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Abstract—We investigate resource allocation for quantum en-
tanglement distribution over an optical network. We characterize
and model a network architecture that employs a single quasi-
deterministic time-frequency heralded EPR-pair source, and de-
velop a routing scheme for distributing entangled photon pairs over
such a network. We focus on max-min fairness in entanglement
distribution and compare the performance of various spectrum
allocation schemes by examining both the max-min number of
EPR pairs assigned by them and the Jain index associated with
this assignment.

I. INTRODUCTION

Quantum entanglement distribution over a network is es-

sential for large-scale quantum computing, quantum sensing,

and quantum security. Although various protocols have been

proposed [1], the entanglement source-in-the-middle approach

is efficient in many practical settings. A promising source-

in-the-middle method employs a broadband degenerate quasi-

deterministic time-frequency heralded Einstein-Podolsky-Rosen

(EPR) pair source [2]. Wavelength-selective routing can then

be used to distribute the broadband entangled-photon pairs to

consumer node pairs in a network.

The scheme from [2] has the advantage of producing EPR

pairs that are heralded in time and frequency, however, it

presents unique challenges in routing and spectrum allocation.

The source in [2] is degenerate: it outputs entangled photon pairs

on the same wavelength. Thus, photons from a given pair cannot

use the same fiber span in the same direction without routing

ambiguity or requiring time multiplexing. Routing algorithms

must account for this, along with path-dependent photon losses.

Furthermore, although the source is broadband, when segmented

into narrow-band channels, the average number of entangled

photon pairs it generates per channel varies across the spectrum.

Here, we build upon the classical approaches [3] to develop

routing and spectrum allocation strategies for single-source

entanglement distribution.

Fortunately, in our single-source setting, routing and spectrum

allocation can be addressed separately. We adapt Suurballe’s

algorithm [4], [5] to find an optimal route in polynomial time.

We desire max-min fair spectrum allocation, where the mini-

mum number of EPR pairs each node receives is maximized.

Unfortunately, as in classical optical networks [6], this is an NP-

hard integer linear program (ILP). Therefore, we investigate the

performance of various approximation algorithms, and compare

them to the optimal ILP solution on a small toy network.

We also address the source placement problem, i.e., finding

the optimal location for our entangled photon source. Thus,

we analyze both the fairness with which different algorithms

can supply heralded EPR pairs throughout the network and the

properties of the ideal locations of the source node.

Previous works have achieved entanglement distribution by

placing an EPR pair source at each node in a point-to-

point (PTP) network that uses wavelength-division multiplexers

(WDMs) [7]. However, this necessitates physical connections

between each pair of nodes, as well as EPR pair sources at each

node, both of which present scaling challenges. A fully passive

approach with WDMs was used to distribute EPR pairs across

a four-node network in a single-source setting [8]. This was ex-

tended to allow for adaptive spectrum allocation in quantum net-

works: [9] uses a wavelength selective switch (WSS) and [10]

uses a re-configurable optical add-drop multiplexer (ROADM)

to distribute spectrally-correlatedpolarization-entangled photon

pairs. By using hyper-entangled states in polarization and fre-

quency along with quantum-enabled ROADMs, [11] demon-

strated active switching to allocate channels of different band-

widths to different nodes, and also to demultiplex the channels

at the nodes. However, these works do not address the problem

of routing photons in a large network. On the other hand, the

degenerate approach [2] used here has not been realized in

experiments nor studied from a wavelength-routing perspective.

Section II overviews the source and network architectures

and their models. Section III discusses our approaches for op-

timizing routing and spectrum allocation. Section IV compares

our approaches numerically. We discuss the implications of our

results and future work in Section V.

II. SYSTEM MODEL

A. Broadband Degenerate EPR-pair Generation

We assume the availability of a broadband, quasi-

deterministic EPR-pair source. An example of such is the zero-

added loss entangled multiplexing (ZALM) scheme described







vertices to V . Since only one WSS is traversed in this

case, w
(

e
i,inj
i,mem

)

= lWSS.

• For the source node s, we iterate over all nodes j that

connect to s, and add edges e
s,outj
j,ins

≡
(

vs,outj , vj,ins
)

to E

and corresponding vertices to V . The weight of these edges

is w
(

e
s,outj
j,ins

)

= α × d(s, j). Consumer node’s incoming

vertices vj,ins are connected to outgoing vertices and quan-

tum memories as described above. Finally, we add edges

es,gen
s,outj

≡
(

vs,gen, vs,outj

)

and es,gen
s,mem ≡ (vs,gen, vs,mem) from

vertex vs,gen describing EPR pair generator to all outgoing

ports and vertex vs,mem describing source’s own quantum

memory. The weights for these edges are w
(

es,gen
s,outj

)

=

2lWSS and w
(

es,gen
s,mem

)

= lWSS, per above. Note that the

source node does not have incoming ports.

The total loss on a path from source to a consumer node i is

the sum of weights of the edges connecting vs,gen to vi,mem.

Fig. 2(b) depicts a graph model corresponding to the four-node

network shown in Fig. 2(a).

F. Max-min (Egalitarian) Fairness

We seek max-min, or egalitarian, fairness, and maximize

the minimum average rate of EPR pairs received by all k =
n(n − 1)/2 pairs (i, j) of n nodes [17]. Let l(i,j) be the total

loss (in dB) from the source to nodes (i, j). That is, l(i,j) is the

sum of losses on the disjoint paths from source to nodes i and j,

per Section II-E. Then, transmittance η(i,j) = 10−l(i,j)/10 is the

fraction of the entangled photon pairs that are received by (i, j).
Let A(i,j) be the set of channels assigned to node pair (i, j).
Since each channel cannot be assigned to more than one node

pair, the set P =
{

A(i,j) : i, j = 1, . . . , n, i ̸= j
}

partitions the

m available channels. Let n̄x be the average rate of EPR pair

generated in channel x. The average rate of EPR pairs received

by node pair (i, j) is then n̄(i,j) = η(i,j)
∑

x∈A(i,j)
n̄x and the

max-min fair allocation involves the following optimization:

maxP min(i,j) n̄(i,j).

III. ALGORITHMS

Orthogonality of sets A(i,j) allows treating routing and spec-

trum allocation problems separately, as discussed next.

A. Optimal routing

Unlike standard networks, our source-in-the-middle entan-

glement distribution system described in Section II requires

two disjoint light paths from source s to nodes i and j that

minimize total loss l(i,j) for each pair (i, j) in the network.

Per Section II-E, this translates to finding edge-disjoint routes

in G from vs,gen to vi,mem and vj,mem minimizing the sum of

weights of these paths. To this end, we use Suurballe’s algorithm

[4], [5] as follows: for each consumer pair (i, j) we add a

dummy vertex v(i,j),d to V and dummy zero weighted edges:

ei,mem

(i,j),d ≡
(

vi,mem, v(i,j),d
)

and ej,mem

(i,j),d ≡
(

vj,mem, v(i,j),d
)

to E .

Suurballe’s algorithm yields two edge-disjoint paths of mini-

mum total weight between vs,gen and v(i,j),d. Removing dummy

vertices and edges returns edge-disjoint paths of minimum total

weight from vs,gen to vi,mem and vj,mem for all pairs (i, j).
Suurballe’s algorithm’s run-time is polynomial in graph size.

B. Spectrum Allocation Strategies

Let X be an m×n(n−1)/2 binary matrix with Xx,(i,j) = 1 if

channel x is assigned to node pair (i, j) and zero otherwise (note

that the pair (i, j) indexes columns of X). Formally, Xx,(i,j) =
{

1 if x ∈ A(i,j); 0 else
}

. Also define an n(n − 1)/2 × n(n −

1)/2 diagonal matrix Λ with transmittances η∗(i,j) of optimal

routes (see Section III-A) from source to each (i, j) on the

diagonal and a vector N = [n̄1, . . . , n̄m] of average EPR-pair-

generation rates in each channel (see Section II-F). For some

X , the average rate of EPR pairs received by (i, j) is n̄(i,j) =
[NXΛ](i,j), the (i, j)th entry of vector NXΛ.

Finding an optimal spectrum allocation matrix X is a well-

known problem in optical networking [6]. Here we focus on

maintaining max-min fairness in source-in-the-middle entangle-

ment distribution.

1) Optimal Assignment: The following integer linear pro-

gram (ILP) yields the optimal max-min fair solution Topt:

max
X

T s.t.

n
∑

i,j=1
i ̸=j

Xx,(i,j) = 1, ∀x = 1, . . . ,m (1a)

[NXΛ](i,j) g T, ∀i, j = 1, . . . , n, i ̸= j, (1b)

where constraint (1a) enforces that each channel is assigned

only once and (1b) ensures that each node pair receives EPR

pair rate of at least T .

The routing scheme in our scenario implicitly enforces wave-

length contiguity constraints, as wavelengths cannot be switched

at intermediate nodes. This contrasts classical optical networks,

where optimal spectrum allocation has to explicitly enforce

them. Additionally, unlike classical networks that allow frac-

tional channel allocation, source-in-the-middle entanglement

distribution requires discrete channel assignment to entangle

two particular quantum memories. This necessitates solving an

NP-hard ILP problem. Hence, we consider approximations.

2) First Fit [6]: We assign channels sequentially to a node

pair. If EPR pair rate T is reached, then we repeat for the next

node pair. We restart with a smaller T if channels are exhausted

before all node pairs attain EPR pair rate T .

3) Round Robin [18]: The channels are assigned one at a

time to randomly ordered node pairs in the descending order of

generated ERP pair rate.

4) Random: Each request is assigned roughly the same

number of channels at random.

5) Modified Longest Processing Time First (LPT) [19], [20]:

This is a well-known machine scheduling algorithm. We modify

it to greedily optimize for the max-min rather than min-max

goal, akin to [21]: each channel is assigned to a node pair

which maximizes the current minimum received EPR pair rate

across the node pairs. While our experiments indicate that this



approach performs well, we have not derived any analytical

performance guarantees.

6) 1/(m − k + 1)-approximation [17]: This iterative

polynomial-time algorithm converges to a solution that is guar-

anteed to be within 1/(m − k + 1) of the optimal max-min

value, where, in our setting m is the number of channels and

k = n(n − 1)/2 is the number of node pairs. We make two

modifications: 1) instead of always assigning one channel to

each node pair in each round, we allow skipping a channel

assignment; 2) in each round, we prefer the assignment which

minimizes the total rate of EPR pair generation that is assigned.

These are invoked as long as it does not impact the overall max-

min value, hence they can only increase the minimum received

EPR pair rate for all node pairs, all the while preserving the

original approximation guarantee.

7) max(0, Tf-opt −max(i,j),x η(i,j)n̄x)-assignment guarantee

[17]: The minimum average EPR pair rate received by a node

pair guaranteed by this algorithm is limited by the maximum

EPR pair rate any node pair can receive: max(0, Tf-opt −

max(i,j),x η(i,j)n̄x), where Tf-opt is the optimal solution to the

integer linear program in (1) relaxed to allow fractional chan-

nel assignments. This algorithm first solves a linear program

to obtain a fractional channel assignment, and then resolves

assignments to multiple requests.

IV. RESULTS AND DISCUSSION

In Figs. 5(a) and 6(a) we report unnormalized and normal-

ized minimum average received EPR pair rates for topolo-

gies described in Section II-C. Normalization is with re-

spect to the highest-loss consumer pair’s photon count across

source node locations, when assigned all channels, i.e.:

min(i,j) η(i,j)
∑m

x=1 n̄x. In Figs. 5(b) and 6(b) we report the Jain

index [22]
(
∑

(i,j) n̄(i,j))
2

n(n−1)
2

∑
(i,j) n̄

2
(i,j)

, which ranges from 1 (completely

fair) to 1
n(n−1)/2 (most unfair). Results from random and

max(0, Tf-opt −max(i,j),x η(i,j)n̄x) algorithms are not reported

for the Manhattan topology in Fig.6(a) as their performance is

as poor as those shown in Fig. 5(a) for the simple network.

The first-fit and round-robin algorithms are sensitive to the

node pair order. The random assignment can yield varying

performance metrics across different executions. Also, although

the ILP algorithm consistently produces the same minimum

number of assigned average EPR pair rates in each run, it may

use distinct assignment configurations, resulting in varying Jain

index. Thus, the results for the first-fit, random, round-robin,

and ILP algorithms are averaged over 1000 runs, with each

run randomizing the order of processing the node pairs. The

confidence intervals are negligibly small and are not depicted.

Fig. 5(a) depicts the minimum average EPR pair rates re-

ceived by any node pair in the simple network topology depicted

in Fig. 4 when placing the source at node A and a WSS

loss of 8 dB. We can calculate the optimal solution using

ILP for this configuration. We note that the 1/(m − k + 1)
approximation algorithm is close to optimal. Modified LPT

and First-Fit algorithms perform well; the First-Fit algorithm’s

performance is surprising given its relative simplicity. Random

and round-robin algorithms perform poorly. The max(0, Tf-opt−

max(i,j),x η(i,j)n̄x) algorithm shows the poorest performance

on this metric since it does not assign any channels to some

node pairs.

Fig. 5(b) shows the performance of these strategies on the Jain

index. The ILP solution, which optimizes for the minimum av-

erage received EPR pair rate, also performs the best on this fair-

ness measure. The performance of the other strategies is com-

parable to each other. Interestingly, despite not assigning any

channels to some requests, max(0, Tf-opt − max(i,j),x η(i,j)n̄x)
strategy performs better on the Jain index than the 1/(m−k+1)
approximation algorithm. The 1/(m−k+1) approximation al-

gorithm, which performed well for minimum photons received,

performs the poorest on the Jain index. This underscores a

constraint of the Jain index as a metric, as it solely evaluates the

relative fairness among assignments without taking into account

the quantity of EPR pairs allocated.

Fig. 6(a) shows the normalized and unnormalized minimum

average EPR pair rates that any node pair can receive in the

ILEC network topology depicted in Fig. 3 when the source is

positioned at different locations in the network. These results

are for two distinct cases, with WSS losses of 4 dB and 8 dB.

Due to the complexity of the ILP program for this topology, we

cannot calculate the optimal solution here.

The number of intermediate nodes traversed by a path in

the ILEC network varies significantly based on the source

node location. A linear increase in the number of intermediate

nodes traversed leads to an exponential shift in the associated

transmittance of the path. Hence we see that minimum average

EPR pair rates vary significantly across source node locations.

Also due to this exponential relationship between path loss in

dB and transmittance, the difference in the minimum average

EPR pair rates across source node locations is accentuated when

the WSS loss is set to 8dB as opposed to 4 dB.

Normalized values for the minimum number of EPR pairs

facilitate comparisons across diverse network topologies, as in

the case of comparison between results in 5(a) and results in

6(a) with an 8 dB loss. However, the reference for normalization

is affected when the WSS loss is changed. Decreasing the WSS

loss from 8 dB to 4 dB significantly changes the scale of values

after normalization, as can be seen in the two sub-graphs in

6(a). This behavior arises because, while the ratio between path

losses stays roughly constant when WSS losses are doubled,

normalization here captures the ratio between the transmittance

of the paths, which has an exponential relationship with dB loss.

As a result, highly connected graphs perform better at higher

losses, as seen in the figure.

Consistent with the findings displayed for the basic network,

both the 1/(m−k+1) algorithm and modified LPT algorithms

are effective in optimizing the minimum average ERP pair rates

received by a node pair. However, the First-Fit algorithm, which





exhibits superior performance compared to other approaches on

source nodes P and Q when the WSS loss is at 8 dB.

Across different source locations, we see those with higher

nodal degrees can supply higher minimum average EPR rates

throughout the network. Nodes A through L have degree 14,

and show a similar performance. Node M has the highest degree

(16) and shows the best performance. Nodes P and Q have

degree two and four, respectively, and demonstrate the poorest

performance. Interestingly, the performance of nodes N and O
which have degree 15 show dramatic improvement over nodes

with degree 14. This can be attributed to the fact that these

node’s neighbours are neighbors to node Q and second-order

neighbors to node P ; two nodes that have few other neighbors.

Thus while the nodes with 14 neighbors cannot efficiently

supply EPR pairs when one of the nodes is P or Q, source

nodes N and O do not suffer from this problem.

V. CONCLUSION

In this study, we explore the optimization of EPR pair

distribution in quantum networks to address the increasing

demand for efficient quantum computation and communication.

We consider a source-in-the-middle time-frequency-heralded ar-

chitecture and examine optimal routing and various approaches

for fair spectrum allocation that approximate the optimal NP-

hard solution. For the latter, we find that the 1/(m − k + 1)
approximation and modified LPT algorithms outperform others

in EPR pair rate while being comparable to others in fairness

as measured by the Jain index. Future work should focus on

algorithm refinement and experimental implementations.
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