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Figure 1: We examine whether deep learning models can classify sidewalk accessibility conditions from pre-cropped 640x640
streetscape images—e.g., whether a curb ramp is foo steep, too narrow, or missing a tactile indicator or if a sidewalk panel is
uneven, bumpy, or composed of brick/cobblestone. The grid above showcases all 33 conditions we attempt to infer.

Abstract

We examine the feasibility of using deep learning to infer 33 classes
of sidewalk accessibility conditions in pre-cropped streetscape im-
ages, including bumpy, brick/cobblestone, cracks, height difference
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(uplifts), narrow, uneven/slanted, pole, and sign. We present two
experiments: first, a comparison between two state-of-the-art com-
puter vision models, Meta’s DINOv2 and OpenAI’s CLIP-ViT, on
a cleaned dataset of ~24k images; second, an examination of a
larger but noisier crowdsourced dataset (~87k images) on the best
performing model from Experiment 1. Though preliminary, Exper-
iment 1 shows that certain sidewalk conditions can be identified
with high precision and recall, such as missing tactile warnings
on curb ramps and grass grown on sidewalks, while Experiment
2 demonstrates that larger but noisier training data can have a
detrimental effect on performance. We contribute an open dataset
and classification benchmarks to advance this important area.
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1 Introduction

Ensuring that sidewalks are safe and accessible to all is a key US
priority [19] and a goal of the UN’s New Urban Agenda [25]. A
looming challenge, however, is the lack of scalable data collec-
tion techniques to assess and map the condition of pedestrian en-
vironments throughout the world [9]. Emerging work in urban
studies and accessibility have trained state-of-the-art computer vi-
sion models to find and identify pedestrian-related features using
streetscape imagery, such as crosswalks, curb ramps, and obsta-
cles [1, 8,10, 12, 15, 26]. While promising and scalable, these models
only detect features, they do not assess condition—for example, they
detect curb ramps but not whether the ramp has a tactile warning
strip or whether there is sufficient landing space for a wheelchair.
Some recent work has examined sidewalk condition assessment;
however, it has taken a narrower scope, such as classifying the
sidewalk material (e.g., asphalt, cobblestone) [13].

In this paper, we explore the feasibility of classifying pre-cropped
streetscape images into 33 sidewalk conditions (or tags) using state-
of-the-art deep learning models. For training and testing, we use
data derived from Project Sidewalk, an open-source sidewalk ac-
cessibility labeling tool currently deployed in 21 cities across eight
countries [22]. We present two experiments: first, a comparison be-
tween two state-of-the-art computer vision models, Meta’s DINOv2
and OpenAT’s CLIP-ViT, on a cleaned dataset of ~24k images; second,
an examination of a larger but noisier crowd-sourced dataset (~87k
images) on the best performing model from Experiment 1. Though
preliminary, Experiment 1 shows that certain sidewalk conditions
can be identified with high precision and recall, such as missing
tactile warning on curb ramps and grass grown on sidewalks, while
Experiment 2 demonstrates that larger but noisier training data can
have a detrimental effect on performance. Both our datasets and
analysis code are released as open source on GitHub!.

Our overarching goal is twofold: first, to advance the field of
automated streetscape analysis and establish performance bench-
marks for sidewalk condition assessment; second, inspired by the
VizWiz Challenge [6, 11, 18], to provide two open datasets to spur
future research and enable performance comparisons.

https://github.com/ProjectSidewalk/sidewalk-tagger-ai
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2 Dataset

Our datasets derive from the open source crowdsourcing tool,
Project Sidewalk (https://projectsidewalk.org) [22]. In Project Side-
walk (PS), online users are given interactive missions to locate, label,
and tag sidewalk and crosswalk accessibility features and problems
in interactive Google Street View (GSV) images. Currently, Project
Sidewalk is deployed in 21 cities across eight countries with over
1 million image-based sidewalk accessibility labels and 693k vali-
dations across 11k street miles. For validations, users are shown
labels by other users and vote on their correctness by selecting
agree, disagree, or unsure.

Project Sidewalk uses a hierarchical labeling approach. Users
first apply one of seven high-level label types: curb ramp, pedestrian
signal, crosswalk, missing curb ramp, obstacle, surface problem, and
missing sidewalk. Each label has an associated set of 5-11 tags, which
can optionally be applied. For example, surface problem tags include
grass, cracks, uneven/slanted, sand/gravel, etc.—see Tables 2-5 in the
Appendix. In this paper, we attempt to automatically infer these
tags given a label type and a pre-cropped 640 X 640 image around
the center position of that label. We aim to create new Human-AI
interfaces in Project Sidewalk that recommend tags to the user, help
automatically validate previously applied tags, or back-fill missing
tags for labels already in the Project Sidewalk database.

For our experiments, we attempt to classify 33 tags across four
label categories: curb ramp, crosswalk, obstacle, and surface problem.
We created two datasets drawn from 10 and 12 cities, respectively:
(1) a cleaned dataset (Dataset 1) of 24,009 labels and 29,311 tags and
(2) a raw dataset (Dataset 2) of 87,495 labels and 66,875 tags—see
Table 1. For Dataset 1, four research assistants iteratively cleaned
and verified each label and tag. In total, 16,424 tags were changed
(7,988 tags added), suggesting an originally noisy dataset (Table
1). For Dataset 2, we subsampled raw labels directly from Project
Sidewalk with a positive crowdsourced validation score (i.e., # agree
votes > # disagree votes) across the 12 cities.

In summary, each data point in our training and test set contains:
(1) a 640 x 640 streetscape image center-cropped around the user’s
label belonging to one of the four PS categories (curb ramp, cross-
walk, surface problem, or obstacle); and (2) PS category-specific tags
(Figure 1 and Tables 2-5). Download the dataset on our GitHub.

3 Experiment 1

In Experiment 1, we examine the feasibility of using custom-trained,
state-of-the-art deep learning models to classify sidewalk accessibil-
ity conditions given a 640 X 640 image crop of one of four categories
(curb ramp, crosswalk, surface problem, or obstacle). We selected
three open source models for our early experiments: (1) Ultralytics’
YOLOvS 2 [14] designed for fast, real-time applications, (2) Meta’s
DINOv2 3 [20], a recent advancement in Vision Transformer-based
models (ViT) specifically designed for self-supervised learning; and
(3) OpenATr’s CLIP ViT (pretrained on LAION-2B, ImageNet-12k,
fine-tuned on ImageNet-1k) 4 [5, 7, 23], which combines a Con-
trastive Language-Image Pre-training with ViT for image encoding.
In our initial experiments we noticed that even the largest YOLOv8

Zhttps://github.com/ultralytics/ultralytics
Shttps:/github.com/facebookresearch/dinov2
“https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
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Dataset 1 Dataset 2 Training/Test Sets
Raw Lbl Cat  Cleaned Raw Tags Cleaned Labels Tags TrainSet TrainSet  Test Set
Labels Changed Labels Tags Changed Tags Exper1  Exper2
Curb Ramp 11,061 204 10,857 5,784 6,953 9,459 43,352 16,685 8,674 43,352 2,183
Surface Problem 9,654 562 9,092 12,592 6,704 14,540 26,370 36,840 7,282 26,370 1,810
Obstacle 2,497 64 2,433 2,336 1,878 3,972 10,150 10,363 1,954 10,150 479
Crosswalk 1,638 11 1,627 611 889 1,340 7,623 2,987 1,306 7,623 321
Total 24,850 841 24,009 21,323 16,424 29,311 87,495 66,875 19,216 87,495 4,793

Table 1: An overview of the two datasets. The cleaned dataset (Dataset 1) consists of 24,009 labels and 29,311 tags; The raw
crowdsourced dataset (Dataset 2) consists of 87,495 labels and 66,875 tags. Both Experiment 1 and 2 used the same test dataset
to enable comparison. Lbl cat changed stands for "Label categories changed" and indicates the number of instances where the
RAs did not agree with the label category and removed it from the dataset.

model did not perform as well as the other two models, hence, we
chose to use DINOv2 and CLIP ViT for our subsequent analysis.

Implementation. We adopted a multi-label classification ap-
proach, as each image crop could possess zero, one, or multiple tags.
Because each PS label type has its own unique set of tags, we trained
separate models for each label type and split the data into 80% train-
ing and 20% test sets. To train the DINOv2 model, we used the B/14
Distilled backbone and pre-trained weights, Adam optimizer with a
learning rate of 1e-6, binary cross entropy as the loss function, and
a batch size of four. The 640 X 640 crops were resized to 256 X 256
for optimizing computation and each model was trained for 100
epochs. For the CLIP-ViT model, we used the ViT-B/16 pre-trained
weights and followed the same training protocol as DINOv2. Since
CLIP was pre-trained on 224 X 224 pixel images, we also resized
the 640 x 640 crops accordingly to ensure compatibility. For both
DINOv2 and CLIP-ViT, we saved the best model at each epoch with
the highest accuracy, prioritizing lower loss in cases of ties. All
training was done using Pytorch framework on an Alienware m18
R2 with NVIDIA® GeForce RTX™ 4080, 12 GB GPU.

Results. We present Experiment 1 results using standard metrics
including precision, recall, mean average precision (mAP), and F1
scores. To compute the optimal confidence level with balanced
precision and recall, we identified the confidence threshold that
maximized the F1 score, with a minimum threshold of 0.3. Tags with
fewer than 10 instances in the test set were excluded. To account for
the imbalance in our tags, we computed macro, micro and weighted
averaged F1 scores [17, 24]. See Appendix A.1 for derivation details.

As shown in Figure 2, DINOv2 slightly outperformed CLIP-ViT
across all key metrics. For example, Obstacle tags achieved a mAP
of 0.71 with DINO vs. 0.68 with CLIP as well as a weighted-F1 of
0.73 vs. 0.70. The most significant performance was observed in the
crosswalk category, with the sharpest difference in the macro-F1
score (0.60 vs. 0.48). Within category, the macro is generally lower
than the micro and weighted F1 scores since it treats all tags equally,
regardless of frequency. This difference highlights the impact of
tag imbalance, where minority classes underperform. However, the
obstacles model shows more consistent performance, as indicated
by the close macro and micro F1 scores in both DINOv2 (0.68 vs.
0.64) and CLIP-ViT (0.64 vs. 0.62).

Diving into DINOv2, the best performing model overall, 13 of
the 33 tags (40%) had weighted F1 scores above 0.7. The highest

performing tag for each label type included: missing tactile warn-
ing (F1=0.94) for curb ramps, brick/cobblestone (0.91) for surface
problems, parked car (0.93) for obstacles, and paint fading (0.8) for
crosswalks. The tags with the lowest scores were steep (F1=0) for
curb ramps; utility panel (0) for surface problems; narrow (0.3) for
obstacles; and bumpy (0.45) for crosswalks. See detailed Experiment
1 result tables in the Appendix (Tables 7-10).

To more deeply understand DINOv2’s performance, we qualita-
tively analyzed classification errors. We selected the top two most
frequently occurring tags for each label type in our test set—e.g.,
pole (N=114) and trash/recycling cans (N=92) for obstacles—and
analyzed the top 30 false positive (FP) and false negative (FN) classi-
fications (as sorted by classification confidence). Similar to related
work [8, 12, 26], we found image-related issues such as shadows,
overexposure, low contrast, and faint/distant features as well as
interclass similarity (e.g., tree appears like a pole), viewpoint occlu-
sion, and atypical forms/textures. More work is needed to address
these limitations.

4 Experiment 2

While Experiment 1 helps establish a performance baseline using a
manually-cleaned dataset, Experiment 2 explores the impact of a
larger but noisier crowdsourced dataset. Because DINOv2 outper-
formed CLIP-ViT above, we focus solely on the former here. Data
quality is, of course, essential for training robust models [3, 4, 21]
but collecting high-quality data is expensive and laborious—e.g., to
create Dataset 1, four research assistants spent over 100 hours.

Implementation. In Experiment 2, we trained an additional
DINOvV2 model following the same protocol as Experiment 1 but
using the larger, uncleaned Dataset 2 for training (Table 1). To
enable comparison across the two experiments, the test dataset was
the same as Experiment 1.

Results. Overall, with the larger but noisier dataset, performance
dropped across all four key metrics—for example, the weighted
F1 score dropped from 0.62 to 0.3 for curb ramp tags and 0.68 to
0.36 for crosswalk tags. Interestingly, surface problem and obstacle
tags experienced a smaller decline: 0.71 to 0.66 and 0.73 to 0.66,
respectively. With the cleaned training dataset (Dataset 1), 13 tags
achieved weighted F1 scores > 0.7. In Experiment 2, this drops
to 8. While some tags were largely unaffected (e.g., grass dropped
from 0.9 to 0.88, trash from 0.88 to 0.84) or even improved (e.g., tree
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Figure 2: (A) Overall classification results for Experiment 1 (Dataset 1) and Experiment 2 (Dataset 2). F1 scores computed at a
0.3 confidence threshold. (B) The Experiment 1 precision-recall curves across the four label type categories and 33 tags. The
legend shows tags sorted by frequency in the test set (the parenthetical shows the occurrence count of the tag in the test set).

Figure 3: To better understand DINOv2 performance, we visually analyzed Experiment 1 errors. We selected the top two most
frequently occurring tags for each label type in our test set and analyzed the top 30 FPs and FNs (as sorted by classification
confidence). One exception: for curb ramps, we selected missing tactile strip (N=872) and the third most common tag surface
problem (N=297) because the second most common points into traffic (N=297) had a low F1 score (0.25).

from 0.75 to 0.79, vegetation from 0.84 to 0.89), others decreased
significantly (e.g., brick/cobblestone went from 0.91 to 0.51, paint
fading dropped from 0.8 to 0.58). These results suggest that more
training data alone is not better.

5 Discussion and Conclusion

In this paper, we investigate the feasibility of assessing sidewalk
and crosswalk conditions using state-of-the-art CV models. Our
primary contribution is in establishing an open image dataset and

initial performance benchmarks to enable future research in side-
walk condition classification. Below, we contextualize our findings,
enumerate limitations, and outline directions for future work.
Similar to prior work [2, 21], our findings suggest that investing
in obtaining high-quality training data is important. Our results
show that a smaller (~24k) but cleaner dataset outperforms a much
larger but noisier (~87Kk) training dataset. Still, even with the best
performing model (DINOv2) and the clean training dataset (Dataset
1), only 13 of 33 tags achieved weighted F1 scores of 0.7 or better. So,
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while we have seen remarkable CV improvements in applications
related to autonomous driving, face/pose classification, and other
high interest areas, the same is not yet so for pedestrian-related
infrastructure and disability. Our hope is that our paper provides
a positive step in drawing attention to this area and establishing
benchmarks to spur future research. Future work should also con-
duct more in-depth analyses of trade-offs between the dataset size
and quality to optimize curation strategies.

In both Experiment 1 and 2, we trained individual multi-label
binary classification models for each label category (curb ramp,
crosswalk, obstacle, and surface problem). Future research should
develop a unified multi-class and multi-label model capable of si-
multaneously classifying multiple accessibility issues given a pre-
cropped image. In addition, PS includes other metadata such as
severity; the ideal classification model would infer not just condi-
tion but also severity—which would help cities better triage and
prioritize problems to fix and enable more personalized routing
algorithms in mapping tools.

Our dataset exhibits a long-tail tag distribution. Future work
should focus on techniques to handle such imbalanced data effec-
tively to improve robustness and generalizability. While we believe
our open dataset and initial custom-trained CV models are an im-
portant contribution to the urban studies and accessibility fields, a
longer-term aim is to incorporate these models back into Project
Sidewalk itself. Like the recent LabelAId system [16], our CV models
could provide crowdworkers with real-time labeling and validation
suggestions—e.g., by recommending a tag as they are labeling.
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A Appendix
A.1 Metric Definitions

Our datasets exhibit long-tail label distribution, as shown in Tables
2-5. Hence, the cross-label performance metrics can differ signif-
icantly. To account for such cases, we report macro, micro and
weighted averaged F1 scores. While macro-averaged F1 score is an
unweighted average that treats all labels the same, micro-averaged
F1 score is a label agnostic measure that is more impacted by the
performance of the majority label and weighted-average F1 uses
true instance frequency as weights.

In multi-label binary classification, each instance can be assigned
multiple labels. The F1 score can be calculated in different ways
depending on how the individual label results are aggregated. Below,
we define the Micro F1, Weighted F1, and Macro F1 scores. Let L
be the number of labels and i denote a specific label. Note that, for
our case, a label here is a tag.

Macro F1 Score

The Macro F1 score calculates the F1 score for each label and then
takes the average (unweighted) of these scores.

L
1
Macro F1 = I IZ; F1;

Micro F1 Score

The Micro F1 score aggregates the contributions of all labels to
compute the average F1 score. It is calculated using the total True
Positives (TP), False Positives (FP), and False Negatives (FN) across
all labels, following Sokolova and Lapalme [24] alternative defini-
tion.

Z:iL:1 TP
> (TP; +FP))
ZiL=1 TP;
>k (TP; + FN;)

2 - Micro Precision - Micro Recall

Micro Precision =

Micro Recall =

Micro F1 = - — .
Micro Precision + Micro Recall

Liu et al.

Weighted F1 Score

The Weighted F1 score calculates the F1 score for each label and
takes a weighted average based on the number of true instances
(support) for each label.

L
Weighted F1 = Z w; X F1 Score;
i=1
Where,

No. true instances for label i

wi =

Total number of samples
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A.2 Validation Ul
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For Dataset 1, we designed and implemented a custom validation user interface to clean Project Sidewalk label and tag data. We show two
example screenshots of this interface in Figure 4. Four research assistants used this UI to iteratively clean and verify 24,009 labels and 29,311
tags. In total, 16,424 tags were changed (7,988 tags added)—see Table 1.

Figure 4: Our custom built validation UI to clean Project Sidewalk label and tag data. (left) The user validating an obstacle label
and tags: there is a recycling can blocking the sidewalk, which is tagged with trash-recycling-can and narrow. (right) The user

validating a crosswalk label and tags: there is a painted crosswalk but it has a broken surface and paint fading.

A.3 Tags Frequency by Category

Below, we present the frequency of all tags in the training and test sets for each PS category. Tags listed below the gray horizontal rule were
present in the training set but were excluded from the test results because their frequency count was < 10. Download the dataset here:
https://github.com/ProjectSidewalk/sidewalk-tagger-ai.

Table 2: The curb ramp dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the
test set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments

Dataset 1 Experiment 1 Experiment 2 Test Set

Curb Ramp Raw # Cleaned # # Tags # Tags # Tags # Tags
Changed Training Set Training Set

Missing-tactile-warning 2,286 4,225 2,053 3,353 5,791 872
Points-into-traffic 954 1,384 1,118 1,087 3,539 297
Surface-problem 431 1,076 835 809 1,011 267
Narrow 1,026 927 1,055 775 2,602 152
Not-enough-landing-space 590 631 685 547 1,447 84
Not-level-with-street 341 446 381 381 1,409 65
Pooled-water-debris 15 149 134 107 200 42
Steep 140 150 220 121 522 29
No tag 6,687 4,719 2,904 3,748 31,149 971
Tactile-warning 1 471 472 471 164 0
Total 5784 9459 6953 7651 16685 1808
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Table 3: The surface problem dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the
test set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments

Dataset 1 Experiment 1 Experiment 2 Test Set

Surface Problem Raw # Cleaned # # Tags # Tags # Tags # Tags
Changed Training Set Training Set

Grass 3,233 4,025 894 3,219 7,906 806
Cracks 3,572 3,524 1,468 2,913 11,021 611
Height—difference 1,202 1,694 642 1,248 2,626 446
Uneven-slanted 1,844 1,672 816 1,333 5,284 339
Bumpy 1,004 1,763 1,579 1,642 4,083 121
Brick-cobblestone 371 461 100 360 272 101
Narrow-sidewalk 696 611 417 537 3,011 74
Very-broken 496 400 488 329 1,783 71
Sand-gravel 112 252 196 207 490 45
Utility-panel 7 71 64 44 98 27
No tag 574 37 559 37 1,902 0
Construction 35 32 23 26 177 6
Rail-tram-track 20 26 8 21 73 5
Uncovered-manhole 0 9 9 9 16 0
Total 12,592 14,540 6,704 11,388 36,840 2,652

Table 4: The obstacle dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the test
set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments.
Parked-motor is the "parked-scooter-motorcycle” tag where people park their scooters/motorcycles on the sidewalk, which
become accessibility barriers.

Dataset 1 Experiment 1 Experiment 2 Test Set

Obstacle Raw # Cleaned # # Tags # Tags Training # Tags Training # Tags
Changed Set Set

Pole 470 575 129 461 2,713 114
Trash-recycling-can 350 383 91 291 1,117 92
Narrow 143 1,260 1,135 1,181 736 79
Vegetation 393 434 65 355 1,343 79
Parked-car 386 400 24 326 829 74
Construction 122 208 104 174 545 34
Tree 145 153 30 122 1,230 31
Litter-garbage 36 100 76 73 103 27
Sign 90 169 91 145 624 24
Parked-bike 62 70 18 50 147 20
Height-difference 25 72 53 59 168 13
No tag 322 2 322 0 1,339 2
Garage-entrance 34 43 15 37 254 6
Parked-moto 14 22 8 16 51 6
Stairs 20 23 21 20 132 3
Fire-hydrant 43 49 8 46 257 3
Street-vendor 3 6 5 4 114 2
Total 2,336 3,972 1,878 3,365 10,363 607



Fine-Grained Sidewalk Accessibility Assessment with Deep Learning ASSETS 24, October 27-30, 2024, St. John’s, NL, Canada

Table 5: The crosswalk dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the test
set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments.

Dataset 1 Experiment 1 Experiment 2 Test Set

Crosswalk Raw # Cleaned # # Tags # Tags Training # Tags Training # Tags
Changed Set Set

Paint-fading 384 561 255 426 1,852 135
Bumpy 46 232 200 182 145 50
Broken-surface 78 361 291 315 207 46
Brick-cobblestone 16 54 38 41 138 13
No tag 1,116 781 413 623 5,159 158
Uneven-surface 47 67 56 60 148 7
Rail-tram-track 16 34 34 30 126 4
Very-long-crossing 24 30 14 28 356 2
Level-with-sidewalk 0 1 1 0 12 1
No-pedestrian-priority 0 0 0 0 3 0
Total 611 1,340 889 1,082 2,987 258

A.4 Datasets by City

Experiment 1 (clean data only) used Project Sidewalk data from 10 cities across three countries (US, Mexico, Netherlands) while Experiment
2 (crowdsourced data only) added two additional cities (St. Louis, MO; Teaneck, NJ).

Table 6: The distribution of our two datasets by city sorted by the num of tags in our test set. Dataset 1 is composed of 10 cities
across three countries while Dataset 2 adds two additional cities (St. Louis and Teaneck). SPGG stands for San Pedro Garza
Garcia in Mexico; CDMX is Mexico City, Mexico.

Experiment 1 Training Set Experiment 2 Training Set Both Experiments: Same Test Set
Cities Num Labels Num Tags Num Labels Num Tags Num Labels Num Tags Test Set
Seattle, WA 4,417 5,125 30,842 18,810 1,113 1,111
Chicago, IL 3,626 4,602 18,489 10,552 921 982
Oradell, NJ 3,185 3,866 1,653 1,736 806 883
SPGG, MX 1,304 2,256 8,576 10,187 316 562
Columbus, OH 2,496 2,303 4,856 3,078 612 506
Pittsburgh, PA 1,191 1,667 3,569 3,485 295 405
Newberg, OR 1,526 2,018 1,523 1,085 372 391
CDMX, MX 840 1,467 7,825 9,753 209 350
Amsterdam, NL 478 599 3,929 2,562 110 116
Walla Walla, WA 153 83 522 560 39 19
St. Louis, MO N/A N/A 2,346 4,044 N/A N/A
Teaneck, NJ N/A N/A 2,865 1,023 N/A N/A

Total 19,216 23,986 87,495 66,875 1,793 5,325
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A.5 Experiment 1: DINOv2 Results

Details of frequency of tag in the test set, the selected confidence (maximizing the F1 score with a minimum threshold of 0.3), and precision,
recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded.

Table 7: DINOv2 Experiment 1 curb ramp tag classification results. Results are sorted by F1 score.

Curb Ramp Tags N Confidence Precision Recall F1
Missing-tactile-warning 872 0.3 0.92 0.96 0.94
Surface-problem 267 0.3 0.67 0.44 0.53
Narrow 152 0.3 0.4 0.28 0.33
Points-into-traffic 297 0.3 0.42 0.18 0.25
Not-enough-landing-space 84 0.3 0.27 0.15 0.20
Not-level-with-street 65 0.3 0.21 0.14 0.17
Pooled-water-debris 42 0.3 0.67 0.05 0.09
Steep 29 0.3 0 0 0

Table 8: DINOv2 Experiment 1 surface problem tag classification results. Results are sorted by F1 score.

Surface Problem Tags N Confidence Precision Recall F1
Brick-cobblestone 101 0.3 0.97 0.86 0.91
Grass 806 0.53 0.91 0.9 0.90
Cracks 611 0.82 0.74 0.8 0.77
Height-difference 446 0.3 0.87 0.63 0.73
Uneven-slanted 339 0.3 0.52 0.53 0.52
Sand-gravel 45 0.3 0.46 0.38 0.41
Narrow-sidewalk 74 0.32 0.4 0.34 0.37
Bumpy 121 0.3 0.17 0.47 0.25
Very-broken 71 0.3 0.21 0.14 0.17
Utility-panel 27 0.3 0 0 0

Table 9: DINOv2 Experiment 1 obstacle tag classification results. Results are sorted by F1 score.

Obstacle Tags N Confidence Precision Recall F1

Parked-car 74 0.3 0.97 0.89 0.93
Parked-bike 20 0.32 0.9 0.9 0.90
Trash-recycling-can 92 0.3 0.9 0.86 0.88
Pole 114 0.3 0.92 0.78 0.84
Vegetation 79 0.3 0.88 0.81 0.84
Tree 31 0.55 0.95 0.61 0.75
Sign 24 0.36 0.52 0.62 0.57
Height-difference 13 0.3 1 0.38 0.56
Litter-garbage 27 0.75 0.71 0.44 0.55
Construction 34 0.3 0.59 0.5 0.54
Narrow 79 1 0.22 0.46 0.3

Table 10: DINOv2 Experiment 1 crosswalk tag classification results. Results are sorted by F1 score.

Crosswalk Tags N Confidence Precision Recall F1

Paint-fading 135 0.3 0.86 0.76 0.80
Broken-surface 46 1 0.66 0.72 0.69
Brick-cobblestone 13 0.3 1 0.38 0.56

Bumpy 50 03 0.53 0.4 0.45
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A.6 Experiment 1: CLIP-ViT Results

Details of frequency of tag in the test set, the selected confidence (maximizing the F1 score with a minimum threshold of 0.3), and precision,
recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded.

Table 11: CLIP-ViT Experiment 1 curb ramp tag classification results. Results are sorted by F1 score.

Curb Ramp N Confidence Precision Recall F1

Missing-tactile-warning 872 0.72 0.89 0.95 0.92
Surface-problem 267 0.3 0.6 0.34 0.44
Narrow 152 0.3 0.26 0.24 0.25
Points-into-traffic 297 0.3 0.4 0.13 0.20
Not-level-with-street 65 0.3 0.28 0.15 0.20
Not-enough-landing-space 84 0.3 0.22 0.15 0.18
Pooled-water-debris 42 0.3 0.5 0.05 0.09
Steep 29 0.3 0.07 0.03 0.05

Table 12: CLIP-ViT Experiment 1 surface problem tag classification results. Results are sorted by F1 score.

Surface Problem N Confidence Precision Recall F1

Grass 806 0.71 0.91 0.87 0.89
Brick-cobblestone 101 0.3 0.94 0.74 0.83
Cracks 611 0.84 0.7 0.75 0.72
Height-difference 446 0.3 0.88 0.58 0.70
Uneven-slanted 339 0.3 0.51 0.5 0.50
Sand-gravel 45 0.3 0.52 0.31 0.39
Narrow-sidewalk 74 0.3 0.34 0.31 0.33
Bumpy 121 0.7 0.18 0.45 0.25
Very-broken 71 0.3 0.24 0.11 0.15
Utility-panel 27 0.3 1 0.04 0.07

Table 13: CLIP-ViT Experiment 1 obstacle tag classification results. Results are sorted by F1 score.

Obstacle N Confidence Precision Recall F1

Parked-car 74 0.84 0.97 0.95 0.96
Trash-recycling-can 92 0.87 0.95 0.85 0.90
Pole 114 0.91 0.88 0.78 0.83
Vegetation 79 0.3 0.84 0.8 0.82
Parked-bike 20 0.3 0.87 0.65 0.74
Tree 31 0.36 0.89 0.55 0.68
Height-difference 13 0.48 0.67 0.62 0.64
Construction 34 0.94 0.82 0.41 0.55
Sign 24 0.3 0.5 0.58 0.54
Litter-garbage 27 0.3 0.41 0.26 0.32
Narrow 79 0.88 0.21 0.61 0.31

Table 14: CLIP-ViT Experiment 1 crosswalk tag classification results. Results are sorted by F1 score.

Crosswalk N Confidence Precision Recall F1

Paint-fading 135 0.3 0.79 0.69 0.74
Broken-surface 46 0.96 0.5 0.76 0.60
Bumpy 50 0.3 0.5 0.34 0.40

Brick-cobblestone 13 0.3 0.67 0.15 0.25
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A.7 Experiment 2: DINOv2 Results

Details of frequency of tag in the test set, the selected confidence (maximizing the F1 score with a minimum threshold of 0.3), and precision,
recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded.

Table 15: DINOv2 Experiment 2 curb ramp tag classification results. Results are sorted by F1 score.

Curb Ramp N Confidence Precision Recall F1
Missing-tactile-warning 872 0.3 0.99 0.35 0.51
Narrow 152 0.3 0.33 0.15 0.21
Not-level-with-street 65 0.3 0.21 0.08 0.11
Points-into-traffic 297 0.3 0.28 0.06 0.10
Surface-problem 267 0.3 0.93 0.05 0.10
Not-enough-landing-space 84 0.3 0.14 0.04 0.06
Steep 29 0.3 0.12 0.03 0.05
Pooled-water-debris 42 0.3 0 0 0

Table 16: DINOv2 Experiment 2 surface problem tag classification results. Results are sorted by F1 score.

Surface Problem N Confidence Precision Recall F1

Grass 806 0.3 0.95 0.82 0.88
Cracks 611 0.77 0.65 0.78 0.71
Height-difference 446 0.3 0.86 0.54 0.66
Uneven-slanted 339 0.3 0.45 0.58 0.51
Brick-cobblestone 101 0.3 1 0.35 0.51
Narrow-sidewalk 74 0.3 0.26 0.31 0.28
Bumpy 121 0.95 0.25 0.23 0.24
Sand-gravel 45 0.3 0.54 0.16 0.24
Very-broken 71 0.3 0.23 0.21 0.22
Utility-panel 27 0.3 1 0.04 0.07

Table 17: DINOv2 Experiment 2 obstacle tag classification results. Results are sorted by F1 score.

Obstacle N Confidence Precision Recall F1

Parked-car 74 0.3 1 0.86 0.93
Vegetation 79 0.98 0.94 0.85 0.89
Trash-recycling-can 92 0.3 0.93 0.76 0.84
Parked-bike 20 0.3 0.84 0.8 0.82
Tree 31 0.55 0.78 0.81 0.79
Pole 114 0.3 0.89 0.67 0.76
Sign 24 0.44 0.46 0.75 0.57
Construction 34 0.3 0.71 0.44 0.55
Height-difference 13 0.3 1 0.15 0.27
Narrow 79 0.3 0.5 0.05 0.09
Litter-garbage 27 0.3 1 0.04 0.07

Table 18: Experiment 2 Test Results of DINOv2 on Crosswalk Data

Crosswalk N Confidence Precision Recall F1

Paint-fading 135 0.3 0.9 0.42 0.58
Brick-cobblestone 13 0.3 1 0.08 0.14
Broken-surface 46 0.3 1 0.07 0.12

Bumpy 50 0.3 1 0.02 0.04
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