
+ ∂s

(
x′
1x2 + z′1z2

s2

)
− z2

s3
(
s(z̈1 + z′′1 ) + 2ẋ1 − 2z′1

)
+ x2

s3
(
s(ẍ1 + x′′

1)− 2ż1 − 2x′
1
)

. (3.24)

The total derivative terms in the first line in (3.24) all individually integrate to zero. In
particular, there are no contributions from the boundary at s = 0 because x2 and z2 vanish
sufficiently quickly near the boundary as guaranteed by (3.15)–(3.16). Meanwhile, the second
line in (3.24) vanishes due to the first order equations of motion in (3.17). Eq. (3.23)
therefore follows.3

Thus, the cubic action only receives contributions from the first term in (3.11), which
is a function of only x1 and z1, whose explicit expressions are given in (3.18). One way
to try to derive an explicit expression for the cubic action in terms of ϵ(t) would be to
substitute the integral expressions in (3.18) into (3.13) and then integrate over the worldsheet
coordinates s and t, which would ostensibly give rise to a tri-local form for the cubic action
that involves three integrations over the boundary. However, this is not straightforward to
implement because of subtleties with interchanging the worldsheet and boundary integrals.
Instead, we will work in Fourier space, and will end up finding a bi-local expression for
the cubic action in position space.

We begin by noting the Fourier transforms of the x and z boundary-to-bulk propagators:∫
dt′Kx(s, t, t′)e−iωt′ = e−iωt−|ω|s(1 + s|ω|+ s2ω2), (3.25)∫
dt′Kz(s, t, t′)e−iωt′ = −ie−iωt−|ω|ssω(1 + s|ω|). (3.26)

Then, for example, the contribution of the first term in (3.13) to the cubic action is:

SL,3[ϵ] ∋ −4
∫

dsdt
z31
s5

= −4
∫

dsdt

s5

∫ 3∏
i=1

(
dtiKz(s, t, ti)ϵ(ti)

)

= −4
∫ 3∏

i=1

(
dωi

2π
ϵ(ωi)

)∫
dsdt

s5

∫ 3∏
j=1

(
dtje−iωjtj Kz(s, t, tj)

)

= −4i

∫ 3∏
i=1

(
dωi

2π
ϵ(ωi)

)
2πδ(ω1 + ω2 + ω3)

∫
ds

s2

3∏
j=1

(
e−|ωi|sωi(1 + s|ωi|)

)
. (3.27)

To get to the second line, we used (3.21) and interchanged the order of integration. To get to
the third line, we first evaluated the ti integrals using (3.26) and then the t integral to get the
energy-conserving delta function. Although the remaining integral over s is divergent near
s = 0, we know that the reparametrization action is finite (see the comment below (3.4)).
Indeed, once we apply the same steps as in (3.27) to all of the terms in (3.13) and sum
up their contributions, the integral over s is finite. The final result for the cubic order

3At higher orders, the same reasoning implies that
∫

dsdtL1,n = 0 for n ≥ 3 and therefore we only need to
solve for x1, x2, . . . xn−1 and z1, z2, . . . zn−1 to determine the reparametrization action to order λn+1.
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action ultimately simplifies to:

SL,3[ϵ] = Ts

∫
dsdtL13 = Ts

∫
dω1dω2dω3ϵ(ω1)ϵ(ω2)ϵ(ω3)f(ω1, ω2, ω3)2πδ(ω1 + ω2 + ω3),

(3.28)

where

f(ω1, ω2, ω3) = − i

48π3

(
sgn(ω1)ω4

1 + sgn(ω2)ω4
2 + sgn(ω3)ω4

3

)
. (3.29)

Here, sgn(x) = 1 if x > 0 and −1 if x < 0. Using the delta function to evaluate one of
the ω integrals, this can also be written as

SL,3[ϵ] =
iTs

8π2

∫
dω1dω2ϵ(ω1)ϵ(ω2)ϵ(−ω1 − ω2)|ω1 + ω2|4sgn(ω1 + ω2). (3.30)

Given the cubic action in Fourier space, it is also possible to deduce its form in po-
sition space:

SL,3[ϵ] = −12Ts

π

∫
dt1dt2

ϵ(t1)2ϵ(t2)
|t12|4+ηt12

. (3.31)

To check this, we write ϵ(t) in Fourier space as in (3.21) and evaluate the integral over
t12 using (C.3), in which case (3.31) reproduces (3.30). Finally, integrating (3.31) by parts
three times, we can also write the cubic action in position space in the following manifestly
finite form:

SL,3[ϵ] = −Ts

4π

∫
dt1dt2

(ϵ(t1)2 − ϵ(t2)2)(
...
ϵ (t1)−

...
ϵ (t2))

t212
. (3.32)

From (3.20) and (3.31), we see that the longitudinal action is bilocal both at quadratic
and cubic order. In appendix B we show that one can write an (essentially unique) action
for α that is non-perturbatively bilocal and has the SL(2,R)× SL(2,R) symmetry required
for the longitudinal action. It is interesting to note that that action, given in eq. (B.1),
reproduces (3.20) and (3.31) when expanded in ϵ to cubic order. However, we believe that
the bilocal action in (B.1) is not the same as the longitudinal action of the AdS2 string and
that the two differ in the expansion in ϵ starting at fourth order.4

Reparametrization action on the circle We could (and did) repeat the above analysis
to determine the reparametrization action on the circle, but it is simpler to deduce it from
the reparametrization action on the line using (2.33)–(2.35). First, from (2.32), we see that
expanding around α(t) = t on the line corresponds to expanding around α(τ) = τ on the
circle. If α(t) = t + ϵ(t) and α(τ) = τ + ϵ̃(τ), then ϵ(t) and ϵ̃(τ) are related by:

ϵ(t)= ϵ̃(τ)
2cos

(
τ
2
)2+sin

(
τ
2
)
ϵ̃(τ)2

4cos
(

τ
2
)3 +O(ϵ̃3), ϵ̃(τ)= 2ϵ(t)

1+t2
− 2tϵ(t)2

(1+t2)2+O(ϵ3). (3.33)

4As evidence, it is relatively straightforward to find explicit solutions to the longitudinal equations of
motion in (3.1) for certain specific choices of ϵ(t) (e.g., ϵ(t) = λ/(1 + t2), ϵ(t) = λt/(1 + t2)) up to at least
third order in λ. Thus, for these values of ϵ(t), one can evaluate the on-shell longitudinal action up to fourth
order in λ by substituting the perturbative solutions into (2.8). The result can be compared with the result
for the bilocal action in (B.1), and they are found to differ at fourth order. This seems to imply that the
longitudinal action is not bilocal at higher orders.
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Substituting this into (3.20) and (3.31), it follows from (2.34) that the reparametrization
action on the circle to cubic order is given by:

SL = SL,2 + SL,3 + O(ϵ̃4), (3.34)

where

SL,2 =
6Ts

π

∫ π

−π
dτ1dτ2

ϵ̃(τ1)ϵ̃(τ2)
|2 sin

( τ1−τ2
2
)
|4+η

, (3.35)

SL,3 = −12Ts

π

∫ π

−π
dτ1dτ2

sin(τ1 − τ2)ϵ̃(τ1)2ϵ̃(τ2)
|2 sin

( τ1−τ2
2
)
|6+η

. (3.36)

Using integration by parts and the identity
∫

dτ | sin τ
2 |

−2+η → 0 as η → 0, we can also write
the quadratic and cubic terms in manifestly finite form as follows:

SL,2 =
Ts

2π

∫ π

−π
dτ1dτ2

(ϵ̇(τ1)− ϵ̇(τ2))2 − (ϵ̃(τ1)− ϵ̃(τ2))2[
2 sin

( τ1−τ2
2
)]2 , (3.37)

SL,3 = −Ts

4π

∫ π

−π
dτ1dτ2

( ...
ϵ (τ1)−

...
ϵ (τ2))(ϵ̃(τ1)2 − ϵ̃(τ2)2) + (ϵ̇(τ1)− ϵ̇(τ2))(ϵ̃(τ1)2 − ϵ̃(τ2)2)[

2 sin
( τ1−τ2

2
)]2 .

(3.38)

Finally, we can also write the reparametrization action in terms of its Fourier modes by
substituting ϵ̃(τ) =

∑
n ϵ̃ne−inτ into (3.35) and (3.36) and evaluating the τ1 and τ2 integrals

using (C.5). The result is:

SL,2=2πTs

∑
n∈Z

|n|(n2−1)ϵ̃nϵ̃−n, SL,3=−iπTs

∑
n,m∈Z

ϵ̃mϵ̃nϵ̃psgn(p)p2(p2−1), (3.39)

where p = −m − n in the cubic term.

4 Connected six-point function

In this section, we will compute the connected contribution to the tree-level six point function
by expanding about the saddle point of the reparametrization path integral. To proceed,
we let α(t) = t + ϵ(t) in (2.25), expand in powers of ϵ(t), and keep the leading diagrams in
which the three pairs U1U2, V3V4 and W5W6 are fully connected.

We need the expansion in powers of ϵ of both the action and the dressed two-point
function. The expansion of the action at the quadratic and cubic order was worked out in
the previous section. The quadratic action determines the propagator for ϵ and the cubic
action defines an interaction vertex. We use the ϵ propagator to perform Wick contractions
between the ϵ’s appearing in the dressed two-point function and in the cubic interaction
vertex. We will denote correlators that are weighted only by the quadratic action in the
reparametrization path integral as follows:

⟨. . .⟩0 ≡
1
Z

∫
Dϵe−SL,2[ϵ] (. . .) . (4.1)
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From (3.22), it follows that the ϵ propagator in Fourier space is:

⟨ϵ(ω1)ϵ(ω2)⟩0 =
π

Ts

1
|ω1|3

δ(ω1 + ω2), (4.2)

which in position space becomes:

⟨ϵ(t1)ϵ(t2)⟩0 =
1

4πTs

∫
dω

e−iωt12

|ω|3
. (4.3)

This integral diverges at ω = 0, which reflects fact that the reparametrization action has
three gauge SL(2,R) zero modes, ϵ(t) = 1, t, t2, which we should not be integrating over in
the reparametrization path integral. The zero modes can be more carefully gauge fixed on the
circle, where the perturbation about the saddle point, ϵ(t), can be written as a discrete sum
of Fourier modes and the gauge zero modes can be cleanly isolated from the physical modes.
On the line, we handle the zero modes more pragmatically. We analytically regulate (4.3) by
replacing 3 → 3 + η, in which case we can evaluate the integral using (C.2) and then expand
in η. Keeping only the divergent and finite terms as η → 0, we find [32]

⟨ϵ(t1)ϵ(t2)⟩0 =
1
Ts

[
a + bt212 +

1
8π

t212 log(t212)
]

. (4.4)

Here, a = 0 and b = 1
4π (

1
η − 3

2 + γE). These coefficients are gauge/regularization dependent,
but they drop out in the computation of any gauge SL(2,R) invariant observable.

Next, we need the expansion of the dressed two-point function in (2.20). Recall that
β(x) is the inverse of α(t) = t + ϵ(t). Thus, when ϵ is small, the inverse has the expansion
β(x) = x − ϵ(x) + ϵ(x)ϵ̇(x) + O(ϵ3). It follows that the dressed two-point function (which we
normalize for convenience by the two-point function without dressing, 1/x2

12),

B(x1, x2) ≡ x2
12B(x1, x2), (4.5)

has the following expansion:

B(x1, x2) = 1 + B1(x1, x1) + B2(x1, x2) + O(ϵ3), (4.6)

where

B1(x1, x2) = −ϵ̇1 − ϵ̇2 +
2ϵ12
x12

, (4.7)

B2(x1, x2) =
3

x2
12

ϵ212 +
2

x12
(−2ϵ1ϵ̇1 + 2ϵ2ϵ̇2 + ϵ̇1ϵ2 − ϵ̇2ϵ1) + ϵ̇21 + ϵ̇22 + ϵ̇1ϵ̇2 + ϵ̈1ϵ1 + ϵ̈2ϵ2.

(4.8)
Here, we use the shorthand ϵi ≡ ϵ(xi) and ϵij ≡ ϵ(xi) − ϵ(xj).

The expansion of the dressed two-point functions and the interaction terms in the
reparametrization action in (2.25) gives the following contributions to the connected tree-level
six-point function:

⟨U1U2V3V4W5W6⟩c
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= ⟨B(x1, x2)B(x3, x4)B(x5, x6)e−SL,3+...⟩0, c

=
〈
(1 + B1(x1, x2) + B2(x1, x2) + . . .)(1 + B1(x3, x4) + B2(x3, x4) + . . .)

× (1 + B1(x5, x6) + B2(x5, x6) + . . .)(1− SL,3 + . . .)
〉
0,c

(4.9)

= ⟨B2(x1, x2)B1(x3, x4)B1(x5, x6)⟩0,c + (U ↔ V ) + (U ↔ W )
− ⟨B1(x1, x2)B1(x3, x4)B1(x5, x6)SL,3⟩0,c. (4.10)

– 16 –



J
H
E
P
0
8
(
2
0
2
4
)
1
9
6

(a) (b)

Figure 1. There are two general classes of reparametrization diagrams contributing to the connected
six point function. (a) In the first class, the reparametrization mode propagators connect the three
dressed two-point functions without interacting. (b) In the second class, the reparametrization
propagators connect the three dressed two-point functions to a three-point interaction vertex. Each
propagator brings a factor of 1/Ts and each (blue) interaction vertex brings a factor of Ts, so both
classes of diagrams are of order 1/T 2

s .

In getting from (4.9) to (4.10), we kept only the leading contributions in 1/Ts in which
the three pairs of points, x1, x2, x3, x4 and x5, x6, are fully connected. In particular, in the
first line of (4.10) the subscript “c” indicates that we sum over all Wick contractions in
which one of the two ϵ’s in each term in B2(x1, x2) is contracted with the ϵ’s in each term
in B1(x3, x4), and the other ϵ in each term in B2(x1, x2) is contracted with the ϵ’s in each
term in B1(x5, x6). In other words, we do not include self-contractions between the ϵ’s in
B2(x1, x2), since these would contribute to the disconnected part of the six-point function.
Similarly, in the second line of (4.10), the subscript “c” indicates that we sum over all Wick
contractions in which the three ϵ’s in SL,3 are each contracted with the ϵ’s in B1(x1, x2),
B1(x3, x4), and B(x5, x6). Namely, we do not include self-contractions between the ϵ’s in
SL,3. Thus, there are two types of contributions to the connected six-point function, the first
of which involves only contractions using the propagator in (4.4) while the second of which
also involves one three-point interaction of the reparametrization mode. The two classes of
diagrams contributing to the leading connected six-point function are summarized in figure 1.

In the second class of diagrams, the basic object we need to compute is the three-point
contact diagram with three external ϵ’s. It is convenient to evaluate it in Fourier space:

⟨ϵ(x1)ϵ(x2)ϵ(x3)SL,3⟩0,c =
∫

dωa

2π

dωb

2π

dωc

2π
e−iωax1−iωbx2−iωcx3⟨ϵ(ωa)ϵ(ωb)ϵ(ωc)SL,3⟩0,c. (4.11)

Given the cubic action in (3.30) and given the ϵ propagator in (4.2), it follows that

⟨ϵ(ωa)ϵ(ωb)ϵ(ωc)SL,3⟩0,c =
iTs

4π2

∫
dω1dω2|ω1+ω2|4sgn(ω1+ω2) (4.12)

×[⟨ϵ(ωa)ϵ(ω1)⟩0⟨ϵ(ωb)ϵ(ω2)⟩0⟨ϵ(ωc)ϵ(−ω1−ω2)⟩0+(a↔ c)+(b↔ c)]

= iπ

4T 2
s

∫
dω1dω2

ω1+ω2

|ω1|3|ω2|3
[
δ(ωa+ω1)δ(ωb+ω2)δ(ωc−ω1−ω2)

+(a↔ c)+(b↔ c)
]

(4.13)
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Using the δ-functions to evaluate the integrals over ωa, ωb and ωc, (4.11) becomes:

⟨ϵ(x1)ϵ(x2)ϵ(x3)SL,3⟩0,c =
i

32π2T 2
s

∫
dω1dω2

ω1+ω2
|ω1|3|ω2|3

[
e−iω1x31−iω2x32+(1↔ 3)+(2↔ 3)

]
=−1

2∂3 [⟨ϵ(x1)ϵ(x3)⟩0⟨ϵ(x2)ϵ(x3)⟩0]+(1↔ 3)+(2↔ 3). (4.14)

We observe that the three-point contact diagram “factorizes” in terms of the propagator
in (4.3).5

Next, we want to combine the diagrams containing a cubic interaction together with
the diagrams without a cubic interaction (i.e., the second line of eq. (4.10) together with
the first line). First, we note that

∂3 [⟨ϵ(x1)ϵ(x3)⟩0⟨ϵ(x2)ϵ(x3)⟩0] = ⟨ϵ(x1)ϵ̇(x3)⟩0⟨ϵ(x2)ϵ(x3)⟩0 + ⟨ϵ(x1)ϵ(x3)⟩0⟨ϵ(x2)ϵ̇(x3)⟩0
= ⟨ϵ(x1)ϵ(x2)ϵ(x3)ϵ̇(x3)⟩0,c (4.15)

where in the second line the subscript “c” indicates, as in eq. (4.10), that only those Wick
contractions are included in which the three points x1, x2 and x3 are fully connected;
self-contractions at the same point are excluded. This lets us write (4.14) as

⟨ϵ(x1)ϵ(x2)ϵ(x3)SL,3⟩0,c = − 1
2⟨ϵ(x1)ϵ̇(x1)ϵ(x2)ϵ(x3)⟩0,c −

1
2⟨ϵ(x1)ϵ(x2)ϵ̇(x2)ϵ(x3)⟩0,c

− 1
2⟨ϵ(x1)ϵ(x2)ϵ(x3)ϵ̇(x3)⟩0,c. (4.16)

We see that the three-point interaction vertex effectively “doubles” each of the external ϵ’s
according to the rule ϵ → −1

2ϵϵ̇. We can apply this to the second line of (4.10). Given the
explicit expression for the linear piece of the dressed two-point function in (4.7), it follows that

⟨B1(x1, x2)B1(x3, x4)B1(x5, x6)SL,3⟩0,c = ⟨B̃2(x1, x2)B1(x3, x4)B1(x5, x6)⟩0,c

+ ⟨B1(x1, x2)B̃2(x3, x4)B1(x5, x6)⟩0,c

+ ⟨B1(x1, x2)B1(x3, x4)B̃2(x5, x6)⟩0,c (4.17)

where we define B̃2, the “doubled” version of B1, to be:

B̃2(x1, x2) =
1
2
[
ϵ̈1ϵ1 + ϵ̇21 + ϵ̈2ϵ2 + ϵ̇22

]
− 1

x12
[ϵ1ϵ̇1 − ϵ2ϵ̇2] . (4.18)

Because B̃2 is also quadratic in ϵ, it is natural to combine it with B2 into an “effective”
second-order correction to the dressed two-point function:

Beff
2 (x1, x2) = B2(x1, x2)− B̃2(x1, x2). (4.19)

The minus sign in front of B̃2 comes from the second line in (4.10).
5The clean factorization of the double integral over ω1 and ω2 in (4.14) relies on the fact that |ω1 +

ω2|sgn(ω1 + ω2) = ω1 + ω2. If we were more explicit about using analytic regularization to handle the SL(2,R)
zero modes — by replacing 3 → 3 + η in (4.2) — then we would instead find |ω1 + ω2|1−ηsgn(ω1 + ω2) in the
integrand of the double integral, which does not simplify for nonzero η. One might worry therefore that (4.14)
could receive corrections when the limit η → 0 is handled more carefully. However, in appendix A we arrive at
the same result for the reparametrization mode three-point contact diagram using hyperbolic disk coordinates
on the worldsheet, in which case we have more explicit control over the zero modes.
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The steps we have taken thus far allow us to write the connected six-point function
in (4.10) as:

⟨U1U2V3V4W5W6⟩c
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= ⟨Beff
2 (x1, x2)B1(x3, x4)B1(x5, x6)⟩0,c + (U ↔ V ) + (U ↔ W )

(4.20)

This is progress compared to (4.10) because all we need to do now is contract the ϵ’s appearing
in Beff

2 and B1 using the propagator in (4.4), and there are no more integrals.
In order to organize the contractions, it is helpful to write Beff

2 as the square of the linear
dressed two-point function, plus some remainder:

Beff
2 (x1, x2) =

1
2B1(x1, x2)2 + Brem

2 (x1, x2), (4.21)

where the remainder is given explicitly by:

Brem
2 (x1, x2) =

1
2 ϵ̈1ϵ1 +

1
2 ϵ̈2ϵ2 −

ϵ̇1ϵ1 + ϵ̇2ϵ2
x12

+ ϵ212
x2
12

= −1
2 (ϵ1∂x1 + ϵ2∂x2)B1(x1, x2). (4.22)

In this way, (4.20) becomes:

⟨U1U2V3V4W5W6⟩c
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= ⟨Brem
2 (x1, x2)B1(x3, x4)B1(x5, x6)⟩0,c

+ 1
2⟨B1(x1, x2)2B1(x3, x4)B1(x5, x6)⟩0,c

+ (U ↔ V ) + (U ↔ W ) (4.23)

Now we note that the second line in (4.23) factorizes:6

⟨B1(x1, x2)2B1(x3, x4)B1(x5, x6)⟩0,c = 2⟨B1(x1, x2)B1(x3, x4)⟩0⟨B1(x1, x2)B1(x5, x6)⟩0.
(4.24)

Each of the two factors on the r.h.s. is just the tree-level contribution to the connected
four-point function — namely,

⟨U(xi)U(xj)V (xk)V (xl)⟩c

⟨U(xi)U(xj)⟩⟨V (xk)V (xl)⟩
= ⟨B1(xi, xj)B1(xk, xl)⟩0 + O(1/T 2

s ) ≡ G(ξijkl) + O(1/T 2
s ),

(4.25)

and similarly for the U, W and V, W four-point functions. Here,

ξijkl ≡
xikxjl

xilxjk
(4.26)

is a conformally invariant cross ratio and, given (4.7) and the propagator in (4.3), one finds [32]

G(ξ) = − 1
4πTs

(
4 + 1 + ξ

1− ξ
log(ξ2)

)
. (4.27)

6Although eq. (4.24) factorizes, it nonetheless contributes to the connected six-point function. See the
comment below eq. (4.34).
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We note in passing that this result respects both the gauge and physical SL(2,R) symmetries:
i.e., it depends on the positions only through the cross-ratio and is independent of the
gauge-dependent coefficients a and b in (4.4).

Meanwhile, the remainder term in the first line in (4.23) becomes:

⟨Brem
2 (x1,x2)B1(x3,x4)B1(x5,x6)⟩0,c =− 1

2⟨ϵ1B1(x3,x4)⟩∂x1⟨B1(x1,x2)B1(x5,x6)⟩ (4.28)

− 1
2⟨ϵ2B1(x3,x4)⟩∂x2⟨B1(x1,x2)B1(x5,x6)⟩+(3,4↔ 5,6).

The (derivative of the) four-point function in (4.24) appears again as one component of the
result. Meanwhile, using the propagator in (4.4), we find that the remaining terms are given by:

⟨ϵ(xi)B1(xk, xl)⟩ =
1

4πTs

(
2xi − xk − xl +

xikxil

xkl
log

(
x2

ik

x2
il

))
. (4.29)

(This result is also independent of the gauge dependent coefficients a and b.) Then we can
use the chain rule and the fact that

∂x1ξ1256 =
x56

x15x16
ξ1256, ∂x2ξ1256 = − x56

x25x26
ξ1256, (4.30)

to write

⟨Brem
2 (x1, x2)B1(x3, x4)B1(x5, x6)⟩0,c

= − 1
8πTs

[(
2x1 − x3 − x4 +

x13x14
x34

log
(

x2
13

x2
14

))
x56

x15x16

−
(
2x2 − x3 − x4 +

x23x24
x34

log
(

x2
23

x2
24

))
x56

x25x26

]
ξ1256G

′(ξ1256)

+ (3, 4 ↔ 5, 6). (4.31)

Although this expression is not particularly nice, there are simplifications after we sum over
the permutations of x1, x2, x3, x4 and x5, x6, in accordance with (4.23). For example, consider
all the terms in (4.23) coming from the Brem

2 terms that multiply ξ1256G
′(ξ1256). These are

given by the square brackets in (4.31) plus the same thing with 1, 2 ↔ 5, 6. First, we note:

(2x1 − x3 − x4)
x56

x15x16
− (2x2 − x3 − x4)

x56
x25x26

+ (2x5 − x3 − x4)
x12

x15x25
− (2x6 − x3 − x4)

x12
x16x26

= 0 (4.32)

Thus, the “2xi − xj − xk” terms in (4.31) cancel after summing over permutations.
Second, we denote the remaining terms multiplying ξ1256G

′(ξ1256) by F34;1256, where

Fij;klmn ≡− 1
8πTs

[
xkixkjxmn

xijxkmxkn
log

(
x2

ki

x2
kj

)
− xlixljxmn

xijxlmxln
log

(
x2

li

x2
lj

)

+ ximxjmxkl

xijxkmxlm
log

(
x2

im

x2
jm

)
− xinxjnxkl

xijxknxln
log

(
x2
in

x2
jn

)]
. (4.33)
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It is easy to check that this is conformally invariant. Note that it has the permutation
symmetries Fij;klmn = Fij;mnkl = Fji;klmn = −Fij;lkmn.

When we sum all the contributions to (4.23), we arrive at our final result for the tree-level
connected six-point function:

⟨U1U2V3V4W5W6⟩c

⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩
=G(ξ1234)G(ξ1256)+G(ξ1234)G(ξ3456)+G(ξ1256)G(ξ3456)

+F12;3456ξ3456G′(ξ3456)+F34;1256ξ1256G′(ξ1256)+F56;1234ξ1234G′(ξ1234).
(4.34)

If desired, the normalized six-point function can be expressed in terms of three independent
cross-ratios χi = x1ix56

x15xi6
for i = 2, 3, 4 by setting x1 = 0, x5 = 1, and x6 = ∞, in which

case χi = xi.
It should be emphasized that although the GG terms in (4.34) — whose appearance in

the final answer is partly an artefact of the particular sequence of steps we took to combine
and simplify the different terms in eq. (4.10) — are products of tree-level four-point functions,
they nonetheless contribute to the connected six-point function. This should be clear from
our derivation and will be confirmed when we match eq. (4.34) to the static gauge result
for the connected six-point function in section 6, in which case the diagrams we consider,
depicted schematically in figure 6, are manifestly connected.

5 Six-point OTOC and scattering on the worldsheet

In this section, we will analytically continue the euclidean six-point function that we computed
in the previous section to a Lorentzian configuration in which the operators are out of time
order. Like four-point out-of-time-order correlators (OTOCs) [44–49], higher-point OTOCs
can serve as diagnostics of quantum chaos [1–3]. In holographic theories, they have an
interpretation in the bulk in terms of high energy multi-particle scattering or, relatedly, in
terms of particles propagating on backgrounds with multiple shockwaves [47, 48, 50]. Studying
the six-point OTOC on the AdS2 string and comparing it with the behavior expected from
a scattering analysis provides one check of our result for the connected six-point function
and of the conformal gauge method.7

We start with the six-point function on the euclidean circle with the following ordering
of operators:

⟨U1W5U2V3W6V4⟩, (5.1)

where Ui ≡ U(θi), etc. We will work for simplicity with the unit circle so that the euclidean
time is an angle θ ∼ θ + 2π. This corresponds to an inverse temperature β = 2π. We then
analytically continue the positions of the operators, θi, to the following values

θ1 = δ1 + iT1, θ2 = δ2 + iT1, θ3 = δ3 + iT2,

θ4 = δ4 + iT2, θ5 = δ5 + iT3, θ6 = δ6 + iT3,
(5.2)

7Our set-up in this section is somewhat similar to the one in [3], which studied various six-point OTOCs in
JT gravity and in Einstein gravity in AdS3.
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(a) (b)

Figure 2. (a) The contour specifying the ordering and positions on the thermal cylinder of the
operators in the six-point OTOC. (b) The OTOC has the physical interpretation of a 3-to-3 scattering
process between a left moving particle produced by W and two right-moving particles produced by U

and V .

where the δi are fixed and chosen such that δ4 < δ6 < δ3 < δ2 < δ5 < δ1 up to cyclic
permutations, and we tune T1, T2, T3 from zero to non-zero real values. For concreteness we
will choose the δi such that the six operators are spaced equally around the circle — e.g. 8

δ1 =
4π

3 , δ2 =
2π

3 , δ3 =
π

3 , δ4 = −π

3 , δ5 = π, δ6 = 0. (5.3)

This configuration is depicted in figure 2(a). We will focus on the simplifying regime when
the Lorentzian time differences between the operators are large. In particular, we will take
the double-scaling limit

T13, T23 → ∞, Ts → ∞,
eT13

Ts
,
eT23

Ts
: fixed. (5.4)

This can be achieved by, for instance, sending U and V to late times in the future (T1, T2 → ∞)
and W to early times in the past (T3 → −∞). The OTOC in this configuration has the
interpretation of high energy 3-to-3 scattering involving a left-moving particle created by
W interacting with two right-moving particles created by U and V on an AdS2 background.
See figure 2(b). There are other interesting configurations that one can consider, and we
will comment on one in particular in the conclusion.

5.1 OTOC as a scattering amplitude on the AdS2 string

Because scattering is a Lorentzian phenomena, a natural first step of our discussion of the
OTOC as a scattering amplitude is to analytically continue the euclidean AdS2 string to
Lorentzian signature — rather than continuing just the final correlator as in (5.1)–(5.2). We
start with the euclidean AdS2 string embedded in euclidean AdS3. Let the metric in AdS3 be

8Different choices of δi with the same cyclic ordering are related by trivial analytic continuations, so one
can switch freely between them. For example, while (5.3) is particularly simple, other choices can make
the physical interpretation of the OTOC clearer — e.g., |δi| ≪ 1, which corresponds to an almost purely
Lorentzian configuration in which the small non-zero δi serve mainly to determine the order of operators and
to regulate divergences due to operators being coincident.
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(a) (b)

Figure 3. (a) The worldlines of two uniformly accelerating quarks in Minkowski space. (b) The
classical surface in the bulk incident on the two quark trajectories on the boundary is a hyperboloid.

ds2 = dx2
0+dx2

1+dz2

z2 , and let the AdS2 string worldsheet be the hemisphere x2
0 + x2

1 + z2 = 1. It
is incident on the circle on the boundary with unit radius given by x0(θ) = sin θ, x1(θ) = cos θ.

Now we send x0 → ix0, θ → it. The metric in the Poincaré patch of Lorentzian AdS3
becomes ds2 = −dx2

0+dx2
1+dz2

z2 , the Lorentzian AdS2 string worldsheet becomes the hyperboloid
−x2

0 + x2
1 + z2 = 1 and it is incident on the boundary curve x0(t) = sinh t, x1(t) = cosh t.

This boundary curve defines the worldline of a quark undergoing constant proper acceleration
a = 1 with proper time t. See figure 3. The second branch of the hyperbola on the boundary

— x0(t) = − sinh t, x1(t) = − cosh t — defines the worldline of an antiquark undergoing
constant proper acceleration a = −1, and it can also be accessed by continuing τ → it + π.
Thus, one can also analytically continue the euclidean correlators on the circle to “two sided”
configurations on the hyperbola, but we will focus on one-sided configurations for concreteness.

It will be useful to introduce Kruskal light-cone coordinates u and v that cover the
entire worldsheet:

x0 =
u + v

1− uv
, x1 = − u − v

1− uv
, z = 1 + uv

1− uv
. (5.5)

In these coordinates, the induced metric is ds2 = − 4dudv
(1+uv)2 and the AdS boundary is at

uv = −1. One the right boundary, u and v are related to the proper time t by u = −e−t

and v = et. Finally, we note that the proper time is periodic with t ∼ t + 2πi, so that the
Unruh temperature felt by the accelerating quark is β−1 = 1

2π . This set-up is sometimes
called the AdS2 wormhole or the holographic EPR pair [51–53]. The Kruskal and Penrose
diagrams for the worldsheet are given in figure 4.

Next, we will interpret the six-point OTOC as a scattering process on the AdS2 back-
ground. The basic idea is that acting with U , V and W along the contour of the Wilson
operator creates particles that propagate on the string worldsheet, and the six-point OTOC
can be written as an overlap of an in state and an out state — i.e., as an S-matrix. Additional
ingredients in the following analysis include the fact that, because U and V are separated
from W by large times, the particles they create are highly boosted and the scattering process
on the string worldsheet is high energy and localized to an essentially flat region of AdS2.
Moreover, we will assume that the 3-to-3 S-matrix factorizes into a product of two 2-to-2
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(a) (b)

Figure 4. The (a) Kruskal and (b) Penrose diagrams for the AdS2 “black hole.” The shaded wedge
denotes the region causally accessible to the right accelerating quark.

S-matrices, one for the interaction between W and U and one for the interaction between
W and V , as depicted in figure 2(b).9 The OTOC in this limit is thus fully determined by
the 2-to-2 S-matrix for scattering on the string worldsheet in flat space that was studied
in [39], and by the wavefunctions for the in and out states.

To implement the above procedure in detail,10 we first write the correlator as an overlap
between two states:

⟨W5U2V3W6V4U1⟩ = ⟨out|in⟩. (5.6)

Here, we have used a cyclic permutation to move U(θ1) to the rightmost position in the
correlator in (5.1) and we have defined the states

|in⟩ = W6V4U1|0⟩, |out⟩ = V †
3 U †

2W †
5 |0⟩. (5.7)

These are naturally interpreted as “in” and “out” states for three particles propagating in
AdS2, which we can understand heuristically as follows (see [48]). In setting up the “in”
state, we start with the vacuum |0⟩ at t = 0, evolve forward to time T1 > 0 and act with the
operator U to create a particle on the boundary, evolve to time T2 > 0 and create a second
particle on the boundary, and, finally, evolve all the way back to time T3 < 0 and act with W

to create a third particle on the boundary. We assume that the particles move along lightlike
trajectories as we evolve forward and backward in time and that they propagate freely unless
their trajectories cross. Given the order in which we act with U , V and W on the vacuum
state, the trajectories of the three particles do not cross while setting up the state, so the end
result of this procedure is to produce three separated particles in the far past, two of which
are right-moving particles (carrying positive lightcone momentum pu) in the bottom left of

9Unlike a 3-to-3 scattering matrix of massive particles in an integrable theory, which factorizes into three
2-to-2 scattering matrices, the 3-to-3 scattering matrix corresponding to the string six-point function will
factorize into two 2-to-2 scattering matrices because the scattering particles are massless. The masslessness can
be seen either as an exact property because the scalars on the Wilson line have dimension ∆ = 1 corresponding
to m2 = 0 in AdS2, or as an approximation that should also be valid for other operators (like the displacement
operators with ∆ = 2 corresponding to m2 = 2) because the scattering particles are highly boosted.

10See [48] for the four-point scattering analysis in Einstein gravity and [32, 54] for its adaptation to
the worldsheet.
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Figure 5. In and out scattering states for the six-point OTOC.

the Penrose diagram and one of which is a left-moving particle (carrying positive lightcone
momentum pv) in the bottom right of the Penrose diagram.11 An analogous interpretation
can be given to the out state. The in and out states are depicted in figure 5.

Next, we write the in and out states in terms of in and out Kruskal momentum eigenstates:

|in⟩ =
∫

dpv
1dpv

4dpu
6Φ∆U

(pv
1, t1)Φ∆V

(pv
4, t4)Ψ∆W

(pu
6 , t6)|pv

1, pv
4, pu

6⟩in, (5.8)

|out⟩ =
∫

dpv
2dpv

3dpu
5Φ∆U

(pv
2, t∗2)Φ∆V

(pv
3, t∗3)Ψ∆W

(pu
5 , t∗5)|pv

2, pv
3, pu

5⟩out. (5.9)

Here, Φ∆(pv, t) is the momentum-space wavefunction for a right-moving particle with lightcone
momentum pv that is created by a local operator of conformal dimension ∆ acting at lorentzian
time t on the right AdS2 boundary; likewise Ψ∆(pu, t) is the wavefunction for a left-moving
particle with lightcone momentum pu. We use t = −iθ to denote the Lorentzian time,
and in (5.9) we used O(t)† = O(t∗) if O is Hermitian. Finally, we take the momentum
eigenstates to be normalized as

in⟨p|q⟩in = out⟨p|q⟩out = pδ(p − q). (5.10)

Taking the inner product of (5.8) and (5.9), the OTOC in (5.2) can be expressed as
the following amplitude:

⟨out|in⟩ =
∫ ∏

i

dpiΦ∆U
(pv

2, t∗2)∗Φ∆V
(pv

3, t∗3)∗Ψ∆W
(pu

5 , t∗5)∗ out⟨pv
2, pv

3, pu
5 |pv

1, pv
4, pu

6⟩in

× Φ∆U
(pv

1, t1)Φ∆V
(pv

4, t4)Ψ∆W
(pu

6 , t6) (5.11)

To evaluate this expression, we need to know the momentum-space S-matrix and the wave-
functions. The wavefunctions are simply the Fourier transforms of the boundary-to-bulk

11One might ask whether it is sensible to define asymptotic in and out states on the two dimensional
worldsheet that involve two or more massless particles moving in the same direction, given that the particles
do not become well-separated in either the infinite past or the infinite future and therefore ostensibly interact
“forever.” This is a reasonable objection, but for the purpose of performing a check of the analytically continued
six-point function by comparing it with a scattering amplitude on the worldsheet, it appears to be valid to
ignore the interactions between the parallel-moving U and V particles. Intuitively, this seems to be related
to the fact that U and V are in relative time order in (5.6). Nonetheless, it would be good to have a better
understanding of the subtleties associated with massless scattering in two dimensions. A related discussion
can be found in section 2 of [39].
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propagator with respect to u on the v = 0 horizon and with respect to v on the u = 0 horizon,
respectively. Explicitly, they are [32, 54, 55]

Ψ∆(pu, ti) = θ(pu) (2ipuvi)∆√
Γ(2∆)pu

e2ipuvi , Φ∆(pv, ti) = θ(pv) (2ipvui)∆√
Γ(2∆)pv

e2ipvui , (5.12)

where (ui, vi) = (−e−ti , eti) for the points on the boundary.
Furthermore, the momentum space S-matrix takes a very simple form, assuming that

the two high energy scattering events are governed by the flat-space S-matrix derived in [39].
In that work, the 2-to-2 S-matrix for two particles with momenta pu and pv was found to be
a phase with exponent proportional to the center-of-mass energy s = 4pupv:

|pu, pv⟩out = e−iℓ2
spupv |pu, pv⟩in. (5.13)

In our case, we have a 3 → 3 scattering event, which we assume factorizes into two 2-to-2
scattering events:

|pv
2, pv

3, pu
5⟩out = e−iℓ2

spv
2pu

5 e−iℓ2
spv

3pu
5 |pv

2, pv
3, pu

5⟩in. (5.14)

It follows that

out⟨pv
2,pv

3,pu
5 |pv

1,pv
4,pu

6⟩in= eiℓ2
spv

1pu
5 eiℓ2

spv
3pu

5 pv
1pv

3pu
5δ(pv

1−pv
2)δ(pv

3−pv
4)δ(pu

5−pu
6). (5.15)

relax Substituting (5.12) and (5.15) into (5.11), we find the scattering representation of
the OTOC to be

⟨out|in⟩=(4u1u2)∆U(4u3u4)∆V(4v5v6)∆W

∫ ∞

0
dpv

1dpv
3dpu

5

[(pv
1)2∆U−1

Γ(2∆U )
(pv

3)2∆V −1

Γ(2∆V )
(pu

5 )2∆W −1

Γ(2∆W )

×e2ipv
1 (u1−u2)e2ipv

3 (u4−u3)e2ipu
5 (v6−v5)eiℓ2

spv
1 pu

5 eiℓ2
spv

3 pu
5

]
.

(5.16)

Changing the momentum integration variables to p = −2ipv
1(u1 − u2), q = −2ipv

3(u4 − u3),
ϕ = −2ipu

5(v6 − v5), and also normalizing the six-point function by the two-point functions,

⟨U1U2⟩ =
1[

2 sin
(

it12
2

)]2∆U
=
[
− u1u2
(u1 − u2)2

]∆U

, (5.17)

with analogous expressions for ⟨V3V4⟩ and ⟨W5W6⟩, we arrive at the following expression
for the normalized OTOC:

⟨U1W5U2V3W6V4⟩
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

=
∫ ∞

0
dpdqdϕ

p2∆U−1q2∆V −1ϕ2∆W −1

Γ(2∆U )Γ(2∆V )Γ(2∆W )e−p−q−ϕ−κ1pϕ−κ2qϕ. (5.18)

Here, we have introduced

κ1 =
−iℓ2s

4(u1 − u2)(v5 − v6)
= − iℓ2se(t1+t2−t5−t6)/2

16 sinh
( t12

2
)
sinh

( t56
2
) , (5.19)

κ2 =
iℓ2s

4(u3 − u4)(v5 − v6)
= iℓ2se(t3+t4−t5−t6)/2

16 sinh
( t34

2
)
sinh

( t56
2
) . (5.20)
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For the configuration in (5.2) with the δi given in (5.3) and with ti = −iθi, κ1 and κ2 become:

κ1 =
eT13

8
√
3Ts

, κ2 =
eT23

8
√
3Ts

. (5.21)

We can evaluate the integrals over p and q in (5.18) to get:

⟨U1W5U2V3W6V4⟩
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= 1
Γ(2∆W )

∫ ∞

0
dϕϕ2∆W −1(1+κ1ϕ)−2∆U (1+κ2ϕ)−2∆V e−ϕ. (5.22)

To get the behavior of the OTOC at strong-coupling, we can expand in κ1 and κ2 and
evaluate the integrals order by order.12 When ∆U = ∆V = ∆W = 1, the result is:

⟨U1W5U2V3W6V4⟩
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= 1− 4κ1 − 4κ2 + 24κ1κ2 + . . .

= 1− eT13

2
√
3Ts

− eT23

2
√
3Ts

+ eT13+T23

8T 2
s

+ . . .

(5.23)

This can be compared with the perturbative expansion of the six-point function in 1/Ts.
In particular, we will see below that the analytic continuation of the connected six-point
function in (4.34) will reproduce the κ1κ2 term. But first we will take a small detour and
discuss how the scattering result in (5.18) (to all orders in κ1 and κ2) can also be derived
from the reparametrization path integral.

5.2 Double-scaled OTOC from an eikonal resummation

Section 4 showed us that knowing the reparametrization action to cubic order is sufficient to
compute the leading (tree-level) contribution to the boundary six-point function. We will
now show that, if we focus on the six-point OTOC in the double scaling limit in (5.4), then
we can also use the reparametrization path integral in (2.16) to resum all the non-interacting
diagrams involving exchanges of the reparametrization mode between the dressed two-point
functions of the transverse modes and, moreover, this “eikonal resummation” reproduces the
full scattering result in (5.18). The following argument in the case of the six-point OTOC is
essentially the same as the analogous argument in the case of the four-point OTOC, which
is presented in section 6.3 of [32].

The eikonal resummation is achieved by working with the exact dressed two-point
function in (2.20) while truncating the reparametrization action to the quadratic order. The
normalized six-point function is then:

⟨U1W5U2V3W6V4⟩eik
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

=
∫

Dϵe−S2[ϵ]B(x1, x2)∆UB(x3, x4)∆V B(x5, x6)∆W . (5.24)

12Another regime in which we can evaluate (5.23) analytically is when ∆U , ∆V ≫ 1. Then we can use a
saddle point approximation to derive:

⟨U1W5U2V3W6V4⟩
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

≈ 1
(1 + 2κ1∆U + 2κ2∆V )2∆W

.

This expression has a nice geometric interpretation in terms of the length of the geodesic connecting the W

operators on the two boundaries of an AdS2 background with two parallel shockwaves sourced by the U and
V operators. The two parallel shockwaves behave like a single shockwave with a total shift proportional to
4κ1∆U + 4κ2∆V along the v direction. For example, compare the above expression with eq. (28) in [47] or
eq. (4.3) of [56].
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(Here we use the approximation ⟨U1U2⟩ = x−2∆U
12 + O(T−1

s ), and likewise for ⟨V3V4⟩ and
⟨W5W6⟩, with the corrections becoming negligible once we take the double scaling limit
in (5.4)). We can put the components of the dressed two-point function into an exponential
as follows:

B(xi,xj)∆=
[
(1+ϵ̇i)(1+ϵ̇j)
(1+ϵij/xij)2

]∆
=
(

∂

∂αi

∂

∂αj

)∆

eαi(1+ϵ̇i)+αj(1+ϵ̇j)
∫ ∞

0
dp

p2∆−1

Γ(2∆)e−p(1+ϵij/xij).

(5.25)

This representation — combined with the identity ⟨ef(ϵ)⟩ = e
1
2 ⟨f(ϵ)

2⟩ if the action is quadratic
and f is linear in ϵ — implies that the six-point function in the eikonal approximation
can be written as

⟨U1W5U2V3W6V4⟩eik
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

=
(

∂

∂α1

∂

∂α2

)∆U
(

∂

∂α3

∂

∂α4

)∆V
(

∂

∂α5

∂

∂α6

)∆W
[
e
∏6

i=1 αi×∫
dpdqdϕ

p2∆U−1q2∆V −1ϕ2∆W −1

Γ(2∆U )Γ(2∆V )Γ(2∆W )e−p−q−ϕ+X
]

(5.26)

where

X = 1
2
〈(

− p
ϵ12
x12

− q
ϵ34
x34

− ϕ
ϵ56
x56

+
6∑

i=1
αiϵ̇i

)2〉
0. (5.27)

The explicit expression for X can be found by performing the Wick contractions with the
propagator in (4.4). This gives rise to many different terms, some involving self-contractions
(which should be regulated with a short distance cut-off δ by, e.g., setting ⟨ϵ̇(0)2⟩0 =

1
8πTs

log δ2), and the result is invariant under neither the physical nor the gauge SL(2,R)
symmetries (which is a consequence of us keeping only the quadratic part of the action).
However, all these complications wash out once we analytically continue to the OTOC
configuration at late times. More precisely, we map the points on the thermal cylinder in (5.2)
to the complex plane using xi = tan θi

2 and take T1 ∼ T2 → ∞, T3 → −∞ and Ts → ∞
with eT12/Ts and eT13/Ts held fixed.13 In this limit, x1, x2, x3, x4 become coincident and
x5, x6 become coincident with |x12|, |x13|, |x14|, |x23|, |x24|, |x34| ∼ e−T1 and |x56| ∼ eT3 and
the distances between the other pairs of points approaching non-zero values. Consequently,
the only contributions to (5.27) that survive in the double scaling limit are:

X = pϕ

x12x56
⟨ϵ12ϵ56⟩0 +

qϕ

x34x56
⟨ϵ34ϵ56⟩0. (5.28)

Performing the contractions using the propagator in (4.4), we have for the first term:

1
x12x56

⟨ϵ12ϵ56⟩0 =
1

Tsx12x56

[ 1
8π

(x2
15 log x2

15 + x2
26 log x2

26 − x2
16 log x2

16 − x2
25 log x2

25)

+ b(x2
15 + x2

26 − x2
16 − x2

25)
]

= 1
8πTs

x15x26
x12x56

log
(

x2
15x

2
26

x2
16x

2
25

)
+ . . . , (5.29)

13It is important in getting from (5.27) to (5.28) that we send T3 → −∞ at the same time that we send
T1 ∼ T2 → ∞, but the relative rate at which the times are sent to ±∞ does not matter.
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where we have put the leading term in a conformally invariant form and . . . denotes terms
that vanish in the double scaling limit. Likewise, the second term in (5.28) becomes

1
x34x56

⟨ϵ34ϵ56⟩0 =
1

8πTs

x35x46
x34x56

log
(

x2
35x

2
46

x2
36x

2
45

)
+ . . . . (5.30)

Letting xi = tan θi
2 and performing the analytic continuation specified by (5.2)–(5.4), we find:

X → −κ1pϕ − κ2qϕ, (5.31)

where κ1 and κ2 are given in (5.21). Noting that the αi derivatives become trivial and the
Schwinger parameters play the role of the light cone momenta, we see that (5.26) precisely
reproduces (5.18).

5.3 Explicit check of the six-point OTOC

To compare the strong coupling expansion of the scattering result for the six-point OTOC
in (5.23) with the analytic continuation of the six-point function, we need the full six-point
function in (2.27). This includes a fully disconnected piece, three partially connected pieces,
and the fully connected piece. After normalizing by the product of the three two-point
functions, the fully disconnected piece gives 1, the leading contribution to the partially
connected pieces are given by (4.25), and the leading contribution to the fully connected piece
is given in (4.34). Then, to perform the analytic continuation, we first map from the line
to the circle by replacing xij → sin 1

2θij and letting the cross ratios be ξijkl =
sin 1

2 θik sin 1
2 θjl

sin 1
2 θil sin 1

2 θjk
,

then fix the θi to be as in (5.2)–(5.3), and finally take the limit in (5.4). In particular, we
need to determine the behavior of G(ξijkl), G′(ξijkl) and Fij;klmn in this limit.

Given the configuration of points specified by (5.2) and (5.3), the three conformally
invariant cross ratios are:

ξ1234 =1+ 3
−1+2cosh(T12)

, ξ1256 =1+ 6
−3+2i

√
3sinhT13

, ξ3456 =1+ 6
−3−2i

√
3sinhT23

(5.32)

As T13 and T23 increase from 0, ξ1256 moves from −1 to 1 clockwise and ξ3456 moves from −1
to 1 counterclockwise around the origin, and at late times they are given by

ξ1256 ∼ 1− 2
√
3ie−T13 , ξ3456 ∼ 1 + 2

√
3ie−T23 . (5.33)

The leading behavior of the connected four-point functions given by (4.27) in the double
scaling limit in (5.4) is:

G(ξ1234) ∼ O(1/Ts), G(ξ1256) ∼ − eT13

2
√
3Ts

, G(ξ3456) ∼ − eT23

2
√
3Ts

(5.34)

Similarly, we find that the leading behavior of the derivatives is:

G′(ξ1234) ∼ O(1/Ts), G′(ξ1256) ∼
ie2T13

12Ts
, G′(ξ3456) ∼ − ie2T23

12Ts
. (5.35)
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And, being careful about smoothly continuing to the correct branches of the various logarithms
in (4.33), we find that the leading behaviors of the F functions are given by:

F56;1234 ∼ O(T 0
s ), F34;1256 ∼ − i

4Ts
e−T12 , F12;3456 ∼

i

4Ts
eT12 . (5.36)

Finally, taking T13, T23, Ts → ∞ with eT13
Ts

and eT23
Ts

fixed yields

⟨U1W5U2V3W6V4⟩
⟨U1U2⟩⟨V3V4⟩⟨W5W6⟩

= 1 +
(
− 1
2
√
3

eT13

Ts
+ . . .

)
+
(
− 1
2
√
3

eT23

Ts
+ . . .

)

+ 1
8

eT13+T23

T 2
s

+ . . . (5.37)

The first line gives the leading contributions to the OTOC coming the disconnected diagrams
(i.e., the terms in the first line in (2.27)), and the second line gives the contribution from
the tree-level connected piece, given in (4.34). We see that (5.37) precisely matches (5.23)
in the overlapping terms.

5.4 Relationship with the flat-space limit of AdS/CFT

To conclude this section, let us make brief comments on the relation with the flat-space limit
of AdS/CFT discussed in the literature, which also expresses the CFT correlation functions
in terms of the scattering amplitudes in flat space. The flat space limit of the correlation
functions in AdS has been analyzed using various approaches (see e.g. [57–65]). The details of
the limit depend on whether the particles are massless or massive, and for massless scatterings,
the derivation was explained in detail in section 2.1 of [57] for AdSD≥3, under the assumption
that the scattering event happens locally at a single point in the AdS spacetime. In what
follows, we explain how their derivation can be generalized to AdSD=2 and how it is related
to the formula used in this paper and [32, 48, 54]. We focus on the 2-to-2 scattering for
simplicity but the argument can be readily generalized to higher-point scatterings.

The starting point of their analysis the following rewriting of the bulk-to-boundary
propagator GB∂ ,14

GB∂(X, P ) ∝
∫ ∞

0

dβ

β
β∆e−2iβP ·X , (5.38)

where X and P are the embedding coordinate representations for the bulk and the boundary
points respectively (see [57] for details). We next assume that the dominant contribution
to the correlation function comes from a small region near the center of AdS (denoted by
X∗), and approximate the correlation function as15

⟨O1O2O3O4⟩ ∼
∫

R1,1

4∏
i=1

dYiGB∂(X∗ + Yi, Pi)Gflat(Y1, Y2, Y3, Y4) . (5.39)

14Here we set R and ℓs in [57] to unity and took d = 1.
15The formula (5.39) can be viewed as the AdS version of the LSZ formula. In flat space, correlation

functions are given by the convolution of amputated Green’s functions with the leg factors, which are the
Fourier transforms of the propagators

√
Z/(p2 + m2). Here the leg factors are replaced with their AdS

counterparts GB∂ .
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Here Yi’s parametrize a small region near X∗ which can be approximated by R1,1, and Gflat
is the amputated Green’s function in flat space. We then use the formula (5.38) to get

⟨O1O2O3O4⟩ ∼
∫ ∞

0

 4∏
j=1

dβjβ
∆j−1
j e−2iβjPj ·X∗

S , (5.40)

with

S ≡
∫

R1,1

4∏
j=1

dYje−2iβjPj ·Yj Gflat(Y1, Y2, Y3, Y4) . (5.41)

To evaluate S, we now express the embedding coordinates X and P in terms of the
Kruskal coordinates of AdS2 (see [32] for a review),

ds2 = − 4dudv

(1 + uv)2 , (5.42)

as follows:

X =
(1− uv

1 + uv
,

u + v

1 + uv
,

u − v

1 + uv

)
, Pj =

(
1,

uj + vj

2 ,
uj − vj

2

)
. (5.43)

Here uj and vj parametrizes the boundary of AdS2 and satisfy ujvj = −1, and the center
of AdS2 corresponds to u = v = 0, namely

X∗ = (1, 0, 0) . (5.44)

Since Yj ’s describe a small neighborhood of X∗, they only have two non-vanishing components;

Yj ∼ (0, δu + δv, δu − δv) . (5.45)

In addition, boundary points at early or late times correspond to either uj → ±∞ or
vj → ±∞, and the embedding coordinates can be approximated as

Pj ∼ 1
2(0, p̄0j , p̄1j ) with (p̄0j , p̄1j ) = uj (1, 1) or vj (1,−1) . (5.46)

Thus, dot products Pj · Yj ’s, which were originally defined in the embedding space R2,1, can
be viewed as inner products in R1,1. Then, S can be identified with the S-matrix Sflat in
R1,1 and the equation (5.40) can be rewritten as

⟨O1O2O3O4⟩ ∼
∫ ∞

0

 4∏
j=1

dβjβ
∆j−1
j e2iβj

Sflat(pj = −2βj p̄j) . (5.47)

Here we are using a convention in which the momenta pj are all incoming. To make contact
with the analysis in [32, 48, 54], we take p2,4 (p1,3) to be incoming (outgoing) and p1,2 (p3,4)
to be left-moving (right-moving). This corresponds to choosing

p1 = 2β1u1(1, 1) = −2β1
v1

(1, 1) (u1 > 0, v1 < 0) ,

p2 = −2β2u2(1, 1) = 2β2
v2

(1, 1) (u2 < 0, v2 > 0) ,

p3 = 2β3v3(1,−1) = −2β3
u3

(1,−1) (u3 < 0, v3 > 0) ,

p4 = −2β4v4(1,−1) = 2β4
u4

(1,−1) (u4 > 0, v4 < 0) .

(5.48)
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We then change the variable of integration to pj to get

⟨O1O2O3O4⟩∼

v∆1
1 v∆2

2 u∆3
3 u∆4

4

∫ ∞

0

 4∏
j=1

dp0j

(
p0j

)∆j−1
e−i(p0

1v1−p0
2v2+p0

3u3−p0
4u4)Sflat(p2,p4;p1,p3) ,

(5.49)

This reproduces the formula for the four-point OTOC used in [32, 48, 54] (up to numerical
prefactors which we did not keep track of in the discussion above). Essentially the same
analysis can be applied to the six-point OTOC and will reproduce the formulas in eq. (5.11)–
(5.12) or (5.16).

Let us also point out that the argument here and the argument in [57] both rely on a
rather strong assumption that the dominant contribution comes from a small region near X∗.
Although this may seem like a physically reasonable assumption, it would be desirable to
prove it or clarify when it can be justified. This is particularly important in view of recent
works [62, 64, 65], which showed that similar assumptions do not hold for the scattering of
massive particles in certain kinematics. We leave this for future investigation.

6 Connected six-point function in static gauge

In this section, we compute the connected six-point function using the Nambu-Goto action in
static gauge. This serves as an additional check of the conformal gauge result. The four-point
function was computed in static gauge in [14], and we will follow a similar procedure here.

6.1 Action and propagators in static gauge

To study the correlation function of identical scalars, we restrict the fluctuations of the
string in AdS5 × S5 to an AdS2 × S1 subsector. Then the Nambu-Goto action in static
gauge reduces to [32]

S[y] = Ts

∫
d2σ

√
det[gαβ + ∂αy∂βy]. (6.1)

To find the six-point functions, we can expand the action in powers of y up to sixth order,
treating y as a small fluctuation:

S[y] = Ts

∫
d2σ

√
gL2n. (6.2)

We find the vertices

L0=1, L2=
1
2gµν∂µy∂νy, L4=−1

8(g
µν∂µy∂νy)2, L6=

1
16(g

µν∂µy∂νy)3. (6.3)

In AdS2, the bulk-boundary propagator has the form [66]

K∆(x′;x, z) = C∆K̃∆(x′;x, z) = C∆

(
z

z2 + (x − x′)2
)∆

, (6.4)
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(a) (b)

Figure 6. (a) The contact diagram. (b) The exchange diagram.

where C∆ = Γ(∆)
2
√

πΓ(∆+ 1
2 )

. To deal with the derivatives in vertices, one can use the identity [67]

gµν∂µK̃∆1(x1;x, z)∂νK̃∆2(x2;x, z)
= ∆1∆2[K̃∆1(x1;x, z)K̃∆2(x2;x, z)− 2x2

12K̃∆1+1(x1;x, z)K̃∆2+1(x2;x, z)].

For the exchange diagrams, we also need the bulk-bulk propagator,

G∆(a, b) = C∆
1
2u

2F1(∆,∆, 2∆,−2
u
), u = (za − zb)2 + (xa − xb)2

2zazb
. (6.5)

For ∆ = 1, the hypergeometric function reduces to an elementary function,

G∆=1(a, b) = C∆=1
1
4 log

(
1 + 2

u

)
. (6.6)

6.2 Computation of correlators

At tree level, the connected six-point function is given by the sum of contact diagrams
and exchange diagrams,

⟨y(x1) . . . y(x6)⟩conn. = ⟨y(x1) . . . y(x6)⟩contact + ⟨y(x1) . . . y(x6)⟩exchange. (6.7)

The contact diagram is shown in figure 6(a). The sum of contact diagrams contributing
to the correlation function with six identical massless scalars can be written as

⟨y(x1) . . . y(x6)⟩contact = −3Ts(C∆=1)6Q6y. (6.8)

Here the factor (C∆=1)6 is from the six boundary-bulk propagators, and Q6y denotes a sum
of six-point contact integrals

Q6y = Q12,34,56 + 14 permutations, (6.9)

where the first term is given by

Q12,34,56 =

=
∫

dzdx

z2
[gαβ∂αK̃1(x1;x, z)∂βK̃1(x2;x, z)][gµν∂µK̃1(x3;x, z)∂νK̃1(x4;x, z)]

× [gρλ∂ρK̃1(x5;x, z)∂λK̃1(x6;x, z)], (6.10)
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and other terms are obtained by permuting the external points. (Note that since the derivatives
in the vertices of (6.3) combine two external points together, we need to divide the six external
points into three pairs, and hence there are 15 combinations, such as {12, 34, 56}, {12, 35, 46}
and so on). To understand the overall factor in (6.8), note that for six identical scalars there
are 6! = 720 ways to do the Wick contractions. Because there are 15 ways to combine the six
points into three pairs, the symmetry factor is 720/15 = 48, and from the vertex in (6.3) we
see that the numerical factor in front of each combination should be −Ts

16 × 48 = −3Ts.
Using the identity (6.5), the integral (6.10) can be reduced to

Q12,34,56 = I111111 − 8x2
12x

2
34x

2
56I222222 − 2x2

12I221111 − 2x2
34I112211 − 2x2

56I111122

+ 4x2
12x

2
34I222211 + 4x2

12x
2
56I221122 + 4x2

34x
2
56I112222 (6.11)

Here, the I-function is defined as

I∆1...∆n =
∫

dzdx

z2
K̃∆1(x1;x, z) . . . K̃∆n(xn;x, z). (6.12)

A method to analytically evaluate the I-functions was given in [31]. For ∆i = 1 and even
n, the result is

In,∆=1 =
π

2(2i)n−2

n∑
j=1

n∑
k=1,k ̸=j

(xj − xk)n−4∏n
i=1,i ̸=j,i ̸=k(xj − xi)(xk − xi)

ln (xj − xk)2. (6.13)

For ∆i > 1, one may evaluate these integrals using the pinching method discussed in [31].
The exchange diagram is shown in figure 6(b). The corresponding contribution to the

connected six-point function can be written as

⟨y(x1) . . . y(x6)⟩exchange. = Ts(C∆=1)6P6y (6.14)

where P6y = P12,34,56 + 89 permutations, and

P12,34,56 =
∫

dzadxa

z2
a

∫
dzbdxb

z2
b

[gµν(a)∂(a)
µ K̃1(x1;xa,za)∂(a)

ν K̃1(x2;xa,za)gρλ(a)∂(a)
λ K̃1(x5;xa,za)]

[∂(a)
ρ ∂(b)

γ G(xa,za;xb,zb)gαβ(b)∂(b)
α K̃1(x3;xb,zb)∂(b)

β K̃1(x4;xb,zb)gγδ(b)∂(b)
δ K̃1(x6;xb,zb)].

(6.15)

For exchange diagrams, there are
(4
1
)(4

1
)
6! = 11520 ways to do the Wick contraction. One

(4
1
)

factor corresponds to selecting one bulk point from the four-point interaction vertex, and
there are two bulk interaction vertices. 6! corresponds to arranging the other six bulk points
to the six external points. There are still 15 ways to divide the six points in pairs contracted
by derivatives. However, from (6.15) we see that it matters which group we treat as the
third group (e.g. which group we put at the position of 56 in (6.15)), and the order of the
two points in the third group also matters (e.g. the order of 5 and 6 in (6.15)). Thus, we
should have 15 × 3 × 2 = 90 independent permutations. For each permutation, there is a
symmetry factor 11520/90 = 128. According to (6.3), the numerical factor in front of each
permutation should be 128 × 1

2 ×
(
1
8

)2
Ts = 1 · Ts, as written in (6.14).
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Figure 7. Numerical comparison between 6-point correlation functions in conformal gauge and static
gauge. The solid lines represent the correlation function in conformal gauge, where we have the
analytic results, and the dots represent the numerical results computed in static gauge. In the left
plot, we vary the external point x6 while keeping x1, . . . , x5 fixed to some arbitrary values. In the
right plot, we vary x5 while fixing x1, . . . , x4 and x6.

The integrals (6.15) may be simplified using integration by parts and

∂µ(
√

g∂µK1) = 0, (6.16)

as well as the identity (6.5). This leads to a sum of exchange integrals with no derivatives

P12,34,56 =∫
dzadxa

z2
a

∫
dzbdxb

z2
b

G(xa,za;xb,zb)×

[2K̃1(x1;xa,za)K̃1(x2;xa,za)K̃1(x5;xa,za)−2x2
15K̃2(x1;xa,za)K̃1(x2;xa,za)K̃2(x5;xa,za)

−2x2
25K̃1(x1;xa,za)K̃2(x2;xa,za)K̃2(x5;xa,za)−8x2

12K̃2(x1;xa,za)K̃2(x2;xa,za)K̃1(x5;xa,za)

+8x2
12x2

15K̃3(x1;xa,za)K̃2(x2;xa,za)K̃2(x5;xa,za)+8x2
12x2

25K̃2(x1;xa,za)K̃3(x2;xa,za)K̃2(x5;xa,za)]

×[2K̃1(x3;xb,zb)K̃1(x4;xb,zb)K̃1(x6;xb,zb)−2x2
36K̃2(x3;xb,zb)K̃1(x4;xb,zb)K̃2(x6;xb,zb)

−2x2
46K̃1(x3;xb,zb)K̃2(x4;xb,zb)K̃2(x6;xb,zb)−8x2

34K̃2(x3;xb,zb)K̃2(x4;xb,zb)K̃1(x6;xb,zb)

+8x2
34x2

36K̃3(x3;xb,b )K̃2(x4;xb,zb)K̃2(x6;xb,zb)+8x2
34x2

46K̃2(x3;xb,zb)K̃3(x4;xb,zb)K̃2(x6;xb,zb)].
(6.17)

Putting the contact and exchange diagrams together, the connected six-point function
in static gauge is

⟨y(x1) . . . y(x6)⟩conn. = Ts(C∆=1)6(P6y − 3Q6y). (6.18)

We were not able to analytically evaluate the exchange integrals (6.17), but we can perform
numerical comparisons with the six-point correlator computed in conformal gauge by fixing
the values of the six external points and evaluating the various components of P6y and Q6y

numerically. We find very good agreement between the analytic result in conformal gauge
and the numerical evaluation in static gauge. The results are shown in figure 7 for a sample
of different ways of fixing the values of the external points.

7 Conclusions

In this work, we studied the six-point function of identical scalars in the half-BPS Wilson line
defect CFT in N = 4 SYM at strong coupling. We computed the correlator by studying the
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dual fundamental string with AdS2 geometry in conformal gauge, in which the interactions
between the transverse fluctuations of the string are mediated by a boundary reparametrization
mode. The six-point function is sensitive to self-interactions of the reparametrization mode,
so the first step in our analysis was to determine the effective action of the reparametrization
mode to cubic order. A nice feature of the final result for the six-point function in (4.34) is
that it involves only rational functions and logarithms. We also checked the correctness of
the conformal gauge approach by setting up the computation in static gauge. In contrast
to conformal gauge, we did not manage to compute the six-point functions analytically in
static gauge. Instead we evaluated the relevant six-point contact and four-point exchange
Witten diagrams numerically for a representative set of external points for the six operators
and found agreement with the analytic formula in conformal gauge. This demonstrates the
advantage of using the conformal gauge and the reparametrization path integral in evaluating
these correlators. Finally, as a further test of our results and to discuss an interesting physical
interpretation of the correlator, we also analytically continued the euclidean six-point function
to a Lorentzian out-of-time-order configuration which corresponds to a 3-to-3 scattering
process on the worldsheet.

One natural extension of the present work would be to study the six-point function of
different (protected) scalars on the Wilson line, for instance focusing on the five ∆ = 1 scalars
transforming in the fundamental of SO(5), which are dual to the fluctuations along S5. The
general six-point function is of interest because, unlike the six-point function of identical
scalars, it would allow one to test the multi-point superconformal Ward identities conjectured
in [26] at the leading order with contributions from fully connected diagrams. Furthermore,
one could extract new OPE data from the six-point function that is not readily accessible from
the four-point functions at tree level. For example, one could take the coincident limit of three
pairs of the six fundamental scalars and extract the OPE coefficient of three copies of the
lowest composite scalar transforming in the singlet representation of the SO(5) R-symmetry.
Such “three-particle” operators are important also for the four-point function at higher loops
since they can appear in the OPE expansion. It is important in this procedure to work
with the general six-point function in order to disentangle the operators transforming in
different representations of SO(5). (Recall, for example, that the operators of lowest scaling
dimension appearing in the OPE of two fundamental scalars includes both a singlet and
a symmetric traceless composite operator.).16

While we showed in this work that the conformal gauge and the reparametrization path
integral simplify drastically the computation of the six-point function of identical scalars —
essentially because the transverse action is interacting in static gauge and non-interacting in
conformal gauge — the generalization to the six-point function involving all of the five ∆ = 1
scalars is not straightforward. To compute the general correlator, we would need to study the
AdS2 string in an AdS2×S5 subspace, which has five transverse modes that, importantly, are

16One can also try to extract some OPE data from the six-point function of identical scalars in (4.34), but
the data will be averaged over different R-symmetry channels, in addition to involving the usual operator
mixing between operators with the same quantum numbers. We were unable to cleanly extract new OPE data
from the identical scalar six-point function, even when we supplemented it with input from supersymmetric
localization (e.g., the leading rank−2 symmetric traceless operator appearing in the OPE of two fundamental
scalars is a chiral primary and its OPE data is known exactly [23]).
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Figure 8. In the conformal gauge approach, there are five different classes of reparametrization
diagrams that contribute to the connected correlator of six different scalars. The first two classes of
diagrams are qualitatively similar to the diagrams in figure 1 contributing to the six-point function of
identical scalars. The remaining three classes of diagrams are new and also involve scalar contact and
exchange diagrams.

interacting even in conformal gauge.17 Thus, in addition to the two classes of diagrams we
encountered in section 4 involving two reparametrization exchanges and a cubic interaction
between reparametrization modes, the computation of the general six point function in
conformal gauge will also involve four and six-point contact and exchange diagrams. These
are summarized in figure 8. To make progress in either gauge, it is therefore necessary to
find a way of analytically computing the relevant exchange diagrams. (By contrast, for the
relevant six-point contact diagrams, one can in principle use the approach described in [31]).
The results in this paper can hopefully serve as a stepping stone in that direction.

Another natural direction one can explore further would be to consider six point OTOC
configurations besides the one in (5.4). For example, another double scaling limit that one
could take is given by

T13 → ∞, T23 → −∞ Ts → ∞,
eT13

Ts
,
e−T23

Ts
: fixed. (7.1)

This can be achieved, for instance, by keeping the Lorentzian time of W in (5.1) fixed (T3 = 0)
while sending U to late times (T1 → ∞) and V to early times (T2 → −∞). The OTOC in
this configuration can be interpreted as a W two-point function, on a background with two
crossing or colliding shockwaves, with one left-moving shockwave produced by V and one
right-moving shockwave produced by U . This configuration and its shockwave interpretation
was studied, in the context of JT gravity and Einstein gravity in AdS3, in [3]. However,

17For example, in stereographic coordinates ym, m = 1, . . . , 5 on S5, the tranverse action in conformal gauge
is

ST [ym] = Ts

2

∫
d2σ

∂αym∂αym(
1 + 1

4 y2
)2 .
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making this interpretation of the OTOC precise in the context of the string correlators
is slightly subtle. This is because a gravitational shockwave is by definition a spacetime
geometry with a discontinuity that arises due to the backreaction to a very high energy wave,
but the critical string worldsheet does not have gravity in the usual sense and the notion
of “backreaction” is a priori unclear. Instead, as discussed in [56] in the case of a string
worldsheet with a single shockwave, one can add “shockwaves” to the string by creating
a sharp kink propagating along the string by suddenly changing the acceleration of the
boundary of the string. Thus, “shockwaves” on the AdS2 string are related to the “broken”
or “segmented” strings studied in [68–70]. We hope to revisit these geometries, and their
relation to higher point OTOCs, in the near future.
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A Reparametrization mode three-point interaction on the circle

In this section, we rederive the result for the contact diagram involving three reparametrization
modes given in (4.14), except now we work with the reparametrization action on the circle
rather than on the line. Doing the analysis on the circle allows us to handle the SL(2,R)
zero modes more explicitly.

We will focus only on the contribution of the interacting diagrams on the circle, and will
not rederive the full connected six-point function. Recall that we write the boundary mode
on the circle as α̃(τ) = τ + ϵ̃(τ), where ϵ̃ is a small perturbation around the saddle point that
we can expand in Fourier modes: ϵ(τ) =

∑
n∈Z ϵ̃ne−inτ . Here, n = 0,±1 are zero modes of

the action that need to be gauge fixed in the reparametrization path integral.
The two ingredients we need to study the three-point reparametrization interaction

diagrams are the reparametrization action to cubic order in ϵ̃ and the dressed two-point
function to linear order. After adding a gauge-fixing term Sgf , the full action to cubic order is:

SL = Sgf + SL,2 + SL,3 + O(ϵ̃4), (A.1)

where SL,2 and SL,3 are given in (3.39) and we pick the gauge-fixing term to be:

Sgf = Ts

[ 1
2a

ϵ̃20 +
1
b

ϵ̃1ϵ̃−1

]
. (A.2)

From the combined quadratic piece Sgf + SL,2, we read off the Wick contraction of the
Fourier modes:

⟨ϵ̃mϵ̃n⟩0 = fmδm+n,0, fm = 1
Ts


a m = 0
b m = ±1

1
4π

1
|n|(n2−1) otherwise

(A.3)
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A simple gauge choice is to set a = b = 0, which amounts to excluding the n = 0,±1 modes
from ϵ̃(τ), but we can keep a and b general. The ϵ position space propagator is then:

⟨ϵ(τ1)ϵ(τ2)⟩0 =
∑
n∈Z

fne−inτ12 = 1
Ts

a + 2b cos τ12 +
1
4π

∑
n ̸=0,±1

e−inτ12

|n|(n2 − 1)

 (A.4)

= 1
Ts

[
a − 1

4π
+
(
2b + 3

8π

)
cos(τ12) +

1
2π

sin2
(

τ12
2

)
log

(
4 sin2

(
τ12
2

))]
.

(A.5)

Note that (up to a relabelling of a and b), this is related to (4.4) by the usual interchange
of euclidean distances on the line and chordal distances on the circle.

Meanwhile, the dressed-two point function on the circle Bcircle(θ1, θ2) is given in (2.35),
where β̃ is the inverse of α̃, which to linear order in ϵ̃ is β̃(θ) = θ − ϵ̃(θ) + O(ϵ̃2). The
expansion of the normalized dressed two-point function is then:

B(θ1, θ2) ≡
[
2 sin θ12

2

]2
Bcircle(θ1, θ2) = 1 + B1(θ1, θ2) + O(ϵ̃2), (A.6)

where the linear piece is explicitly

B1(θ1, θ2) = − ˙̃ϵ1 − ˙̃ϵ2 + cot θ12
2 ϵ̃12, (A.7)

where we use the shorthand ˙̃ϵn = ˙̃ϵ(θn) and ϵ̃ij = ϵ̃(θi) − ϵ̃(θj). Knowing B1 is sufficient
to study the contribution of the three-point diagrams to the connected six-point function,
which in analogy with (4.10) is given by:

−⟨B1(θ1, θ2)B1(θ3, θ4)B1(θ5, θ6)SL,3⟩0,c. (A.8)

Here “c” stands for “connected” and tells us to contract the ϵ̃’s in the B1’s with the three
ϵ̃’s in the cubic action. To compute the full connected six-point function, we would also
need the quadratic piece B2.

We will now compute the three-point interacting diagram:

⟨ϵ̃(θ1)ϵ̃(θ2)ϵ̃(θ3)SL,3⟩0,c =
∑

a,b,c∈Z
e−iaθ1−ibθ2−icθ3⟨ϵ̃aϵ̃bϵ̃cSL,3⟩0,c (A.9)

Given the expression for the cubic action in (3.39) and using the propagator in (A.3) to
Wick contract the different Fourier modes, we have

⟨ϵ̃aϵ̃bϵ̃cSL,3⟩0,c = −2iπTs

∑
m,n∈Z

sgn(p)p2(p2 − 1)
[
⟨ϵ̃aϵ̃m⟩0⟨ϵ̃bϵ̃n⟩0⟨ϵ̃cϵ̃p⟩0 + a ↔ c + b ↔ c

]
(A.10)

= −2iπTs

∑
m,n∈Z

sgn(p)p2(p2 − 1)
[
fmfnfpδm+a,0δn+b,0δp+c,0 + a ↔ c + b ↔ c

]
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(Recall that p = −m − n). Substituting this into (A.9) and using the three Kronecker deltas
to fix a, b and c, we find:

⟨ϵ̃(θ1)ϵ̃(θ2)ϵ̃(θ3)SL,3⟩0,c =−2iπTs

∑
m,n∈Z

sgn(p)p2(p2−1)fmfnfp

[
eimθ13+inθ23+θ1 ↔ θ2+θ2 ↔ θ3

]
=− i

2
∑

m,n∈Z
fmfnp(1−δp,1−δp,−1)

[
eimθ13+inθ23+θ1 ↔ θ3+θ2 ↔ θ3

]
.

(A.11)

To get to the second line, we used fpsgn(p)p2 = p
4πTs

(1−δp,1−δp,−1), which follows from (A.3).
Let’s focus on one term inside the square bracket in (A.11) at a time. There are three
different contributions to the sum over m and n, corresponding to the “1,” the “−δp,1” and
the “−δp,−1” in 1 − δp,1 − δp,−1. The first is the simplest:

i

2
∑

m,n∈Z
fmfn(m + n)e−imθ13−inθ23 = −1

2∂3

[∑
m

fmeimθ13
∑

n

fneinθ23

]
,

= −1
2∂3[⟨ϵ̃(θ1)ϵ̃(θ3)⟩0⟨ϵ̃(θ2)ϵ̃(θ3)⟩0]. (A.12)

To get to the second line we used (A.4). In direct analogy with (4.14), we see that the double
sum breaks into a product of single sums. This implies that the three-point interaction
diagram effectively “factorizes” in terms of products of the ϵ propagator, as long as the
contributions from the “−δp,1” and the “−δp,−1” to (A.11) can be neglected. We now show
that is indeed the case.

We need to compute:∑
m,n∈Z

fmfnpδp,1e
imθ13+inθ23 = e−iθ23

∑
m∈Z

fmf−m−1e
imθ12 (A.13)

∑
m,n∈Z

fmfnpδp,−1e
imθ13+inθ23 = −eiθ23

∑
m∈Z

fmf−m+1e
imθ12 (A.14)

Given that fm = f−m, (A.14) is minus the complex conjugate of (A.13). The last piece
that we need to evaluate is then:

k(θ)≡
∑
m

fmf−m−1e
imθ = ab

T 2
s

(
1+e−iθ

)
+ b

24πT 2
s

(eiθ+e−2iθ) (A.15)

+ 1
16π2T 2

s

∑
m ̸=−2,−1,0,1

eimθ

|m||m+1|m(m2−1)(m+2) .

The remaining sum in (A.15) can be evaluated and simplifies to:

∑
m ̸=−2,−1,0,1

eimθ

|m||m+1|m(m2−1)(m+2) =
e−

iθ
2

36

(
3(33−4π2+12π|θ|−6θ2)cos θ

2+20cos 3θ

2

+6(|θ|−π)
(
9sin |θ|

2 +sin 3|θ|
2

))
. (A.16)
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Combining (A.12)–(A.15), eq. (A.11) becomes

⟨ϵ̃(θ1)ϵ̃(θ2)ϵ̃(θ3)SL,3⟩0,c = −1
2∂θ1 [⟨ϵ̃(θ1)ϵ̃(θ2)⟩⟨ϵ̃(θ2)ϵ̃(θ3)⟩] + 1 ↔ 2 + 1 ↔ 3 + R(θ1, θ2, θ3)

(A.17)

where

R(θ1, θ2, θ3) =
i

2
(
e−iθ23k(θ12)− eiθ23k(θ12)∗

)
+ 1 ↔ 2 + 1 ↔ 3. (A.18)

Eq. (A.17) almost matches eq. (4.14), which we derived working on the line and using analytic
regularization to handle the zero modes, except that (A.17) has the extra term R(θ1, θ2, θ3).
This term is not zero, but we claim that it does not contribute to (A.8), and therefore can be
neglected in the computation of the connected six-point function on the circle. Concretely, the
claim is that if we expand each B1 in (A.8) into four ϵ̃ terms according to (A.7), apply (A.17)
to the 64 different terms, and then sum up all the terms, the contribution from R is zero.
This appears tedious to check analytically, but we confirmed it numerically within machine
precision for a random sample of values for θ1, . . . , θ6.

The rest of the computation of the connected six-point function on the circle proceeds in
direct analogy with the computation on the line presented in section 4. The final result —
after mapping chordal distances to euclidean distances— matches (4.34).

B A conformal bilocal reparametrization action

In this appendix, we give a closed form expression for a bilocal reparametrization action
that has the same symmetries as the AdS2 string reparametrization action defined in (2.14).
Curiously, the action also precisely matches the string reparametrization action at quadratic
and cubic order in the saddle point expansion (but apparently not at higher orders; see
footnote 4).

Consider the following bilocal reparametrization action:

Sbilocal[α] = −C

∫ ∞

−∞
dt1dt2

[[
α̇(t1)α̇(t2)

(α(t1)− α(t2))2
]h 1

|t12|2−2h+η
− 1

|t12|2+η

]
. (B.1)

Here, α(t) is a reparametrization of the line, h and η are real parameters, and C is a coupling
constant with mass dimension [C] = η. This action was studied for the case 2− 2h + η = 0
in [71, 72], and discussed for the case η = 0 towards the end of appendix G of [33]. We have
added a −1/|t12|2+η counterterm to make the action finite in the coincident limit t2 → t1
as long as η < 1;18 the counterterm is zero in analytic regularization.

We are interested in (B.1) when η → 0. In this special case, the action has two
SL(2,R) symmetries, just like the string reparametrization action in (2.14), and it is therefore

18The finiteness of (B.1) follows from the fact that in the coincident limit

α̇(t1)α̇(t2)
(α(t1) − α(t2))2 = 1

t2
12

+ 1
6{α, t1} + O(t1 − t2), t2 → t1,

where {α, t} = − 3
2

α̈2

α̇2 +
...
α
α̇

is the Schwarzian derivative.
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“conformal.” To see this, let f(t) = at+b
ct+d denote a general SL(2,R) transformation and let

αr(t) = α(f(t)) and αℓ(t) = f(α(t)). Given that

α̇ℓ(t1)α̇ℓ(t2)
(αℓ(t1)− αℓ(t2))2

= α̇(t1)α̇(t2)
(α(t1)α(t2))2

, (B.2)

α̇r(t1)α̇r(t2)
(αr(t1)− αr(t2))2

= ḟ(t1)ḟ(t2)
α̇(f(t1))α̇(f(t2))

(α(f(t1))− α(f(t2)))2
, (B.3)

ḟ(t1)ḟ(t2)
(f(t1)− f(t2))2

= 1
t212

, (B.4)

one can readily check that Sbilocal is invariant under α → αℓ for any η and invariant under
α → αr when η → 0.

Now consider the expansion of the action in (B.1) about the saddle point by letting
α(t) = t + ϵ(t) and expanding in ϵ. Using (C.1) and integration by parts to simplify the
result, we find

Sbilocal = 2Ch(1− h)
[ ∫

dt1dt2
ϵ(t1)ϵ(t2)
|t12|4+η

− 2
∫

dt1dt2
ϵ(t1)2ϵ(t2)
|t12|4+ηt12

+ 1
2

∫
dt1dt2

(
(1 + 2h)(3− 2h)

4
3ϵ(t1)3ϵ(t2)− ϵ(t1)2ϵ(t2)2

|t12|6+η

+ h(1− h)
−2ϵ(t1)ϵ̇(t1)2ϵ(t2) + ϵ̇(t1)2ϵ(t2)2 − 1

4 t212ϵ̇(t1)2ϵ̇(t2)2

|t12|4+η

)
+ O(ϵ5)

]
. (B.5)

To put this in the Fourier representation, we write ϵ(t) =
∫ dω

2π e−iωtϵ(ω) and evaluate the
t1 and t2 integrals using (C.2)–(C.3). This leads to:

Sbilocal =
Ch(1− h)

6

[∫
dωϵ(ω)ϵ(−ω)|ω|3 − i

4π

∫
dω1dω2ϵ(ω1)ϵ(ω2)ϵ(−ω1 − ω2)|ω2|4sgn(ω2)

− π

(∫ 4∏
i=1

dωi

2π
ϵ(ωi)

)
2πδ

( 4∑
i=1

ωi
)[(1 + 2h)(3− 2h)

20

(
4|ω4|5

3 − |ω3 + ω4|5
)

+ h(1− h)
(
− 2|ω4|3ω1ω2 + |ω3 + ω4|3ω1ω2 −

3
2 |ω3 + ω4|ω1ω2ω3ω4

)]
+ O(ϵ5)

]
(B.6)

As promised, the action in (B.5) precisely matches the string reparametrization action to
cubic order given in (3.20) and (3.31), as long as we set C = 3Ts

πh(1−h) .
The analog of (B.1) on the circle (with the counterterm set to zero for simplicity) is:

Sbilocal[α] = −C

∫ π

−π
dτ1dτ2

[
α̇(τ1)α̇(τ2)[

2 sin α(τ1)−α(τ2)
2

]2 ]h 1∣∣2 sin τ12
2
∣∣2−2h+η

. (B.7)

If we set α(τ) = τ + ϵ̃(τ), expand in ϵ̃, and use (C.4) and integration by parts to simplify
terms, we again find that the bilocal action on the circle matches the string reparametrization
action given in (3.34) to cubic order.
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Conformal k-local conformal reparametrization. Note that (B.1) is constructed by
multiplying a reparametrization-dressed conformal two-point function with an undressed two-
point function. It is easy to generalize (B.1) and write down a k-local action invariant under
two SL(2,R) symmetries starting from a pair of conformal k-point functions. In particular, let

G(t1, . . . , tk) = ⟨Oh1(t1) . . . Ohk
(tk)⟩, (B.8)

be any correlator in a 1d CFT of k operators Ohi
with conformal dimensions hi, and let

Ḡ(t1, . . . , tk) = ⟨Ō1−h1(t1) . . . Ō1−hk
(tk)⟩, (B.9)

be any correlator in a 1d CFT of k operators Ō1−hi
with conformal dimensions 1− hi. Then

we define the reparametrization action

Sk−local[α(t)] = C

∫ k∏
i=1

dti

k∏
i=1

α̇(ti)hiG(α(t1), . . . , α(tn))Ḡ(t1, . . . , tn). (B.10)

This action is also invariant under both α(t) → f(α(t)) and α(t) → α(f(t)), where f is a
general SL(2,R) transformation. This follows from (B.2)–(B.4) together with the conformal
Ward identity, which says that

G(t1, . . . , tk) =
k∏

i=1
ḟ(ti)hiG(f(t1), . . . , f(tk)), (B.11)

and with an analogous statement for Ḡ.
Within this construction, (B.10) is unique to the extent that the k-pt function in 1d

CFT is unique. For instance, the bilocal action is unique up to normalization C and choice
of conformal dimension h, and the 3-local action is unique up to normalization and choice
of three conformal dimensions h1, h2, h3.

C Useful integrals for analytic regularization

In analytic regularization, the following identities hold on the line:∫ ∞

−∞
dt

1
|t|∆

= 0, (C.1)∫ ∞

−∞
dt

eiωt

|t|∆
= 2 sin

(
π

2∆
)
Γ(1−∆)|ω|∆−1, (C.2)∫ ∞

−∞
dt

eiωt

|t|∆t
= −2i sin

(
π

2∆
)
Γ(−∆)sgn(ω)|ω|∆. (C.3)

(The third identity is essentially the derivative of the second identity with respect to ω).
Likewise, the following identities hold on the circle:

∫ π

−π
dτ

1
|2 sin τ

2 |∆
= 21−∆√π

Γ
(
1−∆
2

)
Γ
(
1− ∆

2

) , (C.4)

∫ π

−π
dτ

einτ

|2 sin τ
2 |∆

= 2π(−1)nΓ(1−∆)
Γ
(
1− n − ∆

2

)
Γ
(
1 + n − ∆

2

) , ∀n ∈ Z. (C.5)
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