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ABSTRACT
Powder X-ray diffraction (pXRD) experiments are a cornerstone for materials structure characterization. Despite their widespread

application, analyzing pXRD diffractograms still presents a significant challenge to automation and a bottleneck in high-

throughput discovery in self-driving labs. Machine learning promises to resolve this bottleneck by enabling automated powder

diffraction analysis. A notable difficulty in applying machine learning to this domain is the lack of sufficiently sized experimental

datasets, which has constrained researchers to train primarily on simulated data. However, models trained on simulated pXRD

patterns showed limited generalization to experimental patterns, particularly for low-quality experimental patterns with high

noise levels and elevated backgrounds. With the Open Experimental Powder X-ray Diffraction Database (opXRD), we provide

an openly available and easily accessible dataset of labeled and unlabeled experimental powder diffractograms. Labeled opXRD

data can be used to evaluate the performance of models on experimental data and unlabeled opXRD data can help improve the

performance of models on experimental data, for example, through transfer learning methods. We collected 92,552 diffractograms,

2179 of them labeled, from a wide spectrum of material classes. We hope this ongoing effort can guide machine learning research

toward fully automated analysis of pXRD data and thus enable future self-driving materials labs.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2025 The Author(s). Advanced Intelligent Discovery published by Wiley-VCH GmbH.
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1 | Introduction

The advent of high-throughput experiments holds the prospect of
significantly accelerating the speed of materials discovery [1].
The synthesis and characterization of novel materials are becom-
ing increasingly efficient and automated, increasing the through-
put of samples in experimentation pipelines [2–4].

After fabricating a newmaterial, a number of analysis techniques
can be used to characterize the sample. One method that can be
used for phase identification, phase quantification, grain size
characterization, and to determine the crystal structure of a
new material is powder X-ray diffraction (pXRD). When using
pXRD measurements, crystal structures are typically determined
through Rietveld refinement. In Rietveld refinement, an initial
crystal structure model is fitted to the observed diffractogram
by iteratively updating the structural model. Each update of
the structural model seeks to minimize the difference between
the observed diffractogram and the diffractogram simulated
from the current structural model [5, 6]. As Rietveld refinement
is a local optimization method, the result of the refinement pro-
cedure is generally only as good as the initial structural model the
process started from.

Manually performing Rietveld refinement is time-consuming
and often requires expert knowledge. It is not scalable to the
degree required to keep up with advances in throughput and effi-
ciency in other steps of the experimentation pipeline. The refine-
ment process requires the operator to determine an initial
structural model from which the refinement can start and as well
as initial values for parameters that characterize the background
[7]. The structural model is usually obtained using search-match
software, which identifies crystal structures with similar powder
diffraction patterns from a database of crystal structures with
accompanying powder diffraction patterns. However, an initial
structural model obtained from such a database is not guaranteed
to lead to an accurate structure solution through Rietveld refine-
ment, especially not for novel structures. Additionally, attempt-
ing to refine all crystal structure parameters at once is known to
lead to unphysical results [4]. Hence, parameters are refined iter-
atively, with each iteration only refining a limited set of param-
eters. Finding the correct order in which to refine structure
parameters and finding the correct values for initial background
parameters both present problems that add to the difficulty of the
refinement process.

Machine learning has the potential to speed up the manual anal-
ysis of powder diffractograms and keep pace with an automated
high-throughput experimentation environment [8, 9]. Models
can be either trained to predict crystal structure information
directly given a diffractogram, or they can be used to automate
the conventional refinement workflow. In the latter case, a model
would first predict an initial crystal structure [9], which is then
refined by a second model trained to perform the refinement
process [10]. So far, due to an absence of labeled datasets with
experimental diffractograms [11], machine learning in this
domain has largely relied on diffractograms simulated from
known structures [12, 13] or, most recently, from generated syn-
thetic crystals [14]. Models trained on datasets with simulated
diffractograms have already shown strong performance in pre-
dicting phases [12, 15, 16], lattice parameters [17–20], space

group [12, 14, 20–26], and crystallite size [17, 26] from simulated
diffractograms. However, the performance substantially drops off
when these models are applied to data originating from experi-
ments [11, 14, 20, 21, 23]. This discrepancy in performance arises
due to imperfections in experimental data, which are not present
in diffraction patterns modeled under ideal conditions. This is
discussed in more detail below.

Both labeled and unlabeled datasets of experimental powder dif-
fractograms hold significant value for machine learning-based
pXRD analysis, particularly with regard to bridging the perfor-
mance gap between simulated and experimental domains.
Labeled experimental data can be used to test and benchmark
existing and new automated analysis approaches. This enables
researchers to gauge how well a given model would perform
under real-world conditions if integrated into an automated
experimentation pipeline. Unlabeled experimental data enables
machine learning researchers to evaluate how closely their sim-
ulations represent experimental data and modify their simulation
algorithms accordingly. Unlabeled data can also find applications
in transfer learning approaches to transfer model capabilities
from the domain of simulated diffractograms to the domain of
experimental diffractograms. While some experimental powder
databases exist, their utility is limited by the fact that they are
either small or not openly accessible.

In this work, we introduce an open powder X-ray diffraction
(opXRD) database featuring a broad range of patterns collected
from experiments. The objective of this work is to introduce and
disseminate a large, open experimental pXRD dataset, paving the
way for future studies that will evaluate and benchmark its
impact on model performance. With a total of 92,552 patterns
collected from 6 contributing institutions, the opXRD database
exceeds the size of the previously largest database of openly
accessible experimental powder diffraction data by two orders
of magnitude. To the best of our knowledge, the largest database
of this type is the RRUFF database, containing 1290 experimental
powder diffraction patterns [27, 28]. Larger commercial datasets
such as the PDF5+ [29] and the Linus Pauling File [30] exist, but
their utility is limited by fees and restrictive licenses. License
terms of commercial datasets, such as the PDF5+ and the
Linus Pauling File, prohibit or restrict the publication of models
trained on their data. In contrast, the opXRD database is both
free and imposes no restrictions on how its data is used.
Figure 1 provides an overview of machine learning workflows
enabled and supported by the opXRD database.

Of the 92,552 patterns in the opXRD database, 2179 patterns
come with at least partial structural information of the underly-
ing sample. Of these 2179 labeled patterns, 912 have labels of the
full crystal structure. While the fraction of samples with struc-
tural labels (2.35%) may appear small, this fraction represents
the largest openly available collection of experimentally derived,
structure-annotated pXRD patterns. As a comparison, the
RRUFF database, often used for benchmarking ML models, con-
tains partial labels for 1290 patterns, but no atomic coordinates.
The opXRD database is larger in size, richer in labels, and
broader in represented experimental setups compared to previ-
ous openly available datasets. Given the inherently labor-
intensive nature of manual labeling in pXRD analysis, it is
impractical to expect a fully labeled dataset at the scale of
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simulated training datasets, which commonly exceed 106 pat-
terns [14, 28, 31]. Therefore, next to the option of benchmarking
models and methods on the labeled subset, opXRD is designed to
complement vast simulated datasets. This can be achieved
through the adjustment of simulation parameters by comparing
with the unlabeled subset of the database, and through transfer
learning strategies. We now want to discuss these two options of
utilizing the unlabeled portion of our database in more detail.

The neglected effects that lead to discrepancies between simu-
lated patterns and patterns stemming from experiments are
largely known. Unaccounted effects may include preferred crys-
tallite orientation, variations in grain size, crystal defects, the
impact of temperature on the scattering process, internal stress,
the non-monochromaticity of the X-ray source, and X-ray-
induced fluorescence [21, 32, 33]. Additionally, varying experi-
mental setups produce distinct powder diffraction patterns on
the same sample. Features that may vary between experimental
setups include the shape of diffraction peaks, the wavelength and
polarization of the employed X-ray source, and the detector
geometry [21, 32, 33]. The recorded scattering angles may also
be slightly falsified if the sample is displaced from its intended
position [21, 34]. As these and more neglected effects are inte-
grated into the simulation process, real powder diffraction data
can be used to evaluate how closely simulated data matches up
with real data. While direct comparisons are only possible on
labeled patterns, comparing the strength and prevalence of fea-
tures between simulated and real data can nevertheless provide
information about the fidelity of the simulation. Taking into
account all neglected effects without making approximations will
incur significant computational costs that will lower the size of
the generated training data. A more efficient approach could be
to use real experimental data to identify the effects that have the
largest impact in practice and model them heuristically.

The second way in which unlabeled experimental data can serve
to bridge the performance gap between simulated and experi-
mental domains is through transfer learning. The objective of
transfer learning is to transfer the capabilities of a model learned
on a source domain in which labeled data is abundant to a target
domain in which labeled data is sparse [35]. In this context, the
source domain is simulated powder diffraction patterns and the
target domain is experimental powder diffraction patterns. Many
approaches to transfer learning have been proposed, particularly
in the domain of image classification [36, 37]. These existing
techniques can be adapted to facilitate transfer learning in the
context of pXRD patterns. Seddiki et al. have already successfully
applied transfer learning in the domain of mass spectrometry to
boost the accuracy of mass spectrum classification models [38].
Since both mass spectrometry data and pXRD data are one-
dimensional, this work demonstrates the merit of transfer learn-
ing in a setting similar to pXRD.

The opXRD database is intended as a growing, community-
driven initiative. The database we present here is the first version,
but we hope to further increase the database size through active
engagement with the pXRD community. Our primary objective is
to minimize the effort and thus the barrier to contributing exper-
imental data to the opXRD database. Thus, we developed a pro-
gram that helps to find and share data from pXRD lab computers.
Users can select their most common pXRD file types, the pro-
gram lists all files of that type, and users can select or deselect
certain folders or files for sharing. Selected contributions will
be uploaded to opXRD, processed to a common file format,
and—if wanted—published on Zenodo on behalf of the contrib-
utors, before becoming part of the opXRD database. If labels are
available, they can be shared with opXRD as well. Further details
can be found on the opXRD website (https://xrd.aimat.science/).
An overview of this process is given in Figure 2 below.

FIGURE 1 | Experimental powder X-ray diffraction (pXRD) patterns from several contributors are collected in the opXRD database. The proposed

open-access database of experimental data aims to support each step in the pXRD-related machine learning workflow by informing better physics

simulations, supplying model training data, and providing a foundation for realistic performance evaluations.
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As argued by Aranda and Kroon-Batenburg et al. [39, 40], sharing
raw powder diffraction data is not only in the interest of further-
ing machine learning research but is also in line with open sci-
ence principles. It furthers the ability of other researchers to
reproduce published work and in turn adds to the credibility
of the publisher of the data. Compared to publishing data indi-
vidually, publishing data on the opXRD database has the added
benefit of contributing to a large, homogeneous dataset with a
standardized interface. This makes the data more easily accessi-
ble to other researchers and provides more value to researchers
seeking large quantities of data. However, further data annota-
tion with metadata is required to fully fulfill the FAIR data
principles.

The opXRD database contains pXRD patterns from single- and
multiphase materials from a wide variety of material classes,
including high-entropy materials, perovskites, and commercial
catalysts. Some of the XRD data was collected on thin films
rather than on true powder samples, which may influence
the quality of the data in regards to full structure resolution.
Additionally, some of the data was collected in grazing-angle
geometry rather than in the usual Bragg–Brentano geometry
employed in powder diffraction. The broad range of available
experimental samples contained in the opXRD database makes
it possible to apply state-of-the-art ML approaches to the
domain of pXRD analysis. We hope that the opXRD database
can drive ML research in this field towards more advanced auto-
mated analysis workflows that can accelerate materials science
research through ready application in high-throughput experi-
mentation pipelines. Details of the experiments of research
groups contributing to the opXRD database are discussed in
Section 3. A detailed description of how to acquire and use
opXRD data is given in Section 4, and Section 5 describes
how further data can be contributed.

1.1 | Review of Machine Learning-Based pXRD
Analysis

To showcase the need for datasets such as the one presented in
this publication, we now discuss some recent approaches that
apply machine learning methods to classification and regression
tasks for powder diffractograms.

In 2020, Lee et al. trained a deep convolutional neural network
(CNN) using simulated diffractograms based on structures from
the ICSD, which is able to classify occurring phases in diffracto-
grams of a specific compound pool [41]. In 2022, they further-
more developed models based on fully convolutional neural
networks and transformer encoders that predict the crystal sys-
tem, the space group, and other structural properties, such as the
band gap [42]. With their best model for the crystal system pre-
diction on ICSD structures, they achieved a test accuracy of
92.2%. In 2017, Park et al. reached a test accuracy of roughly
81% for a CNN, which classifies space groups of simulated
single-phase diffractograms [12].

A regression analysis on lattice parameters within a broader
framework encompassing all material classes was conducted
by Chitturi et al. [18] in 2021. They developed a distinct
CNN for each crystal system, utilizing a merged dataset from
both the ICSD and the Cambridge Structural Database, and
managed to achieve a mean absolute percentage error of about
10% for the lattice lengths, although they encountered difficul-
ties in accurately predicting angles. In 2024, Zhang et al. intro-
duced a convolutional self-attention neural network trained on
simulated patterns to classify crystal types [20]. Their model
was tested on 23,073 unary, binary, and ternary inorganic crys-
tal structures sourced from the COD. The study observed a
noticeable performance drop when the pre-trained model

FIGURE 2 | Overview of the data collection pipeline. Datasets are submitted using an online submission form, optionally with the help of our

submission helper software. After post-processing and data homogenization, we offer the creation of a Zenodo entry for each user submission and

subsequently include the submission in the opXRD database.
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was applied to real experimental patterns as opposed to simu-
lated data. However, their recent work [21] proposes using con-
volutional peak descriptors that consider the detector’s
geometry, which reduces the performance gap in their bench-
mark tests.

Neural networks trained purely on experimental diffractograms
can perform well when the range of samples is narrow and the
data is collected only on a single machine [13, 43]. However, in a
more general setting with a wide range of investigated samples
and employed diffractometers, training neural networks purely
on experimental diffractograms becomes infeasible. This is
because of the limited availability of labeled experimental dif-
fractograms relative to the scope of the task. However, in 2023,
Salgado et al. [31] showed that adding a fraction of experimental
patterns to a simulated training dataset improves the perfor-
mance on unseen experimental patterns. They used 50% of
the experimental patterns contained in the RRUFF database
and added those to their large simulated training set. Then they
tested their model’s performance on the other half of the
RRUFF database and achieved a performance increase in the
230-way space group classification accuracy of 11 percentage
points compared to the same model only trained on simulated
patterns.

In 2024, Schuetzke et al. trained a classifier to classify if a diffrac-
togram stems from an amorphous, single-phase, or multi-phase
sample [44]. Due to the lack of experimental pXRDs, they built a
pipeline to augment simulated diffractograms of a reference
structure by, among other things, slightly varying the underlying
crystal lattice. For spinel structures, they reported an accuracy of
100%, but they also proved that their approach can be transferred
to other datasets.

In 2023, Schopmans et al. presented an approach to generate syn-
thetic crystal structures and their corresponding pXRD patterns
on the fly during the training process [14]. This approach defeats
the issue of a limited dataset size, which limits the depth of neu-
ral networks that can be trained. However, the accuracy dropped
substantially when we applied our space group classification
model to experimental patterns from the RRUFF database.
Augmenting our simulated patterns with background, noise,
and impurities helps to bring simulated diffractograms closer
to experimental ones, making models trained on them more per-
formant on experimental diffractograms. However, this augmen-
tation process could be improved by incorporating background

and noise statistics from a broader experimental pXRD database,
such as the one presented in this publication.

It becomes apparent that the more general the task is, the more
challenging the transfer to experimental data becomes. For
example, the space group classification task across all material
systems is very general. Therefore, transferring it to the applica-
tion on experimental diffraction patterns is difficult [14, 23, 42].
On the contrary, there are some successful approaches that also
work well on experimental data, but those are mostly methods
that do phase determination in a limited compound space, mak-
ing the task less complex [41, 44].

The current volume of experimental pXRD patterns is insufficient
to effectively train ML models, highlighting an urgent need for a
comprehensive experimental pXRD database. The most advanced
ML models currently are trained on approximately 105−106 simu-
lated diffractograms [14, 31]. This is, to the best of our knowledge,
two orders of magnitude larger than the largest currently curated
experimental dataset, the PDF-5+, with approximately 2 × 104

experimental patterns. It is even one order of magnitude larger
than the approximately 105 unlabeled diffractograms in the initial
version of the opXRD dataset we present here.

To make ML-based pXRD data identification practical for exper-
imental use and automate structure prediction despite lacking
experimental training data, two key approaches are essential.
First, developing more sophisticated simulation methods to bet-
ter approximate experimental patterns [21] by using statistics
from experimental diffractograms. Second, creating an experi-
mental database that enables transfer learning to bridge the
gap between simulated and real-world data. For both of these
steps, the development of opXRD is particularly significant, as
it will provide a comprehensive experimental benchmark for
the community, allowing fair comparison of baseline models
and accurate evaluation of their applicability in real experimental
situations.

2 | Existing Datasets

To contextualize opXRD within the current environment of
experimental powder diffraction data, the list below provides
an overview of the largest crystal structure databases that offer
access to experimental powder diffraction data. For an overview
of these databases, refer to Table 1 below.

TABLE 1 | Overview of experimental powder diffraction databases: The column “O.A.” indicates whether or not the database is open-access. The

availability of the chemical composition, space groups, lattice parameters, and the full structure of the underlying samples is indicated by the columns

“Comp.”, “Spg.”, “Lattice” and “Full structure”, respectively.

Name No. Patterns O.A. Comp. Spg. Lattice Full Structure Year est.

Linus Pauling file 21,700 ✗ ✓ ✓ ✓ ✓ 2002

Powder Diffraction Filea 20,800 ✗ ✓ ✓ ✓ 52% 1941

RRUFF 1290 ✓ ✓ ✓ ✓ ✗ 2006

Crystallography Open Database 1052 ✓ ✓ ✓ 85% 85% 2003

PowBase 169 ✓ ✓ ✗ ✗ ✗ 1999
aThe PDF lists the Material Platform for Data Science (MPDS) as a database source. Since the MPDS is hosted by the Pauling File project, there is likely significant
overlap in the experimental patterns available in the PDF and the Linus Pauling File.
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2.1 | Linus Pauling File [45]

The Linus Pauling File is a largely commercial crystal structure
database published and maintained by the Pauling File project
[29]. It is currently distributed as Pearson Crystal data [46] and
the Materials Platform for Data Science (MPDS) [47]. The data-
base, first published in 2002, currently contains more than
534,000 crystal structures [47] and 21,700 corresponding exper-
imental powder diffraction patterns [46]. This makes the
Pauling file, to the best of our knowledge, the largest collection
of experimental powder diffraction data available to research-
ers. As of November 2024, Pearson’s crystal data is available
to researchers through a purchase of a 1-year license starting
at a price point of 2200€ [48]. The MPDS is partially open, with
the open portion of the MPDS data accessible through a web
interface [47]. API access to the full MPDS can be purchased
through a 1-year license starting at 9500€ [49]. We asked the
Pauling File project whether the experimental powder diffrac-
tion data is accessible through the MPDS API. The Pauling File
project responded that this data is not currently provided
through the API, but could be offered in the future at the
request of customers.

2.2 | Powder Diffraction File [50]

The Powder Diffraction File (PDF), published and maintained
by the International Center for Diffraction Data (ICDD), is a
large collection of materials with accompanying powder dif-
fraction data first published in 1941 [28]. According to the
ICDD, the latest release of the PDF, the PDF5+, contains over
a million materials with accompanying powder diffraction
data. However, since most of these powder diffraction patterns
are simulated, we asked the ICDD about the number of experi-
mental diffraction patterns in the PDF5+. We were told that
20,800 of the patterns in the PDF5+ stemmed from experiments
and that 10,954 of these patterns were accompanied by the
atomic coordinates of the underlying structures. Since the
PDF5+ lists the MPDS as a database source, there is likely a
significant overlap in the experimental patterns found in the
PDF5+ and those found in the Pauling file. Currently, the
PDF5+ is available to researchers through a purchase of a
1-year license starting at a price point of $6265. However,
the ICDD does not allow researchers to train machine learning
models on PDF5+ data, regardless of whether the resulting
models are published [51].

2.3 | RRUFF [52]

The RRUFF Mineral Database, first published in 2006, provides
detailed information on minerals, including their chemical com-
positions, crystallography, and spectroscopic data [27]. Managed
by the University of Arizona, it was created to serve as a public
repository for mineral identification and research. It contains
1290 powder diffraction patterns stemming from experiments,
each labeled with the lattice parameters and composition of
the underlying structures. The RRUFF data is openly accessible
on its official website [52].

2.4 | Crystallography Open Database [53]

The Crystallography Open Database (COD) is an open-access col-
lection of crystal structures founded in 2003 [54]. It currently pro-
vides over 500,000 crystal structures. Of these files, 1052 contains
the experimental powder diffraction data that was used to deter-
mine the underlying crystal structures of the investigated
samples. Hence, the experimental powder diffraction data con-
tained in the COD is mostly labeled with the full crystal structure
information. The data is openly accessible in the form of .cif files
on the official COD website [53].

2.5 | PowBase [55]

PowBase is a database of 169 mostly unlabeled experimental
powder diffraction patterns collected and maintained by crystal-
lography researcher Armel Le Bail starting in 1999. PowBase is
an initiative suggested in the Structure Determination by Powder
Diffractometry (SDPD) mailing list, which was co-maintained by
Le Bail. The COD is another community initiative that grew out
of this mailing list. As of March 2025, all 169 patterns are still
freely available for download on the official website [55].

There is also publicly available powder diffraction data uploaded
to datasets on Zenodo. However, this data is split into disparate
entries that typically only contain the work of a single research
project. Additionally, extracting powder diffraction data at scale
is hindered by the fact that the data is often given in plain text
files in non-standardized formats, which are difficult to parse
automatically. We are currently planning a systematic large-scale
extraction of powder diffraction data from databases like Zenodo
with the help of a large language model. This data will be
included in a future release of the opXRD database.

While not strictly speaking a powder diffraction database, the
High-Throughput Experimental Materials Database (HTEM)
by the National Renewable Energy Laboratory (NREL) is a valu-
able source of X-ray diffraction data [56]. Currently, the HTEM
database contains 65,779 thin-film samples with corresponding
X-ray diffraction data [57]. Each database entry includes the ele-
mental composition of the underlying sample but does not pro-
vide any information on its structure. HTEM data is open-access
and can be downloaded through an API provided by NREL.

Aside from the databases mentioned above, we have also inves-
tigated several other crystal structure resources in search of
experimental powder diffraction data. Crystal structure resources
that were investigated but not found to contain any appreciable
amount of publicly available experimental powder diffraction
data include the Inorganic Crystal Structure Database [58], the
Cambridge Structural Database [59], the Materials Project data-
base [60], the Crystallographic and Crystallochemical Database
[61], the Bilbao Incommensurate Crystal Structure Database [62],
the Mineralogy Database [63], the IUCr Raw data letters [64], the
U.S. Naval Research Laboratory Crystal Lattice-Structures [65],
the Athena Mineral database [66] and the Protein data bank [67].
The lack of experimental powder diffraction data in these data-
bases is to be expected, as most structure solutions are achieved
through single-crystal diffraction.
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3 | opXRD Database

In collaboration with several other research institutions, we have
collected a database of 92,552 experimental powder diffraction
patterns. Of these patterns, 2179 are at least partially labeled with
structural information, and 912 are labeled with the full crystal
structure of the underlying material. The following research
institutions contributed data to the opXRD database: The
French National Centre for Scientific Research (CNRS), Hong
Kong University of Science and Technology (Guangzhou)
(HKUST), University of Southern California (USC), Lawrence
Berkeley National Laboratory (LBNL), Empa–Swiss Federal
Laboratories for Materials Science and Technology (EMPA),
and the Karlsruhe Institute of Technology (KIT). We have taken
measures to ensure data validation through both manual and
automated processes. Before parsing the data, we established
the file formats and data organization of each submission to
ensure that the files were compatible with our custom parsing
mechanism. As part of the automatic parsing process, we filtered
the submitted datasets to exclude patterns with invalid features
such as only one unique recorded angle, negative angles, less
than 50 recorded angles total, or all intensities being zero.
After the parsing, we also manually inspected a random selection
of patterns from each submitted dataset for any anomalies that
would warrant further investigation.

We standardized the associated structural information according
to the standards described by Setyawan et al. [68] using
PYMATGEN. In particular, this standardization enforces a single
crystal axis convention throughout all opXRD data. Table 2 pro-
vides an overview of the contributions of each institution.

The variance of the data was analyzed using principal component
analysis (PCA). PCA can be applied to datasets X⊂RN to reduce
the number of components needed to describe points p ∈ X up to
some tolerance in lost accuracy. In the context of PCA, the cumu-
lative explained variance ratio is a measure of how much of the
variance in the dataset X can be explained using a given number
of components. For a rigorous definition of PCA and the
explained variance ratio, we refer to the literature [69]. Here,
PCA was performed on datasets of X-ray diffraction patterns.
These datasets X are subsets of RN with N = 512 since each pat-
tern p ∈ X was standardized to have 512 intensity values spread

out evenly from 0° to 180° using zero padding and interpolation
with cubic splines. Hence, the maximal components that could
be needed to describe a dataset of diffraction data in this context
is N = 512. However, the maximal number of components is
even lower for datasets that contain less than 512 patterns. In
this case, the maximal number of components is equal to the
number of patterns in the dataset since each pattern can add
at most one degree of freedom to the dataset X ∈ RN . Hence,
the maximum number of components Nmax of a pattern dataset
X is given as follows:

Nmax = min Nvalues,Npatterns

� �
(1)

Here Nvalues = 512 is the number of recorded intensity values per
pattern and Npatterns is the number of patterns in the dataset X.
Figure 3 below shows the cumulative explained variance ratio
over the fraction of maximal No. components Nmax as defined
above. In this figure, a faster convergence of the cumulative var-
iance ratio towards one indicates that the patterns in this dataset
are largely similar. For example, the contributions by USC and
LBNL contain many very similar patterns. The patterns in the
USC dataset are similar because the underlying samples are
all variations of CuNi and CuAl alloys. The patterns submitted
by LBNL are similar because they stem from in-situ recordings
where several hundred or several thousand patterns were col-
lected over time per sample. In contrast, the CRNS and the
HKUST contributions each are collections that encompass many
research projects over a large period of time and thus exhibit a
high degree of variability between individual patterns.

Figure 4 illustrates the distributions of pattern properties in the
opXRD database. Nearly all patterns have an angular resolution
smaller than Δð2θÞ= 0.1°. Here, the angular resolution is defined
as the range of recorded angles divided by the number of
recorded intensity values along that range. For most patterns,
the lowest recorded angle is smaller than 30 and the highest
recorded angle is smaller than 120°. The start-to-end angle dis-
tribution reveals that all diffractograms start in a narrow window
between 0 and approximately 50, while they end between 50 and
150, with the majority of patterns going from 0 to approximately
70. Unlike most ML approaches using synthetic data over the full
angle range with fixed resolution, the opXRD dataset has a
strongly varying angle range and resolution. Hence, working

TABLE 2 | Overview of the contributions to the opXRD database: The availability of the chemical composition, space groups, lattice parameters,

and the full structure of the underlying samples is indicated by the columns “Comp.”, “Spg.”, “Lattice” and “Full structure.” respectively.

Institution No. Patterns Comp. Spg. Lattice Full Structure Research Project

CNRS 1052 ✓ 85% ✓ 85% Diffraction data extracted from the COD

USC 338 ✓ ✓ 90% ✗ Study of CuNi and CuAl alloys

HKUST (GZ) 520 4% 4% 4% 4% Phase identification dataset

EMPA 770 ✓ 63% ✗ ✗ Metal halide perovskites, Zn-V-N libraries

INT 19,796 ✗ ✗ ✗ ✗ Compilation of various projects

IKFT 64 ✗ ✗ ✗ ✗ Commercial catalysts, metals, metal oxides

LBNL 70,012 ✗ ✗ ✗ ✗ Perovskites precursors, Mn-Sb-O system

P
Labeled 2,179 79% 66% 63% 42% Partially and fully labeled opXRD data

P
Unlabeled 90,373 ✗ ✗ ✗ ✗ Unlabeled opXRD data
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with this data requires additional pre-processing methods such as
padding and interpolation, or more flexible ML models beyond
standard CNNs.

Figure 5 illustrates how structural properties are distributed
among the structures underlying the labeled subset of the opXRD
database. Most structures include either N, C, or O atoms, and
have unit cells that contain less than 100 atoms and are smaller
than 10 Å3. The most common space groups include the ortho-
rhombic Pnma, the monoclinic P21=c, and the cubic Fm3m.

In the following, we will describe the datasets contributed by
each of the collaborating research groups and institutions.

Each paragraph includes a description of the investigated mate-
rials and how X-ray diffraction data was collected. If applicable,
the presence of thin-film samples or atypical diffraction geome-
tries is indicated. Most data was collected using Cu radiation
sources, which has a Kα1 wavelength of λ= 1.54056 Å and a
Kα2 wavelength of λ= 1.54439 Å.

3.1 | Institut De Recherche De Chimie
Paris, CNRS

Experimental pXRD data was extracted from the Crystallography
Open Database (COD) [70, 71]. The COD is, to our knowledge,

FIGURE 4 | Histograms detailing properties of all diffraction patterns in the opXRD database: (a) distribution of angular resolutions, (b) distribution

of smallest and largest recorded 2θ values.

FIGURE 3 | Explained variance ratio over the fraction of the maximum number of components for each dataset contributed to the opXRD database:

(a) Contributions EMPA, LBNL-A, LBNL-B, LBNL-C, LBNL-D, (b) contributions USC, INT, HKUST-A, HKUST-B, CNRS. Here, the maximum number

of components refers to Nmax as defined in Equation (1). Datasets contributed by the same institution are labeled alphabetically in the order in which

they are described in the texts towards the end of this section.
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the largest open-access collection of experimental crystal struc-
tures of organic, inorganic, and metal-organic compounds and
minerals, containing more than 500,000 entries. The data in
the COD are placed in the public domain and licensed under
the CC0 License. Of the entire COD database, 5432 structures
contained at least one tag from the CIF_POW dictionary, that is,
a tag relating to powder diffraction studies. These 5432 structures
only account for 1% of the total COD database, but this is to be
expected since most crystal structures are resolved from single-
crystal diffraction. Of these 5432 files, most contained only

metadata related to the powder diffraction experiment, but did
not include the raw data of the pattern itself. We could extract
raw experimental pXRD patterns from 1052 files in total, after
curation of a small number of files with clearly invalid data.

The pXRD data from the COD database are of high quality, with
a median resolution of Δð2θÞ= 0.013° and an average number of
9190 points measured per pattern. They span a wide chemical
space, including organic, inorganic, and hybrid structures, and
75 different elements of the periodic table.

FIGURE 5 | Histograms detailing properties of the structures underlying labeled diffraction patterns in the opXRD database: (a) distribution of

structures containing specified elements, (b) distribution of structures containing space groups, (c) distribution of number of atoms N contained

in unit cell, (d) distribution of unit cell volume V in Å3.
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3.2 | Guangzhou Municipal Key Laboratory of
Materials Informatics, HKUST (GZ)

Two datasets were contributed to the opXRD database. The first
dataset (HKUST-A) is a selected subset of a small-scale experi-
mental powder X-ray database developed over the past 2 years,
called the X-Ray Phase Identification Public Experimental
Dataset (XRed) (https://github.com/WPEM/XRED). The pri-
mary goal of XRed is to support the advancement of intelligent
phase identification technology by providing a foundation for
data collection in future large-scale machine learning applica-
tions. XRed primarily focuses on metal and metal–oxide par-
ticles, with data collected using diffractometers such as the
Empyrean 3.0, Aeris, and Bruker D8 Advance, all employing
Cu X-ray sources. The dataset HKUST-A contains 21 pXRD pat-
terns, each labeled with a corresponding CIF file that documents
the refined structure. Data are categorized by elemental systems
and include original experimental files, spanning single-phase to
five-phase mixtures, as well as mixtures designed for various
research tasks.

In addition to XRed, the opXRD database integrates an experi-
mental dataset composed of powder diffraction data sourced
from open-access publications and collaborating institutions
(HKUST-B). These institutions have provided the data with full
authorization for research purposes. Compared to XRed, this
dataset offers broader chemical element coverage, encompassing
ionic, atomic, and metallic crystals. It is also larger, containing
499 entries. However, unlike XRed, these data entries are not
accompanied by CIF files.

3.3 | Laboratory for Surface Science and Coating
Technologies, Empa

Combinatorial Zn–V–N libraries were synthesized using radio-
frequency co-sputtering of Zn and V in a mixed Ar and N2

plasma. An orthogonal deposition temperature and composition
gradient was created, resulting in a deposition temperature
of 220°C for samples 1–9 and 114°C for samples 37–45. The
composition for each sample was determined using X-ray
fluorescence (XRF) spectroscopy, which was further calibrated
through Rutherford backscattering spectroscopy (RBS) based
on selected samples. The newly identified and isolated semicon-
ductor Zn2VN3 was identified to exhibit a cation-disordered
wurtzite structure as verified by additional GI-XRD and SAED
measurements [72].

Tin halide perovskites were deposited using single-step spin-
coating as reported elsewhere [73]. Methylammonium lead
iodide libraries with varying degrees of residual PbI2 were depos-
ited using a two-step procedure involving both thermal evapora-
tion of PbI2 and subsequent spin-coating of a methylammonium
solution. The relative phase fractions were quantified using sup-
plementary azimuthal angle scans coupled with structural factors
and geometrical factors as reported elsewhere [74]. Fully inor-
ganic lead perovskite libraries were prepared using thermal
co-evaporation of lead and cesium halide salts. All metal halide
perovskite libraries were measured within a custom-made X-ray
transparent inert-gas dome, resulting in the presence of minor
additional features within the θ= 19�31° range. For all

combinatorial libraries where any phases are specified, the com-
plete set of phases is reported in the metadata.

XRD data was measured using a Bruker D8 Discover equipped
with a Cu radiation source in a Bragg–Brentano geometry. For
the reported datasets, the instrument was equipped with a
Goebel mirror effectively removing the Cu Kβ radiation. The data
set originates from the combinatorial exploration of the Zn–V–N
compositional space, as well as data gathered from multiple
research activities on more established metal halide perovskite
semiconductors. All data was collected from thin films deposited
on borosilicate glass. The Zn–V–N films showed some preferen-
tial out-of-plane orientation, while for the perovskites the pref-
erential orientation was minimal, resulting in the presence of all
reflections.

3.4 | Institute of Nanotechnology, KIT

X-ray diffraction data was collected from a wide range of research
projects conducted at the Institute of Nanotechnology over the
past 10 years. A major part of the research focused on high-
entropy materials, which involved incorporating many different
elements into single-phase structures, leading to peak shifts or
phase separations. Most of those multi–component complex
materials appeared in various structures, including rock-salt, spi-
nel, fluorite, perovskite, and delafossite. The samples were pre-
pared either in powder or in bulk form; therefore, powder XRD
was performed on samples with adjusted height. The samples
were prepared using various synthesis techniques, mostly
solid-state or wet chemical syntheses, to obtain the desired struc-
tures. Consequently, particle size and crystallinity varied signifi-
cantly. The sample set also includes samples that were not
successfully measured or where phases could not be identified.

The X-ray diffraction data were collected on a Bruker D8
Advance using a Cu radiation source or a STOE Stadi P diffrac-
tometer equipped with a Ga-jet X-ray source. The samples were
initially recorded for various research projects over the last ten
years and were measured with different step sizes, times per step,
and over different angle ranges, but all using Cu Kα or Ga Kβ

radiation. The samples mostly contained transition metal oxides,
sulfides, and fluorides. To improve statistics, the samples were
rotated during the entire measurement. Some air-sensitive sam-
ples were measured using a transparent polymer dome for pro-
tection. This dome led to increased background noise over the
first 20° and slightly decreased pattern resolution.

3.5 | Institute of Catalysis Research and
Technology, KIT

A variety of samples were analyzed, including commercial cata-
lysts, bulk reference materials, porous metal oxide particles, and
nanoparticles. The latter were synthesized via the surfactant-free
benzyl alcohol route [75, 76]. The cobalt oxide (CoO or Co3O4)
and cerium oxide (CeO2) nanoparticles were in the size range of
4−16 nm according to the Scherrer equation. A series of porous
Al2O3 materials, which were prepared by calcination of boehmite
(AlOOH) at various temperatures, represents crystalline samples
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with limited long-range structure and various contributions of
Al2O3 polymorphs.

X-ray diffraction (XRD) was conducted with an X’Pert Pro MPD
(Panalytical) in Bragg–Brentano geometry using a Cu X-ray
source. The patterns were acquired in the 2θ range of 5−80∘

with a step size of 0.016711∘ or 0.033420∘ and a total acquisition
time of 40–120 min. This study has been carried out with the
support of Angelina Barthelmeß, Elisabeth Herzinger, and
Henning Hinrichs.

3.6 | Molecular Foundry Division & Advanced
Light Source & Chemical Sciences Division, LBNL

In total, four different datasets were collected. The first dataset
(LBNL-A) was collected from spin-coating and annealing triple-
cation metal-halide perovskite precursor solutions with the com-
position Cs0.05 (MA0.23 FA0.77)Pb1.1 (I0.77Br0.23)3 onto various
substrates. Here, MA stands for Methylammonium and FA
stands for Formamidinium. The substrates onto which these sol-
utions were coated include glass, which is amorphous, and GaAs
wafers, which are single crystalline. Other substrates were stacks
of glass/indium tin oxide, stacks of GaAs/CIGS, and stacks of
glass/CIGS. Here, CIGS stands for a stack of Mo, Cu (In, Ga)
Se2, Cds, and ZnO. Some of the substrates were additionally cov-
ered with a self-assembling monolayer of MeO-2PACz. The GaAs
substrates were prepared by Dr. Jiro Nishinaga from the National
Institute of Advanced Industrial Science and Technology (AIST)
in Japan [77] and the glass/CIGS substrates by Dr. Christian
Kaufmann and his team at Helmholtz-Zentrum Berlin (HZB)
in Germany [78]. Data collection was performed in situ during
thin-film deposition using a custom-made spin-coating and
annealing stage [79].

A second dataset (LBNL-B) was collected from spin-coating
metal-halide perovskite precursor solutions with varying compo-
sitions of MAPbðI1− xBrxÞ3 spin-coated onto glass substrates.
Here, MA=Methylammonium and x= 0, 0.33, 0.5, 0.67, 1.
The substrates were preheated to different temperatures, includ-
ing 30°C, 50°C, 70°C, and 90°C, and the spin-coating process was
performed at a constant temperature on the preheated substrates.
For both datasets, diffraction data were continuously measured
during spin-coating, chemical induction of crystallization, and
annealing of the samples, at 100°C and 110°C respectively.
The diffraction data was recorded with a frequency of about
0.561=s and 0.541=s. Each in situ measurement consisted of
about 500–1000 individual diffractograms. Depending on the
substrate, each series of diffractograms shows an evolution from
substrate only to a combination of polycrystalline perovskite,
PbI2, and substrate via several intermediate phases.

For these two datasets, experimental XRD data were collected at
beamline 12.3.2 of the Advanced Light Source, the synchrotron at
Lawrence Berkeley National Laboratory. The data were collected
using a photon energy of 10 keV (λ= 1.23984 Å), selected using a
Si (111) monochromator. Measurements were taken in grazing
incidence geometry, that is, using a beam incidence angle of 1∘.
Two-dimensional diffraction images were recorded using a
Dectris Pilatus 1M area detector at an angle between 34∘ and

36∘ with a sample-to-detector distance of roughly 190 mm.
The two-dimensional data were calibrated using an Al2 O3 cali-
bration standard and integrated along the azimuthal angle.

A third dataset (LBNL-C) was collected by observing the phase
evolution of an Mn-Sb-O system with varying annealing temper-
atures. The temperatures used to analyze the crystal structure of
the Mn-Sb-O system were chosen depending on the number of
phase transitions appearing for a certain temperature range. Few
changes in the crystal structure appear between room tempera-
ture and 300C and phase transitions appeared from 300°C until
850C. No phase transition appeared when cooling down.
Therefore, the crystal structure was measured every 100C
between room temperature and 300C; every 50C between
300C and 850C; and every 200C when cooling down. The heating
and cooling rates were fixed for all the experiments at 50C/min
and the holding time was fixed to 2 min.

This data was collected using the in situ Rigaku-SmartLab3 kW
diffractometer. This tool operates with SmartLab Studio II soft-
ware, which can measure the X-ray diffraction during the anneal-
ing process. This enables directly showing all the phase
transitions when annealing in various atmospheres such as
O2, Ar, and NH3. Phase transitions are analyzed with the
in situ XRD tool up to 850°C in this work. Most of the in situ
experiments were performed under an air-like 20% O2 and
80% Ar environment (Ar flow: 50 sccm, O2 flow: 10 sccm).
When a 100% Ar environment is fixed, an Ar flow of 60 sccm
is input. The Bragg–Brentano (BB) mode is preferred in terms
of geometry because it is more adapted in the analysis of scarce
phases such as MnSb2O6 rutile. The angular step used in the
recording was 0.01 and the scanning rate was 10/min.

A fourth dataset (LBNL-D) was collected from a two-step spin-
coating process using metal-organic frameworks (MOFs) in
perovskite precursor solutions, deposited onto glass substrates.
In the first step, a nanoscale thiol-functionalized UiO-66-type
Zr-based MOF (UiO− 66− ðSHÞ2) was added to the PbI2 precur-
sor. This was followed by the deposition of an organic mixture
solution containing FAI, MACl, and MABr in the second step.
The incorporation of MOFs aids in suppressing perovskite
vacancy defects, thereby enhancing device stability and effi-
ciency. To further investigate the influence of UiO-66- ðSHÞ2
on perovskite thin-film formation during the annealing process,
a time-resolved GIWAXS experiment was conducted. The meas-
urements were performed using a setup similar to that of
LBNL-A and B.

4 | Usage

The opXRD database is hosted on Zenodo (https://zenodo.org/
records/14254270) and can be downloaded by any user without
any barriers or restrictions.

We also provide a Python library ‘opxrd’ to easily download and
interface with the dataset. The opXRD library is designed for
easy integration with common machine learning frameworks
such as PyTorch. This makes it an ideal resource for researchers
developing and benchmarking sim-to-real transfer strategies in
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pXRD data analysis. The instructions for how to install this
library can be found in the repository associated with the library.
The repository of this library is located at https://github.com/
aimat-lab/opxrd. The opxrd library includes options for data-
loading, standardization, plotting, and the conversion to
PyTorch tensors. We provide a Jupyter Notebook (https://
colab.research.google.com/github/aimat-lab/opXRD/blob/main/
opxrd/usage.ipynb) that showcases these functionalities in more
detail. This notebook also illustrates how to interface with the
opXRD database through Python.

5 | Summary and Outlook

With the opXRD database, a curation of 92,552 unlabeled and
2179 at least partially labeled experimental powder X-ray diffrac-
tion patterns from a wide range of different materials systems, we
provide the largest currently available source of experimental
XRD patterns. With this, we address the need for experimental
data that arises when developing algorithms and analysis tools
for pXRD data, both based on machine learning and classical
approaches. The data can be used for the actual method devel-
opment and for testing. Our dataset is a valuable and so far miss-
ing resource to drive further developments in the automated
analysis of XRD data. Looking forward, opXRD is expected to
play an important role in the development of advanced transfer
learning approaches that integrate large-scale simulated data
with real experimental patterns, ultimately driving the automa-
tion and accuracy of pXRD analysis. Future work will also
include comprehensive benchmark evaluations to quantify the
performance improvements achieved by incorporating opXRD
into transfer learning pipelines.

Rather than a finished project, the opXRD database is an ongoing
effort to collect experimental powder XRD data. We invite every-
one working with experimental powder XRD to submit any data
they would like to publicly share to the dataset, to further
improve its utility and thus aid further developments in this field.
Our submission page (https://xrd.aimat.science/) will continue
to stay available for the submission of data. As new submissions
come in, newer versions of the opXRD database incorporating
these submitted datasets will be released. As the opXRD database
grows further, we look forward to expanding this website to
become a comprehensive community resource from which the
database can be governed. Planned resources on this site include
a contributor list, version list, and changelogs as well as compre-
hensive versioning, license, citation, and attribution practice
statements.

We will keep updating and maintaining the dataset with new
incoming submissions.
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