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Figure 1: We examine whether deep learning models can classify sidewalk accessibility conditions from pre-cropped 640x640 
streetscape images—e.g., whether a curb ramp is too steep, too narrow, or missing a tactile indicator or if a sidewalk panel is 
uneven, bumpy, or composed of brick/cobblestone. The grid above showcases all 33 conditions we attempt to infer. 

Abstract 
We examine the feasibility of using deep learning to infer 33 classes 
of sidewalk accessibility conditions in pre-cropped streetscape im-
ages, including bumpy, brick/cobblestone, cracks, height diference 
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(uplifts), narrow, uneven/slanted, pole, and sign. We present two 
experiments: frst, a comparison between two state-of-the-art com-
puter vision models, Meta’s DINOv2 and OpenAI’s CLIP-ViT, on 
a cleaned dataset of ∼24k images; second, an examination of a 
larger but noisier crowdsourced dataset (∼87k images) on the best 
performing model from Experiment 1. Though preliminary, Exper-
iment 1 shows that certain sidewalk conditions can be identifed 
with high precision and recall, such as missing tactile warnings 
on curb ramps and grass grown on sidewalks, while Experiment 
2 demonstrates that larger but noisier training data can have a 
detrimental efect on performance. We contribute an open dataset 
and classifcation benchmarks to advance this important area. 
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CCS Concepts 
• Human-centered computing → Accessibility technologies; 
• Computing methodologies → Computer vision. 
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Sidewalk accessibility, computer vision, human mobility, obstacle 
detection, DINOv2, ViT-CLIP 
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1 Introduction 
Ensuring that sidewalks are safe and accessible to all is a key US 
priority [19] and a goal of the UN’s New Urban Agenda [25]. A 
looming challenge, however, is the lack of scalable data collec-
tion techniques to assess and map the condition of pedestrian en-
vironments throughout the world [9]. Emerging work in urban 
studies and accessibility have trained state-of-the-art computer vi-
sion models to fnd and identify pedestrian-related features using 
streetscape imagery, such as crosswalks, curb ramps, and obsta-
cles [1, 8, 10, 12, 15, 26]. While promising and scalable, these models 
only detect features, they do not assess condition—for example, they 
detect curb ramps but not whether the ramp has a tactile warning 
strip or whether there is sufcient landing space for a wheelchair. 
Some recent work has examined sidewalk condition assessment; 
however, it has taken a narrower scope, such as classifying the 
sidewalk material (e.g., asphalt, cobblestone) [13]. 

In this paper, we explore the feasibility of classifying pre-cropped 
streetscape images into 33 sidewalk conditions (or tags) using state-
of-the-art deep learning models. For training and testing, we use 
data derived from Project Sidewalk, an open-source sidewalk ac-
cessibility labeling tool currently deployed in 21 cities across eight 
countries [22]. We present two experiments: frst, a comparison be-
tween two state-of-the-art computer vision models, Meta’s DINOv2 
and OpenAI’s CLIP-ViT, on a cleaned dataset of ∼24k images; second, 
an examination of a larger but noisier crowd-sourced dataset (∼87k 
images) on the best performing model from Experiment 1. Though 
preliminary, Experiment 1 shows that certain sidewalk conditions 
can be identifed with high precision and recall, such as missing 
tactile warning on curb ramps and grass grown on sidewalks, while 
Experiment 2 demonstrates that larger but noisier training data can 
have a detrimental efect on performance. Both our datasets and 
analysis code are released as open source on GitHub1. 

Our overarching goal is twofold: frst, to advance the feld of 
automated streetscape analysis and establish performance bench-
marks for sidewalk condition assessment; second, inspired by the 
VizWiz Challenge [6, 11, 18], to provide two open datasets to spur 
future research and enable performance comparisons. 

1https://github.com/ProjectSidewalk/sidewalk-tagger-ai 

2 Dataset 
Our datasets derive from the open source crowdsourcing tool, 
Project Sidewalk (https://projectsidewalk.org) [22]. In Project Side-
walk (PS), online users are given interactive missions to locate, label, 
and tag sidewalk and crosswalk accessibility features and problems 
in interactive Google Street View (GSV) images. Currently, Project 
Sidewalk is deployed in 21 cities across eight countries with over 
1 million image-based sidewalk accessibility labels and 693k vali-
dations across 11k street miles. For validations, users are shown 
labels by other users and vote on their correctness by selecting 
agree, disagree, or unsure. 

Project Sidewalk uses a hierarchical labeling approach. Users 
frst apply one of seven high-level label types: curb ramp, pedestrian 
signal, crosswalk, missing curb ramp, obstacle, surface problem, and 
missing sidewalk. Each label has an associated set of 5-11 tags, which 
can optionally be applied. For example, surface problem tags include 
grass, cracks, uneven/slanted, sand/gravel, etc.—see Tables 2-5 in the 
Appendix. In this paper, we attempt to automatically infer these 
tags given a label type and a pre-cropped 640 × 640 image around 
the center position of that label. We aim to create new Human-AI 
interfaces in Project Sidewalk that recommend tags to the user, help 
automatically validate previously applied tags, or back-fll missing 
tags for labels already in the Project Sidewalk database. 

For our experiments, we attempt to classify 33 tags across four 
label categories: curb ramp, crosswalk, obstacle, and surface problem. 
We created two datasets drawn from 10 and 12 cities, respectively: 
(1) a cleaned dataset (Dataset 1) of 24,009 labels and 29,311 tags and 
(2) a raw dataset (Dataset 2) of 87,495 labels and 66,875 tags—see 
Table 1. For Dataset 1, four research assistants iteratively cleaned 
and verifed each label and tag. In total, 16,424 tags were changed 
(7,988 tags added), suggesting an originally noisy dataset (Table 
1). For Dataset 2, we subsampled raw labels directly from Project 
Sidewalk with a positive crowdsourced validation score (i.e., # agree 
votes > # disagree votes) across the 12 cities. 

In summary, each data point in our training and test set contains: 
(1) a 640 × 640 streetscape image center-cropped around the user’s 
label belonging to one of the four PS categories (curb ramp, cross-
walk, surface problem, or obstacle); and (2) PS category-specifc tags 
(Figure 1 and Tables 2-5). Download the dataset on our GitHub. 

3 Experiment 1 
In Experiment 1, we examine the feasibility of using custom-trained, 
state-of-the-art deep learning models to classify sidewalk accessibil-
ity conditions given a 640×640 image crop of one of four categories 
(curb ramp, crosswalk, surface problem, or obstacle). We selected 
three open source models for our early experiments: (1) Ultralytics’ 
YOLOv8 2 [14] designed for fast, real-time applications, (2) Meta’s 
DINOv2 3 [20], a recent advancement in Vision Transformer-based 
models (ViT) specifcally designed for self-supervised learning; and 
(3) OpenAI’s CLIP ViT (pretrained on LAION-2B, ImageNet-12k, 
fne-tuned on ImageNet-1k) 4 [5, 7, 23], which combines a Con-
trastive Language-Image Pre-training with ViT for image encoding. 
In our initial experiments we noticed that even the largest YOLOv8 

2https://github.com/ultralytics/ultralytics
3https://github.com/facebookresearch/dinov2 
4https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k 
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Dataset 1 Dataset 2 Training/Test Sets 

Raw Lbl Cat Cleaned Raw Tags Cleaned Labels Tags Train Set Train Set Test Set 
Labels Changed Labels Tags Changed Tags Exper 1 Exper 2 

Curb Ramp 
Surface Problem 

11,061 
9,654 

204 
562 

10,857 
9,092 

5,784 
12,592 

6,953 
6,704 

9,459 
14,540 

43,352 
26,370 

16,685 
36,840 

8,674 
7,282 

43,352 
26,370 

2,183 
1,810 

Obstacle 2,497 64 2,433 2,336 1,878 3,972 10,150 10,363 1,954 10,150 479 
Crosswalk 1,638 11 1,627 611 889 1,340 7,623 2,987 1,306 7,623 321 
Total 24,850 841 24,009 21,323 16,424 29,311 87,495 66,875 19,216 87,495 4,793 

Table 1: An overview of the two datasets. The cleaned dataset (Dataset 1) consists of 24,009 labels and 29,311 tags; The raw 
crowdsourced dataset (Dataset 2) consists of 87,495 labels and 66,875 tags. Both Experiment 1 and 2 used the same test dataset 
to enable comparison. Lbl cat changed stands for "Label categories changed" and indicates the number of instances where the 
RAs did not agree with the label category and removed it from the dataset. 

model did not perform as well as the other two models, hence, we 
chose to use DINOv2 and CLIP ViT for our subsequent analysis. 

Implementation. We adopted a multi-label classifcation ap-
proach, as each image crop could possess zero, one, or multiple tags. 
Because each PS label type has its own unique set of tags, we trained 
separate models for each label type and split the data into 80% train-
ing and 20% test sets. To train the DINOv2 model, we used the B/14 
Distilled backbone and pre-trained weights, Adam optimizer with a 
learning rate of 1e-6, binary cross entropy as the loss function, and 
a batch size of four. The 640 × 640 crops were resized to 256 × 256 
for optimizing computation and each model was trained for 100 
epochs. For the CLIP-ViT model, we used the ViT-B/16 pre-trained 
weights and followed the same training protocol as DINOv2. Since 
CLIP was pre-trained on 224 × 224 pixel images, we also resized 
the 640 × 640 crops accordingly to ensure compatibility. For both 
DINOv2 and CLIP-ViT, we saved the best model at each epoch with 
the highest accuracy, prioritizing lower loss in cases of ties. All 
training was done using Pytorch framework on an Alienware m18 
R2 with NVIDIA® GeForce RTX™ 4080, 12 GB GPU. 

Results. We present Experiment 1 results using standard metrics 
including precision, recall, mean average precision (mAP), and F1 
scores. To compute the optimal confdence level with balanced 
precision and recall, we identifed the confdence threshold that 
maximized the F1 score, with a minimum threshold of 0.3. Tags with 
fewer than 10 instances in the test set were excluded. To account for 
the imbalance in our tags, we computed macro, micro and weighted 
averaged F1 scores [17, 24]. See Appendix A.1 for derivation details. 

As shown in Figure 2, DINOv2 slightly outperformed CLIP-ViT 
across all key metrics. For example, Obstacle tags achieved a mAP 
of 0.71 with DINO vs. 0.68 with CLIP as well as a weighted-F1 of 
0.73 vs. 0.70. The most signifcant performance was observed in the 
crosswalk category, with the sharpest diference in the macro-F1 
score (0.60 vs. 0.48). Within category, the macro is generally lower 
than the micro and weighted F1 scores since it treats all tags equally, 
regardless of frequency. This diference highlights the impact of 
tag imbalance, where minority classes underperform. However, the 
obstacles model shows more consistent performance, as indicated 
by the close macro and micro F1 scores in both DINOv2 (0.68 vs. 
0.64) and CLIP-ViT (0.64 vs. 0.62). 

Diving into DINOv2, the best performing model overall, 13 of 
the 33 tags (40%) had weighted F1 scores above 0.7. The highest 

performing tag for each label type included: missing tactile warn-
ing (F1=0.94) for curb ramps, brick/cobblestone (0.91) for surface 
problems, parked car (0.93) for obstacles, and paint fading (0.8) for 
crosswalks. The tags with the lowest scores were steep (F1=0) for 
curb ramps; utility panel (0) for surface problems; narrow (0.3) for 
obstacles; and bumpy (0.45) for crosswalks. See detailed Experiment 
1 result tables in the Appendix (Tables 7-10). 

To more deeply understand DINOv2’s performance, we qualita-
tively analyzed classifcation errors. We selected the top two most 
frequently occurring tags for each label type in our test set—e.g., 
pole (N=114) and trash/recycling cans (N=92) for obstacles—and 
analyzed the top 30 false positive (FP) and false negative (FN) classi-
fcations (as sorted by classifcation confdence). Similar to related 
work [8, 12, 26], we found image-related issues such as shadows, 
overexposure, low contrast, and faint/distant features as well as 
interclass similarity (e.g., tree appears like a pole), viewpoint occlu-
sion, and atypical forms/textures. More work is needed to address 
these limitations. 

4 Experiment 2 
While Experiment 1 helps establish a performance baseline using a 
manually-cleaned dataset, Experiment 2 explores the impact of a 
larger but noisier crowdsourced dataset. Because DINOv2 outper-
formed CLIP-ViT above, we focus solely on the former here. Data 
quality is, of course, essential for training robust models [3, 4, 21] 
but collecting high-quality data is expensive and laborious—e.g., to 
create Dataset 1, four research assistants spent over 100 hours. 

Implementation. In Experiment 2, we trained an additional 
DINOv2 model following the same protocol as Experiment 1 but 
using the larger, uncleaned Dataset 2 for training (Table 1). To 
enable comparison across the two experiments, the test dataset was 
the same as Experiment 1. 

Results. Overall, with the larger but noisier dataset, performance 
dropped across all four key metrics—for example, the weighted 
F1 score dropped from 0.62 to 0.3 for curb ramp tags and 0.68 to 
0.36 for crosswalk tags. Interestingly, surface problem and obstacle 
tags experienced a smaller decline: 0.71 to 0.66 and 0.73 to 0.66, 
respectively. With the cleaned training dataset (Dataset 1), 13 tags 
achieved weighted F1 scores ≥ 0.7. In Experiment 2, this drops 
to 8. While some tags were largely unafected (e.g., grass dropped 
from 0.9 to 0.88, trash from 0.88 to 0.84) or even improved (e.g., tree 
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Figure 2: (A) Overall classifcation results for Experiment 1 (Dataset 1) and Experiment 2 (Dataset 2). F1 scores computed at a 
0.3 confdence threshold. (B) The Experiment 1 precision-recall curves across the four label type categories and 33 tags. The 
legend shows tags sorted by frequency in the test set (the parenthetical shows the occurrence count of the tag in the test set). 

Figure 3: To better understand DINOv2 performance, we visually analyzed Experiment 1 errors. We selected the top two most 
frequently occurring tags for each label type in our test set and analyzed the top 30 FPs and FNs (as sorted by classifcation 
confdence). One exception: for curb ramps, we selected missing tactile strip (N=872) and the third most common tag surface 
problem (N=297) because the second most common points into trafc (N=297) had a low F1 score (0.25). 

from 0.75 to 0.79, vegetation from 0.84 to 0.89), others decreased 
signifcantly (e.g., brick/cobblestone went from 0.91 to 0.51, paint 
fading dropped from 0.8 to 0.58). These results suggest that more 
training data alone is not better. 

5 Discussion and Conclusion 
In this paper, we investigate the feasibility of assessing sidewalk 
and crosswalk conditions using state-of-the-art CV models. Our 
primary contribution is in establishing an open image dataset and 

initial performance benchmarks to enable future research in side-
walk condition classifcation. Below, we contextualize our fndings, 
enumerate limitations, and outline directions for future work. 

Similar to prior work [2, 21], our fndings suggest that investing 
in obtaining high-quality training data is important. Our results 
show that a smaller (∼24k) but cleaner dataset outperforms a much 
larger but noisier (∼87k) training dataset. Still, even with the best 
performing model (DINOv2) and the clean training dataset (Dataset 
1), only 13 of 33 tags achieved weighted F1 scores of 0.7 or better. So, 
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while we have seen remarkable CV improvements in applications 
related to autonomous driving, face/pose classifcation, and other 
high interest areas, the same is not yet so for pedestrian-related 
infrastructure and disability. Our hope is that our paper provides 
a positive step in drawing attention to this area and establishing 
benchmarks to spur future research. Future work should also con-
duct more in-depth analyses of trade-ofs between the dataset size 
and quality to optimize curation strategies. 

In both Experiment 1 and 2, we trained individual multi-label 
binary classifcation models for each label category (curb ramp, 
crosswalk, obstacle, and surface problem). Future research should 
develop a unifed multi-class and multi-label model capable of si-
multaneously classifying multiple accessibility issues given a pre-
cropped image. In addition, PS includes other metadata such as 
severity; the ideal classifcation model would infer not just condi-
tion but also severity—which would help cities better triage and 
prioritize problems to fx and enable more personalized routing 
algorithms in mapping tools. 

Our dataset exhibits a long-tail tag distribution. Future work 
should focus on techniques to handle such imbalanced data efec-
tively to improve robustness and generalizability. While we believe 
our open dataset and initial custom-trained CV models are an im-
portant contribution to the urban studies and accessibility felds, a 
longer-term aim is to incorporate these models back into Project 
Sidewalk itself. Like the recent LabelAId system [16], our CV models 
could provide crowdworkers with real-time labeling and validation 
suggestions—e.g., by recommending a tag as they are labeling. 
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A Appendix 
A.1 Metric Defnitions 
Our datasets exhibit long-tail label distribution, as shown in Tables 
2-5. Hence, the cross-label performance metrics can difer signif-
icantly. To account for such cases, we report macro, micro and 
weighted averaged F1 scores. While macro-averaged F1 score is an 
unweighted average that treats all labels the same, micro-averaged 
F1 score is a label agnostic measure that is more impacted by the 
performance of the majority label and weighted-average F1 uses 
true instance frequency as weights. 

In multi-label binary classifcation, each instance can be assigned 
multiple labels. The F1 score can be calculated in diferent ways 
depending on how the individual label results are aggregated. Below, 
we defne the Micro F1, Weighted F1, and Macro F1 scores. Let � 
be the number of labels and � denote a specifc label. Note that, for 
our case, a label here is a tag. 

Macro F1 Score 
The Macro F1 score calculates the F1 score for each label and then 
takes the average (unweighted) of these scores. ∑� 1

Macro F1 = F1� 
� 

�=1 

Micro F1 Score 
The Micro F1 score aggregates the contributions of all labels to 
compute the average F1 score. It is calculated using the total True 
Positives (TP), False Positives (FP), and False Negatives (FN) across 
all labels, following Sokolova and Lapalme [24] alternative defni-
tion. Í� 

�=1 TP� Micro Precision = Í� 
�=1 (TP� + FP� )Í� 

�=1 TP� Micro Recall = Í� 
�=1 (TP� + FN� )

2 · Micro Precision · Micro Recall 
Micro F1 = 

Micro Precision + Micro Recall 

Weighted F1 Score 
The Weighted F1 score calculates the F1 score for each label and 
takes a weighted average based on the number of true instances 
(support) for each label. ∑� 

Weighted F1 = �� × F1 Score� 
�=1 

Where, 

No. true instances for label � 
�� = 

Total number of samples 

https://arxiv.org/abs/2210.08402
https://habitat3.org/the-new-urban-agenda/
https://doi.org/10.1145/3308561.3353798
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A.2 Validation UI 
For Dataset 1, we designed and implemented a custom validation user interface to clean Project Sidewalk label and tag data. We show two 
example screenshots of this interface in Figure 4. Four research assistants used this UI to iteratively clean and verify 24,009 labels and 29,311 
tags. In total, 16,424 tags were changed (7,988 tags added)—see Table 1. 

Figure 4: Our custom built validation UI to clean Project Sidewalk label and tag data. (left) The user validating an obstacle label 
and tags: there is a recycling can blocking the sidewalk, which is tagged with trash-recycling-can and narrow. (right) The user 
validating a crosswalk label and tags: there is a painted crosswalk but it has a broken surface and paint fading. 

A.3 Tags Frequency by Category 
Below, we present the frequency of all tags in the training and test sets for each PS category. Tags listed below the gray horizontal rule were 
present in the training set but were excluded from the test results because their frequency count was < 10. Download the dataset here: 
https://github.com/ProjectSidewalk/sidewalk-tagger-ai. 

Table 2: The curb ramp dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the 
test set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments 

Dataset 1 Experiment 1 Experiment 2 Test Set 
Curb Ramp Raw # Cleaned # # Tags # Tags # Tags # Tags 

Changed Training Set Training Set 
Missing-tactile-warning
Points-into-trafc 
Surface-problem 
Narrow 
Not-enough-landing-space
Not-level-with-street 
Pooled-water-debris 

2,286 
954 
431 
1,026 
590 
341 
15 

4,225 
1,384 
1,076 
927 
631 
446 
149 

2,053 
1,118 
835 
1,055 
685 
381 
134 

3,353 
1,087 
809 
775 
547 
381 
107 

5,791 
3,539 
1,011 
2,602 
1,447 
1,409 
200 

872 
297 
267 
152 
84 
65 
42 

Steep 
No tag 
Tactile-warning 

140 
6,687 
1 

150 
4,719 
471 

220 
2,904 
472 

121 
3,748 
471 

522 
31,149 
164 

29 
971 
0 

Total 5784 9459 6953 7651 16685 1808 

https://github.com/ProjectSidewalk/sidewalk-tagger-ai
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Table 3: The surface problem dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the 
test set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments 

Dataset 1 Experiment 1 Experiment 2 Test Set 
Surface Problem Raw # Cleaned # # Tags # Tags # Tags # Tags 

Changed Training Set Training Set 
Grass 
Cracks 
Height-diference 
Uneven-slanted 
Bumpy 
Brick-cobblestone 

3,233 
3,572 
1,202 
1,844 
1,004 
371 

4,025 
3,524 
1,694 
1,672 
1,763 
461 

894 
1,468 
642 
816 
1,579 
100 

3,219 
2,913 
1,248 
1,333 
1,642 
360 

7,906 
11,021 
2,626 
5,284 
4,083 
272 

806 
611 
446 
339 
121 
101 

Narrow-sidewalk 
Very-broken 
Sand-gravel 
Utility-panel 
No tag 
Construction 

696 
496 
112 
7 
574 
35 

611 
400 
252 
71 
37 
32 

417 
488 
196 
64 
559 
23 

537 
329 
207 
44 
37 
26 

3,011 
1,783 
490 
98 
1,902 
177 

74 
71 
45 
27 
0 
6 

Rail-tram-track 20 26 8 21 73 5 
Uncovered-manhole 0 9 9 9 16 0 
Total 12,592 14,540 6,704 11,888 36,840 2,652 

Table 4: The obstacle dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the test 
set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments. 
Parked-motor is the "parked-scooter-motorcycle" tag where people park their scooters/motorcycles on the sidewalk, which 
become accessibility barriers. 

Dataset 1 Experiment 1 Experiment 2 Test Set 
Obstacle Raw # Cleaned # # Tags # Tags Training # Tags Training # Tags 

Changed Set Set 
Pole 
Trash-recycling-can 
Narrow 
Vegetation 
Parked-car 

470 
350 
143 
393 
386 

575 
383 
1,260 
434 
400 

129 
91 
1,135 
65 
24 

461 
291 
1,181 
355 
326 

2,713 
1,117 
736 
1,343 
829 

114 
92 
79 
79 
74 

Construction 122 208 104 174 545 34 
Tree 
Litter-garbage
Sign
Parked-bike 

145 
36 
90 
62 

153 
100 
169 
70 

30 
76 
91 
18 

122 
73 
145 
50 

1,230 
103 
624 
147 

31 
27 
24 
20 

Height-diference 
No tag 
Garage-entrance
Parked-moto 

25 
322 
34 
14 

72 
2 
43 
22 

53 
322 
15 
8 

59 
0 
37 
16 

168 
1,339 
254 
51 

13 
2 
6 
6 

Stairs 20 23 21 20 132 3 
Fire-hydrant 
Street-vendor 

43 
3 

49 
6 

8 
5 

46 
4 

257 
114 

3 
2 

Total 2,336 3,972 1,878 3,365 10,363 607 
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Table 5: The crosswalk dataset for both Experiments 1 and 2. The table is sorted in descending order by the tag count in the test 
set. Labels with No Tags are last. The gray line indicates tags with counts < 10, which were excluded from the experiments. 

Dataset 1 Experiment 1 Experiment 2 Test Set 
Crosswalk Raw # Cleaned # # Tags # Tags Training # Tags Training # Tags 

Changed Set Set 
Paint-fading
Bumpy 
Broken-surface 

384 
46 
78 

561 
232 
361 

255 
200 
291 

426 
182 
315 

1,852 
145 
207 

135 
50 
46 

Brick-cobblestone 16 54 38 41 138 13 
No tag 
Uneven-surface 

1,116 
47 

781 
67 

413 
56 

623 
60 

5,159 
148 

158 
7 

Rail-tram-track 16 34 34 30 126 4 
Very-long-crossing 
Level-with-sidewalk 

24 
0 

30 
1 

14 
1 

28 
0 

356 
12 

2 
1 

No-pedestrian-priority 0 0 0 0 3 0 
Total 611 1,340 889 1,082 2,987 258 

A.4 Datasets by City 
Experiment 1 (clean data only) used Project Sidewalk data from 10 cities across three countries (US, Mexico, Netherlands) while Experiment 
2 (crowdsourced data only) added two additional cities (St. Louis, MO; Teaneck, NJ). 

Table 6: The distribution of our two datasets by city sorted by the num of tags in our test set. Dataset 1 is composed of 10 cities 
across three countries while Dataset 2 adds two additional cities (St. Louis and Teaneck). SPGG stands for San Pedro Garza 
García in Mexico; CDMX is Mexico City, Mexico. 

Experiment 1 Training Set Experiment 2 Training Set Both Experiments: Same Test Set 
Cities Num Labels Num Tags Num Labels Num Tags Num Labels Num Tags Test Set 
Seattle, WA 4,417 5,125 30,842 18,810 1,113 1,111 
Chicago, IL 3,626 4,602 18,489 10,552 921 982 
Oradell, NJ 3,185 3,866 1,653 1,736 806 883 
SPGG, MX 1,304 2,256 8,576 10,187 316 562 
Columbus, OH 2,496 2,303 4,856 3,078 612 506 
Pittsburgh, PA 1,191 1,667 3,569 3,485 295 405 
Newberg, OR 1,526 2,018 1,523 1,085 372 391 
CDMX, MX 840 1,467 7,825 9,753 209 350 
Amsterdam, NL 478 599 3,929 2,562 110 116 
Walla Walla, WA 153 83 522 560 39 19 
St. Louis, MO N/A N/A 2,846 4,044 N/A N/A 
Teaneck, NJ N/A N/A 2,865 1,023 N/A N/A 
Total 19,216 23,986 87,495 66,875 4,793 5,325 
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A.5 Experiment 1: DINOv2 Results 
Details of frequency of tag in the test set, the selected confdence (maximizing the F1 score with a minimum threshold of 0.3), and precision, 

recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded. 

Table 7: DINOv2 Experiment 1 curb ramp tag classifcation results. Results are sorted by F1 score. 

Curb Ramp Tags N Confdence Precision Recall F1 
Missing-tactile-warning 872 0.3 0.92 0.96 0.94 
Surface-problem 267 0.3 0.67 0.44 0.53 
Narrow 152 0.3 0.4 0.28 0.33 
Points-into-trafc 297 0.3 0.42 0.18 0.25 
Not-enough-landing-space 84 0.3 0.27 0.15 0.20 
Not-level-with-street 65 0.3 0.21 0.14 0.17 
Pooled-water-debris 42 0.3 0.67 0.05 0.09 
Steep 29 0.3 0 0 0 

Table 8: DINOv2 Experiment 1 surface problem tag classifcation results. Results are sorted by F1 score. 

Surface Problem Tags N Confdence Precision Recall F1 
Brick-cobblestone 101 0.3 0.97 0.86 0.91 
Grass 806 0.53 0.91 0.9 0.90 
Cracks 611 0.82 0.74 0.8 0.77 
Height-diference 446 0.3 0.87 0.63 0.73 
Uneven-slanted 339 0.3 0.52 0.53 0.52 
Sand-gravel 45 0.3 0.46 0.38 0.41 
Narrow-sidewalk 74 0.32 0.4 0.34 0.37 
Bumpy 121 0.3 0.17 0.47 0.25 
Very-broken 71 0.3 0.21 0.14 0.17 
Utility-panel 27 0.3 0 0 0 

Table 9: DINOv2 Experiment 1 obstacle tag classifcation results. Results are sorted by F1 score. 

Obstacle Tags N Confdence Precision Recall F1 
Parked-car 74 0.3 0.97 0.89 0.93 
Parked-bike 20 0.32 0.9 0.9 0.90 
Trash-recycling-can 92 0.3 0.9 0.86 0.88 
Pole 114 0.3 0.92 0.78 0.84 
Vegetation 79 0.3 0.88 0.81 0.84 
Tree 31 0.55 0.95 0.61 0.75 
Sign 24 0.36 0.52 0.62 0.57 
Height-diference 13 0.3 1 0.38 0.56 
Litter-garbage 27 0.75 0.71 0.44 0.55 
Construction 34 0.3 0.59 0.5 0.54 
Narrow 79 1 0.22 0.46 0.3 

Table 10: DINOv2 Experiment 1 crosswalk tag classifcation results. Results are sorted by F1 score. 

Crosswalk Tags N Confdence Precision Recall F1 
Paint-fading 135 0.3 0.86 0.76 0.80 
Broken-surface 46 1 0.66 0.72 0.69 
Brick-cobblestone 13 0.3 1 0.38 0.56 
Bumpy 50 0.3 0.53 0.4 0.45 
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A.6 Experiment 1: CLIP-ViT Results 
Details of frequency of tag in the test set, the selected confdence (maximizing the F1 score with a minimum threshold of 0.3), and precision, 
recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded. 

Table 11: CLIP-ViT Experiment 1 curb ramp tag classifcation results. Results are sorted by F1 score. 

Curb Ramp N Confdence Precision Recall F1 
Missing-tactile-warning 872 0.72 0.89 0.95 0.92 
Surface-problem 267 0.3 0.6 0.34 0.44 
Narrow 152 0.3 0.26 0.24 0.25 
Points-into-trafc 297 0.3 0.4 0.13 0.20 
Not-level-with-street 65 0.3 0.28 0.15 0.20 
Not-enough-landing-space 84 0.3 0.22 0.15 0.18 
Pooled-water-debris 42 0.3 0.5 0.05 0.09 
Steep 29 0.3 0.07 0.03 0.05 

Table 12: CLIP-ViT Experiment 1 surface problem tag classifcation results. Results are sorted by F1 score. 

Surface Problem N Confdence Precision Recall F1 
Grass 806 0.71 0.91 0.87 0.89 
Brick-cobblestone 101 0.3 0.94 0.74 0.83 
Cracks 611 0.84 0.7 0.75 0.72 
Height-diference 446 0.3 0.88 0.58 0.70 
Uneven-slanted 339 0.3 0.51 0.5 0.50 
Sand-gravel 45 0.3 0.52 0.31 0.39 
Narrow-sidewalk 74 0.3 0.34 0.31 0.33 
Bumpy 121 0.7 0.18 0.45 0.25 
Very-broken 71 0.3 0.24 0.11 0.15 
Utility-panel 27 0.3 1 0.04 0.07 

Table 13: CLIP-ViT Experiment 1 obstacle tag classifcation results. Results are sorted by F1 score. 

Obstacle N Confdence Precision Recall F1 
Parked-car 74 0.84 0.97 0.95 0.96 
Trash-recycling-can 92 0.87 0.95 0.85 0.90 
Pole 114 0.91 0.88 0.78 0.83 
Vegetation 79 0.3 0.84 0.8 0.82 
Parked-bike 20 0.3 0.87 0.65 0.74 
Tree 31 0.36 0.89 0.55 0.68 
Height-diference 13 0.48 0.67 0.62 0.64 
Construction 34 0.94 0.82 0.41 0.55 
Sign 24 0.3 0.5 0.58 0.54 
Litter-garbage 27 0.3 0.41 0.26 0.32 
Narrow 79 0.88 0.21 0.61 0.31 

Table 14: CLIP-ViT Experiment 1 crosswalk tag classifcation results. Results are sorted by F1 score. 

Crosswalk N Confdence Precision Recall F1 
Paint-fading 135 0.3 0.79 0.69 0.74 
Broken-surface 46 0.96 0.5 0.76 0.60 
Bumpy 50 0.3 0.5 0.34 0.40 
Brick-cobblestone 13 0.3 0.67 0.15 0.25 
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A.7 Experiment 2: DINOv2 Results 
Details of frequency of tag in the test set, the selected confdence (maximizing the F1 score with a minimum threshold of 0.3), and precision, 

recall, and F1 score of that threshold for each tag of the label category. Tags with less than 10 instances in the test set are excluded. 

Table 15: DINOv2 Experiment 2 curb ramp tag classifcation results. Results are sorted by F1 score. 

Curb Ramp N Confdence Precision Recall F1 
Missing-tactile-warning 872 0.3 0.99 0.35 0.51 
Narrow 152 0.3 0.33 0.15 0.21 
Not-level-with-street 65 0.3 0.21 0.08 0.11 
Points-into-trafc 297 0.3 0.28 0.06 0.10 
Surface-problem 267 0.3 0.93 0.05 0.10 
Not-enough-landing-space 84 0.3 0.14 0.04 0.06 
Steep 29 0.3 0.12 0.03 0.05 
Pooled-water-debris 42 0.3 0 0 0 

Table 16: DINOv2 Experiment 2 surface problem tag classifcation results. Results are sorted by F1 score. 

Surface Problem N Confdence Precision Recall F1 
Grass 806 0.3 0.95 0.82 0.88 
Cracks 611 0.77 0.65 0.78 0.71 
Height-diference 446 0.3 0.86 0.54 0.66 
Uneven-slanted 339 0.3 0.45 0.58 0.51 
Brick-cobblestone 101 0.3 1 0.35 0.51 
Narrow-sidewalk 74 0.3 0.26 0.31 0.28 
Bumpy 121 0.95 0.25 0.23 0.24 
Sand-gravel 45 0.3 0.54 0.16 0.24 
Very-broken 71 0.3 0.23 0.21 0.22 
Utility-panel 27 0.3 1 0.04 0.07 

Table 17: DINOv2 Experiment 2 obstacle tag classifcation results. Results are sorted by F1 score. 

Obstacle N Confdence Precision Recall F1 
Parked-car 74 0.3 1 0.86 0.93 
Vegetation 79 0.98 0.94 0.85 0.89 
Trash-recycling-can 92 0.3 0.93 0.76 0.84 
Parked-bike 20 0.3 0.84 0.8 0.82 
Tree 31 0.55 0.78 0.81 0.79 
Pole 114 0.3 0.89 0.67 0.76 
Sign 24 0.44 0.46 0.75 0.57 
Construction 34 0.3 0.71 0.44 0.55 
Height-diference 13 0.3 1 0.15 0.27 
Narrow 79 0.3 0.5 0.05 0.09 
Litter-garbage 27 0.3 1 0.04 0.07 

Table 18: Experiment 2 Test Results of DINOv2 on Crosswalk Data 

Crosswalk N Confdence Precision Recall F1 
Paint-fading 135 0.3 0.9 0.42 0.58 
Brick-cobblestone 13 0.3 1 0.08 0.14 
Broken-surface 46 0.3 1 0.07 0.12 
Bumpy 50 0.3 1 0.02 0.04 
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