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ARTICLE INFO ABSTRACT

Keywords: A new method for fluid-structure interaction (FSI) diagnostics to simultaneously capture time-
Flexible membrane resolved three-dimensional, three-component (3D3C) velocity fields and structural deformations
structural motion using a single light field camera is presented. A light field camera encodes both spatial and
3D flow field angular information of light rays collected by a conventional imaging lens that allows for the
light field camera 3D reconstruction of a scene from a single image. Building upon this capability, a light field
Proper orthogonal decomposition fluid-structure interaction (LF FSI) methodology is developed with a focus on experimental

scenarios with low optical access. Proper orthogonal decomposition (POD) is used to separate
particle and surface information contained in the same image. A correlation-based depth estima-
tion technique is introduced to reconstruct instantaneous surface positions from the disparity
between angular perspectives and conventional particle image velocimetry (PIV) is used for
flow field reconstruction. Validation of the methodology is achieved using synthetic images of
simultaneously moving flat plates and a vortex ring with a:small increase in uncertainty under
~ 0.5 microlenses observed in both flow and structure measurement compared to independent
measurements. The method is experimentally verified using a flat plate translating along the
camera’s optical axis in a flow field 'with varying particle concentrations. Finally, simultaneous
reconstructions of the flow field'and surface shape around a flexible membrane are presented,
with the surface reconstruction further validated using simultaneously captured stereo images.
The findings indicate that the LF FSI methodology provides a new capability to simultaneously
measure large-scale flow characteristics and structural deformations using a single camera.

1. Introduction

The interplay between fluid dynamics and structural mechanics gives rise to a cascade of effects, where changes
in flow motion and surface deformation become intricately linked at the interface of the fluid and the structure. The
relationship between fluid and structure ‘is. reciprocal: structural motion alters the boundary conditions at the fluid
interface, causing fluctuations in pressure and/or viscous forces, and the interaction at the fluid-structure interface can
lead to changes in structural motion: Thus, fluid-structure interaction (FSI) is a multiphysics interaction that is integral
to understanding many applications including biomechanics, turbomachinery, aeroelastic coupling, sedimentation,
hydro-elasticity, etc. (Sigrist, 2015).

Due to the prevalence of FSI (Hou et al., 2012), considerable effort has been focused on quantifying and
understanding the underlying physics. However, a challenge for both experiments and computations is that the fluid-
structure interface in cases such as flexible membranes can be subject to large deformations (Griffith and Patankar,
2020). Flexible membranes in steady flow have been investigated in several canonical configurations, including
conventional flags (Argentina and Mahadevan, 2005), bending membranes (Vogel, 1989), and inverted flags (Dou et al.,
2020), among others. Here, the flexible membrane exhibits flow-induced flutter (high-frequency structural oscillations)
where the Reynolds number (Re), non-dimensional rigidity (f#), mass ratio (u), and aspect ratio (AR) as defined in
Eq. 1, are important governing dimensionless parameters (Shelley and Zhang, 2011). These studies have investigated
fundamental FSI physics, including effects of added mass, vortex shedding, drag-induced tension, among others, to
map unstable and stable regimes and the associated transitions. Furthermore, these studies have elucidated inherent
aspects such as bi-stability of flutter modes (Zhang et al., 2000) and hysteresis in the damping of flutter (Watanabe
et al., 2002).
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where the working fluid properties are defined by v the kinematic viscosity, p the density, and U the bulk average
velocity. The properties of the homogeneous and isotropic flexible membrane are defined by L the length, W the width,
P, the density, ¢, the thickness, and B the flexural rigidity.

For most FSI problems, analytical solutions to the physically coupled equations are challenging to obtain, and while
experimental methods are improving, they are still limited in scope. Therefore, the predominant choice to investigate
FSI physics has been numerical simulations with good progress over the last few decades starting from loosely
coupled 2D FSI methods to tightly coupled 3D simulations (Sotiropoulos and Borazjani, 2009). On the other hand,
experimental methods have primarily focused on lower-fidelity decoupled approaches with flow field measurements
obtained separately from one- or two-dimensional structural motion (Kalmbach and Breuer, 2013; Nila et al., 2016).
Digital image correlation (DIC) and particle image velocimetry (PIV) have emerged as popular optical diagnostic
techniques for structure and flow measurement, respectively, because of their non-intrusive nature and high spatial
resolution. The current state-of-the-art FSI diagnostic method involves the use of multiple cameras to perform DIC
and PIV simultaneously. Multi-camera based simultaneous 2D-2C/3C PIV and 2D/3D DIC measurements have been
conducted by Giovannetti et al. (2017) on flexible aerofoils under fluid loading, Bleischwitz et al. (2017) on rigid
flat plates and flexible membrane wings flying in ground effect conditions, Zhang and Porfiri (2019) to evaluate the
structural response and hydrodynamic loading in water-backed impact, D’Aguanno et al. (2023) to analyze the panel
flutter induced by an impinging shock-wave, and Bhargav et al. (2024) to study the relationship between tube geometry
and flow field of a collapsible tube etc. Recent advances have led/to simultaneous 3D time-resolved measurements
of both the flow field and structural motion using extensive six-camera setups (Safi et al., 2017) or similar (Zhang
et al., 2020), which are expensive and in some cases infeasible'due to limited optical access (due to size/scale of the
flow facility). Particularly in biomedical, combustion, or super- or hypersonic applications, restricted optical access
places fundamental limits on existing diagnostics and necessitates a new approach to accurately and simultaneously
measure time-resolved 3D flow fields and structural motion. To this end, this work leverages recent advances in light
field imaging and plenoptic cameras to establish a new approach for FSI diagnostics.

In conventional cameras, the entire lens aperture focuses light rays onto a point on the image sensor. In contrast,
a plenoptic camera (a type of light field camera) incorporates a dense microlens array (MLA) positioned close to the
sensor plane, redirecting light rays from/different sections of the aperture to specific pixels on the sensor plane (Ng
et al., 2005; Adelson and Wang; 1992). This unique arrangement enables a plenoptic image to capture 4D light field
information, including both positional and directional characteristics. By sampling a pixel (u, v) from each subimage
(s, t) formed by the microlens, a plenoptic image can generate multiple (~ 100) perspective views over a small baseline.
These perspectives have a higher depth of field than conventional camera images because they are sampled from small-
aperture subimages. This capability has been used to develop single-camera-based 3D flow measurement techniques
like plenoptic PIV (Skupsch and Briicker, 2013; Fahringer et al., 2015), plenoptic particle tracking velocimetry (PTV)
(Liuetal., 2019; Moaven et al., 2024) and plenoptic background oriented schlieren (BOS) (Klemkowsky et al.,2017). In
this work, we use the 3D imaging capability of a plenoptic camera to formulate a novel methodology for fluid-structure
interaction diagnostics.

Capturing both flow field and structural motion information in the same image poses a challenge as the signals
must be separated before conventional analysis methods can be applied. Mitrotta et al. (2022) and Saiz et al. (2022)
used distinct surface markers to identify and separate surface information from combined information in a multi-
camera system. This makes the resolution of surface points and the quality of the flow field dependent on the size and
number of marker points. Song et al. (2022) used the visual hull method and the binocular stereo vision method to
identify surface bubbles in a particle field. Giovannetti et al. (2017) used green and magenta filters in separate PIV
and DIC cameras with illumination from the corresponding wavelength. However, these approaches are generally not
feasible with a single-camera setup. Our approach uses speckle pattern images and a data-driven method to separate
flow and structure signals. Correlation-based depth estimation enables marker-independent, high-resolution surface
reconstruction.

In this work, we develop and test a correlation-based surface reconstruction technique using a plenoptic camera. We
apply a POD-based decomposition approach to separate flow and structure signals from combined images. Building on
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these approaches, we formulate, test, and assess the light field fluid-structure interaction (LF FSI) methodology, with
validation focused on the accuracy of structure reconstruction in the presence of particles. The detailed framework
of our methodology is introduced in Section 2. Section 3 explains the POD-based separation of particle and structure
images. Section 4 covers the steps of the novel plenoptic surface reconstruction technique. The synthetic analysis
performed to validate the surface reconstruction technique, the POD-based separation, and the overall LF FSI
methodology are presented in Section 5. Test experiments to validate the methodology under multiple flow conditions
are presented in Section 6. Finally, the observations and conclusions of our work are presented in Section 7.

2. Overview of LF FSI methodology

The proposed methodology is summarized in Figure 1 with each of the individual steps described below.

particles + structure

Step 1:  Image acquisition

separated structure ¢ separated particles

Step 2: Decomposition

surface reconstruction

Step 3: Reconstruction

Step 4: Re-composition

I ' I I |
;
“

Figure 1: Schematic workflow of LF FSI diagnostics methodology.

1. Image acquisition: First, fluid and structure information are captured simultaneously in a single image using a
plenoptic camera. The flow field information is embedded in neutrally buoyant tracer particles that travel with
the flow while the structure’s surface is coated with a speckle pattern for correlation-based depth estimation. The
intensities of both the particle images and the surface speckle pattern are designed to fall within the dynamic
range of the camera. Time-resolved images capture flow and surface data, although this method is equally
applicable to frame-straddled imaging.

2. Decomposition: Second, the flow field and structural signals are separated using proper orthogonal decomposi-
tion (POD), following assumptions similar to Mendez et al. (2017) for background removal in PIV. We assume
that the contribution of particle information is spatially random such that its energy is uniformly distributed
across all POD modes. It is also assumed that the correlation between surface and particle information is minimal
and the information of the surface is captured within a few high-energy eigenmodes. This is valid as long as
the spatial description of the structure is statistically correlated over time in contrast to randomly distributed
particles. The details of the application of POD-based decomposition are given in Section 3.
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3. Reconstruction: Third, the 3D flow field and surface are reconstructed from separated images of particles
and speckle patterns. The 3D flow field is determined using methods already established for plenoptic PIV.
Surface reconstruction is carried out in a novel fashion by relating the depth to the disparity obtained from
different angular perspectives where a correlation-based technique is used to determine the disparity. Details
and benchmarking of plenoptic surface reconstruction are provided in Section 4.

4. Re-composition: After both flow and surface data are determined, they are recombined to study the motion of
both fluid and structure together. Since both the fluid and the structure measurement domain are the same and
obtained from a common calibration, a direct re-composition of the fluid and structure motion can be obtained
and used to study FSI physics.

Our FSI methodology also applies to conventional multi-camera experiments but is specifically designed for
plenoptic imaging, and thus termed light field fluid-structure interaction (LF FSI). Specifically, the POD-based
particle/surface separation is equally applicable with conventional camera images; however, surface reconstruction
with the direct cross-correlation technique is not optimal for conventional multi-camera experiments as the disparity
between images will be relatively large compared to images obtained with a plenoptic camera. Feature matching-based
multi-camera surface reconstruction can be a possible alternative in such scenarios. The flow measurement techniques
are also similar for both conventional and plenoptic imaging albeit with different levels of performance depending on
the camera configuration with plenoptic PIV characterized by larger degrees of uncertainty in the depth direction.

3. Decomposition into particle and surface images

Proper orthogonal decomposition (POD) is a well-established technique used to extract coherent structures from
data by transforming correlated variables into a set of orthonormal basis functions that optimally represent the dataset.
It has been widely applied in video analysis and noise reduction in image sequences, including PIV images, where
it helps separate dominant background structures from transient particles (Mendez et al., 2017; Baghaie, 2019).
Our work employs POD for separating particles and background, similar to Mendez et al. (2017), in the context of
plenoptic imaging of fluid-structure interaction. In this process, the image sequence is reshaped into a single matrix,
with each image represented as a column vector. The reduced-order approximation of this matrix is obtained using
a truncated singular value decomposition (SVD), ensuring minimal loss in the least-squares sense. By leveraging
the differences in temporal coherence between surface structures and particle motion, the surface is extracted using
dominant eigenmodes, while the particle information.is reconstructed from the remaining low-rank modes.

Our separation methodology assumes that the surface information is captured by a few dominant eigenmodes, while
the moving particle information is evenly distributed among a significantly larger number of low-rank eigenmodes,
meaning the dominant eigenmodes carry minimal particle information. If either condition is not met, a distinct
separation of particle and surface images using POD is not possible. Examples of such cases include scenarios where
structural motion is highly random, such that the energy of coherent structure capturing the structural motion is evenly
distributed over many eigenmodes. Similar scenarios also occur when the particles and structure move together over
longer periods of time or particles and structure both are stationary. Factors such as the number of images available
for decomposition and the number of cycles of structure motion captured also affect the quality of separation. Since
these factors vary with the nature of the experiment and the complexity and variability of surface motion, a detailed
quantification of such scenarios is difficult and beyond the scope of this work. In this study, utilizing multiple cycles
(~ 10 cycles) of structural movements and employing over 1000 images for POD has given us a distinct separation.

4. Structural motion and flow field reconstruction

4.1. Stereovision and plenoptic surface reconstruction
Stereovision is a method for estimating depth based on either the apparent motion of a camera or the disparity
between two cameras. The disparity is related to the depth through Equation 2 (Roberts and Thurow, 2017).

L:l_L(1_1> )
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This relation is formulated from a thin lens equation and similar triangle relations. Figure 2 shows a schematic to
visualize this relationship for a plenoptic camera. Here, S, is the object distance, F is the focal length of the main lens,
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d is the disparity between two perspectives, S, is the separation between the main lens and the microlens array, and B
is the baseline between two perspectives. The baseline can be calculated using Equation 3 where f is the focal length
of the microlens and #4 is the absolute value of (u, v) on the sensor.

SipXh
B=- 3
7 3

Aperture plane
: Image
sensor
Microlensy 7
array
B
d £
F
s, Ej
S i S

0 ' i

Figure 2: Optical arrangement showing disparity (d) and aperture displacement (B).

In a plenoptic camera, cross-correlation can be calculated between any two arbitrary perspectives. The uniqueness
of plenoptic-DIC lies in the abundance of available perspectives, enabling the potential measurement of numerous
disparities for a single point in object space. In this work, we leverage this information to develop a robust methodology
for surface reconstruction. This is meant to improve the accuracy of surface measurement in the presence of occlusions
or noise, such as that produced by the residual signal from seed particles that may be present in simultaneous PIV/DIC
measurements.

4.1.1. Disparity bundling

In this section, we introduce a correlation-based surface reconstruction technique for a plenoptic camera that is
referred to as disparity bundling. Figure 3 shows the individual steps. This methodology is inspired by the cross-
correlation-based depth estimation technique (Roberts and Thurow, 2017) and the light field ray bundle technique
(Clifford et al., 2019) for plenoptic cameras. Here, perspective images (~ 100) are generated from a single image by
sampling the same relative pixel (u, v) from each subimage (s,7). A reference image is defined among all available
perspectives and all other perspectives are considered displaced images compared to the reference image. In this work,
we use the center perspective (i.e. u = 0, v = 0) as a reference image for convenience.

Next, cross-correlation is performed between the reference image and all other perspectives using the window-
based multigrid iterative method (Scarano and Riethmuller, 2000), with the normalized correlation map weighted by
a Blackman window. Subpixel accuracy is achieved via 2D Gaussian fitting around the peak, identifying disparities
between the reference and other perspectives. Before further using this disparity, we use the acquired strength of
correlation between two perspectives to identify outlier disparity values. The signal-to-noise ratio is defined as the
ratio of the highest to the second-highest peak on the map. A disparity with high confidence (SNR > 4) is generally
considered optimal but this threshold can be adjusted based on data quality. The SNR could also be defined on the basis
of the strength of the correlation itself. However, an optimum threshold value may be unique for each new experiment.

Then, the obtained disparities are consolidated for each window. When the disparities of the point (s, #) in the
reference image are gathered from all the correlation maps, this yields the updated position of this window in all
other perspectives. Consequently, all pairs of s and ¢ are aggregated for all combinations of u and v. It is noted that
the bundling step in this methodology is simpler compared to the bundling process based on the minimum distance
between rays, as discussed in Clifford et al. (2019).
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The acquired disparity is then further filtered to retain high-confidence disparity values for triangulation. Oc-
clusions, such as PIV particles not fully removed by POD decomposition, can cause erroneous disparities. With a
multitude of available disparity values from various perspectives, low-confidence values are excluded to ensure robust
depth estimation. Identifying these outliers involves leveraging prior knowledge of the linear relationship between
disparity and aperture displacement. As detailed in Roberts and Thurow (2017), a line is fit through the acquired
disparity and aperture displacement values. Subsequently, the Random Sample Consensus (RANSAC) algorithm is
used to determine the best-fit slope, ensuring that the y-intercept is zero, as the disparity of an image with itself is zero.
Disparities deviating by more than 0.2 microlenses are classified as outliers. Subsequently, the filtered data are accepted,
and the bundle is updated. A final check is performed by calculating the percentage of inlier disparity compared to the
total available disparities. If the value is greater than the set threshold, the inlier data proceed to the next step.

Finally, the depth location is determined by triangulating inlier image points using inverted Direct Light Field
Calibration (DLFC) (Clifford et al., 2019). DLFC (Hall et al., 2018) is a polynomial-based mapping of object space
points (x, y, z) to image space [s, t] = P(x, y, z,u, v). The updated bundle comprises a list of points in the image space
(s, t,u, v), and the desired variables are the points in the 3D space (x, y, z). This is done using a non-linear least-squares
optimization with MATLAB’s 1sqnonlin function (Moré, 2006), yielding a point cloud of surface points in object
space.

4.2. Flow field reconstruction
Flow field reconstruction is performed by applying the plenoptic particle image velocimetry (PPIV) technique to the
particle images. PPIV comprises two steps, 3D particle volume reconstruction and cross-correlation. In particle volume
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reconstruction, perspective image intensities are projected onto the discretized volume space and subsequently refined
using the multiplicative algebraic reconstruction technique (MART) (Elsinga et al., 2006). MART is a variation of the
algebraic reconstruction technique that iteratively updates the intensity of particles based on the ratio of reprojected
image intensity to the summation of intensity along the line of sight. Cross-correlation is performed to determine the
displacement of particles from two consecutive volumes. It is based on an iterative multi-grid window deformation
technique as described in Scarano and Riethmuller (2000). Interested readers are directed to Fahringer et al. (2015) for
further details on the implementation of this technique in the context of plenoptic PIV.

5. Evaluation of the methodology using synthetic data

5.1. Assessment of plenoptic surface reconstruction

To analyze the performance of the plenoptic surface reconstruction technique, a synthetic analysis is performed
where a flat surface is simulated within the measurement domain, placed within -20 mm (closer to the camera) to 20 mm
(farther) around the focal plane. This notation of location relative to the measurement volume is maintained throughout
the paper. The surface is marked by randomly placed round dots forming a speckle pattern. Light rays originating from
the random dots are propagated to the plenoptic camera using ray tracing equations and ray transfer matrix models of the
medium, main lens, and microlenses, reaching the image sensor at a prescribed distance that maintains a magnification
of -0.5. The size of these dots is around 5 to 9 pixels, ensuring that they are larger than normal PIV particles in image
space. The process of generating synthetic speckle pattern images is similar to generating synthetic particle images and
the readers are referred to Fahringer et al. (2015) for further details. The use of these random dots as speckle pattern
is observed to provide a good correlation map for disparity measurement. The details of the configuration used for the
synthetic analysis are tabulated in Table 1.

20 T{ T 0degrees
2t I 15 degrees| |
10 30 degrees

1 45 degrees

Tir
;IE £ yl &E% } MEII . IIIHII 1

fIfI* ﬂil ﬁ

z (mm)

,_.
w—«
I
IS
H—H

=
Depth (mm)

Error in depth (microlens)
(=]

-20 - 1 0 0 1 0 20
Depth (mm)
(a) (b)

Figure 4: (a) Synthetic surface reconstruction at different depth locations. The blue dots represent the reconstructed
points derived from the disparity map. Some missing points are low confidence that did not exceed the threshold limits
for reconstruction and were removed at various stages. (b) Distribution of depth-wise error in surface reconstruction when
the surface is positioned at different angles.

Figure 4.a shows the reconstruction of a synthetic surface with a point cloud at different depth locations using
the disparity bundling method. A surface is fitted on the point cloud using the fit function in MATLAB. The color
bar indicates the reconstructed depth location of the surface. The reconstructed surface is approximately flat as the
standard deviation in the position of the reconstructed point cloud is only around 0.12 microlenses (0.02 mm). This
illustrates that the disparity bundling method reconstructs the surface with precision within a fraction of a microlens
from a single plenoptic image.
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Table 1
Configuration of synthetic analysis for surface reconstruction
Equipment Setup
Camera Imperx B6620 CCD camera

Pixel size: 0.0055 mm
Resolution: 6600 x 4400

Micro-lens Focal length: 0.308 mm
Radius: 0.077 mm

Main lens 85 mm

Surface reconstruction Configuration

Magnification -0.5

Speckle pattern 5-9 microlenses

Volume of interest x=[-20 to 20] mm, y=[-20 to 20] mm, z=[-20 to 20]
mm

Perspective image size 942 x 628

Number of perspectives 81

Correlation window size [64,32,32]

Window overlap [32,16,16]

RANSAC outlier threshold 0.2 microlenses

To further assess the performance of surface reconstruction at different angles from the camera view, the synthetic
surface is positioned at angles of 0, 15, 30, and 45 degrees. Since the uncertainty in depth estimation varies along the
depth, the plate is positioned at different depth locations within.the volume. The standard deviation of the error of
estimated depth for the four angles is 0.123, 0.238, 0.270.and 0.347 microlenses, respectively. Figure 4.b shows the
distribution of errors in the depth measurement at different depth locations for different plate angles. The uncertainty
is low for the plate angle of 0 degrees compared to other angles. Additionally, there is a large bias in error around
the focal plane at 0 mm for this angle. This is because the disparity close to the focal plane is very small due to low
angular information. This is a well-known limitationof plenoptic cameras (Roberts and Thurow, 2017). The sharpness
of the image is also higher towards the focal plane. This causes the correlation and hence the reconstructed surface
position to bias toward the focal plane. For an inclined plate, the uncertainty is high close to the focal plane because
the plate covers both sides of thefocal plane, leading to higher uncertainty related to biases on both sides of the depth.
In addition, we also observe-a small bias in overall error distribution as the plate angle increases. Overall, based on
results from the depth-wise error graph, we can infer that the surface positioned away from the focal plane but within
the limits of the depth of field is optimal for plenoptic surface reconstruction.

5.2. Assessment of LF FSI methodology

To evaluate the performance of the LF FSI methodology using synthetic experiments, a volume of 40x40x24
mm?> (-12 mm to 12 mm in depth around the focal plane) is randomly seeded with particles, representing flow
field information. We use a stationary Gaussian vortex ring analytical equation to displace these particles over time
(Fahringer and Thurow, 2018). Behind this flow field, we simulate a flat plate with a speckle pattern (represented by
round dots) on its surface to oscillate between depths of 12 mm and 18 mm. Plenoptic images are generated from these
particles and speckle pattern positions using the plenoptic synthetic image generation tool (Fahringer et al., 2015). The
particles are in the form of 3 X 3 pixels of Gaussian blobs of intensity, while the speckled dots on the flat plate range
from 5 to 9 pixels in image space. In this analysis, although the flow and structure motion are not coupled, both types
of information are present in the same plenoptic image. The camera configuration and surface reconstruction follows
that presented in Table 1, while Table 2 outlines the configuration of the flow field reconstruction used in this analysis.

5.2.1. Assessment of decomposition of particles and surface images

Figure 5.a represents the eigenvalues of the combined particle and surface images arranged from the highest to the
lowest values. From this figure, the few high-energy eigenmodes dominate and represent surface information. Similarly,
all the other eigenmodes dominantly represent the particle information and are used to extract the particle images.
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Table 2
Configuration of synthetic analysis for LF FSI
Particle speckle pattern separation Configuration
Image resolution 6600 x 4400
Number of images 1000
Perspective image size 942 x 628
Number of perspectives 81
Flow field reconstruction Configuration
Volume of interest x=[-20 to 20] mm, y=[-20 to 20] mm, z=[-12 to 12]
mm
MART reconstruction Number of iterations = 8

Relaxation factor = 0.8

Voxel size = 0.1 mm
Cross-correlation Window size =[64,48,32,32]

Window overlap = [32,24,16,16]

0.04 : : 0.04 : :
0035 1 0035 Surface
0.03F 4 0.03F Particles |-
0025 1 0025}
< 002 1 g% 0.02¢
0015 1 0015 i
<
0.01 F 4 0.01F
<
0.005 | > 4 0:005.; :
< 4
o 3 hba ‘ === P Sk ===
10° 10! 10% 10° 10% 10! 102 10°
Mode Mode
(a) (b)

Figure 5: Eigen values of combined particle and surface image for moving flat plate experiment from (a) synthetic analysis
in Section 5.2 (b) experimental analysis in Section 6.2.

The precision of the particle surface separation process is shown by comparing the peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), and reconstruction quality (¢*) of the separated particle and surface image.
PSNR is defined as the ratio of the peak dynamic range of pixel intensities to the mean squared error (MSE) as given
in Equation 4. MSE is the difference between the true image and the reconstructed image.

I 2
PSNR = 10log;) —= 4)
VMSE

Y., - 1)

n

MSE = 5)

Here, I is the image, I is the reconstructed image and I,,.~ 1s the maximum possible value of the image intensity.
Standard reconstruction quality (¢*) is defined as the normalized correlation coefficient of the intensity of the true
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Table 3
Comparison of reconstructed image from POD at different particle densities
PSNR Reconstruction quality SSIM

PPM Particle Background Particle Background Particle Background
0 Inf Inf 1 1 1 1
0.029 29.361 15.463 0.985 0.986 0.979 0.881
0.053 28.620 14.545 0.982 0.971 0.977 0.850
0.077 27.798 13.868 0.976 0.966 0.976 0.838
0.101 27.527 13.053 0.968 0.940 0.972 0.828
0.124 26.928 12.417 0.962 0.936 0.965 0.820

image I and the intensity of the reconstructed image I as given in Equation 6.
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The structural similarity index considers a similarity of luminance, structure; and contrast between a reconstructed
image and a true image. It is defined in Equation 7.
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In this equation, u; and uj is the mean, and oy and 6; is the variance of the true and reconstructed images,
respectively. o, ; is the covariance value and C; and €, are the constants as defined in Wang et al. (2004).

Table 3 shows the comparison of the reconstructed image quality of particles and background images in terms of
PSNR, standard reconstruction quality, and SSIM forimages with a different number of particles per microlens (ppm).
The reconstruction quality and SSIM for individual images without particles or background are 1 as it is the maximum
possible value for both these variables. As the particle density increases, we observe that the reconstruction quality,
SSIM, and PSNR decrease slightly. This is a result of blending particle and surface information, compromising the
distinct separation of information in the form of POD modes. Furthermore, as the separated images derived from POD
modes serve as approximations.of only pure surface or particle information, there is a small loss in image sharpness.
However, both reconstruction quality and SSIM are still greater than 0.9 for all particle images and greater than 0.8
for all surface images. This suggests that the separated particle and structure images are close to the individual particle
and structure images.

5.2.2. Assessment of structural motion and flow field reconstruction

The separated images are used to reconstruct the 3D flow field and structure. Table 2 shows the detailed
configuration for the surface and flow field reconstruction. We compare the flow field solutions obtained from the
separated particle images (flow with structure) and from images of particles without structure (flow without structure)
to the ideal solution, using images with a particle concentration of 0.054 ppm. The ideal solution is obtained by cross-
correlating volumes filled with 3 X 3 Gaussian particles whose positions are defined based on the Gaussian vortex
ring equation. This solution carries with it the limitations of using cross-correlation to determine particle displacement
but removes any artifacts associated with the tomographic reconstruction process. Figures 6.a, 6.b and 6.c present
isocontours of the reconstructed vorticity magnitude. In all cases, the vorticity isocontours reveal a distinct vortex
structure. However, Figures 6.b and 6.c show multiple small blobs of vorticity scattered throughout the volume.
These structures arise from measurement noise, which is dominated by higher uncertainty in the depth-wise velocity
component due to small angular information. These structures are more prevalent in the reconstruction acquired from
flow with structure images compared to that acquired from flow without structure images. This indicates that the
decomposition process does have a minor effect on the data quality. The contour surrounding the vortex ring is also less
distinct in the flow with structure solution. The combined effect of smoothing of the particle intensities, the addition of
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Figure 6: Isosurfaces of vorticity magnitude for (a) ideal solution (b) flow without structure, (c) flow with structure.
Surface reconstruction at different depths with speckle images from (d) structure without flow (e) structure with flow.

noise from the surface, and the loss of some particles during the separation process results in this degradation. Despite
these imperfections, the dominant flow feature is.observable and the vorticity contour range is similar in all cases. Thus,
the solution acquired from the flow with structure is comparable to the solution acquired from flow without structure.

Figures 6.d and 6.e show thereconstructed surface at different planes as it moves between 12 and 18 mm behind the
vortex ring. Figure 6.d shows the surface reconstructed from the images of the speckle pattern without the presence of
any particles (structure without flow). Figure 6.e shows the reconstructed surface from images with the speckle pattern
separated from the combined particle-surface images (structure with flow). The color map on each surface shows the
corresponding error in depth estimation associated with the surface plot at that location. The color map shows a higher
error in surface reconstruction for a structure with flow compared to a structure without flow. Thus, the presence of
particle information affects surface reconstruction even after particle-surface separation.

Figure 7 illustrates the standard deviation of the measurement of both the flow field and the surface. The standard
deviation of flow measurement is presented in a bar chart, breaking down the uncertainty in each velocity component
(u, v, and w) separately. The w error is considerably larger in both cases compared to the in-plane velocities (v and v),
primarily due to the low angular baseline of the plenoptic camera. The graph reveals an increase in uncertainty in all
components u, v, and w when the surface is introduced into the particle image. The increase in uncertainty of the w
component is comparatively larger than the increase in plane velocities. However, there is less than 16% (less than 0.3
microlenses) increase in uncertainty for flow with structure as compared to the absence of structure.

Similarly, the uncertainty in the surface measurement is quantified with varying particle density, as shown in the
bar chart in Figure 7.b. The chart indicates that an increase in the number of particles correlates with an increase in the
standard deviation of surface measurement. While the standard deviation in surface reconstruction increases several
(2 to 3) times with the introduction of particles, it remains around 0.5 microlenses even for higher particle density.
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Figure 7: (a) Standard deviation in velocity measurement with LF FSI methodology. (b) Standard deviation of reconstructed
surface point cloud with LF FSI methodology.

6. Evaluation of LF FSI methodology using experimental data

In this section, we validate the LF FSI methodology using experimental analysis. Plenoptic particle image
velocimetry for flow field measurement is a well-established technique that has undergone rigorous testing and
verification across various flow field scenarios (Fahringer et al., 2015; Chen and Sick, 2017; Jones et al., 2018; Raghav
et al., 2019; Gururaj et al., 2021). Additionally, the use of POD for processing PIV images is well-established, as
demonstrated in Mendez et al. (2017); Baghaie (2019). While the validation of flow field information from a plenoptic
camera and the use of POD-based methods in PIV are well documented in the literature, the surface reconstruction
aspect of simultaneous flow and structure reconstruction has not been validated. Therefore, this section focuses on the
latter.

6.1. Assessment of surface reconstruction

For the verification of the surface reconstruction technique, a simple benchtop experimental set-up with a plenoptic
camera and a surface to be tracked along a computer-controlled translation stage is arranged, as shown in Figure 8. The
flat surface features an affixed speckle pattern that is used to track the displacement of the plate. The plate is displaced
every 3 mm along the depth between -15 and 15 mm from the focal plane. A Thorlabs 300mm linear motorized
translation stage with an accuracy of +5 pm is used to move an attached flat surface. An Imperx B6620 CCD camera
with a hexagonal microlens array in front of the sensor is used for imaging with a 60 mm focal length main lens at a
magnification of -0.6.

Translational stage

= = 4 2 .—
) - % Ll /] s . d
Plenoptic camera id

Flat surface

(a)

Figure 8: (a) Schematic of experimental setup (b) bench-top experimental setup for assessment of surface reconstruction.
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Figure 9: (a) Reconstructed plate position at different depth locations. (b) Approximated and measured depth positions
of the plate. (c) Standard deviation of measured depth positions.

Figure 9.a shows the reconstructed surface at different depths, where blue dots represent the reconstructed point
cloud fitted with a surface. Figure 9.b plots the measured vs. expected depth of the flat surface at various positions.
A reference line with a slope of 1 represents the expected linear fit for a flat-plate perpendicular to the camera. The
fitted slope using the disparity bundling method is 0.99, with a small offset likely due to the thickness of the calibration
plate. This indicates that the reconstructed plate position closely matches the expected fit with minimal error. Figure
9.c presents the standard deviation of the reconstructed plate positiomat different depths around the best-fit plane. Due
to varying angular information in plenoptic images, the standard deviation changes with depth. It is highest at the focal
plane, decreases on both sides and rises again as depth information blurs further from the focal plane. The average
standard deviation across all positions is 0.12 mm, suggesting that the disparity bundling method estimates depth
within sub-millimeter uncertainty.

6.2. Assessment of structural motion in presence of PIV particles

This section assesses the performance of LF FSkin tracking structural motion within a nominally uniform flow
seeded with PIV particles, using a single plenoptic camera. Figure 10 shows a schematic of the experimental setup
along with a photo of the experiment. The setup specifications are tabulated in Table 4. The experimental arrangement
includes a flat plate attached to atranslation stage and placed in a water tunnel with a uniform flow of 0.12 m/s. The
tunnel is a small open channel with a test section of 6 X 6 inches. A 300 mm motorized translation stage moves the
attached flat surface in a trapezoidalmotion, reaching a peak velocity of 10 mm/s and peak acceleration of 35 mm/s?,
oscillating back and forth. The plate is shifted between 5 and 17 mm from the focal plane (z = 0 mm) to ensure that the
structure does not pass through the focal plane and that there are enough particles in front of the surface for analysis.
The speckle pattern is printed on waterproof paper and affixed to a flat structure, which is connected to the motorized
translation stage.

Images are captured with a high-speed plenoptic camera, as described in (Thurow et al., 2021). The camera features
a Phantom VEO4K CMOS sensor (4096 x 2304 pixels, 0.0067 mm pixel size) and a hexagonal microlens array (248
X 151 resolution, 0.077 mm pitch, 0.308 mm focal length). The main lens has a 60 mm focal length, and the object is
imaged at a magnification of -0.50 through a 70-50 mm relay lens setup. The volume is illuminated by a 527 nm Nd: YLF
Photonics dual-head laser, with 55 um polyamide particles at densities up to 0.065 ppm. 12-bit images are captured at
the rate of 200 frames per second (fps). Synchronization of the camera, stage, and laser is achieved using LabVIEW and
a National Instruments data acquisition system. Calibration is performed using Direct Light Field Calibration (DLFC)
(Hall et al., 2018), generating 4™ order polynomial coefficients to relate image and world space.

Figure 11.a shows the center perspective view extracted from the plenoptic image. 10 cycles of periodic motion
of surface forming a collection of 1250 time-resolved perspective images are acquired. Figure 5.b illustrates the
eigenvalues associated with the POD modes. High-energy POD modes are used to reconstruct the moving surface,
while the remaining modes are used to reconstruct particle images, as shown in Figures 11.b and 11.c, respectively.

The 3D point cloud and the fitted surface reconstructed using speckle pattern images are presented in Figure 12.a.
The figure showcases a smooth 3D surface that closely aligns with the expected plate position between 5 and 17 mm.
The small curvature of the measured plate profile is from fitting the generated point cloud with some uncertainty that
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Figure 10: Schematic of the experimental setup of a moving flat plate.
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Figure 11: (a) Simultaneous particle and surface image (b) separated surface image (c) separated particle image.

is exacerbated by the camera vignetting (Thurow et al., 2020). Since the velocity profile is trapezoidal which includes
acceleration, uniform velocity, and deceleration phases, the first two and the last two surfaces appear closer, while
the middle surfaces are at equal intervals. The velocity of the surface is calculated using a central difference scheme
from the reconstructed surface points. The mean velocity profile of the surface for experiments with different particle
concentrations is plotted in Figure 12.b. It is compared with the case where there are no particles (represented by the
green line) and the prescribed profile (represented by the sky blue line). We observe that the acceleration, constant
velocity, and deceleration phases in the trapezoidal profile are distinct for all particle densities. These profiles align
closely to the prescribed profile, and the standard deviation of the obtained velocity is within 11% of the mean velocity
at any instance. These results suggest that the LF FSI method is robust against experimental challenges, such as light
scattering and image noise, and effectively captures structural information across different particle densities.

6.3. Application to a fluttering flexible membrane

In this section, we use a single plenoptic camera and a stereo camera pair to simultaneously observe the fluttering
of a flexible membrane in a water tunnel. Figure 13 shows the experimental setup. The flexible membrane under
observation is a conventional flag fabricated from silicone with vertically embedded brass rods. The flag, measuring
57.2 mm X 38.1 mm, has an unrestricted length of 44.5 mm due to the presence of an embedded mounting pole at its
front. Light gray-colored dots of silicone are applied to the mold and then covered with black-colored silicone during
the molding process to form the speckle pattern for surface reconstruction. The speed of the water tunnel is set to 0.82
m/s. At this speed, we observe the flag to oscillate with a frequency of about 12.5 Hz and an amplitude of around
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Table 4
Configuration of experimental assessment of flat plate using LF FSI
Equipment Setup
Camera Phantom VEO4K CMOS camera

Sensor size: 5.5 mm

Pixel size: 0.0067 mm

Resolution: 4096 x 2304
Micro-lens Radius: 0.077 mm

Focal length: 0.308 mm

Resolution: 248 x 151

Main lens 60 mm

Laser Photonics Nd:YLF 527 nm

Particles Polyamide 55 um

Translation stage Thorlabs 300 mm linear stage

Water tunnel Test section: 6 X 6 inches
Flow speed: 0.12 m/s

Surface structure 3D printed with PLA

Speckle pattern Radius: 8 pixels

Imaging Setup

Magnification -0.50

Depth of field 40.125 mm

Frame rate 200 fps

Particle speckle pattern separation Configuration

Number of images 1250.images

Perspective image size 496 x 331 pixels

Number of perspectives 81

Surface reconstruction Configuration

Volume of interest x=[-3 to 45] mm, y=[-3 to 25] mm, z=[12 to 18] mm

Correlation window size [64,32,32]

Window overlap [32,16,16]

RANSAC outlier threshold 1 microlens

Table 5
Configuration of the flexible flag

Parameters Configuration

Flag dimensions 57.2 mm (free length 44.5 mm) X 38.1 mm (width) X
1.2 mm (thickness)

Pole cross-sectional dimensions 10.2 mm x 0.51 mm

Material Silicone body (Ecoflex 00-10) supported by 32 vertical
brass rods of 0.8 mm diameter

Mass ratio of free section (u) 0.096

Aspect ratio of the free section (AR) 0.86

Dimensionless longitudinal rigidity of free section (8) 2.26e-04

Reynolds number based on free section length (Re) 38,200

2.5 mm. The details of flag construction and the dimensionless parameters that govern the flag flutter (as stated in
equation 1) for the experimental configuration are listed in Table 5. The linear elastic modulus of the silicone material
is estimated using tensile tests. To estimate f, the stiffening effect of the rigid rods on the flag is assessed using a 2D
finite element method (FEM). It is noteworthy that the inclusion of vertical brass rods inhibits transverse bending,
thereby making the flag’s flexural rigidity anisotropic.
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Figure 12: (a) 3D reconstruction of the moving flat plate at different depths in‘the presence of PIV particles. (b) Velocity
profile of the moving surface with its distribution at different depths compared to the prescribed motion profile.
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Figure 13: Schematic of the simultaneous plenoptic and stereo camera setup and an actual photo of the experiment.

The detailed configuration of the experimental setup is listed in Table 6. The plenoptic camera configuration is
similar to that mentioned in Section 6.2. The stereo camera setup comprises a pair of Phantom VEO 640L cameras
placed on either side of the plenoptic camera. The stereo cameras image the flag at a resolution of 1920 x 1080 pixels
with a sensor pixel pitch of 0.01 mm. The focal plane of the stereo cameras corresponds to the plane where the flag
is placed, around 11 mm behind the center plane of the laser-illuminated volume. The plenoptic camera is focused on
that center plane. The field of view of the plenoptic camera measures around 42 mm X 15 mm at a magnification of
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Table 6
Configuration for flag surface visualization using LF FSI methodology
Imaging Setup
Plenoptic camera magnification -0.62
Frame rate 1338 Hz
Calibration type Checkerboard calibration
Plenoptic calibration Direct light field calibration (polynomial calibration of
3" order)
Stereo camera calibration MATLAB stereo camera calibration (pinhole calibra-
tion)
Particle speckle pattern separation Configuration
Number of images 3000 images
Perspective image size 512 x 358 pixels
Number of perspectives 81
Surface reconstruction Configuration
Correlation window size [96, 64, 64]
Window overlap [32, 16, 16]
RANSAC outlier threshold 1 microlens
Flow fields reconstruction Configuration
MART reconstruction Number of iterations =10

Relaxation factor = 0.75
Voxelsize = 0.08 mm

Cross-correlation Window size =[64,48,32,32]
Window overlap = [32,24,16,16]
Volume of interest x=[0 to 42] mm, y=[0 to 15] mm, z=[-15 to 15] mm

around —0.62. In this configuration, most of the flexible portion of the flag is within the field of view, while the rigid
stationary base of the flag is not observed, as shown in Figure 13.

A 42 x 15 x 32 mm?® measurement volume; uniformly seeded with 55 ym polyamide particles at a concentration
of approximately 0.062 ppm, is illuminated by an Nd: YLF laser from Photonics Industries. The particle concentration
for the experiment is around 0:062 ppm. All three cameras are synchronized using a LabVIEW program with an NI
data acquisition system. The«olume is calibrated by placing a checkerboard calibration plate at known positions in the
volume. Direct Light Field Calibration (Hall et al., 2018) is used to process the plenoptic calibration to generate 3™
order polynomial coefficients. The stereo camera calibration is performed using the MATLAB stereo camera calibration
(Zhang et al., 2000). The images are taken at an acquisition rate of 1338 fps. This acquisition rate is selected to keep
the particle displacement within 6 to 8 microlenses for optimal PIV processing.

Figure 14 shows the comparison of surface reconstruction of the flag from plenoptic and stereo camera images.
Stereo surface reconstruction is performed with the MATLAB stereo reconstruction algorithm. Stereo surface recon-
struction includes the following steps: image rectification, disparity identification, and triangulation (Hirschmuller,
2005; Bradski and Kaehler, 2008). The stereo camera coordinate system is transformed to match the coordinate system
of the plenoptic system using simultaneously captured calibration images. This is necessary since different calibration
methods are used in their respective reconstruction process. Figure 14.a shows the reconstructed 3D surface with
both stereo and plenoptic images plotted for three time instances. We observe that the plenoptic camera captures the
large-scale deflection much like the stereo cameras. To further assess the surface reconstruction, we plot the two-
dimensional envelope traced by the flag with plenoptic and stereo reconstruction as shown in Figure 14.b. Both axes
in the plot are normalized by the free length (L) of the flag. The area of the stereo envelope is larger compared to that
of the plenoptic envelope; however, the difference between them is relatively small and falls within the uncertainty of
plenoptic reconstruction. The tip of the plenoptic flag is slightly shorter compared to the stereo flag. This is attributed
to the use of the window-based correlation technique, which limits the spatial resolution such that points near the
edges result in low-confidence point clouds and are ultimately filtered out as outliers. In Figure 14.c, the time trace
of the filament at a location of x/L = 0.8 is compared over multiple cycles of flag oscillation. The figure shows that
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Figure 14: (a) 3D surface reconstruction of a flag at different time instances form simultaneous images taken with stereo
(orange) and plenoptic (blue) camera. (b) 2D envelopeformed by the flag motion from stereo and plenoptic surface
reconstruction. (c) Time trace of the flag filament at x/L = 0.8 with stereo and plenoptic reconstruction.

the amplitude of the plenoptic reconstruction:is comparable to the stereo reconstruction, the difference being around
2% of the characteristic length of the flag. This is attributed to the fact that plenoptic cameras use a much lower
resolution image at a smaller baseline parallax for the reconstruction compared to stereo cameras. In spite of this, the
LF FSI methodology captures all the large-scale deflections, and the profile of the time trace of flag tip displacement
is comparable to the stereo reconstruction.

Now, we look into the performance of a plenoptic camera to simultaneously capture flow and structure motion.
The acquired flow field has been phase averaged and plotted in figures 15 and 16. For phase averaging, we determined
the primary oscillating frequency by analyzing the amplitude spectrum of tip displacement, which was found to be
12.5 Hz. Figure 15 shows the three-dimensional view of the flow and structure motion captured for various phases in
a flag oscillation cycle (see the Supplementary Material for videos). The color contour on the surface is the maximum
principal curvature of the surface plotted at each surface location. We observe both negative and positive curvature
on the surface, which changes as the flag oscillates. The figure also shows the isosurface of stream-wise velocity (u)
normalized by the free stream flow velocity (U), which clearly shows the contour of lower (blue) and higher (red)
velocity regions close to the flag’s surface. The behavior of the flow close to the surface changes with the change in
the shape of the flag. To further examine the motion of the fluid and the structure in detail, a cross-sectional view of
the stream-wise velocity contour at y = 8 mm in the same instances as the 3D reconstructed flag position is shown
in Figure 16. While the coupled motion of the flag and the flow around it is complex, we observe higher speeds in
the vicinity of convex locations as the flag surface bends downwards and lower flow speeds in the vicinity of concave
locations as the flag surface bends upwards. This is in line with the continuity equation that flow contraction over the
surface should cause the velocity to increase and vice versa. We observe an alternation of this flow behavior along the
surface of the flag, whereas opposite effects are expected on the other side of the flag. This phenomenon is expected
to correspond to a pressure difference across the flag that governs the flag flutter (Thoma, 1939).
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Figure 15: Isosurfaces of normalized stream-wise velocity (u/U) and reconstructed flag with surface curvature at different
time instances during a single oscillation period.

Figures 17.a and 17.b show cross-sections of normalized depth-wise velocity with streamlines for the upstroke
(flag moving up) and downstroke (flag moving down) conditions. Due to low velocity fluctuations in the FSI regime
and the relatively high uncertainty in depth velocity measurements from plenoptic PIV (Fahringer et al., 2015),
the w-velocity was estimated using the streamwise gradient of u via the continuity equation (w = — f % dz),

assuming a 2D incompressible flow (Z—;’} = 0). This assumption holds in the flag’s mid-section, where the v-velocity
is negligible. Though we expect future methodological improvements to remove the need for this estimate, the current
results still show clear downward flow in the first half and upward flow in the second half of the upstroke, with the
opposite trend during downstroke. Figure 17.c shows zoomed-in normalized w-velocity plots with streamlines near
the flag surface across three spanwise planes at different flutter phases. The color contours and streamlines show
consistent flow behavior along the width of the flag and suggest the absence of strong three-dimensional effects in
the measurement volume. Because the flag is in motion, streamlines may intersect the surface depending on its local
displacement velocity. If the boundary layer were resolved, we would expect streamlines to align with this velocity
vector, roughly normal to the surface. Current measurements don’t extend close enough to confirm this. Given the
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Figure 16: Cross section of normalized stream-wise velocity (u/U) for the same time instances as in Figure 15 at y = 8
mm.

resolution, streamlines are expected to intersect at shallow angles‘when the flag moves up (away from the fluid) and
point outward when moving down (into the fluid). Figure 17 broadly reflects this, though the angles are somewhat
exaggerated. The main takeaway is that streamlines closely follow the flag’s contour along its full length, consistent
with a globally attached flow throughout the flutter cycle.

To further validate the 3D plenoptic/PIV measurements, a separate 2D PIV experiment was conducted under
the same conditions, focusing onrthe center plane of the flag. Particle images were processed using LaVision
DaVis 10.2 with a minimum<correlation window size of 32 X 32 pixels. Since the two PIV datasets were not
acquired simultaneously and no phase-locking mechanism was available, images were manually selected from different
oscillation cycles by visually matching the flag’s position and motion phase. The corresponding velocity fields were
phase averaged to enable comparison with the plenoptic PIV at equivalent phases. Figure 18 shows the comparison
of the 2D and plenoptic results: Figures 18.a and 18.b show normalized streamwise velocity fields from 2D PIV,
while Figures 18.e and 18.f present corresponding plenoptic PIV fields along a plane. The size of the final-pass cross-
correlation window is indicated by a box near the root of the flag. Qualitatively, large-scale flow features are consistent
between both techniques. Elevated streamwise velocities are observed near convex regions due to flow contraction,
while velocity is reduced near concave areas where the flow expands. Quantitatively, there is some difference in
fluctuation amplitude, with (U, — Upin)/Umean = 0.27 for plenoptic PIV and 0.38 for 2D PIV. This discrepancy is
attributed to differences in resolution—about 19 pixels/mm for 2D PIV versus 8 pixels/mm for the plenoptic setup—and
a low-pass filtering effect in the plenoptic case due to the larger cross-correlation volume (~2.6 X 2.6 X 2.6 mm?)
compared to the 2D window (~1.6 X 1.6 X 1 mm?>, with 1 mm corresponding to the laser sheet thickness). The
out-of-plane (w) velocity, estimated from continuity using the plenoptic streamwise velocity, shows spatial patterns
similar to the transverse (v) component measured by 2D PIV near the flag surface, as shown in Figure 18. While the
major features are consistent across techniques, some mismatches appear near boundaries, suggesting that additional
independent measurements may be needed to resolve finer-scale structures. Nonetheless, the overall agreement supports
the accuracy of the plenoptic results and the interpretations discussed above. These observations are also consistent
with previous flag flow configurations (Gibbs et al., 2014; Jia et al., 2018), strengthening the effectiveness of the LF
FSI approach in capturing coupled structure-flow dynamics.
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Figure 18: a,b) u/U-velocity (streamwise velocity) contour and ¢;d) w/U-velocity (transverse velocity) contour at two
different phases of flag deflection from 2-D PIV. c,d) u/U-velocity (streamwise velocity) contour and c¢,d) w/U-velocity
(out of plane velocity calculated from continuity equation):contour at a similar phase of flag deflection at plane y =8 mm
from 3D plenoptic PIV results.

7. Conclusion

A new methodology for the simultaneous 3D measurement of both structural and fluid motion using a single camera
was introduced and based on the unique capabilities of a plenoptic camera. The method uses a POD-based technique
to separate structural and particle information recorded on the same image. A correlation-based depth estimation
algorithm is presented that effectively uses information from all of the angular perspectives extracted from a plenoptic
image to measure the surface profile. Tomographic reconstruction and correlation-based 3D PIV is performed on the
separated particle images to determine the velocity of the flow field present in the volume located in front of the
surface. Synthetic and experimental analysis was performed to validate the methodology and suggest that, for a small
compromise in uncertainty in both the flow field and the structural measurement, it is possible to obtain high-quality
fluid-structure interaction measurements using only a single camera.

The LF FSI methodology described here addresses the need for 3D FSI measurement techniques in experiments
with limited optical access or where multi-camera experimental arrangements would be otherwise problematic. In
addition, the extended depth of field offered by plenoptic imaging allows encoding information about the structure and
the surrounding flow field over larger depths than conventional methods. The surface reconstruction obtained from
plenoptic image data is robust and able to capture the large-scale deflections of flexible membranes with performance
that is comparable to reconstructions obtained with a conventional stereo-imaging experiment. Furthermore, we
demonstrate that POD is effective for separating structural and particle information within the same images, enabling
the reconstruction of flow and structural motion from a single experiment using a common calibration. This confers

a distinct advantage over traditional methodologies that necessitate separate experiments over fluid and structural
domains.
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While the ability to obtain volumetric velocity field data was clearly established, the limitations associated with
plenoptic PIV are also present in the LF FSI methodology. Notably, the resolution along the optical axis is limited by
the aperture size of a single lens imaging system, resulting in higher levels of uncertainty along the optical axis of the
camera (i.e., the depth direction). This is a well-known limitation of plenoptic camera-based imaging systems, yielding
effectively 3D/2C velocity field measurements. Therefore, this methodology is best suited for high-magnification
applications — we recommend a magnification of 0.5 or higher. In addition, the uncertainty of surface measurements
increases close to the focal plane and with increasing surface angles; thus, an appropriate positioning of the surface
with respect to the camera is desired. Since a plenoptic camera sacrifices spatial resolution for angular information, the
spatial resolution of LF FSI is comparatively low. This limits the dynamic range of the flow and structural measurements
compared to multi-camera methods. Thus, for a given field of view, LF FSI is more suitable for capturing large-scale
flow features and structural displacements. A more comprehensive uncertainty quantification of the experimental flow
field measurements, facilitated by simultaneous plenoptic PIV and tomographic PIV measurements, was not performed
in this study and represents a valuable direction for future work. Nonetheless, LF FSI offers a promising and viable
option for simultaneous flow field and structural measurements in scenarios where multi-camera methods are not
feasible.

We have identified several areas of potential improvement in the methodology. Recently, time-resolved particle
tracking velocimetry (PTV) has been shown to significantly outperform conventional particle image velocimetry
(PIV), particularly in estimating depth velocity components in plenoptic velocimetry (Moaven et al., 2024). Therefore,
PTV can be used to acquire depth information with higher accuracy. The disparity calculation using other state-of-
the-art methods like inverse-compositional Gauss-Newton (ICGN), optical flow algorithms, etc., may offer further
improvements in resolution and quality of depth estimation. The uncertainty in surface reconstruction may be further
reduced by introducing spatial smoothness constraints during point cloud reconstruction. Recent advances in physics-
informed approaches (Raissi et al., 2019; Cai et al., 2021; Zhou and Grauer, 2023) for flow field reconstruction present
further opportunities to investigate a similar approach for the FSI diagnostic. This work provides a starting point for an
enhanced FSI diagnostic methodology, integrating governing equations as constraints to regularize acquired surface
and flow measurements.
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