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Spin-3/2 nuclear magnetic resonance: Exact analytical solutions for aligned systems
and implications for probing Fe-based superconductors

Jaafar N. Ansari *

Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA

Karen L. Sauer †

Department of Physics and Astronomy, George Mason University, Fairfax, Virginia 22030, USA
and Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, USA

(Received 9 July 2024; revised 22 November 2024; accepted 26 November 2024; published 16 December 2024)

The nuclear magnetic resonance (NMR) spectrum of spin-3/2 nuclei in a static magnetic field aligned with
one of the electric field gradient (EFG) principal axes is developed analytically, based on fictitious spin-1/2
formalism. Compact closed-form expressions for the eigenstates and transitions frequencies, as well as the
expectation value of the magnetic moment after resonant excitation, are derived. Emphasis is placed on defining
and interpreting the associated Rabi frequencies, as a function of excitation direction and ellipticity. It is found
that transitions inherently fall into two subsets, depending on their sensitivity to excitation direction, with the
Rabi frequency of one subset directly depending on the asymmetry of the EFG. A natural application is the study
of Fe-based superconductors, whose antiferromagnetic ordering at low temperatures leads to a strong intrinsic
magnetic field aligned with the EFG principal axes. Zero external-field NMR spectra, from powder samples
of two such Fe-based superconductors, BaFe2As2 and CaFe2As2, are analyzed and exemplify the simplicity
in extracting the internal magnetic field, the quadrupole coupling constant, and the EFG asymmetry parameter,
which are important for studying magnetic ordering, structural properties, phase transitions, and NMR dynamics.
Results compare favorably to conventional high-field NMR experiments done with the rotation of single crystals.
Overall, the physical insights, afforded by the exact and concise expressions, will lead to ready interpretation of
spin-3/2 spectra as well as precipitating new experimental directions.
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I. INTRODUCTION

Nuclei with spin greater than 1/2 have both a magnetic and
an electric quadrupole moment. The former couples to a mag-
netic field, the latter to an electric field gradient (EFG). Such
nuclei can then serve as an internal probe of both magnetic
and electric phenomena, and they are addressable using the
magnetic dipole’s interaction with a radiofrequency excita-
tion, i.e., nuclear magnetic resonance (NMR). Conventionally,
experiments are often performed in two limits: (i) in a large
magnetic field which is commonly known as high-field NMR,
and (ii) in the absence of a magnetic field, often referred to
as nuclear quadrupole resonance (NQR). In this paper, we are
concerned with the exact NMR theory of spin-3/2 nuclei in
the presence of a magnetic field which is aligned with one
of the EFG principal axes. The full continuum of results
between the zero-field and high-field limits is addressed.

We tackle this problem using the spin-1/2 formalism,
which has not been done before. Although the solution for
this system is somewhat involved because the quadrupolar
and Zeeman Hamiltonians do not commute, it has been solved
exactly for arbitrary field directions [1–4] and by perturbation
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theory many times over using a variety of techniques [5,6].
In addition, software has been written that simulates such
spectra [7,8]. Previous work tackling the full solution is useful
for computational analysis and modeling, however they lack
physical insight and the ability to be used for straightforward
data analysis. With this in mind, a set of tractable analytical
expressions in the EFG-aligned case is notably missing and
would elevate the quality of both the quantitative and qualita-
tive analysis of these systems.

The present work addresses this problem, with the aim of
going beyond just the eigenfrequencies, eigenstates, and tran-
sition rates, by deriving explicit expressions for the oscillating
nuclear magnetization, including its direction, produced after
a pulse of resonant radiofrequency excitation. The Rabi fre-
quency, dictating the efficacy of the excitation, is proportional
to the radiofrequency strength, as well as a modifying geo-
metric term. This geometric term λ depends on the direction
of the excitation field as well as the relative strengths of the
static field components. An excitation pattern, specific to the
transition frequency, can therefore be visualized through λ.
Such visualization has only been done in the pure NQR case
[9]. Select transitions directly depend on the asymmetry of
the electric field gradient with respect to the static magnetic
field. The use of the Rabi frequency for EFG determina-
tion, including asymmetry, has been studied in the case of
pure NQR through the use of nutation spectroscopy [10,11].
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Computational results of nutation spectroscopy in the
presence of a magnetic field have also been performed
[12,13], but they lack analytical expressions. This pa-
per remedies this by presenting exact expressions of the
Rabi frequencies for the case of EFG alignment with the
magnetic field.

We take the Fe-based superconductors (FeSCs) as an ex-
ample, and we apply our expressions to demonstrate how
they can be used for analysis. These unconventional high-Tc

superconductors are perfectly suited for the type of analysis
described in this paper since they have spin-3/2 nuclei which
experience a large ∼1 T internally supplied magnetic field
from the antiferromagnetic ordering of Fe magnetic moments.
The orthorhombic/tetragonal crystal symmetry dictates that
the field is always oriented along one of the EFG principal
axes [14,15]. Therefore, zero external-field NMR (ZNMR)
and a powder sample can be used since both the field and EFG
are tied to the crystal symmetry. Detailed analysis of these
ZNMR spectra has been limited due to the lack of such ex-
pressions that we bring to light in this paper. These materials
are of immediate interest in superconductivity research and
the broader condensed-matter field, because of the interplay
of magnetic and electrical order [16], as well as contro-
versies surrounding the superconductivity mechanism. Some
high-Tc oxides also exhibit EFG-aligned hyperfine fields on
spin-3/2 nuclei [17,18], and they can be easily studied us-
ing the tools introduced in this paper. Other applications
can be found in vapor cells [19] and other antiferromagnetic
materials [20,21].

So, in this paper, we add to the body of knowledge on spin-
3/2 particles in magnetic fields by studying the case of the
field oriented along one of the EFG principal axes. The paper
is organized as follows. In the Theory section, we start by
using the fictitious spin-1/2 formalism to derive easy-to-use
analytical expressions of the eigenenergies, eigenfrequencies,
and eigenstates, along with the matrix elements of the spin
angular momentum operators. Formulas for the expectation
value of the nuclear magnetic moment and the Rabi frequen-
cies are also presented. The Results section is split into three
subsections: (i) the predicted Zeeman-quadrupolar spectrum
is visualized, and two case studies of existing FeSC ZNMR
data are examined to demonstrate the analysis using the de-
rived expressions; (ii) the full solution of the continuum, that
is, for all possible magnetic field and EFG strengths is shown;
and (iii) the geometric behavior of the Rabi frequencies is
discussed.

II. THEORY

An electrically quadrupolar nucleus that has a quadrupole
moment Q and a nuclear magnetic moment, in the presence
of an EFG and a magnetic field, will experience energy level
splitting due to both of these interactions. The EFG comes
from the local electronic environment and is a tensor defined
as Vi j = ∂2V/∂xi∂x j |r0 , where V is the electric potential, and
it is evaluated at the position of the nucleus r0. A set of three
principal axes can be determined upon diagonalization of the
tensor. With one axis of the EFG principal axes assumed to
align with the magnetic field in the z-direction, the dominant
Hamiltonian is given by the sum of the Zeeman Hamiltonian

TABLE I. Eigenstates and eigenenergies of the combined
Zeeman-quadrupolar Hamiltonian given in Eq. (1), with angles and
frequencies given in Eqs. (3) and (6)–(8). In the expressions below,
it is assumed ωQ is positive. However, for negative ωQ, this table
remains valid by the simple interchanging of ω+ and ω−, and θη and
θ ′
η within the table.

Label Eigenenergy Eigenstate

1 h̄
2 (ω0 + ω+) cos θη

2

∣∣ 3
2

〉 + sin θη

2

∣∣−1
2

〉
2 h̄

2 (ω0 − ω+) − sin θη

2

∣∣ 3
2

〉 + cos θη

2

∣∣−1
2

〉
1′ h̄

2 (−ω0 + ω−) cos
θ ′
η

2

∣∣ 1
2

〉 + sin
θ ′
η

2

∣∣−3
2

〉
2′ h̄

2 (−ω0 − ω−) − sin
θ ′
η

2

∣∣ 1
2

〉 + cos
θ ′
η

2

∣∣−3
2

〉

and the quadrupolar Hamiltonian [22]:

H = h̄
[
Izω0 + 1

6ωQ
(
3I2

z − I2
) + 1

12ω⊥(I2
+ + I2

−)
]
, (1)

where I is the nuclear spin angular momentum operator di-
vided by the reduced Planck constant h̄. The quadrupole
coupling constant is defined as

ωQ = 3eQ

2I (2I − 1)h̄
Vzz, (2)

where e is the elementary charge. We define the Zeeman
frequency as

ω0 = −γB0, (3)

where the static magnetic field is denoted by B0, and γ is the
nuclear gyromagnetic ratio. We choose ẑ so that ω0 � 0; that
is, ẑ is antiparallel to B0 for a positive γ , and ẑ is parallel to B0

for a negative γ . Lastly, ω⊥ is defined so that ω⊥/ωQ = (Vxx −
Vyy)/Vzz ≡ η (commonly referred to as the EFG asymmetry
parameter):

ω⊥ = 3eQ

2I (2I − 1)h̄
(Vxx −Vyy). (4)

The coordinate system is chosen so that Vxx � Vyy. Note that
η, as a result of this, is unrestricted in its range since Vzz is not
necessarily the largest EFG component. The sign of ωQ can
be either positive or negative depending on Q andVzz. We find
that experimentally observed results, however, are insensitive
to the sign of ωQ. More details are given in the captions of
Tables I and II.

Finally, it is useful for the fictitious spin-1/2 formalism
to write the Hamiltonian in matrix form in the Zeeman basis
with rows and columns rearranged to clearly show two 2 × 2
subblocks:

H =

⎡
⎢⎢⎢⎢⎢⎣

3ω0+ωQ

2

√
3ω⊥
6 0 0√

3ω⊥
6

−ω0−ωQ

2 0 0

0 0 ω0−ωQ

2

√
3ω⊥
6

0 0
√

3ω⊥
6

−3ω0+ωQ

2

⎤
⎥⎥⎥⎥⎥⎦. (5)

The new ordering is |3/2〉, |−1/2〉, |1/2〉, |−3/2〉 of both the
rows and the columns.

Diagonalization of the Hamiltonian in Eq. (1) results in the
eigenenergies and eigenstates (in the eigenbasis of Iz) as given
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TABLE II. Exact expressions for the six possible transition frequencies and their associated spin angular momentum operator matrix
elements. The first four lines of the table are those transitions that are unresponsive to excitations parallel to the magnetic field, labeled as the
“O” transitions, and they are given analogous names familiar in the high-field NMR limit. The last two unnamed transitions are unresponsive
to excitations orthogonal to the magnetic field, and they are labeled as the “P” transitions. The labeling of the transitions (O vs P) is with
respect to maximum responsiveness. The angles and frequencies are given in Eqs. (3) and (6)–(8). In the expressions below, it is assumed ωQ

is positive. However, for negative ωQ, this table remains valid by the simple interchanging of ω+ and ω−, and θη and θ ′
η within the table. Note

that these interchanges do not actually change the transition frequencies or the magnitude of the corresponding transition elements, rather only
the “p” and “q” state labels assigned to the transition. Therefore, in the ensuing plots, only the positive case is considered.

p ↔ q Frequency 〈p|I+|q〉 〈p|I−|q〉 〈p|Iz|q〉 Transition name

Orthogonal “O” transitions

2 ↔ 2′ ω0 − ω+
2 + ω−

2

√
3 cos

(
θη−θ ′

η

2

)
−2 cos θη

2 sin
θ ′
η

2 0 ω�, lower satellite

1′ ↔ 2 −ω0 + ω+
2 + ω−

2 2 cos θη

2 cos
θ ′
η

2 −√
3 sin

(
θη−θ ′

η

2

)
0 ωc, central

1 ↔ 1′ ω0 + ω+
2 − ω−

2

√
3 cos

(
θη−θ ′

η

2

)
2 cos

θ ′
η

2 sin θη

2 0 ωu, upper satellite

1 ↔ 2′ ω0 + ω+
2 + ω−

2

√
3 sin

(
θη−θ ′

η

2

)
−2 sin θη

2 sin
θ ′
η

2 0 ωf, forbidden

Parallel “P” transitions
1 ↔ 2 ω+ 0 0 − sin θη

1′ ↔ 2′ ω− 0 0 − sin θ ′
η

in Table I (see Compliment BIV of Ref. [23]). As shown in
Table I, they are defined in terms of the quantities θη, θ ′

η, and
ω±, which are given by

tan θη = |ω⊥|√
3(2ω0 + |ωQ|) , (6)

tan θ ′
η = |ω⊥|√

3(2ω0 − |ωQ|) , (7)

ω± =
√

(2ω0 ± |ωQ|)2 + ω2
⊥

3
. (8)

The angles are limited such that 0 � θη < π/2 and 0 � θ ′
η <

π . A geometric visualization of the angles is given in Fig. 1.
Upon inspection, the system can be characterized by just three
parameters: ω+, revealing the net strength of the combined
field components; θη, a metric of the EFG asymmetry; and the
relative ratio of the Zeeman and quadrupole contributions,

R = 2ω0 − |ωQ|
2ω0 + |ωQ| . (9)

An energy level diagram calculated from these quantities is
shown in Fig. 2.

From these energy levels, six possible transition frequen-
cies can be observed as shown in Fig. 2, and they are given
in Table II. The expressions for the eigenfrequencies are in

FIG. 1. Visual definitions of θη and θ ′
η, also defined in Eqs. (6)

and (7). These angles can serve as a metric of transverse field asym-
metry compared to longitudinal field components.

agreement with previous work using low-field perturbation
theory and exact expressions in the EFG-aligned case [24].
As discussed in more detail below, the observability of these
transitions depends on the radiofrequency excitation direction
with respect to the magnetic field. More specifically, four of
these transitions are completely unresponsive to excitations
parallel to the magnetic field and are labeled as the “O”
transitions (for “orthogonal”). The other two transitions are
unresponsive to excitations orthogonal to the magnetic field
and are labeled as the “P” transitions (for “parallel”). The
P-transitions are equal to ω± defined in Eq. (8).

FIG. 2. Energy levels of the combined Zeeman-quadrupolar
Hamiltonian. The spacings are drawn to scale, having been cal-
culated for a system with R = 0.81 and θη = 0.1. The transition
frequencies are also labeled and defined in Table II. The O-transitions
are shown in red, and the P-transitions in blue, also defined in
Table II.
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TABLE III. Extracted parameters of BaFe2As2 and CaFe2As2. Rows with an asterisk were determined by solving the frequency equa-
tions from Table II with the fitted peaks from Fig. 4 for the three parameters; otherwise they are quoted directly from the literature. Values
without uncertainties were either extracted from a plot or were not given with uncertainties in the original literature. We use the standard
notation: νQ is the quadrupole coupling constant, Hint is the internal magnetic field, and η is the EFG asymmetry parameter defined by
|Vaa −Vbb|/|Vcc|, where a, b, and c are the lattice parameters of the crystal structure. SC refers to “single crystal” and H is an externally applied
magnetic field.

Material νQ (MHz) Hint (T) η Methodology Temperature (K)

CaFe2As2 [27] 12.4 2.6(1) NMR SC H ||c 20
CaFe2As2 [26]� 11.4(1) 2.59(1) 0.0(1) ZNMR powder 5
CaFe2As2 [28] 0.39(5) NMR SC rotation 20
CaFe2As2 [29] 12.38(4) 2.63(1) NMR SC H ||c 4
CaFe2As2 [30] 12.9 2.64(5) NMR SC H ||c 4.3
BaFe2As2 [31] 2.21 1.46 1.18 NMR SC rotation 7
BaFe2As2 [25]� 2.09(3) 1.377(4) 2.0(2) ZNMR powder 1.5

A measurement is performed by sending a time-dependent
perturbation, a radiofrequency pulse with frequency ω reso-
nant with one of the six transitions,

H1 = h̄ω1I · n̂ cos(ωt ), (10)

where ω1 = −γB1 is the Rabi frequency and B1 is the
amplitude of the signal. The excitation direction is n̂ =
sin θ cos ϕx̂ + sin θ sin ϕŷ + cos θ ẑ, where ϕ and θ are the
usual azimuth and polar angles with respect to B0. The re-
sponse is a net nuclear magnetic moment. For a transition
from p to q, its expectation value can be calculated using
the fictitious spin-1/2 formalism (see Compliment CIV of
Ref. [23]) and is given by

〈μ〉pq = −iγ h̄ fpq sin(λpq
)〈p|I|q〉ei(ωpqt−ξpq ) + c.c., (11)

where c.c. stands for the complex conjugate of the preceding
term, fpq = h̄ωpq/[2(2I + 1)kBT ] is the Boltzmann factor, the
tip angle is 
 = ω1tp, where tp is the pulse time, the transition
frequency is denoted by ωpq, and ξpq is the argument of
〈p|I · n̂|q〉. The Rabi frequency is modified by

λpq ≡ |〈p|I · n̂|q〉|, (12)

a unitless factor which will be referred to as the Rabi coef-
ficient. In practice, when excitation is in the same direction
as detection, Eq. (11) shows that the signal is proportional
to λpq sin(λpq
), and is therefore proportional to λ2

pq in the
small-angle limit. The utility of the Rabi coefficient is that it
contains all the geometric information of the effective excita-
tion. Using Table II, the Rabi coefficients are a straightforward
calculation. For the P-transitions, since I+ and I− are all zero,
the Rabi coefficients are

λ12 = sin θη cos θ, (13)

λ1′2′ = sin θ ′
η cos θ. (14)

Note that these are directly proportional to the EFG asymme-
try and therefore the parallel transitions can be a direct metric
of the EFG asymmetry. And for any O-transitions, they are

λ2
pq = 1

4 sin2 θ [〈p|I+|q〉2 + 〈p|I−|q〉2

+ 2〈p|I+|q〉〈p|I−|q〉 cos(2ϕ)]. (15)

III. RESULTS

Here, results stemming from the theory in the previous
section are presented. We first show a simulated spectrum
produced from a specific EFG and magnetic field strength
and elucidate how it relates to previous experimental ZNMR
data on FeSCs. Several relationships are highlighted that can
be used to understand such previously unanalyzed data. The
analyzed data and comparisons to other experiments are sum-
marized in Table III. Afterwards, we discuss the more general
continuum of results, that is, for any arbitrary EFG and mag-
netic field strength. We also discuss the “observability” of the
peaks, which will bring to light which parts of the continuum
are easy or difficult to detect in an experiment. Lastly, we
visualize the Rabi coefficients which are derived in Eqs. (13)–
(15).

A. Predicted spectrum and Fe-based superconductors example

The spectrum is simulated using the quantities given in
Table II and is shown in Fig. 3. This spectrum was generated
by choosing specific R and θη values that closely resemble an
experimental spectrum. All frequencies are normalized with
respect to ω+. The peak heights are calculated from the time-
averaged, spatially averaged power of the signal. That is, if we
take the signal to be 〈μ〉pq · n̂, then the peak heights are given
by

[
1

4πT

∫
S

∫ T

0
(〈μ〉pq · n̂)2 dt d�

]1/2

∝
√

〈p|I+|q〉2 + 〈p|I−|q〉2 + 2〈p|Iz|q〉2, (16)

where S is the spherical surface, T is the period, and � is the
solid angle. [Note that this calculation neglects the Boltzmann
factor and the sinusoidal dependence on the pulse strength
shown in Eq. (11). For a powder, under optimal excitation, the
result of this sinusoidal dependence would be of order unity
in the final signal.] Finally, artificial broadening was applied
to enhance visibility. The O/P-transitions, defined in Table II,
are shown in the top/bottom panels and colored red/blue. In
the figure, the O-transitions have been labeled by their first
letters (e.g., ωc corresponds to the “central” transition); the
P-transitions are simply labeled by ω±.

214422-4



SPIN-3/2 NUCLEAR MAGNETIC RESONANCE: EXACT … PHYSICAL REVIEW B 110, 214422 (2024)

FIG. 3. A simulated spectrum of the combined Zeeman-quadrupolar Hamiltonian made with R = 0.81 and θη = 0.1, showing all six
possible transitions and the Zeeman frequency ω0. All frequencies are normalized with respect to ω+. The O-transitions are shown in red, and
the P-transitions in blue, as defined in Table II. The frequencies of the P-transitions are placed at half of their actual value to aid in showing
their relative positions with respect to the O-transitions. These relative positions of the frequencies are illustrated by the black arrow lines,
hashed to denote equal spacing, and they are discussed in detail in Sec. III A. Peak widths were chosen arbitrarily.

The predicted spectrum in Fig. 3 was constructed to match
that of particular FeSCs, which we have taken as a case study.
FeSCs are characterized by their strong internal magnetic
field, which results from the antiferromagnetic ordering of
Fe magnetic moments. The magnetic ordering is an intrinsic
feature of these materials, and therefore both the magnetic
field and the EFG are fixed to the crystal structure. Since the
crystal structure of these materials is either orthorhombic or
tetragonal, depending on the phase, symmetry dictates that the
internal magnetic field will always be aligned with one of the
EFG principal axes. For these reasons, FeSCs can be studied
by ZNMR using either a powder sample or a single crystal.

Several features in Fig. 3 can be discussed. First, the Zee-
man frequency is simply the average of the lower and upper
satellites. Second, from the formula for the central transition,
it is clear that if there is no EFG asymmetry, then ωc = ω0

and the central transition would be exactly centered between
the satellite peaks. Therefore, asymmetry of the central peak
with respect to the satellite peaks is a clear indication of
EFG asymmetry. Lastly, the quadrupole coupling constant can
be determined by subtraction in quadrature of adjacent peak
averages, that is, (ω2

+ − ω2
−)/4 = 2ω0ωQ. With regards to the

P-transitions, it is more fruitful to discuss them in terms of
half of their frequency values, which is how they are plotted
in Fig. 3. This is because the average of the lower and central
transitions is ω−/2. Similarly, the average of the central and
upper transitions is ω+/2. Finally, the forbidden transition is
the sum of the lower, central, and upper transitions, which is
more evidently displayed in Fig. 2. With these relationships,

one only needs to know three transitions in order to determine
the other three. In particular, the simple relationship between
the P and O transitions opens up the possibility of ready
measurement, directly or indirectly, of the largely unexplored
P-transitions.

The above analysis can be illustrated by examining
two structurally similar FeSCs with very different spectra:
BaFe2As2 [25] and CaFe2As2 [26], which represent all avail-
able 75As ZNMR data with three peaks on FeSCs to date.
Both of these materials were studied using a powder sample.
We fit the existing experimental data, with equal weighting
of the data points in the absence of publicly available error
bars, as shown in Fig. 4. Using both the fits to determine
the frequencies and the equations of ω�, ωc, and ωu found in
Table II, we are able to solve for the quadrupole coupling con-
stant, internal magnetic field, and EFG asymmetry parameter.
These values are shown in Table III along with other literature
values for comparison. The values in that table agree with
some observations of Fig. 4. Namely, one can immediately
see that the internal field of CaFe2As2 is nearly double that of
BaFe2As2, as determined by the average of the satellite peaks
shown as a dashed line in the figure. Further, the quadrupole
coupling constant of CaFe2As2 is six times larger than that of
BaFe2As2, as evidenced by the spread of the spectra around
the central peak. The EFG asymmetry, which is indicated by
the shift of the central peak from the Zeeman frequency, is
clearly evident in BaFe2As2, but not in CaFe2As2. In fact,
this shift can be estimated by considering the Taylor series
expansion of ωc around |ω⊥|/(2ω0), which is small for both
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FIG. 4. The experimental spectra of BaFe2As2 [25] and
CaFe2As2 [26], both performed at low temperature and at zero
external field with powder samples. Data points were taken from
the literature and fitted with three Lorentzian curves. The verti-
cal dashed lines represent the Zeeman frequency for each system.
These two systems are from the same family of FeSCs yet they
represent two extremes of the EFG, indicated by central peak devi-
ation from the Zeeman frequency, with BaFe2As2 having high EFG
asymmetry and CaFe2As2 having zero EFG asymmetry. Larger EFG-
quadrupolar coupling is indicated by a larger spread of the spectra.
The quadrupole coupling constant, EFG asymmetry parameter, and
internal field values are given in Table III.

materials. Doing so reveals that the central frequency shift
�ωc = ωc − ω0 can be approximated by

�ωc ≈ 1

12
η2

ω2
Q

ω0

(
1 − ω2

Q

4ω2
0

)−1

. (17)

Note the shift is second order in η and always positive. The
width of the vertical dashed lines in Fig. 4 indicates the uncer-
tainty in the calculated ω0 based on the lower and upper peaks.
In this way, the clear shift (or lack thereof), including error, of
the central peak away from ω0 can easily be observed. Lastly,
it should be noted that due to the small values of θη for these
materials, the forbidden and P-transitions would be difficult
to directly detect and, as expected, were not reported in the
literature. In addition, η values were not reported perhaps due
to the difficulty of extracting them without the use of analytic
equations. Instead, we extracted those values by fitting the
data reported in the literature, as described above.

In addition to the parameters we extracted, Table III
also contains the same parameters, as quoted in the lit-
erature from high-field NMR experiments that used a
single-crystal sample. Comparing between different method-
ologies for the same material, the quadrupole coupling
constant and the internal field are in good agreement with
each other. However, the EFG asymmetry parameter has
notable disagreements for CaFe2As2, with ZNMR finding
no EFG asymmetry but high-field NMR finding a siz-
able value of 0.39(5). It is unclear why this is the case,
but it has been shown that the structure in this material
is sensitive to different growth methodologies [32,33]. We
suspect that depending on how the sample is grown, strain
may exist that contributes to the EFG. In addition, the fit of
data in Fig. 4 would yield different field values with nonuni-
form experimental error bars. The existence of such nonuni-
form error bars seems to be a real possibility, particularly con-

sidering the asymmetry in some of the peaks of Fig. 4. How-
ever, error bars, unfortunately, were not included in the liter-
ature. Further experimental work on these materials is needed
to resolve discrepancies involving the EFG asymmetry.

B. Full solution observability

The two case studies in the previous section only represent
two sets of (R, θη ) values. Depending on the strength of the
magnetic field and the EFG, spectra could be substantially
different. Therefore, we show visualizations of the full solu-
tion set for the O-transitions in Fig. 5 and the P-transitions
in Fig. 6. From these, one can quickly gain a sense of which
Zeeman-quadrupolar strengths and EFG asymmetry give fre-
quencies that can be observed and from which direction.

In the limit of small θη and R → 1, which corresponds
to high-field NMR, only three of the four O-transitions are
observable: ωu, ωc, and ω�. Also, as expected, they are respon-
sive only to circularly polarized magnetic fields, corotating
with the standard rotating frame, with 〈p|I−|q〉 → 0. The
〈p|I+|q〉 ratio of the lower, central, and upper signals is found
to be

√
3:2:

√
3, as has been found previously [3,34].

On the other hand, when ω0 → 0, corresponding to the
NQR limit, θ ′

η = π − θη and R → −1 for finite ωQ. In this
limit, there is only one observable frequency, indicated by the
equal values of ωf, ωc, and ω±, as expected. This is due to the
double degeneracy of spin-3/2 nuclei in zero-field: E1 = E ′

1
and E2 = E ′

2. This creates two energy levels, each populated
by nuclei with equal energies but mutually opposite spin
states. A linearly polarized excitation will therefore excite
both spin states, one for each circularly polarized component
of the incident pulse. Hence the observed signal will also
be linearly polarized, oscillating in the same direction as the
excitation [35]. This is evident in the fact that ωf and ωc

together have an equal but opposite response to the different
helicity excitation; that is, 〈1|I+|2′〉 = −〈1′|I−|2〉 in this limit.
Finally, since the signals of ω± are inherently linear, we can
conclude that the overall response is linear.

In the case of comparable Zeeman and quadrupolar
strengths, −1 < R < 1. The observability of ωu can be a
metric of R, particularly for lower asymmetry with θη � π/4,
since it disappears as R becomes increasingly negative. It
could be useful for tracking an appearing/disappearing inter-
nal magnetic field close to the phase transitions, in the case of
FeSCs, for example. For general observability and tracking of
dynamics, for instance T1/T2 data, the central line would be
useful due to its strong responses for R not close to zero.

For the P-transitions plot shown in Fig. 6, only two rows
are shown, corresponding to ω±. Since all frequencies are
normalized with respect to ω+, the frequency plot for the first
P-transition, which is defined as ω+, is seen as constant. The
main features of observation are that for small values of θη and
all values of R, the transitions would be difficult to observe
directly. Observability increases with EFG asymmetry, and
it may even serve as a metric of it as the Rabi coefficient is
directly proportional to ω⊥.

C. Geometric dependence of the Rabi frequency

Finally, we examine the signal’s dependence on the ge-
ometry of excitation and detection by visualizing the Rabi
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FIG. 5. Full solution of the Zeeman plus quadrupolar Hamiltonian spectrum for the O-transitions, as defined in Table II, as a function of R
and θη. Each row corresponds to a different transition frequency, as labeled on the right side of the figure. Each column represents a different
quantity of interest as labeled on the top of the figure. The first two columns are the matrix elements of the raising and lowering operators. Here,
p and q refer to the labels of the eigenstates involved in the transition. The third column represents the actual transition frequency. Finally,
the fourth column is the observability, which is calculated as ωpq

√〈p|I+|q〉2 + 〈p|I−|q〉2, where ωpq is the transition frequency of the row. All
frequency quantities are normalized with respect to ω+. The black dots point to the R and θη values that generated Fig. 3.

FIG. 6. Similar to Fig. 5, except the two rows correspond to the P-transitions, as defined in Table II. The observability is calculated by√
2ωpq|〈p|Iz|q〉|, where ωpq is the transition frequency of the row. All frequency quantities are normalized with respect to ω+. The black dots

point to the R and θη values that generated Fig. 3.
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FIG. 7. Polar plots of the square of the Rabi coefficients λ2, the geometric modifier of the Rabi frequency, for the O-transitions, as defined
in Eq. (15). These plots allow for a simple geometric representation of the observed signal, relative to the magnetic field which is oriented along
z. A particular value of R = 0.81 is chosen for all plots, but with θη = 0.1 for high EFG asymmetry (bottom row) and θη = 0.001 for low EFG
asymmetry (top row). Each column corresponds to a different O-transition, as labeled below each column. For the low EFG asymmetry row,
all plots look nearly identical, hence only one plot is shown. All values have been normalized with respect to the maximum of each subplot.

coefficient, as defined in Eq. (12). Assuming the use of a
single crystal, we can use this coefficient to gain a better
understanding of how the signal will behave for different ge-
ometric orientations. In particular, we are focused on signals
such that excitation and detection are along the same direction
with linear polarization.

Starting with the four O-transitions, their Rabi coefficients
are given by Eq. (15). In particular, we plot λ2

pq in 3D real
space, as shown in Fig. 7. Due to the cyclic nature of the
spin angular momentum operators in θη and θ ′

η, defined in
Table II, all of the features of the plots can be reproduced
by some phase shift. Namely, all of the Rabi coefficient plots
are phase-shifted from the central transition plots in the fol-
lowing ways: a θ ′

η − π phase shift for the lower satellite, a
θη + π phase shift for the upper satellite, and both a θ ′

η − π

and θη + π phase shift for the forbidden transition. For that
reason, only the unique features of the plots are shown in
the figure. For example, for high EFG asymmetry values, the
signal can be highly asymmetric for some of the O-transitions.
In contrast, for low EFG asymmetry, the O-transitions are all
highly symmetric about the z-axis. In all four plots, however,
the concept of the O-transition, that is, transitions that are
unaffected by excitations parallel to the magnetic field, is
captured with obvious dips right on the z-axis.

FIG. 8. This is also a plot of the square of the Rabi coefficient,
similar to Fig. 7, except for the P-transitions, defined in Eqs. (13)
and (14). Only one transition is shown, and for a single pair of
(R, θη ) because the features of the plot are identical for all values.
As expected, no signal is seen orthogonal to the z direction, which is
parallel to the magnetic field.

For the two P-transitions, the Rabi coefficients are shown
in Fig. 8. Only one plot is shown because both plots, when
normalized, have identical features for all values of R and θη.
The plots are symmetric about z, with the values collapsing to
zero on the x−y plane. This is sensible since the P-transitions
are insensitive to excitations orthogonal to the magnetic field.
This could be potentially useful with regard to materials with
internal magnetic fields, such as the FeSCs. In this context,
in theory with a single crystal, the geometry of the static
magnetic field and the EFG could be determined with just the
transition frequencies that are detected. For example, if the
P-transitions are detected, then some component of the static
magnetic field lies along B1. If they are not detected, the field
is orthogonal to B1.

IV. CONCLUSIONS

In this paper, the spectrum from the combined Zeeman and
quadrupole Hamiltonian of spin-3/2 particles is calculated
for the case in which the magnetic field is aligned with one
of the EFG principal axes. We derive succinct closed-form
solutions for transition frequencies. In addition, we derive
the magnetic moment arising from resonant excitation as a
function of excitation strength and direction as well as explicit
expressions for the Rabi coefficients, given in Eqs. (13)–(15).
The results can be used not only for conventional NMR, where
the magnetic field is applied externally, but also for systems
that produce static internal magnetic fields.

An important example of materials with intrinsic fields can
be found in FeSCs. Pre-existing 75As spectra from two such
materials are analyzed. Because both the magnetic and EFG
fields are intrinsic to the crystal’s structure, these spectra, aris-
ing from powder samples, are not broadened. Therefore, the
field values obtained compare well to single-crystal goniome-
ter measurements done with conventional NMR. For these
materials, three of the six possible transitions dominate. With
analytic expressions, the spectra are readily interpreted—the
average of the satellite frequencies is the Zeeman frequency,
subtraction in quadrature of adjacent peak averages is propor-
tional to the quadrupole coupling constant, and the deviation
of the central peak from the Zeeman frequency can be used to
calculate the EFG asymmetry. While the first two calculations
are straightforward, the latter is more involved. Therefore, the
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relative uncertainty on the asymmetry parameter is larger than
on the other two field quantities.

In contrast, the Rabi coefficient of the P-transitions is
found to be directly proportional to the EFG asymmetry
parameter. This dependency can potentially be exploited to
characterize the asymmetry. For instance, excitation on one
of the P-transitions will alter the populations of the cor-
responding energy levels shown in Fig. 2, according to
the strength of the associated Rabi coefficient. The result-
ing population changes in the quantum levels can then be
read out on the more readily detectable O-transitions. Al-
though the P-transitions are often weak, they are easily found
once the three dominant O-transitions are known, since the
P-transitions are themselves related to the frequencies of
the O-transitions by averages, as shown in Fig. 3. There is
precedence for such two-frequency schemes in other systems
[36–38]. Such indirect detection of the asymmetry parameter

could be sensitive and therefore particularly useful for study-
ing systems with small asymmetry. An interesting example
is the use of asymmetry as a metric for spin-fluctuations in
FeSCs [16].

In conclusion, the exact predictions presented here provide
a firm foundation for future research with spin-3/2 particles
immersed in a magnetic field aligned with the EFG frame.
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