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ABSTRACT

Several authors have studied homomorphisms from first homology groups of modular
curves to Ky(X), with X either a cyclotomic ring or a modular curve. These maps
send Manin symbols in the homology groups to Steinberg symbols of cyclotomic or
Siegel units. We give a new construction of these maps and a direct proof of their
Hecke equivariance, analogous to the construction of Siegel units using the universal
elliptic curve. Our main tool is a 1-cocycle from GLy(Z) to the second K-group of the
function field of a suitable group scheme over X, from which the maps of interest arise
by specialization.

Contents
1 Introduction 2408
1.1 Background on themaps.......... .. . i 2409
1.2 Our approach. .. ... ... 2410
1.3 Anoutline ... ... 2413
2 Preliminaries on motivic cohomology 2414
2.1 Motivic cohomology . . .. . 2414
2.2 Coniveau spectral SEQUENCES . . . . oo vt ittt 2416
2.3 Trace maps . .. ..o 2418
2.4 Powers of commutative group schemes . ......... ... ... ... ... 2420
3 The square of the multiplicative group 2421
3.1 Motivic cohomology of GJ,, . ...... .. ... .. ... . . i 2421
3.2 Symbols in the complex computing motivic cohomology ........... 2422
3.3 The cocycle . ... 2423
3.4 Hecke actions . . ... 2425
4 The cyclotomic cocycle 2427
4.1 Fixed parts via SUSPensSion . ..............uuuinnnee. 2427
4.2  Specialization at an N-torsion point . .............. ... ... .. .... 2429
4.3 Maps on the homology of X1(IN) ... ... 2434
5 The an-cocycle via toric geometry 2438
5.1 Residues on K5 of the function field of a torus . .................. 2439
5.2  Comparison of chain complexes. ........... ... ... ... .... 2442
5.3  The cocycle and Laurent series . . .......... .. ... 2444
5.4 Lifting the cocycle . . ... o 2445
5.5 Interpretation via equivariant motivic cohomology ... ............. 2448

Received 30 September 2022, accepted in final form 22 March 2024.

2020 Mathematics Subject Classification 11F75, 19E15 (primary).

Keywords: Eisenstein cocycles, Manin symbols, Steinberg symbols, motivic cohomology.

(© The Author(s), 2024. The publishing rights in this article are licensed to Foundation Compositio Mathematica
under an exclusive licence.

https://doi.org/10.1112/S0010437X24007322 Published online by Cambridge University Press


http://www.compositio.nl/
https://orcid.org/0000-0003-0675-1692
https://orcid.org/0000-0002-1630-5517
http://www.ams.org/msc/
https://doi.org/10.1112/S0010437X24007322

R. SHARIFI AND A. VENKATESH

6 The square of a universal elliptic curve 2449
6.1 Fixed parts via the Fourier-Mukai transform .................... 2449
6.2 The abstract cocycles ....... . . 2452
6.3 Symbols . . ... 2453
6.4 The explicit cocycle form . ... . . 2457
6.5 Hecke actions . . ... 2459
7 Cocycles for modular curves 2462
7.1 Specialization via an N-torsion section . ........................ 2462
7.2 The universal ‘n=1"cocycle. ...... ... .. .. 2465
7.3 Explicit formula for the universal cocycle .. ............... ... ... 2469
7.4 Maps on the homology of X1(N) ...... ... .. .. 2473
Acknowledgements 2476
References 2477

1. Introduction

For a positive integer N, let Y7 (V) and X7 (V) denote the usual open and closed modular curves
over Q. In this paper, we provide a new perspective on two homomorphisms from the integral
homology of the C-points of X;(N) to second K-groups of the cyclotomic integer ring Z[uy] and
the modular curve Y;(N):

1
[y : integral homology of X1(N),c — K2(Z[un]) [2} , (1.1)
1
zy : integral homology of X1(N),c — Ka(X1(NV)) [30]\7] . (1.2)

The map Iy was defined explicitly on slightly larger groups by Busuioc [Bus08] and the first
author [Shall]. The map zy was given an explicit construction in a preprint of Brunault [Bru22],
following earlier constructions by Goncharov [Gon08] and Brunault [Bru08] of an analogous map
zy ® Q for Y(N). The p-adic realization of zy for p | N was constructed by Fukaya and Kato
in their study [FK24] of a conjecture of the first author [Shall]. Most of these constructions
boil down to the remarkable fact that Steinberg symbols of cyclotomic or Siegel units satisfy
relations parallel to the very simple relations satisfied by Manin symbols (although Fukaya and
Kato use norm relations among Beilinson-Kato elements and a p-adic regulator computation);
see § 1.1 for more.

Our construction is different, and is analogous to the construction of Siegel units on Y;(N).
Let us specialize to the IIy-case for a moment to give the idea of our construction, postponing
a more careful discussion to §1.2. Siegel units are pullbacks by an N-torsion section of theta
functions on the universal elliptic curve over Y7 (V); these theta functions are uniquely specified
by their poles. In our situation, the role of the theta function is played by a ‘big’ 1-cocycle ©
on GLy(Z) that is valued in (a quotient of) Ks of the function field of G2,. This © is again
characterized by its ‘poles’, that is, its image under residue maps to K; of function fields of
divisors on G2,. We then pull its restriction to I'o(N) back via a torsion point on G2, to obtain
a cocycle

On: To(N) — K2(Q(un)).

which underlies ITn described above.
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The construction of the map from I'1(N) to Ko(Y1(NN)) is similar,! but the role of G2, is
played by the square E? of an elliptic curve, and then E is varied over the moduli space of elliptic
curves. Because the ‘big’ cocycle O is characterized by its poles, it is easy to analyze. In contrast,
the specialized cocycle Oy cannot be so analyzed (it has residues only at primes above N, and
these carry very little information).

In particular, we are able to prove the following results (see Theorems 4.3.7 and 7.4.1 for
details).

THEOREM. The map Ily is Eisenstein with respect to the prime-to-N Hecke operators.
THEOREM. The map zy is equivariant for the prime-to-N Hecke operators.

These results may be considered in the context of a body of results that suggest close rela-
tionships between homology of arithmetic groups and K-groups of algebraic varieties; see, for
instance, [Ste07, FKS14, Gonl9, Venl9]. Most relevant to our paper is the work of the first
author suggesting that the map induced by Iy on an Eisenstein quotient of homology is an
isomorphism to Ko(Z[uy])T away from 2-parts; see Conjecture 4.3.5 for details.

1.1 Background on the maps

We describe in more detail some of the forms of the maps Iy and zy that have appeared in
the literature. The map Il is most easily defined on a larger homology group relative to the
‘non-infinity cusps’ C7(IV), which are those that do not lie over the infinity cusp of the modular
curve Xo(N). That is, the map Il is the restriction of a map

N 2

taking image in the slightly larger second K-group of the N-integers of Q(un).

The integral homology relative to the cusps is generated by certain classes [u : v] of geodesics
between cusps known as Manin symbols, where (u, v) is a pair of relatively prime integers modulo
N.2 Those Manin symbols for which both u and v are nonzero generate the homology relative
to the non-infinity cusps.® The map II%, was defined in [Bus08, Shall] to send each such Manin
symbol to a Steinberg symbol of cyclotomic N-units in Q(uy):

Iy ([u: 0]) = {1 = (N, 1 =GR}y
where (v is a primitive Nth root of unity. The Manin symbols satisfy very simple relations, and
to show this map is well defined is to verify that the relations hold at the level of Steinberg
symbols, which results from the usual symbol formula {z,1 — z} = 0 for N-units  and 1 — z.
In [Shall], the first author conjectured that the p-adic realization of Il (i.e., its tensor
product with Z,, for which we will use the same notation) for p dividing N is Eisenstein in the
sense that for primes ¢ { N one has

Iy (Tex) = (€ + o)l (2) (1.3)

Iy: H(Xa(V), G (), 2) — a2 uv. | ) @22 3]

! Our cocycle actually takes values in a second motivic cohomology group that is a quotient of Ko (Yi(N)). We
largely elide this point in this introduction.

2 This generation is a consequence of the fact that Z is a Euclidean ring. For purposes of generalization, our more
abstract approach to the construction of analogues of Iy should therefore prove useful.

3 See [FK24, 3.3.7], but note that our convention for Manin symbols is the standard one, which is to say that
it differs from that of [Shall] and [FK24] by application of an Atkin-Lehner involution. This accounts for the
differences from those papers in our description.
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for v € Hi(X1(N),Zp), where Ty is the {th Hecke operator and o, € Gal(Q(un)/Q) is the arith-
metic Frobenius at £. For primes ¢ | N, he also conjectured that IIy(U;z) = IIn(x), where Uj
is the fth adjoint Hecke operator.

Fukaya and Kato proved this conjecture in [FK24] by exhibiting IIy as a specialization at
the infinity cusp of the p-adic realization of zy.* Roughly speaking, their map zy is also the
restriction of a map on relative homology sending [u : v] to a Steinberg symbol {g,/n, gv/n} of
Siegel units on Y7 (V). Via a regulator computation, they show that the p-adic realization of zx
is Hecke equivariant for the operators Ty for £{ N and U; for £ | N and they then use the fact
that the specialization-at-infinity map is Eisenstein.® The first author has frequently expressed
a tentative expectation that the Eisenstein property should hold without passing to the p-adic
realization.

Here, we give a construction of the maps IIy and zy without recourse to explicit symbols
or regulator computations.® As mentioned earlier, this also allows us to prove that (1.3) holds
for all £1 N without tensoring with Z,. Unlike in the work of Fukaya and Kato, we do not use
the Hecke equivariance of zy to study the Eisenstein property of II. Rather, we consider these
maps entirely separately.

1.2 Our approach

As we have mentioned, our goal in this paper is to provide an alternate construction of the
maps Iy and zy that is analogous to the construction of Siegel units on Yi(N) via theta
functions on the universal elliptic curve & over Y;(N). We now describe this approach in more
detail.

Recall from [Kat04, Proposition 1.3] that given a positive integer n prime to 6N, there is
a theta function ,0 in Q(&)* that is a unit outside of the n-torsion, and which is uniquely
specified by the properties that its divisor is n?(0) — &[n] and that it is invariant under norm
maps attached to multiplication by positive integers prime to n. Siegel units are obtained by
pulling back the theta function ,6 to Y7 (V) using N-torsion sections. Though these Siegel units
depend upon n, they satisfy a distribution relation that permits one to construct an ‘n = 1’ unit,
upon inverting 6/N.

The analogues of theta functions in our work are parabolic 1-cocycles on GlLg(Z), again
valued in second K-groups, but of the function fields of the squares of the multiplicative
group G,, over Q and the universal elliptic curve & over Y;(IN). That is, the first is a
1-cocycle

©: GLy(Z) — K2(Q(G},))/ ({21, —22}), (1.4)

where GLy(Z) acts on the K-group via pullback of its right-multiplication action on G2, and
where z; denotes the ith coordinate function on G2, (cf. Proposition 3.3.1). The second is a
family of 1-cocycles

201 GLy(Z) — K2(Q(6?)) ®z Z[ 5] (1.5)

depending upon a choice of prime n t N. Using N-torsion sections, we pull back the restrictions
of these ‘big’ cocycles on I';(N) to obtain IIy and a map ,zy depending on n (which we make

4 The idea of composing a rational version of zy with a specialization at infinity is also found in [Gon08, § 3].

5 Actually, they prove that the specialization-at-infinity map is Eisenstein for the prime-to-level operators and
also for the remaining operators when applied to the Beilinson—Kato elements in question.

5 In fact, we do not show that our map zy satisfies the expected explicit formula. Rather, we show that it holds in
the quotient by a group that dies in any standard realization and which is an artifact of making the construction
independent of an auxiliary integer.
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explicit only at the level of cocycles). As with Siegel units, upon further inverting /N, we obtain
a map zy that may be understood as the n = 1 analogue of the maps ,zy.

Because of the characterization of our big cocycles in terms of their residues, it is easy to
provide explicit formulas for and analyze how Hecke operators act on them. In particular, the
compatibility of the classes of these 1-cocycles with the actions of Hecke operators is verified
directly using the equivariance of residue maps for integral matrices of nonzero determinant.
The analogous properties of the specialized cocycles follow from the analogous formulas for the
big cocycles.

1.2.1 Construction of ‘big’ cocycles. The big cocycles are constructed using three-term
motivic complexes. These play the roles of the two-term complex given by the divisor map
in the construction of theta functions. Let us describe this in more detail. Taking G to be G,
or & in the respective cases, the ‘motivic complexes’ are homological complexes in degrees 2, 1,
and 0 of the form

K»(Q(G?) 2 P K1 (Q(D)) 2 B Ko(Qla)), (1.6)
D T

where the maps are residue maps, and D and x vary respectively over irreducible codimension 1
and 2 cycles of G?. The first map is given on symbols by the tame symbol, and the second map
sends an element of K;(Q(D)) = Q(D)* to its divisor. These complexes carry an action of the
monoid A of integral 2 x 2 matrices with nonzero determinant via pullback under the endomor-
phism of right multiplication. They then also have trace maps with respect to multiplication by
positive integers.

Much as a theta function is uniquely determined by its ‘poles’, or more specifically its
norm-invariant divisor, our cocycles are uniquely determined by choices of a trace-fixed GLa(Z)-
invariant element Z of @, Ko(Q(z)), which is to say a formal Z-linear sum of sections
of G2.

More specifically, given a suitable choice of Z as above in the image of 0y, we choose a lift

n € P Ki(Q(D))
D

of Z. For v € GLy(Z), we show that yn —n € im 0s, so there is a unique element
07 € K3(Q(G?))/ ker 0, (1.7)

with residue yn — 1, and the recipe v +— @5 defines a ‘big’ cocycle ©7 on GLa(Z). Its cohomology
class depends upon the choice of Z but not the choice of n (cf. Proposition 6.2.2).

In the case G = G,,, the complex (1.6) is left exact, and the kernel of 0, is identified with
H?(G2,,2). For x( the identity in G2,, we choose Z to be the class e of the identity element of the
GLz(Z)-fixed subgroup Ko(Q(z0)) = Z of @, Ko(Q(x)). We choose 1 to be the class of 1 — ;!
on the rank 1 subtorus defined by zo = 1, though as mentioned the class of © = ©°¢ is independent
of this choice. In fact, since we take n to be trace fixed, the ambiguity inherent in taking the
quotient of K5(Q(G?2))) by ker 0y = H?(G?2,,2) can be further reduced to its trace-invariant part,
which is generated by {—z1, —22}.

In the case G = &, the homology of the motivic complex (1.6) does not vanish anywhere, but
if we restrict to its trace-invariant part, then, at least upon inverting 6, it is right exact and the
image of the residue map 0 is the kernel of the degree map @, Ko(Q(x)) — Z. Since there is no
meromorphic function on an elliptic curve whose divisor is supported at the origin, the role of
1 € Ko(Q(zp)) in the above construction must be replaced by a slightly less canonically chosen
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trace-invariant and GLqo(Z)-fixed element e,, that is known to be in the image of 0;, its choice
depending on an auxiliary prime n t N.

Remark 1.2.1 (Toric geometry perspective). We also provide an alternate point of view on the
cocycle © in the G,,-case that is tied to toric geometry and which allows us to reduce the
ambiguity in © up to torsion of small order. As observed by Brion [Bri88], the function that
sends a rational cone C' C R? to the generating function

$(C)= > ' €Qa,2)

(m,n)ez?NCv

of the dual cone is additive with respect to subdivisions of cones. (The right-hand series
analytically continues from its region of convergence to a rational function.) The differential
symbol

dlog(f) A dlog(g)
{f,g}— 4o N do

gives rise to a map K2(Q(G2,)) — Q(z1, 22). We explain in §5 how the association C — ¢(C)
lifts to Ko(Q(G2,)) along this map. For v € SLa(Z), the image of the cone spanned by (1,0) and
v(1,0) is a lift of ©,. The resulting map is only a cocycle modulo {—z1, —22}, and we explain in
§5.4 how it can be modified to avoid even this ambiguity.

1.2.2 Specialization. To obtain our specialized cocycles, we pull back our big cocycles under
N-torsion sections of G? of the form (1,¢y), where ¢ is an N-torsion point or section of G. That
is, for G,,, we take ¢y to be a primitive Nth root of unity {y, and for &, we take ty: Y1(N) — &
to be the universal N-torsion section. The values ©, for v € GL2(Z) need not be regular at
(1,tn), but they are for + in the congruence subgroup T'o(N) of GLy(Z) consisting of matrices
with bottom-left entry divisible by N. So, we must first restrict to this group prior to taking the
pullback.

For instance, in the case G = G,,, upon pulling back via (1,{y), we obtain a cocycle

On: To(N) — K2(Q(un))/ ({1, —~Cn}), (1.8)

the right-hand side being the quotient of Ko(Q(un)) by a group of order at most 2. The restriction
of On to I'1 (V) is a homomorphism taking image in the corresponding quotient of Ko(Z[un]). In
fact, it is easy to see that © is parabolic so that O induces a map from the parabolic homology
of the latter group to the quotient of K5, which in turn yields IIy.

The map ,zn for Y1(INV) is constructed analogously. By pulling back, we obtain a cocycle

2On: To(N) — motivic quotient of Ko(Y1(N)) ®z Z[35]- (1.9)

Much as with Siegel units [Kat04], upon specialization we can define a universal rational cocycle
independent of this choice. That is, the pullbacks of the resulting classes to Ko(Y7(V)) satisfy
natural distribution relations in n that permit one, upon inverting IV, to construct a specialized
cocycle O that should be thought of as the n = 1 case of the construction; see Theorem 7.2.2.

The Eisenstein property of Iy and Hecke equivariance of zy follow from analogous properties
of the cohomology classes of the big cocycles, as do the explicit formula for I that arises from
(1.3) and its analogue for zy involving Steinberg symbols of Siegel units.

We are, moreover, able to show the expected explicit formula for O as a sum of Steinberg
symbols of Siegel units (Beilinson—Kato elements) in Proposition 7.3.1 modulo a subgroup of
K>(Y1(N)) that vanishes under any standard regulator map. It would be desirable to eliminate
this last ambiguity.
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1.2.3 Relationship to other topics in the literature. Our construction does not stand in
isolation but is related to a rich body of theory that has been developed in different contexts.
It is particularly notable that in both cases studied here, one can view the class of the big cocycle
O as arising from a class in equivariant motivic cohomology. We briefly describe this class in
the Gy,-case in §5.5.

The equivariant class corresponding to © provides a kernel to pass between cohomology of
I'1(N) and various K-groups. Our situation is formally similar to the theory of reductive dual
pairs, where the theta function provides a kernel to pass between automorphic forms on different
groups, and in fact our proofs of Hecke equivariance are formally similar to the arguments about
theta kernels. The idea of using an equivariant class as a kernel has been used in other contexts,
for example in Soulé’s work [Sou79] on the Chern character in algebraic K-theory.

Our paper is also related to a number of recent works constructing classes in different flavors of
equivariant cohomology [BCG20, BHYY23, KS24]. The class most relevant to us is the Eisenstein
symbol studied in [Bei86, Fal05], but constructed here equivariantly. The possibility of such an
equivariant refinement was observed in a different context by Nekovai and Scholl [NS16, §13].
A closely related story is the theory of polylogarithms [BL91, HK18], or again, more precisely,
the equivariant version of such a theory, as is discussed in [BKL18, §3.7].

Our goals are, however, rather different than those of the papers mentioned above: we aim
to develop a framework optimized for the analysis of (1.1) and (1.2), with an emphasis on the
explicit description of these maps by symbols. This framework can certainly be extended to
study other interesting examples as well, such as relating the first homology of Bianchi spaces
and Steinberg symbols of elliptic units, or relating the second homology of locally symmetric
spaces for GL3 and Steinberg symbols of three Siegel units, as proposed in [FKS14, §4.2]. When
working in sufficient generality, it will likely be fruitful to systematically proceed in an equivariant
fashion.

1.3 An outline

We briefly summarize the contents of the paper. We start by recalling and establishing certain
constructions of motivic cohomology useful to our study in §2. Most importantly, we employ
coniveau spectral sequences to construct Gersten-type complexes in Milnor K-theory, paying
special attention to the case of the square of a commutative group scheme.

The next three sections treat the case of G2,. In §3, we construct the big cocycle © of
(1.4). We derive an explicit formula for © in Proposition 3.3.2 and study its behavior under
Hecke operators in Proposition 3.4.4. We then specialize © at a torsion point to construct the
cyclotomic cocycle ©n of (1.8) in §4, deriving its explicit formula (Proposition 4.2.4) and its
transformation under Hecke operators (Theorem 4.2.11) from the results on ©. We recover the
map Iy of (1.1) from Oy and verify its Eisenstein property in Theorem 4.3.2. Section 5 has a
rather different flavor: in it, we examine the construction of © through the lens of toric geometry.
The main tool is Proposition 5.2.2, which constructs a map from the chain complex of the circle
to the motivic complex.

In the final two sections of the paper, we turn to the more technically demanding case of &2.
In §6, we construct the big cocycles ,© of (1.5) for primes n t N, derive an explicit formula for
them in Theorem 6.4.1, and demonstrate their Hecke equivariance in Theorem 6.5.4. In §7, we
specialize these cocycles ,,© using an N-torsion section to obtain the cocycles ,©x of (1.9). We
construct a ‘universal’ cocycle O independent of n in Theorem 7.2.2, and we derive an explicit
formula for it in Proposition 7.3.1. Finally, in Theorem 7.4.1, we construct the map zy of (1.2)
and establish its Hecke equivariance.
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2. Preliminaries on motivic cohomology

We shall recall basic properties of motivic cohomology groups in §2.1 and coniveau spectral
sequences in §2.2. We shall use these coniveau spectral sequences to construct Gersten-type
complexes in Milnor K-theory that will be central to our later study, paying special attention to
the case of the square of a commutative group scheme.

In §2.3, we recall the trace maps which will allow us to take fixed parts. In § 2.4, we discuss
the particular case of the square of a commutative group scheme of interest to us, introducing
our complexes that compute motivic cohomology and various quasi-isomorphic subcomplexes of
motivic cohomology groups.

2.1 Motivic cohomology

We shall define motivic cohomology using Bloch’s cycle complexes: see, for instance, [Blo86,
Blo94, Lev99, Lev04]. This has a certain psychological advantage for us in that it allows us
to think of our classes as coming from cycles. However, which theory of motivic cohomol-
ogy is used does not matter in our final results, which concern smooth schemes over perfect
fields.

Let Y denote a quasi-projective scheme of finite type over a perfect field F'. For nonnegative
integers j and k, let z¥(Y,j) denote the group of codimension k cycles in Y x AJ (the F-fiber
product) that meet Y x ® for each face ® of the algebraic j-simplex A7 over F properly.
Via alternating sums of face maps, the z¥(Y,-) form a homological complex with z¥(Y, ) in
degree j. This is Bloch’s cycle complex for Y; its homology groups are called higher Chow
groups. These complexes admit pullbacks by flat maps and pushforwards by proper maps [Blo86,
Proposition 1.3].

For any ¢ € Z, we set

H'(Y, k) = Hopi(2(Y,-)).
We also set H'(Y,k) =0 for negative integers k. If Y is smooth, then H*(Y,k) is naturally

isomorphic to the ith motivic cohomology group of Y with Z(k)-coefficients in the sense of
Voevodsky [Voe00] (see [MVWO06, Theorem 19.1]):”

H'(Y, k) = H'(Y,Z(k)).

As such, we will refer to the groups H*(Y, k) themselves as motivic cohomology groups. (This is
slightly nonstandard notation, which hopefully makes some of the typography easier to read.)

We briefly summarize a number of standard properties of these groups. To start with, as
a consequence of Bloch’s strong moving lemma [Blo94, Theorem 0.1], they admit arbitrary
pullbacks (see [Blo86, Theorem 4.1]). They also satisfy:

— if Y =][}_, Y is a finite disjoint union of F-schemes, then H*(Y, k) = @) _, H (Y3, k);

— HYY,k) = H(Y x Al k) via pullback by the projection morphism Y x p Al — Y (see [Blo86,
Theorem 2.1]);

— HO(Y,0) 2 Zif Y is connected and H(Y,0) = 0 for i # 0;

— if Y is smooth, then H!(Y, 1) is naturally isomorphic to the group of global units on Y, and
H?(Y,1) is naturally isomorphic to the Picard group of Y, while H*(Y,1) =0 for i ¢ {1,2}
(see [MVWO06, Corollary 4.2]);

— if Y is smooth, then H*(Y,k) =0 for i > k +dimY (see [MVWO06, Theorem 3.6]);

— if Y is a smooth variety over F, then H'(Y,k) = 0 for i > 2k (see [MVWO06, Theorem 19.3]);

7 For general Y and F admitting resolution of singularities, they are isomorphic to motivic Borel-Moore homology
groups [MVWO06, Theorem 19.18].
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— if f: X — Y is a finite locally free morphism of quasi-projective F-schemes of finite type (so
proper of relative dimension zero), then f, f* is multiplication by the degree of f (cf. [Sta24,
Lemma 02RH]).

Suppose that Y is equidimensional. Then, for any closed F-subscheme p: Z — Y of pure
codimension ¢ and its complement ¢: U — Y, there is an exact Gysin sequence

S HAYR) S H(UR) DS HT (2 k= o) 2 BNV ) — -

We refer to the map 0 as a residue map. It results from the distinguished triangle determined
by the left exact sequence of complexes given by pushforward by ¢ and pullback by p given by
Bloch’s moving lemma.

Motivic cohomology also has cup products

U: H(Y, k) x H' (Y, k') —» H (Y, k + k),

which can be constructed by pulling back an external product via the diagonal [Blo86, § 5]. There
is then an isomorphism of graded rings

P xME) = P H(F)
=0 =0

induced by the standard identifications of both sides with Z and F* in degrees 0 and 1 (see
[MVWO06, Theorem 5.1 and Lemma 5.6]). Recall that the canonical homomorphism KM (F) —
K;(F) to the ith algebraic K-group of F' is an isomorphism for i < 2, the case of i = 2 being
Matsumoto’s theorem.

We will need to compare compositions of pushforwards and pullbacks. For instance, we shall
often employ the following lemma in the case that the underlying schemes are spectra of fields
and ¢ = k, in which case the assertion is one of Milnor K-theory (see also [Ros96, Rule 1c, p. 329]
for a direct formulation of this assertion, noting Theorem 1.4 therein).

LEMMA 2.1.1 (Base change). Suppose that

x 2 x

7l

y 2y
is a cartesian diagram of smooth, equidimensional quasi-projective schemes of finite type over
F, with my flat and f proper. Then wx is flat, f' is proper, and

(f)emx =7y fe
as morphisms H' (X, k) — H"2¢(Y', k), where ¢ = dimY — dim X is the relative dimension of f.

Proof. The assertions regarding wx and f’ are standard. Since my and my are flat, these
morphisms are already defined on cycles by taking inverse images and images, so they are
defined on the terms of Bloch’s cycle complexes, and they are compatible with the boundary
maps (cf. [Blo86, Proposition 1.3]). The stated equality of compositions then already holds at
the level of complexes (cf. [Ful98, Proposition 1.7]). O

COROLLARY 2.1.2 (Projection formula). Let f: X — Y be a proper, relative dimension c
morphism of smooth, equidimensional quasi-projective schemes of finite type over F', and let

o€ H(X,k) and 8 € H' (Y, k). Then
fo(@U f5(B) = ful@) U B € HTT2(X K+ I).
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Proof. We need only apply Lemma 2.1.1 to the cartesian square

x A vy

b

Y —— Y xY
where Ax and Ay are the diagonal embeddings of X and Y, respectively. O
We also have the following compatibility of residues with transfers and inclusions of fields.

LEMMA 2.1.3. Let E/F be a finite extension of fields. Then for v a discrete valuation on F,
one has
Oy oNg/p = Z Nk (w) /k(v) ©Ow
wlv
as morphisms KM (E) — KM | (k(v)) on Milnor K-theory; the sum on the right is over valuations
w on E extending v, the symbols 0, and 9,, are the residue maps on Milnor K-theory induced
by the valuations v and w, and N denotes transfer in Milnor K-theory.
Similarly, for each w | v as above, we have

Ow O LEJF = €k(w)/k(v) * th(w)/k(v) © Ov

as morphisms KM (F) — KM | (k(w)), where ¢ denotes a map on Milnor K-theory induced by
inclusions of fields, and ey () k() Is the ramification index.

Proof. This is stated (without proof, but with references) in [Ros96, Theorem 1.4]; see in
particular Rules 3b and 3cs therein. O

2.2 Coniveau spectral sequences
Let us recall the coniveau spectral sequence for motivic cohomology. We refer to [Deg08], which
contains many of the details required to set this up. The primary role of this spectral sequence
is that it provides complexes that compute motivic cohomology in our situations of interest, and
these are also manifestly equivariant for the automorphism group of the ambient variety.

Continuity properties of motivic cohomology [MVWO06, Lemma 3.9] imply that for a finite-
type smooth connected variety Y over a field F' with function field k(Y'), we have

HP(k(Y),q) = lim H”(U,q),
ucy

where the limit is taken over open subvarieties U of Y.%

For U as above and any irreducible divisor D such that D N U is nonempty, there is a residue
homomorphism

HP(U - (DNU),q) — HY(DNU,q—1).

Consider the collection of open sets U such that D N U is smooth and nonempty. The collection

of sets U — (D NU) is cofinal in open sets on Y, and the collection of D N U is cofinal in open
sets on D. Therefore, the residue maps for U in the collection induce a residue map

HP(k(Y),q) — HP"Y(k(D),q —1). (2.1)

The latter map is determined by the field k(Y') and the valuation v on it which cuts out D in
Y (see [Deg08, Lemma 5.4.5]). When p = ¢, it is the residue in Milnor K-theory (see [Deg08,
Proposition 6.2.3]).

8 This isomorphism is not a tautology, as the definition of motivic cohomology involves the choice of base scheme:
here, on the left, it is k£(Y), whereas on the right, it is F.
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With these preliminaries in hand, we recall the coniveau spectral sequence for n > 0.
THEOREM 2.2.1. There is a right half-plane spectral sequence with E1-page

EY = P HOP(k(z),n — p) = HPY(Y,n),
€Y

where Y, denotes the set of points of Y of codimension p and the differentials are residue maps.

The coniveau spectral sequence essentially carries the information of ‘all Gysin sequences at
once’ and is a limit of spectral sequences attached to these Gysin sequences. We briefly explain
its derivation: attached to a decreasing system Z = (Z,),cz of closed F-subschemes of Y with
each Z, — Z, 1 smooth, Z, =Y for p <0, each Z, with 1 <p <n of pure codimension p, and
Zp = & for p > n, we have Gysin sequences

T Hi(Zp,n —p) — Hi(Zp — Zpt1,m—Dp — 1) i Hiil(Zp—Han—p_ 1) — - (2-2)

for 0 <p<n-—1. For DP4 = H9P(Z, n—p) and EP4 = HYZ, — Z,11,n), the exact couple
(DP1, EP9) determined by the exact sequences of (2.2) gives rise to a convergent right half-plane
spectral sequence E(Z) with Ej-page

BYUZ) = HTP(Zy — Zpy1,n —p) = EPY(Z) = HPT (Y, n).
Note that the gth row of the Ej-page of this spectral sequence E(Z) is a complex the form
0 —1 9 0 —-n
HYY — Zy,n) - H" (Zy — Z3,n—1) = --- = HT"™(Z,,0).

Our convention will be that pth term in this complex has homological degree the twist n — p + 1.

If we have two collections Z' = (Z,), and Z = (Z,), of closed subschemes as above with each
Z}, a closed subscheme of Z,, then we obtain morphisms E} (Z) — E! (Z') via composition j*..
of pushforward and pullback along

/ / L / J
Zyy = Zipyy — Zp — Ly < Zp — Zpa

(with ¢ a closed immersion and j an open immersion). In particular, we can take direct limits
of the spectral sequences over directed sets of such collections. If we use the collection of all Z,
then we obtain the coniveau spectral sequence.

The row for ¢ = n in the F1-page of the coniveau sequence is a homological complex K given
in degrees n through 0 by

K=K®M(y): EKMEY)— @ KM k(@) — - — €D Ki'k(x). (2.3)
€Y z€Yn

It follows from Lemmas 2.1.1 and 2.1.3 that pushforwards by proper maps and pullbacks by flat
maps induce morphisms between these sequences via transfer maps and the maps induced by
inclusions of fields, respectively, on Milnor K-theory. In this paper, we employ this complex for
n = 2. So, let us describe this case in more detail.
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Ezxample 2.2.2. Suppose that n = 2. Then the Fj-terms of the coniveau sequence in the range
0<p<2and0<q<2look like this:

(¢=2) H*(k(Y),2) — @pH'(k(D),1) —— @, H"(k(x),0)
—— ~——— ——
Kk(Y) Kk(D) Kok(x)
(g=1) H' (k(Y),2) ———— 0 0
(g=0) HO(k(Y),2) ———— 0 0
(p=0) (p=1) (p=2)

where the direct sums are over divisors D and codimension 2 points .

Except possibly those with p = 0 and ¢ < 0, all other terms vanish, recalling that the motivic
cohomology H!(F,k) of a field F' vanishes when i > k. In particular, the spectral sequence
degenerates, and the row

K=KO(Y): Kk(Y) 2 PrikD) 2 Pz
D x

is a complex in homological degrees 2, 1, and 0 computing the cohomology groups H?(Y,2),
H3(Y,2), and H*(Y,2), respectively.
As noted after (2.1), the D-component of the map 05 is given by the tame symbol in K-theory

{f, g} — (_1)v(f)v(g)gv(f)f—v(g) (2.4)

for the valuation v attached to D. The map 0; takes the divisor of f € k(D)* (i.e., yielding
the order of vanishing at f in each Kok(x) =2 Z for x € D), which we interpret in the sense of
intersection theory if D is not smooth.

Remark 2.2.3. Suppose that n < 2. For any (connected) open subscheme U of Y, the maps
H™(U,n) — H (k(Y),n) = KMkE(Y)

are injective, as follows for n = 2 from the form of the coniveau spectral sequence for U in
Example 2.2.2, noting that k(U) = k(Y') (and for n <1 more easily). Accordingly, we will say
that a class in KMk(Y) is defined on U if it lies in the image of the morphism H"(U,n) —
H"(k(Y),n). Given a class x € KMk(Y) defined on U and a closed point x € U, it is then
meaningful to specialize x to x via pullback, producing a class in KM k(x).

2.3 Trace maps

Let G be a smooth, connected commutative group scheme over our base smooth variety Y over
F. Let U be a nonempty open F-subscheme of a closed F-subscheme of G of pure codimension.
Multiplication by any positive integer m defines a morphism m: m~'U — U. Pushforward by
the finite map given by multiplication by m on G induces a map

H'(m™'U, k) — H'(U, k).
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If m~'U is a subscheme of U, then precomposing the pushforward by m with pullback under
inclusion gives a morphism

[ml].: H(U, k) — H'(U, k)

denoted by the same symbol, which we refer to as a trace map for m. (The reader might compare
with [KR17, Definition 2.1.1].)

In the remainder of this paper, we will frequently be interested in the ‘fixed parts’ of motivic
cohomology groups, comprising all elements fixed by all (but finitely many) trace maps [p]. for
p prime not equal to the characteristic of F'. This frequently isolates a subspace of elements of
geometric significance.

Ezxample 2.3.1. Let z denote the coordinate function on G = G, over F'. Choose m not divisible
by the characteristic of F', and suppose that U open in G satisfies m~'U C U. The map [m]. on
H'(U,1) C F(2)* is characterized by the property that for f € H'(U,1) and o € U(F) C F*,

pm=a

with the product taken over mth roots of « inside an algebraic closure of F. The pullback [m]*
is given more simply by

([m]"f) (@) = f(™).

In particular, for U = G,, — {1}, the norm map [m]. fixes 1 —z in H(G,, — {1},1), as
follows from the calculation

m—1

[[a-¢."™ =1-= (2.5)

=0

where (,,, denotes a primitive mth root of unity. (In fact, 1 — z is [m].-fixed even for m divisible
by char F.)

Ezample 2.3.2. Take two smooth connected commutative group schemes G; and Go over F,
and set G = G1 x Go. For v; € H' (G}, kj) with i; € Z and k; > 0, define the exterior product
vy Wy € H1Y2 (G ky + ko) as the cup product miv1 Umire, with m;: G — G; the projection
maps. We then have

[m]«(v1 W) = [m]n W [m]sve. (2.6)

(To verify this from basic properties, factor the multiplication-by-m map [m] as a product of
corresponding maps [m]; and [m]z in the first and second coordinates. Then (2.6) follows from
the equality

[m]1 (7l Umsre) = [m]i(mivy U [m]imave) = [m]rivy Unsve = 7 [mlevy U move,
where the middle equality is the projection formula of Lemma 2.1.2, together with the analogous

assertion with the roles of first and second variables switched.)

The maps [m], commute with each other, with pullback to open subschemes, with push-
forward by inclusion of closed subschemes, and with residue maps in Gysin sequences (see
[KR17, §2.1]). They also induce a self-map of the Ej-page of the coniveau spectral sequence
of Theorem 2.2.1.
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Remark 2.3.3. For x € G, (i.e., a codimension p point) and y € G, with my = z, the trace map

D K )~ @ Kb
yeGyp z€Gp
is the sum of norm maps associated to the induced inclusions k(z) — k(y) for z,y € G, with
my = x. By [Hes05, Lemma 14], this is compatible with residues, and so differentials on the
FE1-page of the coniveau sequence. In particular, we have trace maps on our complexes K(”)(G)
of (2.3).

2.4 Powers of commutative group schemes
If we start with a smooth, equidimensional quasi-projective scheme % of finite type over Y,
then instead of taking a limit of motivic cohomology groups over all open subvarieties of %,
it is natural to use only those subvarieties which are themselves defined over Y. As in §2.2,
we have a coniveau-type spectral sequence for this limit. We are actually interested in only
very special cases with finer structure. Correspondingly, we consider here complements of much
smaller collections of closed subsets defined over Y and limits thereof.

Now let us fix n > 1 and let % = G™ be the nth power of a smooth, connected commutative
group scheme G of relative dimension 1 over Y, such as G,,/y or a smooth family of elliptic
curves over Y. We use throughout the convention that the monoid

A= Mn(Z) N GLn(Q)

of integral matrices of nonzero determinant acts by right multiplication on G". For example, if
n =2 and (‘CL Z) € A, then for any g1, g2 € G, we have

a b 0 ¢
o) (&) = (tssated). (2.7

This being a right action, the monoid A then acts on the left on the motivic cohomology groups
H(G™, k) by pullback.

Even better, A acts on the left on the complex K = K™ (2) of (2.3), also by pullback. That
is, if x € %; is a codimension ¢ point of # = G", 6 € A, and y € %; is such that y-v =z,
then pullback yields a map v*: k(x) — k(y) of residue fields, and this induces v*: Kflw_qk:(:v) —
KM qk:(y). The pullback map on K,,_ is the sum of these maps, and the residue maps are clearly
equivariant for this action.

Now let us focus on the case n = 2 of interest to us. We consider divisors of the form

Sa = Sij = ker (G2 A%, G) (2.8)

for nonzero o = (i, j) € Z*. Then S;; is connected if and only if 4 and j are relatively prime.
Take a finite indexing set I C Z2 — {(0,0)} with at least two elements and containing at most
one representative of each element of P'(Q). We set

Sr=\JS« and U =G*-9,
acl

where we regard Sy as a closed subscheme of G? with its reduced scheme structure and U; as an
open subscheme of G2,. We then consider the union of pairwise intersections

Tr= |J (SanSp),
a,Bel
a#p
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which is a finite subgroup scheme of G? by our choice of I. Let
S;=Sr—17

so that S7 is the disjoint union of the smooth subschemes S;, = S, N S} for a € 1.

This fits into the setting above for n = 2 with Zy = St and Zs = T, so Zy — Z1 = Uy and
Zy — Zy = S7. We obtain a spectral sequence having the following terms in degrees (p, ¢) with
0<p<2and 0<qg<2:

(¢=2) H*(Up,2) —— H'(S},1) —— H(T;,0)

(g=1) H'\(U;,2) ——— 0 0

(g=0) H(U;,2) ——— 0 0
(p=0) (r=1) (p=2).

This spectral sequence maps to the coniveau sequence detailed in Example 2.2.2 (with Y replaced
by G?). It follows from Remark 2.2.3 that each of the complexes

Kr: HXUp,2) — HY(S3,1) — H(T1,0)
injects quasi-isomorphically into the big complez

K:  Ky(k(G?) — P K1k(D) — € Kok(=).
D T

If we order our indexing sets by I < I’ if Uy C Uy, then the limit complex h_rr}l I Ky is also a
quasi-isomorphic subcomplex of K. The constructions in this paper can all be carried out using
this complex, which is just large enough to allow for the definition of Hecke actions on GLy(Z)-
cocycles, in that it is preserved under the pullback action of the monoid A = M>(Z) N GL2(Q).

3. The square of the multiplicative group
In this section, we shall define a cocycle
O : GLy(Z) — K2(Q(G2)))/everywhere regular classes,

where ‘everywhere regular’ means the image of H2(G?2,,2). We will primarily work over the base
field @, but on occasion we will need to work over a finite base field. We follow the notation for
motivic cohomology of §2.1.

In § 3.1, we begin by computing the motivic cohomology of G, for » > 1. In § 3.2, we introduce
explicit symbols in the terms of our motivic complex to be used in the construction. The parabolic
cocycle © is constructed in §3.3, and its explicit formula and its parabolicity are verified using
its characterizing property. In § 3.4, we then exhibit an Eisenstein property of the class of © for
Hecke operators of all prime levels.

3.1 Motivic cohomology of G}
Let z denote the coordinate function on the multiplicative group G, over a field F', normalized
so that the value of z at the identity element is 1. The motivic cohomology of G,, involves classes
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directly constructed from —z, together with classes pulled back from the motivic cohomology of
Spec F' itself. We extend this description to powers of G,,.

First, we construct suspension isomorphisms in motivic cohomology. Recall the definition of
exterior product from Example 2.3.2.

ProrosITION 3.1.1. Let Y denote an equidimensional quasi-projective scheme of finite type
over F'. There is a natural isomorphism

H{(Y,k)® H (Y, k—1) = HYG,, x Y, k),

where the map on the first summand is pullback under projection to the first factor and the map
on the second summand is left exterior product with —z, considered as a class in H' (G, 1).

The reason for choosing —z, as opposed to z, will be made clear in Lemma 4.1.1. This result
is well known and corresponds to the ‘fundamental theorem’ of algebraic K-theory (proved for
Ky and K; by Bass and in general by Quillen).

Proof. Consider the canonical embedding ¢: G,, x Y < Al x Y given by the usual embedding
in the first coordinate and the identity in the second. The Gysin sequence has the form

S HUAY XY, E) = H (G x Y, k) S H (Y k—1) — -

As noted in §2.1, the pullback H'(Y,k) — H*(A! x Y, k) by the projection map is an iso-
morphism. Thus, it suffices to show that 0 is split by a map on the right-hand summand in
the theorem, and this follows from 9(—z X x) = 9(—2) Rz =z for z € H (Y, k — 1). O

COROLLARY 3.1.2. Let Y denote an equidimensional quasi-projective scheme of finite type over
a field F', and let r > 1. There is a natural isomorphism
min(k,r)
Hi@G k)= @ HER-H0.
§=0
Proof. This follows by induction on r by iterating Proposition 3.1.1, that is, taking Y = G’ in
the inductive step. Note that H*~/(F, k — j) = 0if k < j, so the direct sum stops at the minimum
of k and r. 0

Since H'(F, k) = 0 for i > k, we obtain in particular the following corollary.
COROLLARY 3.1.3. The groups H'(G",, k) vanish for all i > k.
3.2 Symbols in the complex computing motivic cohomology

Recall from Example 2.2.2 that the coniveau spectral sequence gives rise to a homological complex
K with nonzero terms in degrees 2, 1, and 0 given by

K:  FKk(G},) — @) Kik(D) — €D Kok(x), (3.1)
D x

the sums being taken over irreducible divisors and closed points, respectively. This complex
computes the cohomology groups H*(G2,,2) in degrees 2 to 4 from left to right. Therefore,
by Corollary 3.1.3, the sequence is exact in the middle and at the right, and its homology at
the left is H%(G?2,,2). Let Ky be the quotient of Ky by the image of H?(G2,,2) so that we get a
short exact sequence

0— Ky — K; — Ky — 0.
We shall denote the boundary maps in this complex by the generic symbol 0.
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The monoid A = GLg(Q) N M3(Z) acts on the right on G2, by the formula of (2.7). As
explained in §2.4, the complex K is correspondingly endowed with a left A-action via pullback.
This action descends to an action on K. For now, we use only the induced action of the group
GL2(Z); we will employ the full A-action in § 3.4.

Let us define special elements

ec€ Ko, (a,c)eKy, (7)€eKs
attached to a primitive vector (a,c) € Z? or to a matrix v € GLg(Z) that satisfy
—{(=b,—d) if dety=1
8<<a b>> = {a, c) = (=b, —d) 1 YT and da,c) =e. (3.2)
c d (—a,—c) — (b,d) if dety=—1
These are:

— the GLg(Z)-fixed class e € Kg of the element 1 € Z supported at the identity of Gyy;

— for a primitive vector (a,c) € Z? and the torus S, . = ker(G2, icincata Gy,) of (2.8), the
image (a,c) € K; of the invertible function

1- lezz(gi S ﬁ(Sa,c - {1})X - Kl(Q(Sa,C))’

where (2%) € SLy(Z) extends (a, ¢) — this is independent of the choice of (b, d), since another
choice simply alters the function 2024 by a multiple of 2§25, which is 1 on S, .;
— for v = (2%) € GLy(Z), and its columns vy = (a,c) and vy = (b, d), the Steinberg symbol

() = (v, v9) = {1 — 2825,1 — 2828} € Ky.
Note that (v) =~*((§)) is the image of (1 — 2{25) U (1 — 2029) € H*(G2, — Sa.c U Sp4,2).
The special elements of the form e, {(a,c) for (a,c) € Z? primitive, and (v) for v € GLy(Z)
together span a subcomplex Symb of K that we refer to as the symbol complex. We will return

to it in §§4 and 5. That these symbols satisfy (3.2) follows directly from the description in
Example 2.2.2 of the residue maps in K in terms of tame symbols (2.4) and divisors.

Remark 3.2.1. We note for later use that, for v = (‘; Z) € GLy(Z), the pullback v*(0,1) is sup-
ported on the torus S, 4 which is the kernel of (z1,22) — zll’zg. On this divisor, it is given by
(1 — 271 =1 — 27 %2, ¢. Thus

. ~f®a) if det(y) = 1,
T = {(—b, —d) if det(y) = 1. (3:3)

3.3 The cocycle
Pulling back the complex Ko — Ki — Kq to the cyclic subgroup generated by e € Ko, we get an
extension of Z by Ko, and so an extension class in

Extziar, @) (Z: K2) = H' (GLa(Z), Ky).

We shall describe a cocycle representing this class more explicitly in Proposition 3.3.1 below.
We then give an explicit recipe for ©, as a sum of symbols (p) with p € SLy(Z) and show that
it lies in parabolic cohomology. Because H?(GLo(Z),Z) is torsion, a multiple of © can actually
be lifted to Ko; in § 5, we sketch how to do this explicitly.
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ProrosiTiON 3.3.1. There is a 1-cocycle
0: GLy(Z) — Kg, v O,
uniquely characterized by the property that
00, = (v" —1)(0,1).

Proof. Since (v* — 1)(0, 1) has trivial boundary e — e = 0, it is the boundary of a unique 6., € K.
Since pullback is a left action, we have

00,y = (7" (7)) = 1){0,1) =" ((v")" = 1){0, 1) + (v* = 1){0, 1) = 0(v"O/ + ©5),
for 7,7" € GLa(Z). That O is a cocycle therefore follows by the exactness of K. O

Next, we give an explicit recipe for values of © in terms of our special symbols in Ks using a
standard variant of the Euclidean algorithm, analogous to writing a geodesic between cusps on
the modular curve as a sum of Manin symbols. We make the latter analogy precise in §4.3.

Given v = (%) € GLy(Z), the Euclidean algorithm allows us to find a sequence (v;)¥_ in
72 for some k > 0 with vg = (0,1) and v, = det(7)(b,d) and such that the v; = (b;,d;) satisfy

det (Si:ll Zi) =1 for all 1 <i < k. We call such a sequence (v;)¥_, a connecting sequence for .

PROPOSITION 3.3.2. Let v = (24) € GLy(Z), and choose a connecting sequence (v;)k_ for .
Then we have the following equality in Kg:
k

@»y = Z<U7;, _Ui—1>-

i=1
Recall from § 3.2 that (v;, —v;_1) is the symbol associated to the matrix with first column v,
and second column —v;_.

Proof. By (3.3) and (3.2) we have

k k
O Dot =) ) = D (fu) = {ov-0)) = o) = ) =7°(0.1) = (0.1,

i=1 i=1
Since O, and Zfﬂ(fui, —v;_1) have the same boundary, they are equal in K. O

Example 3.3.3. Take v = (' % ). Then vy = (0,1), v; = (—1,0), and vy = (0,—1) form a
connecting sequence for v, so

0, = ((=1,0),(0,~1)) + (0, ~1), (1,0)) = {—= ", 1 =z},
which equals —{—z1,1 — 22} in K.

We will use a perhaps slightly nonstandard notion of parabolic cohomology for GLy(Z),
consistent with our use of right actions of GLy(Z) on group schemes. That is, we define the
GLy(Z)-parabolic cohomology group Hp(GLa(Z), M) for a Z[GLy(Z)]-module M to be the
intersection of the kernels of the restriction maps from H'(GLy(Z), M) — H'(P, M), where

P runs over all stabilizers of nonzero elements of Z? under the right action of GLa(Z). We say

that a 1-cocycle GLo(Z) — M is parabolic if its class lies in the parabolic cohomology group
Hp(GLo(Z), M).

PrOPOSITION 3.3.4. The cocycle © is parabolic.
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Proof. Since the right action of GLy(Z) on the set of relatively prime pairs of integers is transitive,
it is enough to verify triviality upon restriction to the stabilizer P = {(§ ) | ¢ € Z} of (1,0) €
Z2. TIf we take v € Ps, then by (3.3),

88’}’ = (7" = 1){0,1) =(0,1) = (0,1) =0,
so ©, =0 in Ks. O

Remark 3.3.5. The parabolic cocycle © is also integral in a sense we shall now describe. For
this, we employ the theory of motivic cohomology over schemes over Dedekind domains (see the
work of Levine [Lev99], Geisser [Gei04], and Spitzweck [Spil8]), which we denote as over fields.
Take the direct limit of second motivic cohomology groups K,z = h_n}lU H?(U,2), where U runs
over the open Z-subschemes of G2, sz that are complements of unions of kernels of morphisms
G32,/z — G2, /7 with (21, 22) — 2{25 for some primitive (a,c) € Z* — {0}. There is a canonical
injection Ky /7 < Ky, under which the inverse image of H*(G2,,2) is H*(G3, /7, 2). The statement
is then that

© takes values in Ky /7/H*(G3, /7, 2).

This can be seen directly from the explicit formula of Proposition 3.3.2 or without recourse to
this formula using Gysin sequences and Lemma 4.1.2 over finite fields (supposing an expected
compatibility of pushforwards and residues as in Lemma 2.1.3 that we did not endeavor to
check).

3.4 Hecke actions
We now turn to the action of Hecke operators on the class of our 1-cocycle ©. To set the
stage, suppose that A is a submonoid of M»(Z) N GL2(Q) and I is a finite index subgroup of
GL2(Z) N A. We recall the explicit formulas for the action of Hecke operators of double cosets
for I'\A/T on the cohomology H'(I', M) for any Z[A]-module M.

For g € A, write

t
Tgl = [ ol (3.4)
j=1

For v € ', there exist a permutation o € S; (the permutation group on ¢ letters) and elements
7v; € I' such that vg; = g (j)v; for 1 < j <t. For a 1-cocycle 0: I' — M and v € ', we set

¢
T(g)0(v) = Zga(j)e(%‘), (3.5)
j=1
which in general depends on the chosen coset representatives g;. The following lemma is well
known and verified simply by writing out the definitions.

LEMMA 3.4.1. For a 1-cocycle 0: I' — M, the cochain T(g)0 is a cocycle with class indepen-
dent of the choice of double coset decomposition. In particular, T(g) induces a well-defined
action on HY(T', M). Moreover, this restricts to an action on parabolic cocycles and parabolic
cohomology.

Remark 3.4.2. The Hecke operators T'(g) of Lemma 3.4.1 arise from left coset decompositions
of I'gIl" for g € A. Given a right A-module N, the analogous construction to the above yields
right Hecke operators T (g) using a decomposition of I'gT" into right cosets, as often found in
the literature (see, for example, [Shi94, Section 8.3]).
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The two operators are related as follows. Write * for the anti-involution on GL2(Q) given by
g* = (detg)g L. If : T — M is a left cocycle, then ¢': v — 0(y~1) is a I'-cocycle for the right
action of A on M given by (m,h) — h*m, and the rule 6 — 6’ intertwines the actions of T'(g)
and T%(g*). If the action on M is trivial, then there is no distinction between left and right
cocycles, and the actions of T(g) and T#(g*) coincide.

Returning to our case of interest, we again take
A = M, (Z) N GLy (Q)

and T' = GLy(Z). The monoid A acts on the right on G2,(Y) for any smooth Q-scheme
Y by formula (2.7), and this right action on G2, induces a left pullback action on K as
in §2.4.
For example, the pullback by v € A of an invertible regular function f on S;; — {1} is the
function on Syt pj.citdj = Si,j’yfl defined by
(V' )21, 22) = f((21,22)7) = f(2125,2123),

and the divisor of v* f is the pullback of the divisor of f. This action descends to an action on

K also, since M>(Z) N GL2(Q) acts by pullback on H%(G2,,2), compatibly with its morphism to

Ks. In the case of the matrix (6 2), we denote this action on K more succinctly by [¢]*.

For a prime ¢, let Ty = T(g) for g = (¥, ), where T(g) is as in (3.5) above for the coset
representatives’

gj:<Z {) for 0<j<f¢—1 and gg:<1 £> (3.6)

in I'gl" = H?:O g;I'. By Lemma 3.4.1, this gives an action of Ty on cohomology independent of
the latter decomposition. Let us also define an endomorphism of the complex K by the rule

4
T =) g;: K=K
=0

This depends upon the choice of g; and appears primarily as a computational aid.
We can now compute the action of Ty on the class of © from the action of TeK on e of §3.2.

LEMMA 3.4.3. For each prime £, we have an equality
TXe = (L+[(])e
of elements of K.

Proof. The left-hand side is the sum (with multiplicity) of the classes of the ¢+ 1 cyclic
(-subgroups of x2. This is the sum of the class [¢(]*e of 2 and ¢ copies of e. O

In the following, note that [¢]* acts on the cocycle © through its action on K.
PROPOSITION 3.4.4. The 1-cocycle (T; — £ — [(]*)© has trivial class in H*(GLg(Z), Ky).

Proof. As the residue of (0,1) is e, Lemma 3.4.3 and the A-equivariance of the boundary maps
in K imply that (T} — ¢ — [£]*)(0, 1) has zero residue. Accordingly there exists 1) € Ky so that

oY = (T} — £ —[]")(0,1). (3.7)

9 This operator agrees with the Hecke operator T (g*) as defined via right cosets of g* = ( 1 4) as in Remark 3.4.2.
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For v € GLy(Z), let o be a permutation of {0,...,¢}, and let v; € GLy(Z) for 0 < j < £ be such
that vg; = go(;)7;. We then have

J4
g3(0,1) = g3 (v — 1)(0, 1)

j=0

V4
—o( Sanpe., ) - ome), (38)
=0

(v = DT0, 1) = (v = 1)

.
o

where the last equality follows by definition (3.5) of our Hecke action on K. Comparing (3.7) and
(3.8), we see that

Oy — 1) = (v = (T — €= [0%)(0,1) = 0((Te — £ — [(]*)®),.

It follows that ((I; —¢— [(]*)©), and (y* — 1)y coincide in Ks, and therefore the cocycle
(Ty — ¢ — [¢]*)© is the coboundary of . O

4. The cyclotomic cocycle

We specialize the cocycle of the previous section at an N-torsion point of G2,. There are two
points to be addressed: classes in Ko of the function field cannot a priori be specialized at a
point, and the previous cocycle was valued not in this K5 but its quotient by everywhere regular
classes. To remedy the second issue, we narrow down the regular classes using trace maps.

In §4.1, we calculate the fixed part of the motivic cohomology of G2, under trace maps. We
show that our explicit symbols are contained in the fixed parts of our big complex and use this
to reduce the ambiguity in the values of ©. In §4.2, we construct the explicit cocycle Oy by
pulling back O, verify its explicit formula (Proposition 4.2.4), and demonstrate its Eisenstein
property (Theorem 4.2.11) for prime-to-level Hecke operators. In §4.3, we compare with prior
work: in particular, we show that ©y induces the map Il of (1.1) that is the restriction of the
explicit map of [Bus08, Shall], and we verify the Eisenstein property of .

4.1 Fixed parts via suspension

4.1.1 Fized parts of the cohomology of G2,. The results of § 3.1 imply that the motivic coho-
mology group H?(G2,,2) breaks up as a direct sum of motivic cohomology classes that are
Z-multiples of (—z1) U (—22) and sums of classes pulled back via one of the two projection maps.
We want to be able to ‘ignore’ the latter classes, and to kill them we will use trace maps.

We work in this subsection over a base field F. For r > 1, we define the fixed part of the
motivic cohomology group H'(G”, k) as

HY (G k) = {a e H (G, k) | ([p]« — D) = 0 for all primes p # char F}. (4.1)

In general, if F' has zero or sufficiently large characteristic, then this fixed part is the direct
summand of H!(G",, k) given by H*(F,k) in the decomposition of Corollary 3.1.2. However, we
shall only be interested in these groups in very specific cases: in particular, let us study them for
i=k<re{l2}.

LEMMA 4.1.1. The element —z € HY(G,,,1) generates H*(G,,,1)(©).

Proof. The group H'(G,,, 1) consists of the invertible functions on G,, /r- As such, each element
is uniquely of the form 7(—z)* for n € F* k € Z.
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Suppose that such a class is [m],-fixed for m prime to char F'. The global unit —z is [m/,-fixed
for m prime to char F' since

m—1

(ml(=2) = [ (=¢nz"™) = —=. (4.2)

i=0
Thus, we also have [m].n = n™ for such m.
If char F # 2, then n?> = and so 1 = 1; in characteristic 2 the equality n®> = 7 implies the
same conclusion. So n = 1, and the claim follows. O

Let us turn to G2, over F, on which we let z; denote the ith coordinate function.

LEMMA 4.1.2. The group H'(G2,,1)() is trivial, and if F has characteristic not 2 or 3 or is a
finite field, then H?(G2,,2)() is Z-free of rank 1, generated by (—z1) U (—z2).

Proof. Let us use v; to denote the class of —z; in H'(G2,,1). As in Corollary 3.1.2, we have an
isomorphism

H*(F,2)®e H'(F,1)® H'(F,1) ® H(F,0) = H*(G2,,2), (4.3)

where the maps are given by pullback and (left) cup product with 1, v, v, and 14 Uy,
respectively.

Let m > 1 with char F'{ m. By Example 2.3.2 and (4.2), the class v; Uy is [m].-fixed. Any
class n that is pulled back from Spec F' satisfies [m]|*n = n, so for such  and any o among 1, vy,
vo, and v U vg, Corollary 2.1.2 yields

[ml«(aUn) = [m].(aU[m]*n) = ([m].a) Un,
which tells us that the trace maps preserve the summands in (4.3). Thus, we need only consider
the summands individually. So, let us suppose that « U n is [m].-fixed.

(i) If @ =1, then [m].n = m?n. So, if n is [m].-fixed, then (m? — 1)n = 0. If char F ¢ {2, 3},
then since this is true for m = 2 and m = 3, we have n = 0. In the case ¢ = k = 1, note that
if char F' = 2, then 87 = 0 implies n = 0, and if char F' = 3, then 37 = 0 implies n = 0. If
i=k=2and F is a finite field, then H?(F,2) =0, so = 0.

(ii) If & = v}, then we have

[m]«(vj Un) = m(v; Un),
so if vj Un is [m].fixed, then it is (m — 1)-torsion. If i = k =1, then HY(F,0) 2 Z, so
vj Un = 0. In general, so long as char F' # 2, then v; U7 is trivial taking m = 2. If i = k = 2
and char F' = 2, then by taking m = 3, we see that v; Un is 2-torsion in F'*, so trivial.
(iii) If & = 11 U e, then it is indeed [m].-fixed. O

4.1.2 Fized parts of compleves. We return to the consideration of G2, over Q. As explained
in Remark 2.3.3, the trace maps [m]. act on the complex K as well. We define the fixed complex
KO in exactly the same way as (4.1).

LEMMA 4.1.3. The symbols defined in § 3.2 all lie in the fixed part of K:
ee K(()O), (a,c) € Kgo), (7) € K(QO).

Proof. First, note that [m].e = e for all m. From (2.5), we see that (a,c) € Kgo). Finally, since
[m]. on Ky is given by the ‘product of the pushforwards by m in the first and second variable’
by (2.6), it fixes ((1,0), (0,1)). We then note that v* and [m]. commute. O
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PROPOSITION 4.1.4. The cocycle © lifts to a cocycle valued in Ky /({—z1, —22}).

Proof. Indeed, Proposition 3.3.2 and Lemma 4.1.3 imply that for each 7 € GLa(Z), the
cocycle ©, is valued in the image of K;O) — Ky. By Lemma 4.1.2, that image is isomorphic

to Kgo)/<{—zl, —2z9}). Thus O lifts to that group, and a fortiori to Ko/{({—21, —22}). O
In the remainder of this section, we will implicitly regard © as valued in Ky/{{—21, —22}).

Remark 4.1.5. The symbol complex Symb defined in § 3.2 is contained in the fixed part under
trace maps of the limit complex li_n)ll K; C K of §2.4. In fact, it is the fixed part of a certain
motivic subcomplex k of lii>n1 K; that we refer to as the small complez.

To make this precise, for v = (¢ 5%) € SLy(Z), let us set k, = K; for I = {(a,c), (b,d)}. The
complex ky has the form
H*(G2, — SucUSpa,2) — H' (Sae — {1},1) ® H' (Sp.q — {1},1) — H°({1},0),
where S, . and Sy 4 are the rank 1 tori of (2.8), and the last term is identified with Z. Using

Gysin sequences and the results of §3.1, it is not hard to see that kgo) is canonically a direct
summand of k, such that

; =~ 74 is generated by (£(a, c), (b, d)),
% =~ 7* is generated by (£(a,c)) and (%(b,d)), and
-k ,) = Z is generated by e.

The homology of kgo) is then concentrated in degree 2, being isomorphic to H?(G2,, 2)(0) 7.

Define the small complex k C K to be the span of the ky for v € SLy(Z). One may verify
that the small complex is, like its subcomplexes k., a quasi-isomorphic subcomplex of K, and
from our description of each kgo), we see that k(© is precisely the symbol complex Symb. In
fact, Symb = k(©) is a Z[GLy(Z)]-direct summand of k with homology H?(G?2,,2)® in degree 2.

In particular, by Proposition 3.3.2, our cocycle © takes values in Rgo) = kgo)/<(—z1) U (—22)).

4.2 Specialization at an N-torsion point
Fix a positive integer N > 2. Let us fix the notation for the congruence subgroups of GLy(Z)
that we shall use from this point forward. That is, we set

Fo(N) = {(Z Z) € GLy(Z) | N | c}, (4.4)

L (N) = {(Z Z) € To(N) | d =1 mod N}. (4.5)

We denote by I'g(N) and I'1(IV) their respective intersections with SLo(Z), as usual. Setting
A = M>(Z) N GL2(Q), we also have associated monoids

Ao(N) = {(3 Z) €A|(d,N):1andN|c}, (4.6)
Ay(N) = {(‘CL Z) € Ag(N) | d = 1 mod N}. (4.7)
In this section, we specialize our cocycle © at the N-torsion point
s: SpecQ(un) — G, (4.8)
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with value (1,(yn) € G, (Q(un))? to obtain a cocycle
On: To(N) — K2(Quw))/({~1, —Cw 1)

4.2.1 The specialized cocycle. We turn to the specialization of © at the Q(uy)-point s of
(4.8), which is given by the map z; — 1 and 2 — ( on coordinate rings. The stabilizer of s in
GL2(Z) under its right action on G, (Q(ux))? is the congruence subgroup [ (N) of (4.5). For
Jj € (Z/NZ)*, let 0, € Gal(Q(un)/Q) be such that o;(¢n) = (4. Via the isomorphism

Fo(N)/F1(N) & (Z/NZ), <CC‘ Z)Hd (4.9)

and its composite with d — ¢4, we may consider any Z[Gal(Q(uy)/Q)]-module as a Z[Co(N)]-
module. In particular, we let To(N) act on K3(Q(uy)) in this fashion.

Note that s* is not well defined on the whole of Ky: there is no field map Q(G2,) — Q(un)-
In order to pull back the values of our cocycle via s, we show that for v = (‘CL g) € Io(N), any
lift to Ky of ©, lies in a sufficiently small subgroup of Kz upon which s* can be defined.

For this, let

Uy = G2, — SpaU So1,

which is to say the complement in G2, of the subtori that are the kernels of (21, 23) +— 2224 and
(21, 22) — 22. Since (1,(n) € U,, the specialization map

s*: H*(Uy,2) — H*(Q(un),2) = Kao(Q(un))

is well defined. The residue of ©, in K; is (det(v)(b,d)) — (0, 1). Therefore, any lift of ©, to Ky
is defined on U, in the sense of Remark 2.2.3.

Proposition 4.1.4 provides a canonical lift of © to a cocycle valued in Ky/({—21, —22}), which
we also denote by ©. The value ©, lies inside

Ka(N) = lim H*(U,2)/{(=21) U (=22)),
seU

where the limit runs over the open Q-subschemes U of the Q-scheme G2, containing all multiples
of s by an element of (Z/NZ)*. Specialization at s now defines a morphism

st Ko(N) — K2(Q(un))/Zn (4.10)

where Zy is the ['o( N )-stable subgroup of K5(Q(py)) generated by the specialization {—1, —Cy}
of the symbol {—21, —29} € K2(Q(G2,)) under s*. It therefore makes sense to speak of

@N,'y = 8*@7
as an element of Ko(Q(un))/Zn, Note that
{-1,-1} if N is odd,

0 if IV is even,

{_13 _CN} = {

so Zy is a group of order dividing 2.
ProrosSITION 4.2.1. The map
On: [o(N) = Ka(Qun))/Zn, 7 Ongy

is a parabolic cocycle.
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Proof. That O is a cocycle follows from if we can show that s* as in (4.10) is a homomorphism
of To(N)-modules. Here, note that To(N) acts on Ka(Q(uy)) as in (4.9). Write v = (2%) and
note that the two maps Spec Q(uy) — G2, defined by v o s and so o4 coincide, since viewed
on coordinate rings both send 21 to 1 = (% and 22 to (%. In particular, Lo(N) acts on Ky(N),
since for any Q-subscheme U of G2, with s € U(Q(ux)), the composition vy o s = s 0 gy is also a
Q(pn)-point of U. This implies that s* o y* = g4 0 s* on Ky(N).

The proof of Proposition 3.3.4 argued that © is trivial on a lower-triangular parabolic P
in GLy(Z). An arbitrary parabolic Q of To(N) has the form Q = puPsp ' NTo(N) for some
p € SLa(Z). For v € Pso, we have ©,, -1 = (1 — (uyp™1)*)O,. So long as ©, € Ky(N), we then
have that ©|g: @ — Ky(N) is a coboundary, and for this it suffices that p = (g,’ 2’,) satisfies
N {d'. On the other hand, the set of 1 with N | d’ is exactly the coset To(N)(9 ), and in this
case Q = pPsp!. We may then suppose p = (9 ), for which @ = {(%' 1) | n € Z}. Since Oy
lifts to a map taking the value {1 — (n,1 —(y'} =0o0n () ') and the value {1, —(n} € Zn

on (_01 (1)), it is trivial on @, and we have parabolicity. 0

We need to modify the notion of connecting sequence of §3.3 to adapt it to the level
N structure. Specifically, let us refer to a connecting sequence (bi,di)fzo for v € fO(N ) with
the property that N td; for all 0 <i <k as an N-connecting sequence for ~. Note that an
N-connecting sequence always exists, as we verify with a little fiddling.

LEMMA 4.2.2. Given a primitive vector (b,d) € Z* with N 1 d, there exists a sequence (v;)¥_ in
7?2 with v; Avj11 = 1 for 0 < i < k such that vy = (0,1), vy = (b,d), and v; = (b;, d;) with N {d;
for all 0 <7 < k.

Proof. Choose any connecting sequence (’Uz‘)?:() with v = (b,d). Suppose that v; has second
coordinate divisible by IN. Then neither v;—; nor v;4; does. We will insert another sequence
between v;—; and v;+1, no element of which has second coordinate divisible by N. For v,w €
72, consider v A w as an integer via the identification of /\2 72 with Z using the basis vector
(1,0) A (0,1). Note that v;i—1 Av; =v; Avig1 =1 for 1 <i<k—1. Write t = v;_1 Aviy;. We
suppose that t > 1, the other case being easier. The sequence with v;_1,v;,v;11 replaced by
Vi—1,Vir1 + (1 = t)vi, ..., Vi1 — Vi, vi+1 has nearly the desired properties since
Vim1 A (Vi1 + (L= 1)) = (vigr — (G = )vi) A (vig1 — (T + 1 = )vy) =1

for 1 < j <t — 1. However, the last pair of adjacent vectors z = v;41 — v; and y = v;41 satisfies
x Ay = —1, rather than 1. To remedy this, we replace z,y by the sequence z, —y, —x,y. O

Remark 4.2.3. As in Remark 4.1.5, Lemma 4.2.2 tells us that © restricted to T'o(N) takes values
in (a quotient of) the degree 2 term of the subcomplex of the small complex k spanned by the
ky for those v = (95) € SLy(Z) such that N {c and N {d.

We then have the following explicit formula for our cocycle.

PROPOSITION 4.2.4. Let v = (g g) e Ty(N), and let (bi,d;)%_, be an N-connecting sequence
for . Then
k

Ony =D {1 (.1 -5

=1

Proof. By Proposition 3.3.2, we need only note that

* i —d;_
s ((biy di), (=bi—1, —di—1)) = {1 = C%, 1 — (¥}
for1 <qi<ek. ]
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Since 1 — (§; is an N-unit for all ¢ # 0 mod N and the map Ko (Z[un,1/N]) — Ko(Q(un))
is an injection, we have the following corollary.

COROLLARY 4.2.5. The cocycle ©y takes values in Ko(Z[un,1/N])/Zy.

Remark 4.2.6. One could use Remark 3.3.5 to avoid the explicit formula in proving this corollary
(assuming the same expected property of integral motivic cohomology), since pullback by (1, (x)
defines a morphism Ky/7(N) — K2(Z[un,1/N]), where Ky /7(N) = Ky /7 N Ka(N).

In fact, we can do slightly better.

LEMMA 4.2.7. If N is divisible by two distinct primes, then Oy takes values in Ko(Z[un])/Zn-
Otherwise, its restriction to I'1 (N') does.

Proof. Fix a prime ¢ dividing N. Let F; denote the residue field at a prime of Q(uy) over ¢, and

consider the tame symbol map
1
6¢: K <Z {MN, N])/ZN — FJf

of (2.4). The common kernel of the maps d; is Ko(Z[un])/Zn. Thus, it suffices to see that d; 0 O n
is trivial on the congruence subgroups of interest.

Suppose first that N is divisible by two distinct primes. For any prime p | N with p # ¢, we
have that T'o(N) C Tg(p), so there exists a p-connecting sequence (b;, d;)¥_, for any € To(N).
But then each 1 — Q‘f} is a unit locally at primes over ¢, so dp({1 — ]‘f;', 1-— C;,di_l}) vanishes. By
Proposition 4.2.4, we then have 6,(Ox,) = 1, independent of /.

Next, suppose that N is a power of a prime ¢. Given v = (g Z) € fg(N), there exists an

{-connecting sequence (b;, d;)¥_, for v. Then each 1 — Cﬁ}' has valuation 1 at (1 — (x), so

J 1— C—di—l
Se({1— ¢ 1=y ') = ———2— mod (1 — (),
1—-Cy
which reduces to d;_1/d; in F,. Proposition 4.2.4 then yields that §(0,) = det(y)d~! mod ¢,
which is trivial if v € T'1 (V). O

4.2.2 Hecke equivariance. We next consider the Hecke equivariance of Oy . Let us set
b = <{—2’1, —22}> C Ky

for simplicity, which we also view as a subgroup of H?(G?2,,2). Over the next few lemmas, we show
that the class of © in H'(GLy(Z),Ks/®) is annihilated by all of the operators Ty — ¢ — [{]* for
odd primes /¢, as well as by 2(T» — 2 — [2]*), in order to show the analogous Eisenstein property
of ©y in Theorem 4.2.11.

LEMMA 4.2.8. For any finite index subgroup T' of To(N), the inclusion Ko(N) «— Ky/® induces
an injection on H* (T, —).
Proof. From Gysin sequences, we see that there is an exact sequence
0 — Ka(N) — Kg/® — P k(D)*, (4.11)
seD

where the sum ranges over divisors D containing s. The lemma follows if we know that the finite
index subgroup I of To(IV) has trivial invariants on the right-hand group.

We claim that the orbit of any divisor D containing (1,(y) on G2, under GLy(Z) is infinite,
so no element of the direct sum can be fixed by the finite index subgroup I'. Such a divisor is
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the vanishing locus of an f € Q[zfﬂ, zQil] that is unique up to units, that is, up to some cz{zg
with ¢ € Q* and i,j € Z. Define the support supp(f) of f to be the set of (a,b) € Z? for which
the coefficient of 2¢24 is nonzero. Note that |supp(f)| > 2. For any hyperbolic element v € T, the
diameter of supp(f)y™ increases without bound as n — oo. In particular, supp(f)y™ cannot be
a translate of supp(f) for sufficiently large n, and therefore Dy™ # D for all n > 1. O

LEMMA 4.2.9. The kernel of the map on H'(GLy(Z),—) induced by the quotient map
Ko /® — Ky is 2-torsion.

Proof. Recall from Corollary 3.1.2 and Lemma 4.1.2 that H?(G?2,,2) is the direct sum of sub-
groups generated by symbols of the form aUb, (—z1)Ub, (—22) Ub, and (—z1) U (—22) with
a,b € Q*. Tt follows that, as a Z[GLg(Z)]-module, the group H?(G?2,,2)/® is a direct sum of
copies of modules A and W ®z A with A having trivial GLy(Z)-action, where W is the group
7?2 endowed with the standard left GLa(Z)-action.

By the universal coefficient sequence (which is split), it is then enough to verify that the
groups H1(GL2(Z),Z) and H;(GL2(Z), W) for i € {0,1} are 2-torsion. In fact, H;(GL2(Z),Z) =
GLo(Z)2> = (7/27)%. Since SLy(Z) acts transitively on W — {0}, the coinvariant group
Ho(GL2(Z), W) vanishes, and H;(GL2(Z), W) is a quotient of H;(SLa(Z), W). It then suffices
to show that the latter group is killed by 2.

The group SLy(Z) is an amalgamated free product of the cyclic 4-subgroup generated by
S = (_01 [1)) and the cyclic 6-subgroup generated by T = (% _01) over the 2-subgroup generated
by 0 = §? = T3. Thus we have a Mayer—Vietoris sequence

= Hi((S), W) © Hi((T), W) — H1(SL2(Z2), W) — Ho((a), W) — ---
The first two groups vanish because neither S nor T have invariants, and the last is (Z/2Z)%. O

LEMMA 4.2.10. The operator Ty —{— [(]* kills the class of © (respectively, 20) in
HY(GLy(Z),Ks/®) for £ # 2 (respectively, for { = 2).

Proof. Let 7y denote the class of (Ty — £ — [¢(]*)© in the latter group. Lemma 3.4.4 implies that
7¢ lies in the kernel of the homomorphism

f: HY(GLy(Z),Ky/®) — H'(GLy(Z), Ky)

of Lemma 4.2.9, so is 2-torsion. In particular, we have the statement for £ = 2.

This kernel of f is a quotient of H(GLy(Z), H*(G?2,,2)/®). By Lemma 4.1.2 and the decom-
position (4.3), the latter group is a direct sum of subgroups on which every [m], acts by one of
the scalars m and m?. In particular, 7, is killed by any operator

€= Z am[m]«
m=1

with a,, € Z and Y. may, =Y. m2a, = 0.

Next, let us note that the actions of Ty and [m]. on H!(GLy(Z),Ks/®) commute if £ {m,
since by Lemma 2.1.1 the trace map [m], commutes with the pullbacks used in the definition of
T, for ¢t m. Consequently, 74 is fixed by each such [m],. Therefore, so long as the a,, are zero
for m not prime to ¢, the operator € above acts on 74 by the scalar > a,,, and we conclude that

> am - 7 = 0 for a,, as above such that a,, = 0 if £ divides m. Taking a1 = —az = 3ag = 3, we

see that 7y is zero for £ > 5 as desired. Taking a4y = 1, as = —6, and a; = 8, we see that 373 = 0,

which is sufficient as 273 = 0 as well. ]
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Let Ag(N) be the monoid of matrices with lower-left entry divisible by N and lower-right
entry prime to N; see (4.6). For a prime £ and g = (*,) as before, we let Ty = T'(g) for £ N,
with T'(g) as in §3.4.

THEOREM 4.2.11. For primes ¢ not dividing 2N, we have
T,©n = ({+00)ON
in HY(To(N), K2(Q(un))/Zn). If N is odd, we have 2(Ty — 2 — 02)Ox = 0.1

Proof. In Lemma 4.2.10, we proved that for £ 1 2N, the cocycle (T — ¢ — [¢]*)© is cohomologous
to zero when considering O as a GLa(Z)-cocycle with target Ko/({—z1,—22}). For £{ N, the
elements g; of (3.6) lie in Ag(V) and still provide left coset representatives of To(N) (¢, )To(IN).
By Lemma 4.2.8, the class of (1Ty — ¢ — [¢]*)© then remains zero when © is considered as a
To(N)-cocycle with target Ky(INV).

Moreover, the map s*: Ko(N) — Ko(Q(un))/Zy is equivariant for the action of Ag(N) in the
sense that 040 s* = s* 0§, where § = (¢}) € Ag(N); in particular, oy o s* = s* o [¢]*. Therefore,

s (Ty — £ [(11)0 = (T — £ — 0)On

is cohomologous to zero, as a cocycle with target in Ko(Q(un))/Zn-
The same argument goes through for ¢ = 2 if N is odd by multiplying everything by 2. [

4.3 Maps on the homology of X (V)

In this section, we compare our constructions with others in the literature. We show how the
cocycle Oy induces a map on the homology of the usual closed modular curve X; (V) over C,
which is to say the quotient of the extended upper half-plane H* by the congruence subgroup
[’y (V) of SLo(Z). This agrees with the map constructed independently by Busuioc [Bus08] and
the first author [Shall], which can be defined explicitly on Manin symbols on a slightly larger
homology group of X;(N), taken relative to some of its cusps. We show that this induced map
factors through the quotient of homology by an Eisenstein ideal away from the level, providing
a complement to a result of Fukaya and Kato [FK24] on p-parts for p | N that was a conjecture
of the first author.

4.3.1 Maps defined on Manin symbols. Let us suppose that N >4. Let Ci(N)=
['1(N)\P1(Q) denote the cusps in the modular curve Xi(N), which is taken over C in
this section. For a, 3 € P1(Q), let {a — 3} denote the class in the relative homology group
H(X1(N),C1(N),Z) of the geodesic in H* from « to 8. If a and ( are equivalent cusps, then
{a — [} lies in the homology of X;(N).

Let us set

¥={0—~-0} € Hi(X1(N),Z)
for v € I'1(IV). This class is independent of the choice of element 0 € H*, and there is a
commutative diagram

Fl(N) e Hl(Yl(N)

m

)
HI(XI(N)aZ)

10 In fact, one can verify by explicit computation that at least the restriction of (To —2—02)OnN to I'1(N) is
trivial.

2434

https://doi.org/10.1112/S0010437X24007322 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007322

EISENSTEIN COCYCLES IN MOTIVIC COHOMOLOGY

where the horizontal and vertical arrows are the standard maps, and all three maps are
surjections.

For an abelian group M with an action of complex conjugation, we let M, denote the
maximal quotient on which complex conjugation acts trivially.

PROPOSITION 4.3.1. There is a unique (Z/NZ)* -equivariant homomorphism
Iy: Hi(X1(N),Z)+ — Ka(Z[un))/Zn.
that sends the image of ¥ to O for all v € T'{(N).

Proof. Since the action of To(N) on Ka(Q(uy)) is trivial on I'y(N), the restriction of Oy to
[’y (N) induces a (Z/NZ)*-equivariant homomorphism

H\(Y1(N),Z) = H\(T1(N),Z) — K> <Z [MM ;,})/ZN, (4.12)
where d € (Z/NZ)* acts by diamond operators on the first term and by the Galois element
oq with o4(¢n) = Cff, on the last. This homomorphism actually takes values in the subgroup
Ky (Zlun])/Zn by Lemma 4.2.7.

The composition in (4.12) factors through Hy(Y1(N),Z) — Hi(Y1(N),Z), since it is invari-
ant by the natural action Q := I';(N)/T';(N) on the left-hand side. This Q is a group of order 2,
and its nontrivial element acts on Hy(Y1(N),Z) by complex conjugation z — —Z.

Finally, the composition in (4.12) also factors through Hy(Y1(NV),Z) — H1(X1(N),Z). That
is, the cocycle Oy is a coboundary, hence trivial, on all parabolic subgroups of I'1(N), which
are right stabilizers of nonzero elements of P!(Q). These parabolics are also left stabilizers of
elements of P'(Q) inside H* and thereby generate the kernel of 'y (N)* — Hy(X1(N),Z). O

Let C9(N) C C1(N) denote the set of cusps not lying over co € I'o(N)\P}(Q). Given u,v €
Z/NZ with (u,v) = (1), let

il = {5 - 21 =200 o),

where (¢%) € SLy(Z) with (u,v) = (¢,d) mod NZ?. These Manin symbols for u,v # 0 generate
the relative homology group Hi(X1(N),C?(N),Z). In fact, this group has a presentation on the
Manin symbols with relations

[u:v]=—[-v:u] and [u:v]=[u:u+v]+ [u+v:v], (4.13)

the latter for u # —v (cf. [FK24, 3.3.7] and [Shal8, §5.4]). It also has an action of diamond
operators (j) for j € (Z/NZ)*, given explicitly by
(D v] = [ju: jo].

Let us set Z' = Z[1/2]. In general, for an abelian group M with an action of complex con-
jugation, let us use m4 to denote the image of m € M in (M ®z Z')+. The presentation of
H{(X1(N),C?(N),Z')+ as a Z'-module on the generators [u : v]; has the additional relations
[u:v]y =[—u:v]; for all u,v # 0.

The following construction is due to Busuioc [Bus08] and the first author [Shall,

Proposition 5.7]. We give a proof that also gives some idea of where it becomes necessary to
invert 2.
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PROPOSITION 4.3.2 (Busuioc, Sharifi). There is a (Z/NZ)* -equivariant homomorphism
(€] o 1
Mys (), CEN). 20 = (Ko (2] | ) 922) - fes o (1 Gt = G
+
Proof. For «, 8 € Zlun,1/N]*, we denote by {«a, §}+ the projection of the Steinberg symbol to
the group (Ka(Z[un,1/N]) ®z Z') . Since we kill 2-torsion, we have
{-1 o}y ={¢n,Cn}+ =0 (4.14)
Now take z,y € pun — {1}. Then

_ _ (4.14)
{1 - xvy}—‘r = %({1 - x?@/}-i- + {1 - 17y 1}+) = %{_way}-F = 07

where the first equality is from invariance under complex conjugation and the second uses bilin-
earity. Therefore, {1 — (%, 1 — (%} is invariant under changing the sign of either a or b, whence
the first relation of (4.13). The second relation of (4.13) follows from this invariance and

{(1—zl—a 'y +{l—ayl—y }={1-a1-y "}

for zy # 1, this equality holding without inverting 2 and taking quotients trivial under complex
conjugation. In turn, this follows from the relation {n,1 —n} = 0 with

1—2 1—y !
and 1—77:?%_1 n

77:l—nr:y

The restriction of II{, to Hi(X1(/NV),Z)4+ agrees with the map induced by our cocycle Oy.
The first statement in the following is due to Fukaya and Kato [FK24, Theorem 5.3.3] for p | IV,
after taking Z,-coefficients, and in general, a direct proof can be found in [Shal8, Lemma 5.4.1].
For us, the first statement follows from the second, as Il takes values in Ko(Z[un])/Zn by
Proposition 4.3.1 (following Lemma 4.2.7, which is related to the aforementioned results).

PROPOSITION 4.3.3. The restriction of II{; to Hi1(X1(N),Z); takes values in (Ks(Z[pun]) ®z
Z')+ and agrees with the composition of Iy with the quotient map from Ks(Z[un])/ZnN-

Proof. We may write any element of Hy(X1(N),Z) as 7 for some v € I'1(N). Let (b;,d;)*_, be
an N-connecting sequence for this v, so in particular (by,dp) = (0, 1) and (bg, dx) = (b,d). Then

7= {O - 2} = i {Z:i - ZZ} = Zk:[dz‘ tdia]t = i[di D —di—1]+

i=1 i=1 i=1

is sent by II3, to Zle{l - Cj'{;', 1-— C;,di’l}Jr. By Proposition 4.2.4, this sum is the image of
@N,f‘/ =1y (’?) U

4.3.2 Fisenstein property. For a prime ¢, we define the Hecke operator Ty (denoted by
Ugif £| N) on Hi(X1(N),Ci(N),Z) to be that arising from a right coset decomposition of
' (N) ( L, )I‘l(N). Its adjoint, or dual, T} is similarly the right Hecke operator for (z 1) (denoted
by U; if £ | N).

Remark 4.3.4. The operators Ty on relative homology are dual to the corresponding right coset
operators on compactly supported cohomology H!(Y;(N),Z), which project to operators that
agree with the (left coset) operators T, on H!(I';(N),Z) previously defined by Remark 3.4.2.
Note that Hi(X1(N),Ci1(N),Z) is the left I'y(IV)-coinvariant group of the group of degree
zero divisors in Z[P!(Q)] under the standard left (M(Z) N GL2(Q))-action. Thus, if we choose a
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set of right coset representatives for the double coset of (1 ,) and define T; on Z[P'(Q)] by the
sum of their actions, then this induces the Ty-action on relative homology.

The adjoint operators preserve the subgroup H;(X1(N),C{(N),Z), but the operators Uy
for £ | N do not. Let us consider the adjoint Hecke algebra

Ty C Endz(H1(X1(N), CY(N), Z)), (4.15)

which also acts on Hy(X1(N),Z). Inside this algebra, we have the prime-to-level and full
Eisenstein ideals

In=(T; —1—4{)* | €4 N prime) and Iy =1Iy+ (US—1|¢|N prime).
Since (¢)* = (¢)~! and T} = (€)'} for £1 N in T}, note that
TF —1—00)* = (0" HTy — £ — (£)). (4.16)

The first author has frequently floated the following conjecture that Ily is Fisenstein, so
factors through the quotient of homology by the action of Iy (or equivalently, that IIx(7Tz) =0
for all T € Iy and x € H1(X1(N),Z')+) and, moreover, induces an isomorphism on the quotient
by In.

CONJECTURE 4.3.5 (Sharifi). (a) The map Ily factors through a map
wn: Hi(X1(N),Z)y @1y, Ty/IN — (K2(Z[pun]) @2 Z') 4
(b) The map wy is an isomorphism.

Part (a) of Conjecture 4.3.5 is a stronger form of an earlier conjecture [Shall, Conjecture 5.8]
that the tensor product of Iy with the identity on Z, for a prime p | N is Eisenstein. The earlier
conjecture was proven by Fukaya and Kato in [FK24, Theorem 5.3.5].!! In fact, they showed the
following stronger result.

THEOREM 4.3.6 (Fukaya and Kato). For p | N, the map I}, ®z idz, factors through a map

1
@i (G (N), RV, 2, T/ I = (Ko (2w | ) 922, )
+

Though we expect that II3; is Eisenstein in general, the induced map @} is not always an
isomorphism. A special case of this conjecture is considered by Lecouturier in [Lec21, Conjecture
4.32] (see also Conjecture 4.33 therein, which follows from our Conjecture 4.3.5).

The proof of the result of Fukaya and Kato arises through a description of I as the compo-
sition of two maps: first, a Hecke-equivariant map zy that takes Manin symbols to cup products
of Siegel units (i.e., Beilinson—-Kato elements); and second, a specialization map induced by
pullback at the cusp 0. The proof of the Hecke equivariance of zy goes through a string of
Iwasawa-theoretic and Hida-theoretic constructions and the computation of a p-adic regulator.
Their result then follows from the fact that the specialization at zero factors through I}, and is
also trivial on the operators U; — 1 applied to Beilinson-Kato elements.

Though we do not use it to study Ily, we give a construction of a motivic version of the
map zy and prove its prime-to-level Hecke equivariance in §7.2. Instead, as a consequence of
what we have already done, we obtain a result over Z' for the prime-to-level Eisenstein ideal

1 In fact, the first author [Shall] constructed a conjectural inverse to wy ® idz, on most primitive eigenspaces
in the case pt ¢(N), and Fukaya and Kato proved an important result in its direction in [FK24].

2437

https://doi.org/10.1112/S0010437X24007322 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007322

R. SHARIFI AND A. VENKATESH

without any use of Beilinson-Kato elements.'? In fact, by Theorem 4.2.11, we have the following
result.

THEOREM 4.3.7. The map Il factors through a map

wn: Hi(X1(N),Z)1 @rs, Ty /Iy — K2(Z[un])/ZN-
Proof. From Theorem 4.2.11, we have that 7,0 x = (¢ 4+ 0/)On as homomorphisms from I'; (N)

to Ko(Z[un])/Zn. Since oy oIy = Iy o (¢) and noting (4.16), it suffices by Proposition 4.3.2
to check that

(T;ON)y = 1IN (T¥Y)-

For g = (%), we may choose left coset representatives of I'i(N )gFl(N ) as in (3.4) with
bottom-right entry 1 modulo N as follows: for 0 < j </, set g; = ( 1), and set gy = 5g( )
with § € To(N) having image ¢~! in (Z/NZ)*. These agree with the matrices in (3.6) aside
from gy. For the map IIy constructed in Proposition 4.3.1, for v € I';(IV), we then have

¢ l l
(TON)y =D 05)ONn, = D _Ons, = Y Tn(T))
j=0 j=0 j=0
where vg; = go(;)7; for o a permutation of {0,...,¢} and v; € I'1(N).
On the other hand, let h; = (e é)gj*1 be the adjoint of g; so that hj'y_l = 'y;lhg(j). Since

{a—=pt+{8—e={a—¢€}
for o, 8,€ € H* and {0 — p~' -0} = —ji for u € I'1(N), we have
4 L
Ty = =To{0 = 770} = =Y {10 — 7;  hy(;y0} = Z{h 70 = 75 tho(30} = D,
j=0 j=0
hence the result. 0

5. The an-cocycle via toric geometry

The aim of this section is to provide a different viewpoint on the above results and minor
improvements to some of them. We will describe a map

chain complex of S — Ko — K]

in the derived category of abelian groups with GLg(Z)-action. This map can be used to recover
the previous cocycle, and even lift it to K. Moreover, it allows us to outline the connection of
our results with equivariant motivic cohomology, as discussed in §1.2.3. The key point in the
argument is to utilize the behavior of K5 classes along the boundary of toric compactifications.

The geometric construction that we give is closely related to joint work in progress of the
second named author with Bergeron, Charollois, and Garcia (although that work does not
deal with K-theory, rather with differential forms). However, the viewpoint of this section is also
close to that taken by numerous other authors on related questions, among which we mention
Nori [Nor94], Sczech [Scz93], Stevens [Ste07], Solomon [Sol98], and Garoufalidis and Pommer-
sheim [GPO01]. Particularly relevant is a recent paper of Lim and Park [LP19], which completes
the work of Stevens and lifts a ‘Shintani cocycle’ to the ‘Stevens cocycle’ along a dlog map.

2 The unpublished manuscript [Ste07] of Stevens contains another approach through which it may be possible to
obtain this result.
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As with several of the named references, [LP19] works with cocycles for GL,(Q) valued in a
module of distributions; as such, it does not directly relate to the type of toric geometry that
we emphasize here but nonetheless seems very closely related to an infinite level version of our
construction.

At certain points one could proceed by symbols and relations, but we have tried to avoid
this. Our point of view would extend without complication to higher dimensions, for instance.

5.1 Residues on K5 of the function field of a torus

5.1.1 Some toric geometry. It will be helpful to proceed a bit more canonically. Let T' = G%n,
let X = X,(T) be the cocharacter group of T, and set Xp = X ®z R = R2. Fix an orientation
on Xpg, which in particular allows us to make the identification /\2X &7, for x,y € X, we
accordingly write x Ay € Z. Let X* = X*(T') be the character group of 7', and denote by

(VX xX*—17Z

the pairing that describes the composition G, — G,,.

Let us view the torus G2, as T' = Spec Q[X*], and let Q(T) be the function field of T For
each primitive A € X, let V), C X™* be the dual cone of characters which pair non-positively with
A. Let Q[V4] be the monoid algebra of V). Since each element v of V) is a regular function on T,
we have inclusions

QVA] = Q[X™] — Q(T).
In particular, the first inclusion induces an open immersion 7" — T), where
Ty = Spec Q[V3).

The toric variety T has the following properties, all of which are readily proven by choosing
coordinates.’® The limit Q) = limg_,o0 A(z) exists in the partial compactification T of T'. In
other words, the map t — A(t), considered as a morphism G,, — T), extends over oo € P'. The
complement Dy = T\ — T is a divisor on T}, and Q) belongs to this divisor. The vanishing order
of any x € X* along D), is given by —(}\, x). The stabilizer of @, under the torus action of 7' on
T) is precisely A\(G,,), and this provides a T-equivariant identification

Dy = T/A(Gy)

under which @) is taken to the identity. Moreover, any choice of € X with u A XA =1 induces
an isomorphism G,, &5 T — T /A(G,,,) which permits us to identify Dy with G,.

5.1.2 Residues of classes in K2(Q(G2))). We continue with the notation of §5.1.1. Our key
result, Proposition 5.1.1 below, describes the boundary behavior of classes in Ko of the function
field of T" along toric boundary divisors.

Let S! denote the circle, viewed as the quotient of Xg — {0} by positive scalings:

$' = (Xa — {0})/R,.

We shall identify points of S' with rays R,z C Xg for x € Xg nonzero (i.e., half-lines with
boundary the origin). A point in S is rational if it is the image of an element of X, that is, if
the associated ray passes through a point of X.

13 For instance, we may suppose that A is the cocharacter ¢ — (t71,1) of GZ,, that V3 is the set of characters
(21,22) — 2125 with ¢ > 0, and that T is the compactification A X G,
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PROPOSITION 5.1.1. Forx € K2(Q(T)), there is a locally constant functionn = n,: S* — ¥ — Z
with 3 a finite set of rational points, having the following property: if n is defined on the ray
R\, then the residue of k along Dy = G,, has the form ¢z for some scalar ¢ € Q*.

Proof. Tt is sufficient to analyze the case k = {f, g}, in which f and g are nonzero elements of
Q[X™], for such symbols generate Ko(Q(T)).
We may write any f € Q[X*] as a finite sum

= Z ay(f)x
XEX*

with a,(f) € Q. Let supp(f) denote the finite set

supp(f) = {x € X™ [ ay(f) # 0}. (5.1)
For a nonzero A € X ®z R, consider the function ¢ : supp(f) — R given by

ora(x) = (A X)

on x € supp(f). If ¢ » is injective on the finite set supp(f), then we let x ¢ » be the unique element
X € supp(f) maximizing (A, x). It is invariant under rescaling A by a positive real number. Letting
¥ denote the (finite!) collection of rays R4\ for which ¢y » is not injective, we then have a locally
constant function

St —%; — X*, Ryl xsa

Now fix a rational point of ST — % f, corresponding to the ray R\ for some primitive A € X,
and write

Xf=Xfx  ap =ay,(f), and vy =—(\ xy).

As above, vy is the vanishing order of f along T); it may be negative. Note that f - XJTI extends
to T, because for any x € supp(f), the ratio XXJTI has non-positive pairing with A. Since Xxfl
vanishes on D) for x € supp(f) with x # xy, the value of f - Xfl along T\ — T is the constant ay.

Now suppose that Ry ¢ X also does not belong to the set ¥, for g € Q[X*]. The image of
{f,g} in K1(Q(Dy)) is therefore the tame symbol given by

vf

vf
(_l)vagL _ Xg

i O

where ¢ is the constant (—1)"%sa,’ a?vg € Q*. The right-hand side defines a function on T,
constant on A(G,,,), which extends over T), and thus can be restricted to Dj.
Note that the value of Xzf X;vg € X™* on a cocharacter p is given by

{1, X 1) N Xag) — (N X s Xg) = (B AN (XF A Xg)-

Recall that we are identifying D) with G,, via any cocharacter pu: G, — T with u A A = 1; with
respect to this identification, the tame symbol above is identified with cz", where n = x ¢ A x4.
In particular, n = n()) is locally constant on the set S — X7 U3, of rays. g

Ezample 5.1.2. Take f=1—2 and g =1— z9. The sets supp(f) and supp(g) in (5.1) are
{0,(1,0)} and {0,(0,1)}, respectively. Then ¥y consists of the ray R, (0,1) together with its
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negative, and X is the ray R4 (1,0) together with its negative. For A = (a,b), we have

oo a0, 1) ifb>0,
X7 0 dta<o, =V b <o.

Therefore, if we choose the standard orientation where (1,0) A (0,1) =1, then n = x5 A xq4 is
given by the function

1 ifa>0andb>0,
(a,b) — :
0 ifa<Oorb<0,
which is to say, the characteristic function of the counterclockwise arc from (1,0) to (0,1) on S,
or equivalently of the first quadrant in R2.

5.1.3 Values on symbols. The map n of Proposition 5.1.1 can be described as a homo-
morphism from K5(Q(T)) to the set of locally constant functions on S!, defined on the
complement of a finite set of rational points. If we identify two such functions when they agree
off of a finite set, then the target becomes a group under pointwise addition, and the map n a
group homomorphism. Call this group Chy:

Chy = {Z-valued locally constant functions on S' — %, with ¥ C S(l@ finite}/ ~,
where ~ is the equivalence relation of agreeing off of a finite set.

Example 5.1.3. For any £,0' € S@, let [¢,¢'] be the counterclockwise arc from £ to ¢, which we
identify with an element of Chy via its characteristic function. (Thus, if £ = ¢/, then [¢, ] is the
zero element. )

Observe that the group Ch; has a presentation with generators the elements [¢,¢'] and
relations

[6,0") = [6,0] + ¢, 0] (5.2)

for ¢/ lying on the counterclockwise arc from ¢ to ¢’ (including both endpoints). Indeed, writing G
for the abstract group so presented, the homomorphism G — Ch; is readily seen to be surjective.
On the other hand, by recursive use of (5.2), any element of G can be written as a finite sum
> msla;, bj] where m; € Z and where the intervals are disjoint except at their endpoints, and
the condition of vanishing in Ch; then implies that the sum must be empty.

We can then reformulate Example 5.1.2 as saying that {1 — z1,1 — 22} — [(1,0), (0,1)] under
n. More generally, if 11, v, form a positively oriented basis of X (i.e., 1 A vy = 1), then

n: {1 —vi,1—-v3} — [Ryv,Ryvs, (5.3)
where v],v5 € X* are the dual basis elements.
Remark 5.1.4. For later use, we note that for any ¢1, s, 3 € S(é we have
[01,03] = [€1,02] + [l2, €3] — 0(€1,02,03), (5.4)

where 6 = 0 when /5 lies on the counterclockwise arc from ¢; to ¢3 including endpoints, and § = 1
otherwise. (In particular, [(1, 2] + [¢2,£1] = 1 unless ¢; = ¢5.) Note that it follows from this that
J satisfies the (homogeneous) cocycle relation

3(l1, o, 0l3) — (Lo, 2, l3) 4 0(Lo, L1, l3) — d(Lo, 41, ¢2) = 0. (5.5)
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5.2 Comparison of chain complexes

We continue to suppose that 7' = G2,, providing an identification X = Z2. The right automor-
phism group of 7' is an algebraic group which, consistent with our prior conventions, we consider
as acting on the right on 7'. By functoriality, we obtain the usual right action of GLg(Z) on X
regarded as row vectors.

5.2.1 Alternate description of the chain complex for S*. The group Ch; introduced above
fits into a chain complex that computes the homology of S*.

LEMMA 5.2.1. Let Chg be the group of finitely supported Z-valued functions on the rational
points of S', and define V: Chy — Chg via

V()= f@7) - f@™),

where f(z1) (respectively, f(x™)) is the limit of f(y) as y approaches x clockwise (respectively,
counterclockwise). Then there is an isomorphism

[Chy Y, Cho] = Chains,(S")

in the derived category of Z[GLg(Z)]-modules, where Chains,(S') denotes the singular chain
complex of S*. Here, the left GLy(Z)-action on both sides is induced by the right GLa(Z)-action
on X.

Proof. Indeed, the complex
- — Chainsy(Sh) %, Chains; (S1) 4, Chainso(S!) — 0

of singular chains is quasi-isomorphic to its truncation coker(ds) — Chainsg(S'). There is an
obvious injection Chyg — Chainsg(St), as well as a GLg(Z)-equivariant map Ch; — coker(da)
which sends [¢,£'] to the singular simplex [0,1] — S that proceeds at constant speed from £ to
¢'; to verify this is well defined, one just checks the relation (5.2).

Since

Ve l] =1y — 1y, (5.6)

these maps provide a morphism of complexes. To see that is a quasi-isomorphism, note that

the homology of the complex [Chy Y, Cho] is Z in both degrees. That is, the cokernel of V is
generated by the image of any function that assigns a single rational point on S' the value 1,
and the kernel of V is generated by the constant function with value 1 in Ch;. These map to
generators of Ho(S',7Z) and Hy(S',Z), respectively. O

5.2.2 The motivic complex via toric geometry. For v € X primitive, let [R;v] denote the
characteristic function of the image of R v in S'. The indexing of symbols in the following
proposition differs from our prior indexing of symbols in K, which was effectively done by
characters, rather than cocharacters.

PROPOSITION 5.2.2. There is a morphism
f:[Chy — Chyp — Z] — [Ke — K; — K]
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of complexes of Z|GLy(Z)]-modules, where the right-hand complex K is the coniveau complex
computing H*(G?2,,2) of §3.2. More explicitly, there is a commutative diagram

Chy v Cho g—>_p 9(P) 7
lf2 lfi lfo
K (Q(T) —2= @p K1(Q(D)) —— @, Kolk())

where fy(1) =€ (asin §3.2),

A(Ry]) =1 -2,

where v € X is primitive and v': v(G,,) — G,,, denotes the inverse of v, and
Fo[Revi Byvg)) = {1 — v, 1= v} (5.7)

for v1,v9 € X with v1 Ave =1 and vi,v; € X* the dual basis to vy, vy. Moreover, fa sends the
constant function with value 1 to the symbol {—z1, —z2}.

Proof. 1t is clear that unique fy and f1 exist having the specified values and that the right-hand
square is commutative. For the GLg(Z)-equivariance of fi, we compute

A6 Rev]) = ARy ™) = 1= (7 DDy = v Ai([R11)),
where, on the right, v acts as usual by pullback of the right I'-action on T'. Since V is injective, it
remains only to construct fs satisfying (5.7), and to verify that the left-hand square commutes.
Observe that if v, vy € X = 72 satisfy 11 A vo = 1 and have dual basis v§, 45, then by (2.4),
we have

{1 — 51— 13} = (1 —vh) ey — 1= 1)) (5.8)

which, together with (5.6), shows that the left-hand square formally commutes on
[Ryvq, Ryvs] € Chy, given the property (5.7).

Let Symb, be the subgroup of K3(Q(T)) generated by all symbols {1 —vj,1 —v5} with
vy € X*(T) and v1 Avp = 1. Then by (5.3) we have a commutative diagram:

16) % *
Symby, % @p Ki(k(D))  {l—vi,1—v5} — 1 =)@ — 0= vDln@m

prop.m.lln T I |

Chl L) Cho [R+V1,R+I/2} — [R+V2] — [R+V1]

We claim that the map n of Proposition 5.1.1 restricts to an isomorphism Symb, — Chj.
Once this is proved, it follows from (5.8) that we can take fo to be the inverse of n.

By (5.3) again (and the Euclidean algorithm), the image of n on Symb, contains all [¢, ¢'], so n
is surjective. For injectivity, take k € Symb, with n(x) = 0; then the diagram shows that 0k = 0.
It follows, then, that k lies inside the image of H?(T,2). Since  is [m].-fixed by Lemma 4.1.3,
it follows from Lemma 4.1.2 that x is a multiple of {—z1, —22}. But as in Example 5.1.2, the

symbol
1—21 1—22
—Z1, —& = 1> —
{== 2} {l—zl1 1—221}

maps under n to the sum of the characteristic functions of the four (strict) quadrants of R?,
which agrees in Ch; with the constant function 1. Therefore, fa(1) = {—21, —22}, and k = 0. O
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Remark 5.2.3. The morphisms f; are degreewise injective, and the image of f is the symbol
complex Symb of §3.2 and Remark 4.1.5. By said remark, the complex [Chy — Ch; — Z] is
thereby quasi-isomorphic to the fixed part of the small complex k under the trace maps of §4.1.

5.3 The cocycle and Laurent series
We relate our discussion to an invariant of rational cones that has appeared in the literature,
and we recover the cocycle © from the considerations of the prior subsection.

5.3.1 Connection to cocycles valued in Laurent series. We use ‘exponential coordinates’ near
the identity. That is, given the coordinate functions z1, 2z on G2, we introduce formal coor-
dinates w1, uz at the identity satisfying z; = e"“. For v = 2{"25 € X*, we then formally have
v = etz We will also regard the u; as being linear functions on the Lie algebra Lie(G2,)
via the isomorphism of formal groups

(G%,,1) = (Lie(G2,),0). (5.9)
Consider the composite map
6r,: Chy ELN K3(Q(G2,)) — {meromorphic 2-forms on G2} — Q((u1,uz)), (5.10)

where the second map sends a Steinberg symbol {f, g} to df/f A dg/g, and the third map takes
a meromorphic form w to w/(duj A dug) in the Laurent series field Q((u1, u2)), which we take to
be the quotient field of Q[uy, usa].
In particular, given v1, 5 € X with v1 A g = 1 and dual basis written as vf = M, 15 = e
(with the \; linear forms in the u;), we calculate 0y, on [Ryvq, Ryvs] as follows:
dvy A dvs 1
— .
1—vi 1-v; (1—eM)(1—e?2)
We then regard the last term as the element ZueZzoz\ﬁZzo)\z e # of (1/A1A2)Q[u1,us] C

Q((u1, u2)).

In fact we have the following lemma.

A2

[R+V1,R+l/2] = {1 - VT, 1— V;} —

(5.11)

LEMMA 5.3.1. Suppose that {1,0s € S* with {1 A £ > 0; then
HL €1,£2 Z (& . (5.12)

peX*

Proof. To verify this, we note that it is possible to choose a sequence (xi)fzo in X with {1 = Rz
and o = Ryxg and z; A ;41 = 1 for all 0 < ¢ < k and, moreover, with z; on the counterclockwise
arc from £ to /7.

We then apply (5.4) and (5.11) recursively to obtain

k—1
L([41, £2]) ZGL ([zs, zit1]) = Z Z et

=0 peCy

where C} is the dual cone to the cone spanned by w;,z;+1. Now it was observed by Brion
[Bri88, 2.4, Théoreme] (see [BP99, Prop 8.2(b)] for exposition and exact definitions) that the
rule associating a cone C to > pec e * is additive with respect to decompositions of cones into
subcones, and therefore the right-hand side is given by (5.12) as claimed. O

5.3.2 Recovering the cocycle ©: GLy(Z) — Ka. Now, and in the remainder of this section,
we also work with the left action of I' = GLa(Z) on S! via the rule v-R v := R,;vy~! where
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we continue to think of X as row vectors. (Equivalently, if we regard X as column vectors, then
~v € T acts by left multiplication by its transpose inverse.)

Set £ = Ry (—1,0) so that fi(£) is given by the function 1 — 2, on the subtorus {(z,1) |
x € Gy, }, which is to say the symbol (0, 1) of §3.2. Consider the function

0:T — Ky(Q(G2)), O(7) = f2([lo,7to])- (5.13)

Its composition with the quotient map to K is a cocycle by virtue of (5.4). In fact, this
composition coincides with ©, as Proposition 5.2.2 and (5.6) yield that the residue of ©(7y) is

9 fa([lo, vbo]) = [1(V([lo, 7o) = f1(1yey — 1ep) = (V" = 1) f1(lo) = (v" = 1)(0,1).
Ezample 5.3.2. Let us recover the formula for ©,, of Proposition 3.3.2, where v = (‘CL S) € I'. Here,
for v € X, we abbreviate R v by v. Given a connecting sequence (vi)fzo for v as in § 3.3, we can
write [(—1,0), (dety)(—d,b)] as a sum Zle[in,l, W] with W= (9 1) Now if 11 Avp =1,
then fo sends [v1, 2] to (—Wwe, Wry) in the notation of our previous section. So

k k
0(7) = fo([(=1,0), (det ) (=d, b)]) = Y fol[Wuvir, Wui]) = > (v, —vi1).
i=1 i=1
In effect, the notation of this section absorbed the negative signs by working with the character
group of G2, rather than its cocharacter group.

5.4 Lifting the cocycle
Let © be the cocycle of Proposition 3.3.1. The obstruction to lifting the class of © to K lies in
the torsion group H?(GL3(Z),Z). It follows that a multiple of © lifts. Here, we will show how to
write down an explicit lift of the restriction of 120 to SLg(Z) using Proposition 5.2.2.

To lighten notation, let us write fo(¢1,£2) for fo([¢1,42]) and 6Oy (¢1,¥02) for O1,([¢1,¢2]). By
(5.4) and the fact that fo(1) = {—21, —22} proven in Proposition 5.2.2, we have

fa(l1,€2) + fo(la, l3) — fo(l1,03) = 6(L1, L2, £3){—21, —22}, (5.14)
and therefore, by the definition (5.10) of 6y,
QL(fl, 52) + 0L(€2,€3) - QL(€1,€3) = 5(@1, 4o, 53). (515)

We will introduce a ‘correction’ term to 6y, to eliminate the right-hand side of (5.15).1% Here
is the basic idea in a primitive form that does not quite work. Suppose there were a reasonable
way to evaluate a value of 0y, at the origin (u1,us) = (0,0). Let 60 denote the resulting function
from pairs (41, ¢2) to Z, which again satisfies (5.15). Then by the latter property and (5.14), the
corrected function

fo(lr,02) = fo(ly,€2) — 00 (£r,2){—21, —22}

would be a homogeneous cocycle, that is, f}(¢1,02) + f5(l2,l3) = f5(¢1,¢3). Since {—z1, —22}
has trivial image in Ky, the resulting 1-cocycle v — f5(£o,v£o) would lift © from Kz to Ky, as in
(5.13).

We will not be able to implement this precisely as stated, but we will be able to do it after
replacing the role of the rays ¢;, {3 by elements of SLa(Z). To make sense of the evaluation of a
value of 61, € Q((u1,u2)) at the origin (ui,u2) = (0,0), we need the auxiliary data of the second
column of the matrices in SLy(Z); this allows us to take a limit as (uj,u2) — 0 in a specified
direction.

4 One can extract the correction term from the literature by computing explicitly with Dedekind-Rademacher
sums (compare Remark 5.4.2), but let us see how it comes out of our existing constructions.
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Elements in the image of f;, have the form L=!P, with P € Qu1,us] and L a product of
linear forms. Accordingly, we can unambiguously speak of its ‘degree zero’ component 9%, namely
pldegL) /L with PldegL) the homogeneous component of P of degree the degree of L. This degree
zero component is now valued in the rational functions Q(uy,uz2), or more intrinsically via (5.9)
as rational functions on the Lie algebra Lie(G2)).

For example, using (1 — e %)~! =271 +1/2 + 2/12 + O(2?), we deduce that the degree zero
component in (5.11) for vy, v, € X with v; A vy = 1 and dual basis v} = e, vj = €2 is given by

Hg(yl,l/g) = i—i—];(i;—i—i?) G@(ul,ug). (5.16)

Now given auxiliary vectors /4 and v/, that are linearly independent from v and vs respec-
tively, we define a regularized value of #;, by choosing a decomposition of 98(V1, vg) as a
sum

0F (v1,10) = A1 + As,

where A; is a homogeneous rational function in (w1, u2) with poles only along the image of v;;
that is to say, if v;(t) = (t**,¢%2), then A; has poles along the line spanned by (a1,as2). In the
example above, for instance, we may take A; = I+ & (A;/A2) and Ay = £5(X2/A1). We now
define

00 (1, v}, 10, 4) = A1 (1)) + As(1h) € S Z. (5.17)

Here A;(v]) means that if v(t) = (t*1,t%?), then we evaluate A; at (a1, a2). The decomposition
A1 + Aj is not unique, but it is unique up to the constant terms, so the right-hand side of (5.17)
does not depend on the choice of decomposition. We should regard this as a ‘regularized value
of 6 (v1,v2) at zero’, where v/} and v} are used to perform the regularization.

PRroroOSITION 5.4.1.

(i) There is a unique function ¢: SLa(Z) x SLy(Z) — 15Z which is left SLy(Z)-invariant and
satisfies

é(71,72) + ¢(72,73) — ¢(71,73) = d(7140, 7240, V3L0) (5.18)

for all v1,72,73 € SLa(Z).
(ii) For 1,72 € SLa(Z), set v; = Ry7;(—1,0) and v) = Ry~,;(0,—1) fori € {1,2}. If Rv; # Rus,
then'®

¢(71772) = 9104(’/17V{7V27Vé>'
(iii) The function SLy(Z) — Ka given by
v = 12f2(Co, vbo) — 126(12, Y){ =21, —22}

is a cocycle lifting 120|g,,(z) from Ky to Ko, where I denotes the 2 x 2 identity matrix.

Proof. For the uniqueness in (i), note that the difference between any two such functions ¢ is a
homogeneous cocycle. The group of such cocycles is H'(SLo(Z), 5Z) = 0, since the abelianiza-
tion of SLy(Z) is torsion. Part (iii) follows from the discussion at the beginning of the section,
the cocycle being well defined since 12¢ is Z-valued.

Take v1,72,73 € SLa(Z), and define v;,v] for ¢ € {1,2,3} accordingly, as in the discussion

preceding the proposition. If the lines Ryq, Rvg, Ryg are all distinet (i.e., not merely the rays,

15 One can also readily compute a formula in the other cases 11 = Fvs, but we do not do so here for brevity.
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but the lines themselves), then we claim that
9%(7/17 Via V2, Vé) + QE(VQ? Vév Vs, Vé) - 98(1/1’ V{) v3, Vi/i) = 5(R+V17 R+V27R+V3)' (519)
Let us denote the right-hand side of (5.19) more simply by 4. We are going to deduce
the equality of (5.19) from (5.15), replacing the role of ¢; therein by v;. Splitting 69 (v;,v;) =
A;; + Aj;, where A;; has poles along v; = 0 and Aj; has poles along v; = 0, the left-hand side of
(5.15) is
(A12 — A13) + (A21 + Azs) + (—As1 + Asz),

and since each of the three quantities in parentheses has a distinct polar locus, each must be a
constant ¢;, where these constants values add up to ¢; + ¢o 4+ ¢3 = d. A fortiori, the same is true
after evaluating each parenthesized quantity thus:

(A2 — A13) (1) + (Ao1 + Aoz)(va) + (—Az1 + Az2)(1v3) = c1 + 2 + 3 =,
which proves (5.19).

Define ¢ on pairs (v1,72) with Rvy # Ry by the formula in (ii). The identity (5.19) then
expresses precisely that the coboundary computation (5.18) is valid when the v; are non-
proportional. It also uniquely specifies a way to extend this ¢ to all pairs (y1,72): we just
choose 73 in generic position with respect to both of them and use (5.18) to define ¢(v1,72).

That this is independent of choice of 3 follows from the cocycle identity (5.5) for §. This proves
the remainder of (i) and (ii). O

Remark 5.4.2. The function ¢(I2, ) is closely related to the Rademacher p-function (see [KM94]
as a reference on the latter). We evaluate it in the generic case to illustrate this.

Suppose that the transpose inverse of v equals (’; Z ;) with ¢ > 0. To compute ¢(I2,7), we
must first of all compute 69 ((—1,0), (—p, —q)), recalling (ii) of Proposition 5.4.1. By (5.12), we
must compute the sum

Z e w22 (5.20)
(n1,n2)€Z2NC

where C' is the cone spanned by the dual basis (—1,p/q), (0,—1/q) to (—1,0), (—p, —q). Now

ZQHC’:{ (1 —)+ﬂ( >]5£pamodq, a,ﬁEZZO}.

Writing Ay = u; — (p/q)uz and Ay = (1/q)uz, we compute (5.20) as

E ali+6Ae __ E —1 E B—pa ali+Bh2 __ 71

‘ B e < ¢ >€ o Z —¢- pe)\l )(1 = Cer2)’
(a,,B)GZiO (a,ﬂ)EZio CEnq CEng
B=pa mod q -

All terms above except the term for ¢ = 1 are already regular at (0,0); the ¢ = 1 term contributes
i + %(Al)\gl + )\2)\1_1) by the same computation as (5.16), and thus the degree zero term equals

1(1 1 <)\1 /\2>> 1 Z 1
-+l + - —
g\4 12\ M\ q Cenat1} (1 — C)(l —C p)

The second term equals 1/4 — 1/4q + s(p, q), where s(p, q) is the standard Dedekind sum; see
[RGT72, (18a) and (33a)]. Noting that

A
qA2

d/e  _ _4q

A
=—= and 72 =—F
(-p—¢) P TP 1

(0,—1) q g1
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we get

1 Lp+qd o)
I = — _ — = —
P(12,7) 1 +5(p, q) B g T

il M

if ¢ > 0 by [KM94, Theorem 2.2].

5.5 Interpretation via equivariant motivic cohomology

Let us explain how the constructions of this section should be regarded as providing a class in
equivariant motivic cohomology, and outline how one recovers our cocycle directly from this.
Our construction is ad hoc; a suitable theory of equivariant motivic cohomology is not (to our
knowledge) developed in the literature.

To simplify our discussion, we take coefficients in Z' := Z[%]; all cohomology groups should be
understood with Z'-coefficients. Let Dr be the derived category of Z'[I'-modules for I' = GLa(Z).
Let K° be defined analogously to the complex K of (3.1), but taking Z'-coefficients and replacing
G2, by G2, — {1}; we grade it cohomologically so that it becomes supported in degrees [—2,0].
This complex computes the motivic cohomology of G2, — {1} with Z(2)-coefficients in degrees
[2,4]. With our grading, the motivic cohomology in degree 4 + i is the cohomology of K° in
degree i for i € [—2,0].

As a provisional definition of a particular equivariant motivic cohomology group, we set

HE(G2, —{1},2) = Homp,. (Z', K°[—1]).
Now K° does not compute the motivic cohomology of G2, — {1} in full, only its truncation to
degrees 2 and greater. In place of K°, a proper definition of motivic cohomology would employ a
complex (e.g. of Bloch or Voevodsky) which computes the full motivic cohomology of G2, — {1}.16
However, since I' has no cohomology in degrees greater than 2 upon inverting 6, the above would

be isomorphic to a more reasonable definition of equivariant H?3.
Let us produce a class in this Hf! Lemma 5.2.1 and Proposition 5.2.2 together furnish a map

h: Chains*(Sl) — K°[—1]

in Dr. Since Chains,(S!) has cohomology in degrees —1, 0, the standard action of I on S* induces
an exact triangle

Z!(det)[1] — Chains,(St) — 7/
in Dr, where (det) refers to twisting the action by det: I' — (—1). Had we taken Z-coefficients,
the resulting extension class in H?(T", Z(det)) would have been the equivariant Euler class of R?
(i.e., the Euler class of the vector bundle on the classifying space EGL2(Z)/GL2(Z) of GLa(Z)
given by (EGL2(Z) x R?)/GLy(Z)). On the other hand, since H*(I',Z/(det)) = 0 for i € {1,2},
there is a unique splitting in Dr,

Chains, (S') =2 7' @ 7/ (det)[1],
compatible with the above sequence. In this way, h splits into components h = h_y + h_3[1] with
h_; € Homp,.(Z'(det"™ 1), K°[—i]) for i € {1,2}. This h_ gives a class in H2(G2, — {1},2), and
the class of © should be (we did not check details) recovered via

HY(G, — {1).2) ™% BRQUE;,).2) = H' (I, K2Q(G).

where the last map comes out of a spectral sequence H'(T', H/ (Q(G2)),2)) = H%H(Q(an), 2)
computing equivariant cohomology in terms of I'-cohomology on motivic cohomology.

16 In fact, K° is the image of a morphism from a complex which does compute motivic cohomology, that is, the
total complex of a quasi-isomorphic truncation of the double complex underlying the coniveau spectral sequence.
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6. The square of a universal elliptic curve

In the present section we construct the big cocycles ,© of (1.5) for primes n { N. Here, the role
of G2, is played by the self-product &2 of the universal elliptic curve over a modular curve. As
in the Gy,-case, our analysis is based on a homological complex K in degrees [2, 0] that computes
the motivic cohomology H*~(&£2,2). Two key differences are as follows.

~ The motivic cohomology of &2 is more complicated than that of G2,. However, through the
theory of the Fourier—-Mukai transform, one can obtain a reasonable understanding of various
isotypical pieces under trace maps. We employ work of Deninger and Murre, taking care with
the coefficients.

— The complex K is not exact in degree zero (even after taking fixed parts). This has the
following consequence. In the G,,-case, we made use of an element e € Ky that is the class of
the identity of G2,. The analogue here arises from the identity section of &2, but this is no
longer a boundary from K;. The element e, € Ky that we use is supported on n-torsion for an
auxiliary integer n; see (6.7). The symbols we work with have correspondingly more involved
definitions but do satisfy the same relations as before.

The contents of the various subsections are as follows. In § 6.1, we give an integral refinement
of a result of Deninger and Murre [DM91] on the decomposition of the motivic cohomology of an
abelian variety into isotypical components for the action of trace maps, with a particular view
towards the fixed parts that we employ. In §6.2, we give an abstract construction of a cocycle
©7 as in (1.7) attached to a trace-fixed, GLa(Z)-invariant, degree zero formal sum Z of points.
In §6.3, we define our explicit symbols in the terms of the big complex and show that they are
trace-fixed. Section 6.4 contains the construction of the cocycles ,©. In §6.5, we consider the
compatibility of ,© with two types of prime-to-level Hecke operators, those acting on GLy(Z)-
cocycles and those arising from as correspondences on motivic cohomology. In Theorem 6.5.4,
we prove that the two resulting actions agree on the class of ,0.

6.1 Fixed parts via the Fourier—Mukai transform
Let Y be a smooth, separated, connected scheme of finite type over a field F' of characteristic 0,
and let A be a family of abelian varieties of relative dimension g over Y. Set d = dim Y.

Let Z' = Z[1/(2g + 1)!]. For any integer i, we set

H'(A,Z(g)) = H'(A,g) @2 7'

As in §2.3, there are trace maps [m]. on H*(A,Z/(g)). There are also pullback maps [m]*, and
since multiplication by m has degree m?9 on A, we have the relation
[m].[m]* = m%. (6.1)

We next prove that H'(A,Z/(g)) is the sum of its isotypic components for pullback maps.
(We are eventually interested in trace maps [m]. as these can also be defined for open sub-
schemes, but we will deduce such results from those on pullbacks.) The argument follows [DM91,
Theorem 2.19], with an appeal to the integral Grothendieck—Riemann—Roch of Pappas [Pap07]
to allow us to work over Z/.

THEOREM 6.1.1. For i € Z, each class o € H'(A,Z/(g)) is the sum of components o = iio Qs

where [m]*as = m?9~%ay for all m € N.
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Proof. Let AV be the dual abelian scheme that represents Pic?4 /v Let P be the Poincaré bundle
on A xy AY. We may form the Chern character in motivic cohomology:

2g+d e (P) 2g+d 1
er® = %" lr, c P B” <A Xy AV,ZM (r))-
r=0 ) r=0 .

Note that the powers of ¢1(P) beyond 2¢g + d vanish because they lie in a Chow group that is
evidently zero. Since (1 X [m]|*)P = P®™  we have

(1 x [m]")e1(P)" =m"e1(P)".
The diagram
AL Axy AV 2 4Y

provides a morphism defined on o € H'(A, Q(g)) by

F(a) = (ma).(ma U ea®),
known as the Fourier—Mukai transform. By its definition, .# breaks up as a sum of operators,
with the rth component .%, corresponding to ¢;(P)"/r!l. That is, F = fogd Z, where, paying
attention to denominators, we have

, : 1
Fri HY(A,Z(g)) — HF20) (AV, Z H <r>>.
7!
Any element of the image of .%, transforms under the image of each [m]* by m".
Now, let .#V be defined dually, with the dual abelian variety AV in place of A. For motivic

cohomology with Q-coefficients, Deninger and Murre show in [DM91, Corollary 2.22] that
FV o F = (-1)9[-1]* (6.2)

(for usual Chow groups, but the argument applies equally to higher Chow groups).!”

The use of rational coefficients in [DM91] is mandated not just by the denominators in the
Chern character, but by two applications of the Grothendieck—Riemann—Roch theorem (GRR),
both of which arise from [DM91, Lemma 2.8] and are used in the subsequent proposition. The
first and most consequential application is for the projection morphism AY xg A — A, and the
second is for the identity section e4: S — A.

Recall that GRR concerns the behavior of the cup product CT(¥) = ¥ Utd(Tx) of the
Chern character of a coherent sheaf & on a smooth quasi-projective variety X over F and
the Todd class of the tangent bundle Tx of X under pushforward by a projective morphism
f: X =Y, where Y is another such variety. For e the relative dimension, it says more precisely
regarding the degree 2r component that

CT, . (f.(94)) = f.CT,1e(¥4) € H*(Y,Q(r)).

By [Pap07, Theorem 2.2], GRR remains true integrally if F' has characteristic 0 upon inverting
the primes dividing (e +r 4 1)!if e > 0 and (r + 1)! if e < 0. In the two cases of interest to us,
we are concerned with CT, for r < g, and e = g and e = —g, respectively. In particular, both

17Tt may be helpful to note that (6.2) is not a formality as it is, for example, at the level of coherent sheaves.
After applying Grothendieck—Riemann—Roch to the coherent sheaf equality, one needs to verify certain equalities of
Todd classes; these classes vanish with rational cohomology over C because they arise from flat bundles, but these
arguments do not apply in the current setting. Rather, Deninger and Murre first show this [DM91, Proposition 2.13]
on H*(A,Q(g)) up to terms in cohomological degree greater than i. That equality holds on the nose follows from
the less precise statement without any appeal to the coefficients used.
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applications of GRR go through with coefficients in Z' = Z[1/(2¢ + 1)!]. Consequently, (6.2)
remains valid with coefficients in Z’, and we will use it, as such, in what follows.

Now let us return to equality (6.2), which we examine when restricted to H'(A,Z/(g)).
We may write .#" o.F = Z2g+d fi?;d F o F,, and by definition the composition %, o Z,
restricted to H'(A,Z'(g)), has image in H*T2(t=9)+2(s=9)(A, 7/[1/st!](s +t — g)). Therefore (6.2)
implies that each such term with ¢ + s # 2¢g must vanish. In other words,

2g

FV o Fliamigy =D Fogs°Fs = (=11 | micaz(g)):

s=0

where we now understand all the operators to act on motivic cohomology with Z/-coefficients.
Take o € H'(A,Z(g)), and apply .#" 0 .Z to o/ := (—1)9[—1]*a. Now (6.2) implies that the
result is a, so writing a, = .7y, F.o' € H'(A,Z/(g)), we have

2g
0= an (63)
s=0
Then [m]* acts as m29~% on ay for all m > 1, as required. O

We can now compute the fixed parts of motivic cohomology groups under trace maps for
integers relatively prime to a fixed positive integer n. Let N, denote the monoid of positive
integers prime to n. We consider the groups H*(A,Z'(g)) as Z'[N,]-modules for the trace maps.
For s > 0, set

H(A,9)® = {¢ € H(A,Z'(9)) | (jm]s —m*)€é =0 for all m € N,}.

PROPOSITION 6.1.2. We have a direct sum decomposition

29
=P Hi(4,9"
s=0

of Z'[N,]-modules, which is natural in A over Y. The group H*(A, g)\) is zero unless i = 2g,
and H*(A, g)© is naturally isomorphic to Z' as a Z'[N,]-module.

Proof. Write o € H'(A, 7 (g)) as a = 329 a, as in Theorem 6.1.1. It follows from (6.1) that,
for any prime £ { n, we have (£2975[(], — ¢?9)as = 0 for each s. For each 0 <t < 2g, let

29
o) =[] (0. —e)
o
so that ¢¢(£)a = ¢¢(€)ay. Then ¢y(¢) acts on oy by the scalar

I

s;ét
There exist primes /1,...,¢, not dividing n and cy,...,c, € Z' such that Z?:l cire(45) = 1.
(If p>2g+1, then p does not divide r4(¢) whenever ¢ is a primitive root modulo p.) The

element

]¢t ) € Z/[Ny,)] (6.4)

HM:
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then satisfies ¢¢(a) = a;. This element ¢; defines a projection of H*(A,Z/(g)) onto H'(A, g)®,
and therefore we have that H*(A4, g)® is a Z'[N,]-module direct summand of H*(A,Z(g)).
Suppose now that a € H*(A, ¢)®. Then a = ¢o(a) = ag. Referring to (6.3), this « is nec-
essarily of the form .7y By, where o € H'"?9(AY,Z'). Since H'"29(AY,Z/) = 0 for i # 2g, we
actually have o = 0 unless ¢ = 2g. For i = 2¢g, we have the canonical identification H°(AY,Z') &
Z', and 92vg carries 1 € Z' (up to sign) to the fundamental class of the zero section in
H?9(A,7Z/(g)). To verify the final statement, we have by (6.2) that %, carries the fundamen-
tal class of the zero section to a generator for H(AY,Z'). In summary, H?9(A,¢)© is a free
Z/'-module of rank 1, generated by the fundamental class of the zero section. ]

6.2 The abstract cocycles

Let us now specialize to the case of an elliptic curve E over a smooth, separated, connected
scheme S of finite type over a field F. We will apply Theorem 6.1.1 to A = E? over S. For the
remainder of this section, we set

7 =17[%].

Just as in the case of G,,,, we write down a complex computing the cohomology of E?. Recall
from Example 2.2.2 that the complex K given in homological degrees 2 to 0 by

K>k(E?) — @D K1k(D) — €D Kok(x),
D T

the sums being taken over irreducible divisors and codimension 2 points of E? respectively,
computes (from left to right) the cohomology H*(E?,2) in degrees 2 to 4.

Unlike the case of G2,, none of these cohomology groups of E? need vanish. However, by

Remark 2.3.3, the complex admits trace maps [m].. Set
KO ={a e Kz Z | ([p]« — 1)a = 0 for all but finitely many primes p}.

Then K@ can be regarded as the direct limit @n(nK(O)), over integers n ordered by divisibility,
of complexes ,K(© defined by the fixed part of K ®z Z' under all m € N,,.

LEMMA 6.2.1. The sequence 0 — Kgo) — Kgo) — Kéo) is exact.

Proof. 1t is enough to prove the same assertion for KO since the claim then follows by taking
the direct limit. In the following discussion, ‘fixed parts’, or a superscript ‘(0)’, refers to being
fixed under N,,.

Consider the exact sequence
0 — H2(E%,7/(2)) — Ky 2 ker(Ky — Ko) — H3(E2,Z/(2)) — 0

of Z/'[N,]-modules. The map on fixed parts induced by 95 is injective as H?(E?,2)©) is trivial
by Proposition 6.1.2.

Ify e anO) has trivial residue (i.e., dies in Kg), then it maps to H3(E2,2)(®) which equals 0
by Proposition 6.1.2. Thus, there exists x € Ko with 02(z) = y. For any m € N,,, since [m], — 1
annihilates y, the element ([m]. — 1)z lies in the kernel of 02. So, there in turn exists z, €
H?(E?,7/(2)) that maps to ([m]« — 1)z. Equation (6.4) provides an element ¢y € Z'[N,] that
projects H'(E?,7Z/(2)) onto its fixed subspace. For i = 2, the fixed part is trivial, so

(Im]« = D)oz = ¢o([m]« — 1) = ¢ozm = 0.
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In other words, we have ¢px € ano). Moreover, ¢g fixes any element of ,K

82(¢0x) = ¢0y =Y,

. 0
the sequence is exact at an ), O

go)’ S0 ¢oy = y. Since

Now there is a surjective degree map
deg: K(()O) — 7,

obtained by composing Kéo) — H*(E?,0)© with the isomorphism of the latter group with Z’
furnished by Proposition 6.1.

PROPOSITION 6.2.2. Let Z € Kéo) be a GLa(Z)-fixed class with deg(Z) =0 such that there

exists'® n € Kgo) with On = Z. Then there is a 1-cocycle

0%: GLy(Z) — Kgo), v 953
where @5 is uniquely characterized by the property that
7z *

Moreover, the class of ©% is independent of the choice of 1).

Proof. By Lemma 6.2.1, a unique @5 € Kéo) with residue (v* — 1)n exists. That the resulting

function ©7 is a cocycle follows just as in Proposition 3.3.1.
If e KEO) also satisfies 9’ = Z, then 1 gives rise to another cocycle ©’. By the left

exactness in Lemma 6.2.1, there exists ¢ € Kéo) with 91 =n —1'. The cocycles ©4 and ©
are cohomologous since @5 -0 = (v —1)y. O

Note that if we can also choose 1 to be fixed by a parabolic subgroup of GLg(Z), then the
argument of Proposition 3.3.4 implies that ©7 is parabolic (with the same meaning as in that
proposition).

In the remaining sections, we specialize to the case that E is the universal elliptic curve over
a modular curve Y7 (V). In this setting, we will proceed more computationally and produce not
only a particularly nice choice of Z (supported on torsion) but also nice choices of 1 entirely
parallel to the G,,-case. To do this, we first of all set up a class of natural symbols in K with
which we can compute.

6.3 Symbols
Fix an integer N > 4. We will work over the base scheme Y := Y7 (N) over Q whose S-points for
a Q-scheme S parameterize pairs (E, P) of an elliptic curve E//S and a section P of E[N] that is
everywhere of exact order N (i.e., the associated map from Z/NZ to E[N] is a closed immersion
of group schemes over S). Though we often omit N from the notation, it should be understood
throughout the remainder of this section that we are working at level I'y (V).

Our elliptic curve will be taken to be the universal elliptic curve & over Y. Let 7: & — Y
be the structure morphism. We shall write

E> =8 xy &

'8 We must assume the existence of n because it is not clear that the resulting sequence 0 — Kéo) — K(lo) — Kéo) —
7' — 0 should be exact at K.
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for the square of the universal elliptic curve over Y. We let 7;: &2 — & for i € {1,2} denote the
ith projection map.

It will often be useful to add auxiliary I'g(m)-structure to Y. For a positive integer m prime to
N, let Yy, denote the modular curve over Q corresponding to level structure I'y (N) N T'g(m). For a
@-scheme S, the points of Y,,(S) are equivalence classes of triples (E, P, K), where (E, P) € Y (S)
and K is an étale-locally cyclic S-subgroup scheme of order m.

6.3.1 Symbols on &. Fix a prime number n { N. Denote by &’ the pullback of & from Y to
the modular curve Y/ =Y,,. The curve &’ is equipped with a canonical cyclic subgroup scheme
J of order n.

We first define some auxiliary divisors and rational functions on &’ and & that we use to
construct our symbols in the big complex K. Note that any S-subgroup scheme G C E[n] of the
n-torsion of an elliptic curve E over a base variety S defines a class in H(E[n],0)(?). Namely,
G is a union of connected components of F[n], and we associate to G the sum of these components
considered in H(E[n],0); this is automatically [m].-fixed for m relatively prime to n.

— Set

6 =n0 =n%(0) — &n] € H(&[n],0)Y and & =8 =nH —&'[n] € H'(&'[n],0)),
(6.5)

Note that we have an exact sequence
0— HY(&,1) = HY (& — &[n], 1) — H*(&[n],0) — HX(&,1).
Since H%(&,1)©) 2 7/ by Theorem 6.1.1, and any element of H'(&£, 1) is necessarily an invertible
local constant, a variant of an argument of Kato [Kat04, 1.10]'? yields an exact sequence
0— HY(& — &[n), 1)@ 1% go(&[n),0)© L&, 7/ o,

where the degree map is surjective since the class defined by the zero section has degree 1 € Z/.
We also have the analogous sequence for &’. Since ¢ and 4’ have degree zero, we may make the
following definition.

— Let
0=,0c H(& - &M, DO and 0 =,0 € HY(&E — &'[n], 1)
be the unique ‘theta functions’ with divisors given by § and §’:
00 =6 and 00 =6, (6.6)
The morphisms Y’ — Y and & — &, as well as (£7)? — &2, where we write
(62 =& xy Y,

are finite étale of degree n + 1.2 Let us denote the norm (i.e., pushforward) maps on motivic
cohomology induced by these morphisms by N. Not only do these norms act only on the motivic
cohomology of &’, but by Lemma 2.1.3 they also give a map of complexes K' — K, with K’

19 Kato works with Z-coefficients but avoids n € {2, 3}. Uniqueness of a trace-fixed element with a given trace-fixed
degree zero divisor follows from H'(&,1)() = 0. Existence follows from the stronger statement that H'(&,1) =
HY(&, 1)(2) (see the proof of Lemma 6.4.3), the commutativity of trace maps, and the fact that the greatest
common divisor of all £2 — 1 for £ prime to n divides 24 € (Z')*.

20 This is the first point where we use that n is prime. Though it should be possible to extend our constructions
below to general n, from our point of view it would unnecessarily complicate the discussion.
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being the analogue of K for (£')2. For example, in the direct sum of zero K-groups of residue
fields of codimension 1 points on &, we have N(#) = &[n| + n(0) and N(&'[n]) = (n + 1)&[n].
(For the first, for example, the norm of ¢ gives on each elliptic curve fiber of & — Y the sum
of all cyclic subgroups of order n, which counts the origin with multiplicity n + 1 and all other
points with multiplicity 1.) Thus, we have

N(§') =nN(H) — (n+1)&En] = n?(0) — &[n] = 6.

6.3.2 Symbols on &2. We continue to fix an auxiliary prime n{ N. We are going to define
symbols (a, ¢), € Kgo) for primitive pairs (a,c) € Z? — {0} and (v), € Kgo) for v € GLy(Z) sat-
isfying relations identical to (3.2), but now with the degree zero element e in the G2, setting
replaced by a special GLy(Z)-fixed and trace-fixed cycle e, that depends on our choice of n. The
symbols, which also depend on n, allow us to give an explicit description of the abstract cocycle
©7 of Proposition 6.2.2 in the case Z = e,,.

As before, an element of A = My(Z)N GLy(Q) provides a morphism &2 — &2 over
Y via right multiplication. We denote by TX the operator on K given by the sum of
pullbacks by the representatives g; of (3.6) (replacing ¢ by n). While the operator T
depends on the choice of these coset representatives, its action on GLa(Z)-invariant elements
does not.

— In Kg, we form the element
en = n(n3(0) — nTK(0) + &[n)?). (6.7)
Here, we view H°(&[n]?,0) as a subgroup of Kq by the map taking a formal sum of irreducible
cycles in &[n]? to the corresponding element of the direct sum of copies of Z given by the

zeroth K-groups of those cycles. The element e, is GLy(Z)-fixed as a sum of fixed terms.?!
Note that e, = V.¥X(0), where

VK =nt —n2TK 4 nn)*. (6.8)

n
The element e, has degree zero as TK has degree n(n + 1) and [n]* has degree n%. We will
explain the significance of this particular choice of e,, in Remark 6.3.2.

— In Ky, we form
(1,0), =0X 60— N XE). (6.9)
The external product § X 6 here should be understood to mean the restriction of the function
T30 on & xy (& — &[n]) to the divisor defined by 7, !(8). This defines a class in the direct sum
of the multiplicative groups of function fields of the irreducible divisors composing &[n] xy &,
so also an element of Ky. Similarly, §' X 6" € K is the external product with respect to ()% =
&' Xy &'
More generally, we set

(a,c)p =~"(1,0), € Ky.

where v = (9 1Y) € SLy(Z) is arbitrary with first column (a, ).

— In Ky, we form
<<(1) (1)>> — 9RO —N(O'®E). (6.10)

Here, § X 6 denotes the Steinberg symbol {776,730}, and ¢’ K 6’ € K} is defined analogously.

21 To see this for TK(0), recall that left multiplication of g; by an element of GLa(Z) is right multiplication of
some g;s by an element of GL2(Z), and (0) is GL2(Z)-fixed.
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In general, for v = (2%) € GLa(Z), we set

(Y)n = 7*<<(1) (1]>>n € Ka. (6.11)

In Lemma 6.4.3, we will show that (a,c), is independent of the second column of v used in
defining it. For now, let us fix such a choice and show that our symbols are [m].-fixed for all
m € N,,.

LEMMA 6.3.1. The symbols e, {(a,c),, and (vy),, defined above satisfy
en € K(()O), (a,c)p € Kgo), and (y), € Kgo).

Proof. Let m € N,,. First, note that 4, 6, §', 8" are [m],-fixed, and therefore their exterior products
are as well (see Example 2.3.2). Since &’ — & commutes with the multiplication-by-m map [m],
the norm maps N in (6.9) and (6.10) commute with [m],. The Hecke operator TX in (6.7)
commutes with [m], in that each

gi
_ L2

2
| |
602

8j -
*j>é’2

for 0 < j <n is a cartesian square. Also, &[n]? and each g;(0) are [m].-fixed since [m] is an
automorphism of the corresponding subgroup schemes. It follows that all of the symbols are
[m].-fixed. O

Remark 6.3.2. Let us explain where the strange definition of e, in (6.7) comes from. The main
issue at hand is that one cannot find a function on & with a single pole at the origin, and
therefore (if one is to produce explicit formulas) one needs to choose a GLa(Z)-fixed element of
K(()O) somewhat carefully. We will sketch the important feature that this particular formula has.

Take a geometric point s of Y with associated elliptic curve F = &%, and fix a basis for E[n],
that is, an isomorphism of abelian groups E[n] & (Z/nZ)?. This then identifies E[n] x E[n] with
(Z/nZ)? x (Z./n7Z)?; regarding the two copies of (Z/nZ)? as the top and bottom rows of a 2 x 2
matrix, we may thus regard E[n| x E[n| = My(Z/nZ).

Using these coordinates, the fiber of e above s is the formal sum ), Ma(z/nz) Pn(M)M,

where
nt —n®—n?+n if rank(M) =0,
dn(M) =< n—n? if rank(M) =1,
n if rank(M) = 2.

In detail, this function ¢,, is the sum of three functions ¢9, ¢, and ¢2 corresponding to the three
terms in (6.7): ¢¥, arising from the term n*(0), equals n* in rank 0 and is otherwise zero; ¢.,
arising from the term —n2TK(0), equals —n? deg(T},,) = —n> — n? in rank 0 and —n? in rank 1;
and finally, 1(12), arising from the term nE[n]?, is simply the constant function with value n.
The significance of this particular function ¢, is that if we push it forward to a Z-valued

function on (Z/nZ)? along any of the maps
My(Z/nZ) — (Z/nZ)*

which come by taking the product with a fixed element of (Z/nZ)?, then the result is zero. This
characterizes it up to a scalar among GLa(Z/nZ)-invariant functions.
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Let us explain why this is a natural property to ask for. In the context of Proposition 6.2.2,
if one wants an explicit formula for ©% as an external product of theta functions, it is natural
to ask that Z be an external product of the divisors of those theta functions. In the coordinates
just introduced, these correspond to functions on Ms(Z/nZ) of the form ®(M) = f1(My) fo( M),
where M; and My are the rows of M and the f;: (Z/nZ)? — Z both satisfy > ze@mzy2 filx) =0.
If such a function @ is additionally GLg(Z/nZ)-invariant, then its pushforward to (Z/nZ)? along
any map M — vM with v € (Z/nZ)? is zero.

6.4 The explicit cocycle for n

We turn to the construction of our cocycle for a prime nt N and the verification of its explicit
formula in terms of the symbols of §6.3. Recall from § 3.3 that a cocycle is parabolic if it has
trivial image in the cohomology of all stabilizers of nonzero elements of Z? under the right action
of GLa(Z). Much as in Proposition 3.3.2, for v € GL2(Z) with columns v; and vy, we write
(v1,v2)y for (7). Recall also that we defined the notion of a connecting sequence in § 3.3.

THEOREM 6.4.1. Let n be a prime not dividing N.
(a) There is a parabolic 1-cocycle ,0: GLy(Z) — Kgo) uniquely characterized by
9(n04) = (7" = 1){(0, 1)y,

for all v € GLa(Z).
(b) For v = (2%) € GLy(Z) and a connecting sequence (v;)¥_, for ~, we have

k
nOy = (v, —vi_1)n. (6.12)
=1

In order to prove Theorem 6.4.1, we first compute the residues of our symbols.
LEMMA 6.4.2. The residue of (1,0),, is ey,.
Proof. By (6.6), we have
O0RO) =K =0K5 and (I XE)=§KY =§K,

where, for instance, d X § denotes the evidently defined external product. By Lemma 2.1.3, taking
residues commutes with norms, and therefore

9(1,0), = X6 — N(§' K ).
For the norm N corresponding to (&7)? — &2, we have
N(&'[n]?) = (n+1)&n)?, N B [n]) = En]* +n(0) R &), and N K.A) =T (0),

where each of the equalities is inside K°. (The final identity is a straightforward computation. See
the comparison of (6.17) and (6.18) in the proof of Theorem 6.5.4 below.) For §' = n.#" — &”[n|
as in (6.5), we then compute that

N’ R =n?N(# RH) —nN(# KE N]) —nNE [n]| KA+ N(E'[n]?)
= n2TX(0) — n%((0) R &[n] + &[n] K (0)) + (—n + 1)E[n]>.
Recalling that § = n%(0) — &[n] from (6.5), we have
SR =nt(0) —n2((0) ® &[] + &[n] K (0)) + &[n)?,
and we conclude from the formula (6.7) defining e,, that 6 X § — N(¢' X ') = e,,. O

2457

https://doi.org/10.1112/S0010437X24007322 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007322

R. SHARIFI AND A. VENKATESH

LEMMA 6.4.3. Let v = (%) € SLy(Z). The symbol {(a, ¢, = v*(1,0),, does not depend on the
choice of (b,d) in v, and its residue is ey,.

Proof. Since the residue map K; — Ky is GLy(Z)-equivariant and e,, is GLy(Z)-invariant, the
symbol v*(1,0) has residue e,, by Lemma 6.4.2.

For the first statement, it is enough to see that (§})" fixes (1, 0),. For this, recall that (1)
acts on points of &2 via the recipe (E, P, Q) — (E, P, P+ Q). Both (§1)7(1,0), and (1,0),, are
meromorphic functions on &[n| xy & with the same residue e,,. Moreover, they are both invariant
under all maps [m], with m € N,, by Lemma 6.3.1. They differ, then, by a regular function f on
&[n] xy & that is fixed under all such [m].. Now any regular function on &[n] xy & is necessarily
constant along fibers of the map & — Y in the second variable, and thus f is pulled back from a
function f on &[n]. Then the fact that f is fixed implies that ([m]f )m2 = f (where the exponent
m? arises from the degree of the map [m] in the second variable).

Now, if one takes m = 1 mod n, then [m] fixes &[n], and one deduces that f™ = f for such
m. In particular, the value of f at any complex point is an (m? — 1)th root of unity, so f is a
constant on both of the geometric components of &[n] (the identity section and its complement).
Since both of these components are preserved by every [m], we have me = f for all m € N,,.
Such a function necessarily satisfies f2* = 1, and the class it induces in H!(&[n] xy &,7/(1)) is
therefore trivial. m

LEMMA 6.4.4. Let v = (¢%) € GLy(Z). Then the residue of (v), is given by
D) = (a,c)p — (=b,—d),, Iif det(y) =1,
" (=a,—c)p — (b,d), if det(y) = 1.

Proof. We omit the subscripts n in this proof for brevity of notation, and handle the case
det(y) = 1, the other case being similar. By definition (2.4) of the tame symbol, we have

9ORO=5K0— 0K,

and similarly for # X6’ in K’. Taken together with the compatibility of residues with norms of
Lemma 2.1.3, these imply

a<<(1) (1)>>n:(me—am)—N(afmf—e'm').

We then compute

(—b, —d)y = <_Z Z) (1,00, = (Cc‘ 2) <01 é) (GE0 N R)).

0R5—N(6'K6")

The step under the braces follows readily from the fact that 6,4,6’,d" are all invariant under
[~1]*. We also used the fact that N commutes with (% §)”, which follows by Lemma 2.1.1. O

With the residues of the symbols attached to n computed, the main theorem follows as in
the case of G2,.

Proof of Theorem 6.4.1. The existence and uniqueness of ,,© in part (b) follow from Lemma 6.4.3
as in the proof of Proposition 6.2.2. That it is parabolic follows as in Proposition 3.3.4 from the
fact that v*(0,1), = (0,1), for v = ({2 ), again by Lemma 6.4.3. Part (c) then follows as

82?21 (vi, —vi—1)n = (v* — 1)(0,1),, by Lemma 6.4.4, as in the proof of Proposition 3.3.2. O
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6.5 Hecke actions

We study Hecke operators on the complex K arising from correspondences, and we compare
their action on the class of the cocycle ,,© with that of the previously defined Hecke operators
on group cohomology (see Lemma 3.4.1).

6.5.1 Hecke operators via correspondences. Let us define Hecke operators using correspon-
dences on &. We restrict ourselves to mth Hecke operators T/, for m > 1 prime to the level N.
We have a commutative diagram

@ﬁ&@@xYYmLéa

ln l(ﬂ:,id) lﬂ (6.13)

Y Y, —V sy

where the effect of ¢ and 1 on points is given by
¢o(E,P,K)=(FE,P) and ¢(F,P,K)=(E/K,P+K). (6.14)

The morphisms ® and ¥ are then defined on fibers by the identity on E for ® and taking the
image under £ — E/K for U. We also then have morphisms ®2 and ¥? sending &2 xy Yy, to
&?. All these maps are finite étale.

We define Hecke operators 7!, on the motivic cohomology of Y and &2 by the respective
rules

T' = ¢p* and T = O2(T?)*. (6.15)

We also have operators [m] acting on motivic cohomology of Y and &2, given by pull-
back under multiplication by m, that is, by the morphisms given by m(E, P) = (E,mP) on
points of Y and given on &2 by taking a point = in the fiber E? of (E, P) to the point mx
in the fiber E? of (E,mP).?? Note that the operators [m]" arise from diagrams of the same
form as (6.13), but replacing Y;, by Y, taking ¢ to be the identity map, and defining ¢ by
Y(E,P) = (E,mP). In this way, arguments given for T, will usually adapt to [m] without
change.

The reader might ask why we use the notation 7}, as opposed to T},. The point is this: when
we deal with cocycles

congruence subgroup of GLg(Z) — K-group of function field of &2, (6.16)
there are two reasonable definitions of Hecke operators (both of which preserve coboundaries).

— The fiberwise GLy(Z)-action on Ko(k(&?)) extends to an action of My(Z) N GL2(Q).
Therefore, we can define the mth Hecke operator T}, on l-cocycles valued in Ks(k(&?))
as in §3.4.

— The definition (6.15) also defines operators T/, on the K-group of the function field of &2.
This induces an operator on cocycles as in (6.16), also denoted by T,.

We note that the action of T, would exist if we replaced & — Y by any other family of
elliptic curves, whereas 7T requires that we work with the universal elliptic curve. The primary
result of this subsection, Theorem 6.5.4 below, is that the these two operators coincide on the
class of the cocycle ,,0.

22 In particular, while the operators [m]* arise from a fiber-preserving map over Y, the operators [m]’ do not.
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6.5.2 Hecke equivariance of the cocycle. We can also define Hecke operators 7T, : K; — K;
on the terms of K via ®2(W?)*. These give A-equivariant morphisms of complexes, where again
A= MQ(Z) N GLQ(@)

LEMMA 6.5.1. For each m > 1 prime to N, both T! : K— K and [m]': K— K are maps
of complexes which are equivariant for the pullback action of A for its right action
on &2.

Proof. The maps T), and [m] are compositions of étale pullbacks and finite pushforwards
(transfers) in the K-theory of fields, and as such commute with residue maps (see Lemma 2.1.3).
Thus T, and [m]" define maps of complexes.

The A-action on E? for an elliptic curve E is equivariant for the reduction £? — (E/H)? for
any finite subgroup scheme H, so (¥?)* is equivariant for the pullback action of A. The operators
[m]" are A-equivariant, in particular since multiplication by m commutes with the A-action on
E?. For ®, we note that

2
(g)znym L 52

[s s
E2xy Y, —2 . &2

is cartesian for any § € A in that the morphism ®? is flat and the identity on fibers. Therefore,
(®2), commutes with pullback by J, again employing Lemma 2.1.1. Thus, the Hecke actions and
pullback A-actions commute. O

For m > 1 prime to N, let us use TK to denote any sum of pullbacks by representatives of
the double coset of (m 1), as in §3.4. (The choice is unimportant, but there is a standard one.)

LEMMA 6.5.2. Let m > 1 be prime to N.

" on K commute with [u]. for all p prime to m, and in

(a) The Hecke operators T, and [m]
particular they preserve KO,
(b) The Hecke operators TX and [m]* on K commute with all [u], for yu prime to m, and in

particular they preserve KO,

Proof. The commutativity of [u], with the pushforward map ®?2 is automatic because [u] and
®? commute. To see the commutativity with (¥2)*, we note that

is a cartesian diagram, which in turn amounts to the fact that the degree m isogenies E —
E/K underlying ¥ (see (6.14)) induce isomorphisms on pu-torsion. Then we apply Lemma 2.1.1.
A similar argument applies to both [m]’ and [m]*, in that they are also isomorphisms on p-torsion.
Finally, the argument for TX has already been given in the course of Lemma 6.3.1. n

The action of A on the complex K provides Hecke operators Tj,, on H'(GLy(Z), Kgo)) for
m t N, following the recipe of §3.4 for the double coset of (m 1). The various Hecke operators
all commute with one another.

LEMMA 6.5.3. Every pair of Hecke operators in the collection of operators T,,, T, [m]*, and
(0))

[m]" for m > 1 prime to N commute with each other in their actions on H'(GL2(Z), K,
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Proof. First, note that these operators all act on H'(GLa(Z), Kéo)) since they (or, in the case of
T, the operators TK) preserve fixed parts by Lemma 6.5.2. Commutativity between operators
of the form T,, or [m]* is standard, as is commutativity between operators of the form T, or
[m]’ for various m. The operators [m|* already commute with the operators T, or [m]" on K by
Lemma 6.5.1.

Given a 1l-cocycle §: GL2(Z) — Ka, the cocycle T,,,0 is defined by the formula of (3.5) for
g=("1). It is a sum of terms of the form [6]*0(v’) with 7' € GL2(Z) and § € A. Any T, or [p]'
for ;1 € Ny commutes with each [0]* by Lemma 6.5.1, so also commutes with 7,,, on 6. O

We now proceed to the main result of this section, which unlike the preceding lemmas is not
a formality.

THEOREM 6.5.4. The actions of T; and T} coincide on the class of ,© in H'(GLy(Z), Kgo)) for
each prime ¢t N. The same is true for the actions of [(]* and [¢]'.

Proof. Let us say that a cocycle 0: GLa(Z) — Kéo) is associated to Z € K(()O) if 00(v) = (v* = 1)n

with n € KgO) such that On = Z. Recall that, by Proposition 6.2.2, any two cocycles associated
to Z are cohomologous. To show that the classes of T;(,0) and T;(,©) coincide, it therefore
suffices to show that Ty(,,©) and T;(,,©) are associated to the same cycle. Let us consider the
two cases:

— The cocycle Ty(,©) is associated to T} e,. Indeed, d(T}(0,1),) = Tfe,, as TS is a map of

)

complexes, and TZK<O, 1), belongs to Kgo by Lemma 6.5.2. Moreover, for v € GLa(Z), we have

(v = DTF0, 1) = O(T10),

exactly as in equation (3.8) in the proof of Proposition 3.4.4.
— The cocycle T;(,©) is associated to Tjey, since T;: K— K is a map of complexes that
commutes with the GLy(Z)-action by Lemma 6.5.1 and preserves fixed parts by Lemma 6.5.2.

We must therefore show that Téen = TgKen. We claim that it is enough to show the same
assertion but replacing e,, by the GLy(Z)-fixed class (0) € Kq. Indeed, e, = V;¥(0), with notation
as in (6.8), and T and VX commute in their action on the GLy(Z)-invariant subgroup of Ko,
whereas 7, and VX commute by Lemma 6.5.1 (noting V¥ is a sum of various pullback maps).

It therefore only remains to show that 7}(0) = T)(0). We will describe the fibers of T}(0)
and TeK (0) over a geometric point s of Y and show that they coincide.

— The fiber of T/(0) is the union of the kernels of all ¢?: E? — (E’)?, where E is the fiber of
& over s and ¢: E; — E’ is an f-isogeny. In other words, it is the sum of all K x K where K
is a cyclic subgroup scheme of E; of order ¢:

T;(0) =) K xK. (6.17)
K

— The fiber of TgK (0) above s is given by those points of E, in the kernel of some matrix g; as in
(3.6). Regarding j as valued in P!(FFy), the kernel of g; is the set of pairs (P, Q) € E;[¢]? such
that Q/P = —j (by which we mean that if we write j = a/b, then aP 4+ bQ = 0), and thus

TF0)= > {(P.Q) € El* | P/Q = j}. (6.18)

JEPL(Fy)

One easily checks that (6.17) and (6.18) coincide. For example, if we choose a basis to identify
E[¢] with F? and use this to identify E,[¢]> with My (F;) with the columns giving the coordinates,
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then (6.17) and (6.18) become identified with the formal sums of matrices with linearly dependent
rows and linearly dependent columns, respectively, in both cases counting the zero matrix with
multiplicity £ + 1.

Finally, to see that the classes of [¢(]*(,©) and [(]'(,,©) are equal, it is similarly enough to
show that [¢]*(0) = [¢](0). This is immediate: both amount to pullback of the zero section by
the matrix (§9), so equal &[(]?. U

7. Cocycles for modular curves

In this section, we pull back the cocycles of §6 to the modular curve via a torsion section.

As before, we fix N >4 and a prime n{ N, and we write Y = Y7(/NV) and & for the uni-
versal elliptic curve above Y. The surjection 7m: & — Y has a canonical N-torsion section
tn: Y — &[N]. In §7.1, we pull back the cocycle ,© of Theorem 6.4.1 by the section of
2. &2 — Y given by

s=(0,1y): Y — &2

We denote the result by ,0©5. In order to make sense of such a pullback, we must, as in the
case of G2, described in §4.2, restrict our cocycle to the congruence subgroup Lo(N) of GLy(Z)
defined in (4.4) to consist of matrices with lower-left entry divisible by N.

In §7.2, we describe modifications that enable us to obtain a universal cocycle Oy that
should be thought of as the ‘n = 1’ version of the construction; see Theorem 7.2.2. Much as
with theta functions, we do not know how to make sense of this on the universal elliptic curve,
but we can do so after pullback. The characterizing property of ©p is that it gives rise to
each ,0Ox upon application of the Hecke operator V,, = n* — n?T}, + n[n]* or its counterpart
V! =n*—n2T! +n[n)’. In §7.3, we prove an explicit formula for this universal cocycle Oy
modulo a subgroup that vanishes under standard regulator maps.

Finally, in §7.4, we construct the zeta map zy of (1.2) and compare with the prior work
of Goncharov, Brunault, and Fukaya and Kato. The map zy is constructed in Theorem 7.4.1,
where we show that it is Hecke equivariant and takes values in the motivic cohomology of X7 ()
(over Z[1/N]), as opposed to Yi(N). We also describe an integral, ordinary p-adic analogue in
Proposition 7.4.2.

We suppose that Z' = Z[35] throughout this section.

7.1 Specialization via an N-torsion section
In this subsection, we pull back our cocycles n© for primes n{ N via the N-torsion section
5: Y — &2 to obtain cocycles ,0On: To(N) — H%(Y,Z'(2)).

7.1.1 Comparison of Hecke operators upon restriction. As in the case of G2, the section s
is not defined on all of Ky but at least on classes ‘regular along s’. Writing

Ko(N) = lim  H*(U,Z(2)) C Ky,
(Z/NZ)* sCU

where U runs over the open Y-subschemes of &2 containing all prime-to-N multiples of the image
of s, we have a specialization map

s*: Ko(N) — H2(Y,Z'(2)),
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and similarly we can pull back by any prime-to-N multiple of s.23

Now, for vy = (2%) € To(N), we have in fact ,0, € Ko(N). Indeed, write U, = &2 — Sy, U
Snpna, that is to say, U, is the complement in & 2 of the kernels of the maps &2 — & defined by
(P,Q) — nQ and (P,Q) +— n(bP +dQ). Then 9(,0,) = (v* — 1)(0, 1), lies in H(Sp.n, 1) @
H 1(Snb,nd7 1)(0) inside K(lo). Since s and its multiples do not lie on either Sy, or Spp n4, it follows
that ,0, € H Q(Uw, 2). Moreover, the image of any prime-to-/N multiple of s is contained in U,
as N {d. In this way, the cocycle ,© restricted to To(N) takes values in Ky(N) C Ko.24

The operators Ty and T} act on H'(To(N), Kz) and lift naturally to H'(T'o(N), K2(N)). For
Ty, this is simply because the action of Ag(N), as defined in (4.6), sends the section s to a
multiple of itself and therefore preserves Ko(N). For T; = ®2(¥?)* as in §6.5.1, consider the
diagram

2 2
2+ 2y, 2 2

1wl

y 'y, ¥ Ly

and note that W2 preserves s, whereas the preimage of the image of s under ®? is again the
image of (s,id).

LEMMA 7.1.1. For primes £ { N, the classes of Tj(,0) and Ty(,©) coincide in H'(To(N), K2(N)),
as do the classes of [{]'(,©) and [{]*(,©).

Proof. Theorem 6.5.4 implies that 7;(,©) and Ty(,0©), as well as [(]'(,©) and [(]*(,0), are
cohomologous when considered with target Ks. So it is enough to check the following claim
regarding the inclusion Ko(N) — Ka:

for any H < Tg(N) of finite index, H'(H,Ky(N)) — H'(H,Ks) is injective. (7.1)

This injectivity will follow from the Gysin sequence analogous to (4.11) into which the above
inclusion fits if one proves the infinitude of all GLgy(Z)-orbits of irreducible divisors on &2 con-
taining the image of s. Such a divisor induces a divisor on the fiber E? of &2 over the generic
point of Y1 (). Restricting to this fiber, it is enough to prove that, for a non-CM elliptic curve
over a field K (in our case, the function field of Y1(N)) and an irreducible K-divisor D on E?,
the SLo(Z)-orbit of D is infinite. In fact, this is even true at the level of the Néron—Severi group:
by [RS17, Theorem 4.2], the Q-vector space NS(E?) ®z Q realizes the representation of SLy(Z)
on binary quadratic forms. In this representation, all nonzero orbits are infinite, and the class
of D in the Néron—Severi group is nonzero because its intersection with a suitable hyperplane
section is nonzero. g

7.1.2 Specialization of the cocycles. Through the right action of A = My(Z) N GL2(Q) on
&2, which preserves fibers, any § = (‘é Z) € Ag(N) acts on the N-torsion sections of &2 — Y.
This action of Ag(IN) does not preserve the section s. Indeed, let us agree to write points of &2
as triples ((F, P),x,y), where E is an elliptic curve and P is an N-torsion point on E (so that
(E, P) defines a point of Y') and x, y are points of E. With this notation, we compute J o s:

(E, P) > ((E, P),0,P) - (B, P),0,dP).

23 In the case of G2,, the point (1,(y) was defined over Q(un), whereas the subschemes U were defined over Q,
so the containment of (Z/NZ)* s for s € U(Q(un)) was automatic.

24 At this point, we have no further need for trace-fixed parts, but of course ,,© takes values in Ko2(N) N K(QO).
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This does not coincide with s o [d)', where [d]' for d prime to N is the diamond operator on
Y1(N) that sends (E, P) to (E,dP). Rather,

dos=¢; osold], (7.2)

where ¢4: &2 — &% sends ((E, P),z,y) to (E,dP),z,y).
Consider the action of Ag(N) on H?(Y1(N),Z(2)) whereby (25) € Ag(N) acts as [d]’, that
is, Ag(INV) acts through its lower right-hand map to (Z/NZ)*.

LEMMA 7.1.2. The restriction of the pullback map
s*: Ko(N) — H*(Y,Z/(2))
to the Z[Ao(N)]-span of the image of ,© on To(N) is Ag(N)-equivariant.
Proof. In fact, if x € Ko(IV) is fixed by ¢} with ¢4 as defined above, then by (7.2) we have
st 08" (x) = [d] 0 s* o (¢7")"(2) = [d]'s"(2).
Thus, we need only show that
$3(nOy) = nO,

for all v € To(N).

By the characterization of ,,© in part (a) of Theorem 6.4.1, it is sufficient to verify that
¢} preserves Kgo) and fixes (0,1),. It preserves Kéo) as the relevant diagram with ¢4 and [m] is
evidently cartesian, and it fixes (0, 1),, since the latter is ‘pulled back from level 1’; in particular,

it restricts to the same function on the fiber E? over (E, P) and (E,dP). O

Recall that T, acts on the group of cocycles To(N) — H2(Y,Z/(2)) as in (3.5) (where we
view H2(Y,Z/(2)) as a Z[A¢(N)]-module as above), preserving coboundaries, whereas 7} acts on
such cocycles through its action on the motivic cohomology of Y defined in (6.15). The foregoing
lemmas, taken together, have established the following proposition.

PROPOSITION 7.1.3. For y € Io(N), set

WON = 5°(,0,) € HA(Y.Z/(2)). (7.3)

(a) The map
2On: To(N) — HX(Y,Z'(2)), v+ nOn,

is a parabolic cocycle.
(b) For each prime ¢ { N, the cocycles Ty(,©n) and T;(,©n) are cohomologous.

Proof. For part (a), that ,Opy is a cocycle is clear from Lemmas 7.1.1 and 7.1.2. That it is
parabolic at all but the parabolic @ = {(%' ") | n € Z} follows from a nearly identical argument
to that of Proposition 4.2.1, using the parabolicity of ,,0 in Theorem 6.4.1(b) and the equivariance
of s* of Lemma 7.1.2. However, to see that ,,0Opx is a coboundary on the exceptional parabolic
Q, we argue differently. Since 2 is invertible in Z' and Q = Z x Z/2Z, it suffices to see that
nOn vanishes on the generator vy = ((1) *11) of the unipotent subgroup of Q. Using (6.12) for
the connecting sequence vy = (0,1), v; = (—1,1) for 79 and then applying (6.10) and (6.11), we
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obtain
nONn = 57 (n040) = 5" ({(=1,1),(0,—1))) = s"((3" °,)) (O R0 — N(¢' R 6")).
Since (( 7' %)) applied to the section s = (0, ¢y) gives (¢ty, —y), this becomes
en0 U (—en)"0 = N((ey) 0" U (—ey)"0),
where t/y: Y/ — (&”)? is the canonical N-torsion section and the norm is from Y’ to Y. The two
terms in the above expression vanish by the evenness of 6 and 6’ and the skew-symmetry of the
cup product with Z'-coefficients (cf. [MVWO06, Theorem 15.9]).

As for part (b), let £ be a prime not dividing N. By Lemma 7.1.2, we have s*1;(,,0) =
Ti(nOnN). Moreover, 13 P, ¥* = ¢,1p*1}y since in the diagram

& +2 gxyy, Y&

lNT (lN,id)T lNT

Yy« ' oy ¥V .y

the right-hand square commutes and the left-hand square is cartesian. The analogue for &2 then
holds with ¢ replaced by s, and therefore we have s*T;(,0) = T;(,©On) as well. Again recalling
Lemma 7.1.1, we conclude that the cohomology classes of Ty(,©n) and T,(,On) are equal. O

There is also a formula for ,©y  as a sum of cup products of Siegel units that follows in the
obvious way by specializing (6.12); we do not write it down here, but we will discuss its ‘n = 1’
analogue in the next section.

7.2 The universal ‘n = 1’ cocycle
The cocycle

nOn: To(N) — H2(Y1(N),Z'(2))

constructed above depends on the choice of an auxiliary prime n in addition to the level N. As
we shall detail, it satisfies a simple distribution relation in n that permits us to construct an
‘n = 1’ version rationally.

7.2.1 Relation between cocycles and statement of the result. Suppose that £ is a prime with
¢t N. Set

V) =0 —CT)+ 0[] and V, = — 2T, + ([4]".

As in § 6.5, the operator V;/ acts on K, and the operator V; acts on cocycles valued in Ky. (Strictly
speaking, the action of V; depends on choice of representatives for the double coset of (f 1 ), but
recall that we made a particular choice in defining 7y in §3.4.) For example, one has by (6.8)
the equality e, = V,,(0) in H%(GLy(Z),Ko). Beyond this, these operators act on several closely
related groups; for convenience, we summarize some of these actions and their relationships.

(i) As in the discussion prior to Lemma 7.1.1, the operator V; acts directly on Ky(NV), and V;
acts on H*(GL2(Z), Ka(N)).
(ii) Using double cosets of T'o(N) inside A¢(N), the operator V; acts on H(Io(N),Ky)
compatibly with the restriction map H'(GLy(Z), Ko) — H'(To(N), Kz).
(iii) As in Proposition 7.1.3, the operators V; and V; both act on H'(To(N), H*(Y1(N),Z'(2))).
The specialization map Ko(N) — H2(Y1(N),Z'(2)) is equivariant for both operators; this
is argued just as in the proof of said proposition.
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The ‘distribution relation’ between our cocycles is then as follows.
LEMMA 7.2.1. For any prime ¢ 1 N, the classes of Vy(,0On) and V,,(,©n) are equal.
Proof. The lemma follows by specialization via s*, noting point (iii) above, from the claim that
the classes of V;(,0) and V,,(,©) coincide, considered with target Ko(IV).

By (7.1), it suffices to prove this instead with target Ky. Noting point (ii) above, it is, moreover,
sufficient to prove the equality inside H'(GLa(Z), Ks) rather than H'(T'g(IN),Ks), and then, by
Theorem 6.5.4, it is sufficient to prove it with the V-operators replaced by the V’-operators.

But just as in the proof of Theorem 6.5.4, this is a consequence of the fact that V/e, =V, e, =
ViVa(0). 0

Let us state the main theorem of this section.

THEOREM 7.2.2. There exists a parabolic cocycle
~ 1
On: Ty(N) — H? <Y, VA [N] (2))

with class uniquely specified by the property that the classes of Vy(©y) and ¢©y are equal for
each ¢ not dividing N. Moreover, T,, and T, coincide on the class of Oy for all primes n{ N.

The proof requires the following statement about the ring-theoretic structure of the Hecke
algebra.

PROPOSITION 7.2.3. Set M = H2(Y,Z'[1/N](2)), and let Ty; be the subalgebra of the Z'[1/N]-
endomorphism ring of H(To(N), M) generated by all T, for primes £{ N and [d)' for d prime
to N. Then the operators V,, for primes n{ N generate T ;.

We will prove Proposition 7.2.3 in the remainder of this section. Namely, we will show in
Lemma 7.2.5 that the algebra Tjs is a quotient of the Z'[1/N]-Hecke algebra T of weight 2
modular forms for I';(N), with T mapping to T; and (d) mapping to [d]’, and we will show in
Proposition 7.2.6 that the V,-operators generate T. This last statement uses the structure of
Galois representations attached to level N eigenforms.

We now prove Theorem 7.2.2 assuming Proposition 7.2.3.

Proof of Theorem 7.2.2. To construct Oy, let us choose operators r; € Ty and primes n; ¥t N
for 1 < i <t for some ¢ such that >.'_, 7;Vy,, = 1. We then set Oy = >'_, 7:(,,,On), a parabolic
cocycle. By Lemma 7.2.1, we see immediately that, as cohomology classes, we have
t
Ve(On) =) 1V, (¢On) = (On.
i=1
Uniqueness follows as, if 0 is a cocycle with V,0 = ,©x as cohomology classes for all £t N, then
0= Zle riVp,0 = ©n. To show that T,, and T} coincide, it is enough by Proposition 7.2.3 to
show the same for V;T}, and V;T). This follows by Lemma 7.1.1 and the commutativity of the
two types of Hecke operators on H'(I'o(N), M), which is proved just as in Lemma 6.5.3. O

7.2.2 Normalizations of Hecke operators. Our conventions regarding Hecke operators on
cocycles differ slightly from standard conventions in the literature due to issues of left versus

right actions. We briefly describe the precise relationship, which will be useful in using results
about Galois representations.
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Let My(I'1(IN)) denote the complex vector space of weight 2 modular forms for I'i (V).
Elements of My(I'1(N)) are I'y(IV)-invariant functions on H for a natural right action on
functions, namely,

fla(2) = (cz + d) 2 f(y2)

for v =(2%) € SLy(Z). Similarly, elements of H'(I'y(N)\H,C) are represented by I'i(NN)-
invariant cochains on H, where we regard SLy(Z) acting on the right on cochains in a fashion
dual to its obvious left action on chains. Correspondingly, it is natural to consider right Hecke
operators on these two groups, as is usually done in the literature (cf. Remark 3.4.2); when
extending the actions above to M2(Z) N GL2(Q) we introduce an extra factor of det(v).

Let us consider the Hecke equivariance of the following two maps:

M (T'1(N)) — H'(C1y(N)\H, C) — H'(I'1(N),C),

where the first (due to Eichler and Shimura) sends f to f(z)dz and the second sends a cohomology
class to the cocycle that, given v € I'1(N), evaluates the cohomology class on the homology class
of an arbitrary path from z to vz (for an arbitrarily chosen z € H). These maps intertwine
the right Hecke T®(h)-actions on all three groups defined by a decomposition ['(N)h['{(N) =
]_[3»21 ['y(N)h;. For instance, T(h) is defined on differential forms as 3" j=1 I}, which is clearly
compatible with the sum of the actions of the representatives h; on a modular form.

Now take h = (1,) for £4N. The action of TF(h) on Mg(Fl(N)) is readily verified to
coincide with the Hecke operator denoted by T} by Edixhoven in [Edi92]. By Remark 3.4.2, the
corresponding operator on H!(I';(IV),C) can also be described as T'(h*) (now defined with left
cosets), and this operator T'(h*) = T((*,)) is exactly our definition of Tp.

For § € T'o(N) with lower right-hand entry d, the T(§)-action on cusp forms is the diamond
operator (d) (denoted by (d)* in [Edi92]). The T'(§~1) = T#()-action on a cocycle becomes
precomposition with the conjugation 7 +— 66! (since in this case t = 1 and y; = dy5~1).

7.2.3 Comparison of Hecke algebras for I'g and T';. Let us view modules for (Z/N7Z)*
having an action of A¢(NN) through the quotient map Ag(N) — (Z/NZ)* under which a matrix

is sent to its lower right-hand corner modulo N. Recall that I'; (V) is the analogue of I'; (N) for
GL2(Z) defined in (4.5).

LEMMA 7.2.4. Let R be a commutative ring, and let ¢ = R[(Z/NZ)*]. Then Shapiro’s lemma
defines an isomorphism

HYT4(N),0) = HY(T1(N),R)
that is compatible with the action of Hecke operators T'(g) as in (3.5) with g € A;(N). Moreover,

this map is (Z/NZ)*-equivariant for the action of d € (Z/NZ)* on the right by precomposition
by 7 + 676~ for any 6 € T'o(N) with image d in (Z/NZ)*.

Proof. Let us denote the image of a cocycle 8: Io(N) — R[(Z/NZ)*] under the Shapiro iso-
morphism by @: it is obtained by restriction of cocycles together with the map ¢: R[(Z/NZ)*] —
R that takes the coefficient of the identity element. For g € Ag(N) and v € T'o(N), equation (3.5)
states that T'(g)0(y) = 22':1 9o(j)0 (), recalling the notation of §3.4. If in fact g € A1(NV) (as

defined in (4.7)) and v € T';(N), then we may choose the representatives g; to also belong to
A1(N), in which case the ~; belong to I'1 (/V). We then have

t

T(9)0(y) =Y _ ¢(g0(0 Z 9o(n@00(1) =D 9o(50(13) = (T(9)0) (7).
j=1 j=1
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In particular, taking g = (5 (1)) exhibits equivariance for T}.
Finally, take d € (Z/NZ)* and a representative § € T'o(N). Then for v € T';(N) we get
(6-0)(7) = ¢(0(07071)) = 6(36()),
so the Shapiro isomorphism is (Z/NZ)*-equivariant. O

Now suppose 6 € R*, and let T denote the R-Hecke algebra of weight 2 modular forms for
I’y (V) generated by prime-to-level Hecke operators Ty and diamond operators ().

LEMMA 7.2.5. Let M be a R[(Z/N7Z)*]-module, where 6 € R*. We equip M with the action
of Ag(N) via the surjection Ag(N) — (Z/NZ)*. Let Ty; be the R-algebra of endomorphisms
of the cohomology group H'(Lo(N), M) generated by T,, for primes nt N and the elements of
(Z/NZ)*. Then there is a surjection

T — TM
carrying T,, to T,, and the diamond operator (d) to the action of d € (Z/NZ)*.

Proof. Write ¢ for the group algebra of (Z/NZ)* over R, which we view as a quotient of the
R-monoid algebra of Ag(/N) through the lower right-hand corner map. Then M is isomorphic to
a quotient of 0’ for some indexing set J. Since 2 is invertible in R, we have
H'(Iy(N), M) = H' Iy (N), M)+

(see the proof of Proposition 4.3.1), so T acts on H'(I';(N), M). Consider the composition

HY([y(N), R = HY(To(N), 6)® 7 — HY(To(N), M), (7.4)
where the first map comes from Shapiro’s lemma as in Lemma 7.2.4, and the cokernel of the
last map injects into H2(To(N), A), for A =ker(0®P7 — M). We claim that H?(To(N), A) is
zero, so that the composition in (7.4) is surjective. Since this composition is compatible with the
action of Hecke and diamond operators as in Lemma 7.2.4, we will then have the lemma.

To see the claim, note that the restriction map
H*(Ty(N), A) — H*(Io(N) NT'(4), A)

is injective since the index h = [[o(N) : To(N) NT(4)] is invertible in R, and the composition
of restriction and corestriction is multiplication by h. The target of restriction is a second
cohomology group of an open 2-manifold, hence trivial. O

7.2.4 The Vy-operators generate. The following result implies Proposition 7.2.3, in view of
the results of the previous subsection.

PROPOSITION 7.2.6. Let T be the Hecke ring for T'y(N) with Z'[1/N]-coefficients. The operators
V,, for primes n{ N generate the unit ideal of T.

Proof. Let v be the ideal of T that the operators V,, for n{ N generate. Suppose by way of
contradiction that v # T. Then T/v is a ring that is finite over Z/'[1/N] and admits a nontrivial
homomorphism to a field F' that is algebraically closed of finite characteristic p t N.

In this situation, there exists an associated continuous, semisimple Galois representation

p: Gg — GLa(F)

such that the trace of a Frobenius element ¢, at any prime ¢ 1 Np coincides with the image of Ty
in F', and the determinant of ¢y is given by the image of the diamond operator (¢) in F*, which
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we will denote by the same symbol. Since V; maps to zero in F, this implies that
Trp(pe) =+ e F

for £ Np.

By Cebotarev density, p is isomorphic to the direct sum w? @ w™'v, where w denotes the
mod p cyclotomic character and v: Gg — F* is the composition of the cyclotomic character
G — (Z/NZ)* and the diamond operator map (Z/NZ)* — F*. Restricted to the inertia group

above p, we get
1

plr, ~ Wwewt
which contradicts well-known properties of the Galois representations attached to weight 2 eigen-
forms of level N; that is, the restriction of p to any inertia group I, at p must be w @ 1 or the
sum of two tame characters. It is enough to verify this separately for Eisenstein series and cusp
forms; in the Eisenstein case only the former case occurs, and in the cuspidal case the two
possibilities are distinguished by whether the image of T}, in F is zero or nonzero (see [Edi92,
Theorems 2.5-2.6]). O

Remark 7.2.7. If we are willing to work with Q-coefficients in place of coefficients in Z'[1/N],
then Proposition 7.2.6 has a much simpler proof. Indeed, each V; with £t N is itself a unit in
the Hecke algebra acting on group cohomology. The key point is that the Ty-eigenvalues of any
weight 2 eigenform for I'; (V) have complex absolute value at most £ + 1, and the eigenvalues of
diamond operators are roots of unity, so V; has eigenvalues of complex absolute value at least
B —1—4+1)>0.

7.3 Explicit formula for the universal cocycle

We cannot quite write down an explicit formula for a cocycle in the universal class of the previous
section because of our lack of understanding of the motivic cohomology group H?(Y,Q(2)).
However, we can at least do it modulo a subgroup ¥ which can be seen to vanish under any
standard regulator map.

7.3.1 The explicit formula, in brief. For a prime n{ N, let ¥, denote the kernel of V! on
H?(Y,Q(2)), and let ¥ = ﬂnJ(N Yy. Remark 7.2.7 implies that the group ¥ maps to zero in any

quotient of H?(Y,Q(2)) that factors through the action of the Hecke algebra on H'(I';(N), Q).

ProprosiTION 7.3.1. The class of © 5 modulo ¥ equals the class of the cocycle

k
To(N) — H2(Y,Q(2))/V, ~~ ngi/N Ug_g, /vy mod ¥ (7.5)
i1

for (b;, di)fzo any N-connecting sequence for vy, where g,y for a prime to N is the standard
Siegel unit on'Y (see §7.3.2).

Implicit in the statement is the assertion that the right-hand side of (7.5) is independent of
the choice of connecting sequence and defines a cocycle.?> We explain the proof modulo certain
explicit computations with Siegel units that are carried out in the rest of the section.

25 1t is very likely that the proposition remains true without taking the quotient by ¥, but we do not know how
to prove it.
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Proof. We will prove in Lemma 7.3.4 that for v = (¢ %) € SLy(Z) with both ¢ and d relatively
prime to N, we have

5*<7>n = Vé(gc/N U gd/N)' (76)

for each n { N. For a given N-connecting sequence (b;, di)fzo for ~, let us set

k
fr=_ga/nUg_g_,n € H(Y,Q(2))
i=1

with the understanding that this depends on the connecting sequence. From Proposition 6.4.1(c)
and (7.3), we know that

k k
* b, —b;_ (7.6)
n =1

i=1
So, by (7.6), we have that
n@N,7 = Vrif’)/

This equality uniquely determines f, as an element of H2(Y,Q(2))/7,. From this and the fact
that ,©y is a cocycle, we see that the quantity f, mod ¥, is independent of choice of connecting
sequence, and v — f, mod ¥, is a cocycle. But then the latter two facts are true modulo 7" =
M, ¥n as well.

By Theorem 7.2.2, the cocycle V/!(Oy) is cohomologous to ,©y. In particular, the class of
Y On., — fy lies in the kernel of all V! acting on H'(Co(N), M) with M = H?*(Y,Q(2))/7 .
To see that this common kernel is zero, consider the injection ¢: M — 69an M induced by the
collection of operators V. We must show that the map

HY(To(N), M) — @ H' (To(N), M)
ntN
induced by ¢ is injective. This follows from the surjectivity of the map
& HO(To(N), M) — H(To(N), coker ), (7.7)
ntN

which in turn is a consequence of the fact that T'o(IN)-action on the Q-vector space M factors
through the finite group (Z/NZ)*. O

Aside from the change of modular curve, the following is a corollary of Proposition 7.3.1 and
its proof. In it, we use ¥ to denote the intersection of kernels of the V,, on H2(Y1(N),Z'[1/N](2)).

PROPOSITION 7.3.2. The cocycle O restricts to a cocycle

Oy: I[1(N) — H? <X1(N),Z’ [H (2)>,

satisfying
k

ONy = ngi/N Ug_g,_,/y mod ¥
=1

for v € I'1(N).

Proof. To see that we can work with Z'[1/N]-coefficients, note that the only place where we
may need to invert further primes (i.e., those dividing ¢(N)) in the proof of Proposition 7.3.1
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is for the surjectivity of the map in (7.7), but if we replace T'o(N) by I'y(NN), then this need is
alleviated as I'1(N) acts trivially on H2(Y,2).

The second claim is immediate from Proposition 7.3.1, since both cocycles restrict to homo-
morphisms on I'; (N), so are equal (modulo 7). Set X = X{(V) (over Q) and C =X —Y. We
have an exact Gysin sequence

0— H? (X, A [H (2)) — H? (Y, A [H (2)) — H* (C, A [H (1)> — 0.

Each V]! for n not dividing N acts on H'(C,Z'[1/N](1)) & 6% ®z Z'[1/N]. Since this is torsion-
free as a Z/[1/N]-module, the argument of Remark 7.2.7 can be applied to show that no
nonzero element of H'(C,Z'[1/N](1)) is killed by all V;! with n{ N. From this, we see that
¥ C H*(X,Z/'[1/N](2)).

It therefore suffices to show that Zle 9a;/N U g—q,_, /N has trivial residue in 07 @z Z/[1/N].
It follows from [FK24, Lemma 3.3.12] that the tame symbol of this sum at the cusp
o0: SpecQ(un) — X1(IV) has image in Q(un)* ®z Z'[1/N] equal to

k i N 1/12
f)

d’L—l
=1 \1—=Cy

and similarly for the other cusps over the infinity cusp of Xy(N). At the other, non-infinity
cusps, the same lemma tells us that the residues of the individual terms gq,/y Ug_q, /N are
trivial. O

7.3.2 Review of Siegel units. Let us consider units on the modular curve Y (M) for M >
3, which is the moduli space of triples (E,P,Q) with E an elliptic curve and (P,Q) an
ordered basis of E[M]. The universal elliptic curve & (M) has two canonical order M sections
i1y iz Y (M) — (M) corresponding to P and Q. For (c,d) € Z* — MZ?* and m prime to
M/(e,M)-M/(d, M), let
mYc/M,d/M = (CLM,1 + dbM,2)*(m9) € ﬁ;(M) ® Z[%]?

where ,,0 € &(M)* ® Z[}] is the theta function defined analogously to (6.6): it has zeros of
multiplicity 1 along nonzero m-torsion points, and a pole of order m? — 1 at the identity section.
Next let

9e/M,d/M = mYe/M,d/M D (m*—1)""e ﬁ;(M) ®z Q

for any m = 1 mod M and prime to 6, independent of the choice. (In fact, we may define g./ns,q/nr
as an element of O,y @z Z[1/6M].) Then

2 -1
mYe/M,d/M = ggM,d/M "Yme/Mmd/M*
For any m > 1 and (¢, d) € Z? — MZ?, the Siegel units satisfy the distribution relation

m—1m—1

H H Ge/MmA+i/m,d/Mm+j/m = Ye/M,d/M -
=0 j=0

The Siegel units 1,90, 4/p and go g/ are units rationally on Y;(M). We denote them more
simply by mgq/n and gq/ns, respectively.

7.3.3 Some computations with Siegel units. Our goal here is to prove (7.6).
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LEMMA 7.3.3. Let us consider 0 defined analogously to (6.6) as a rational function on the
universal elliptic curve &, over the modular curve Y1(Nn). For d € (Z/N7)*, we have

n—1

7=0

Proof. For &, — Y1(Nn), we have canonical order N and order n sections ¢ty and ¢y, respectively.
Let ¢: &, — &, be translation by ¢, that is, given on the fiber over (E, P, Q) with P of order
N and @ of order n by ¢(z) =z + Q. Then

n—1

n?# —nE[n] = Z(j¢)*(n2(0) — E[n]),

Jj=0

SO

n—1

()" = _(i6)" 20,

J=0

where we view ,,0 as the theta function with divisor n?(0) — E[n] on &,. Since, for d € (Z/NZ)*,
the section diuy + jtp, has order divisible by N, the pullback (dey + jipn)*n0 is well defined. We
then see that

(den)* (j8) 06 = (A + Jin) 00 = nGa/N+i/n = Gndry * 90N+
Taking the product over 0 < j <n — 1 and the nth root gives the result. O
LEMMA 7.3.4. For ~ = (‘cl g) € SLo(Z) with both ¢ and d relatively prime to N, we have
5 (V)n = Vi(ge/w U gayn) € H2 (Y, Q(2)).
Proof. Note that s*(v), is the pullback of ((§9))n by the section (cty, dey). We have

cn,dey) (R0 X ,0) = .
( N N) ( ) 9ne/N  Ynd/N

(7.8)

For the N-torsion section of ty: Y’ — &' (with Y/ =Y, as in §6.3.1), Lemma 7.3.3 tells us that

-1 -1
| e/N+i/n U Ili=o 9d/N+j/n

(cen,din) (n0 XK ,0") = (7.9)

9ne/N 9nd/N

The individual functions here are defined on Y;(NNn), but the product is defined on Y”.
Given that we have a cartesian diagram

Y/ (ClN,le) (é‘)/>2

(CLN,le)

y — §7

Lemma 2.1.1 implies that the norms for Y/ — Y and (&')? — &2 commute with pullback by
the N-torsion section (cun,den). Recalling now that ((§9))n = n0 ® 0 — N(,6' K ,6’), we then
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obtain from (7.8) and (7.9) that

2 2
/(1 0 9on 94N
cLy, de = —U—
(ernv, denv) <<0 1>>n 9ne/N  Ynd/N
n—1 n n—1 n
i=0 Jia/n,c i3/n i=0 9ja/n i8/n
_< Z H 0 /7/N+5/ UH] 0 Jj / 1d/N+]ﬁ/ >’ (710)
(@,B)) gnc/N gnd/N

where the sum runs over chosen generators of the n + 1 cyclic subgroups of order n in (Z/nZ)?.
Note that in (7.10), we work with the cover Y of Y obtained by the additional data of a full
level n structure. The group H?(Y,Q(2)) injects into H2(Y",Q(2)) under pullback, since Y’ — Y
is finite and these groups are Q-vector spaces. We can then compute the norm N(,,6' X ,,0") by
taking a sum over the actions of coset representatives for GLa(Z/nZ) modulo the upper triangular
subgroup.

We now analyze the terms of (7.10). In the second term, we have the following properties.

— The numerators give n?7, 7w(9e/n U ga/n). Indeed, by definition, T} (g./n U ga/n) is obtained
by pulling back g./x U gq/n to Y' along ¢: (E, P,K) — (E/K, P + K), and then taking the
norm ¢, along Y'/Y. The pullback 9*g./y is given by H?:_[)l 9e/N+i/n, and the norm is as
before.

— The cross terms are

_nggnc/N U gd/N - ngnc/N U gnd/N and — n2gc/N U gnd/N - ngnc/N U gnd/N

by the distribution relation.
— The denominators contribute (1 + 1)gpne/n U gna/n-

Subtracting this from the first term and noting that [n]'(ge/n U ga/n) = Gne/N U gna/n > we obtain

s (V)n = (n* — 0T, + n[n]/)(gc/N Ugqn) = Vﬁ(gc/N U ga/n)- U

7.4 Maps on the homology of X7 (V)
We conclude by comparing our cocycle Oy to related ‘zeta maps’ on the homology of modular
curves.

7.4.1 Zeta maps with Z'[1/N]-coefficients. Since Oy restricts to a homomorphism on I';(N)
which is trivial on parabolic subgroups, we have the following analogue of Proposition 4.3.1. We
note that H?(X1(N),2) is preserved by the Hecke and diamond operators on H?(Yi(N),2).

THEOREM 7.4.1. The map
1

2y Hi(X1(N),Z)y — H? (Xl(N),Z’ [N} (2))

sending the image of ¥ = {0 — v -0} to Oy, for all v € I'1(N) is a Hecke-equivariant homo-
morphism in the sense that zn(Tyy) = T - zn(7) for primes £ { N and zn({d)7) = [d]" - zn(¥) for
de (Z/NZ)*.

Proof. The existence of a map to HQ(Xl(N), Z'[1/N](2)) follows from Proposition 7.3.2 just as
in Proposition 4.3.1, since the induced I';(N)-action on the latter cohomology group is trivial.
The Hecke equivariance follows as in the argument of Theorem 4.3.7. g
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In [Gon08, Proposition 2.16], Goncharov outlined a construction of an analogue of zy for
Y (N) via a map from a complex computing the cohomology of the modular curve Y (NN)(C)
to a certain ‘Euler complex’ involving a Bloch group. In a recent preprint, Brunault [Bru22,
Theorem 4.3] gives what amounts to an explicit construction of a well-defined homomorphism

1
6N
directly verifying that Steinberg symbols of Siegel units satisfy the Manin relations, improving
earlier work in [Bru0§].

The map 23, agrees on Hy(X1(N),Z) with the restriction to I'; (V) of the explicit map f of
the proof of Proposition 7.3.1, showing it to be a homomorphism without the need to reduce

modulo 7. However, that still leaves an argument needed to show that f agrees with Oy on
I'1(N) to deduce the Hecke equivariance of f.

5 Hi(Xi(N), C3(N). Z) — H <Y1<N>,4 } <2>), s vl = Gy U g/

7.4.2 Ordinary zeta maps with Z,-coefficients. Fix a prime p > 5 dividing N. Let T} denote
the full adjoint weight 2 Hecke algebra for I'; (V) over Z,, (see (4.15)). We also view it as acting
via adjoint operators on Hg, (Y1(N),Qp(2)); let us use a superscript ord to denote the Uz-ordinary
part for this action. This Uj-ordinary part is canonically a direct summand via application of
Hida’s idempotent in TY.

In [FK24, Theorem 3.3.9] (see also Lemma 5.2.5 therein), Fukaya and Kato construct the
following Hecke-equivariant zeta map to the Uy -ordinary part of cohomology (or more precisely,
the negative of this map precomposed with an Atkin—Lehner involution).

THEOREM 7.4.2 (Fukaya and Kato). There is a T}-equivariant homomorphism
Ré: Hi(X1(N), 7 (N), Zy) — HE(Y1(N), Qp(2)”,  [u: v]n = gu/v U gu/ns
where we identify the cup product of Siegel units with its Uj-ordinary projection.

The proof of Theorem 7.4.2 is quite involved but in particular uses a p-adic regulator compu-
tation of the values of a related map taken up the cyclotomic tower, which are norm-compatible
sequences of Beilinson-Kato elements in Iwasawa cohomology.?’

The restriction of the ordinary zeta map 2%, to Hi(X1(N),Z,p) is the étale realization of
the zeta map zy of Theorem 7.4.1. That is, the explicit formula for zy(7) = On,, given in
Theorem 6.4.1 agrees in its étale realization with that of z?\f%t. To see this, note that the group
¥ providing the ambiguity in the explicit formula for O of Theorem 6.4.1 vanishes in the étale
realization, since the prime-to-level Hecke operators on HZ (Yi(N),Q,(2)) factor through the

Zy-Hecke algebra of weight 2 modular forms, where each V/ has trivial kernel (see Remark 7.2.7).

Remark 7.4.3. The operators T, on H?(Y,2) defined in §6.5.1 arise from the composition of the
operators [¢(]" and the dual (or adjoint) Hecke operators T (or T'(¢)*) in [FK24, 1.2.3]. On étale
cohomology, where we know that their actions factor through the usual weight 2 Hecke algebra,
we have that T acts as Ty = (¢)T,/. So, the Hecke equivariance at prime-to-level operators in
Theorem 7.4.1 matches that of Theorem 7.4.2.

Remark 7.4.4. Jun Wang [Wan18, §5.1] (see also [LW22, Theorem 3.7]) proved the analogue of
Theorem 7.4.2 for pt N, in which case one need not take ordinary parts. His map is shown to
take values in the quotient of HZ (Y1(N),Z,(2)) by the finite subgroup HZ (Z[1/Np),Z,(2)). The

26 They in fact obtain a map to the subgroup given by the cohomology of the integral model Yi(N),zpny- It is
also possible to see our zeta maps are similarly valued in the motivic cohomology of X1(N)z1,ni, for instance
using explicit formulas for ,© .
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p-adic étale realization of our map zy takes image in HZ (Y1(NV), Z,(2)) and induces Wang’s map
in the quotient.

In [FKS16], it is shown that if p{ ¢(N), then there exists an integral version of zy to the
primitive part of HZ (Y1(N),Z,(2))°*d for the action of (Z/NZ)* by diamond operators, after
excluding the w2-eigenspace for (Z/pZ)*. Let us describe a motivic version of this, without
some of these assumptions.

Let ¢: (Z/pZ)* — (Z/NZ)* denote the canonical map that splits reduction modulo p. We
have an idempotent

1=

e=1- o1 1w2(a)b(a) € Zp|(Z/NZ)™].

This idempotent applied to H?(X1(N),Z,(2)) serves to remove the w™>2-eigenspace of (Z/pZ)*,
where a € (Z/pZ)* acts as [c(a)]’.

PROPOSITION 7.4.5. There exists a unique homomorphism
0 HU(XU(N) Zy)s — & H2(X(N), Z,y(2))
which

~ factors through the U,-ordinary projection Hy(X1(N),Zp)+ — Hi(X1(N),Z,)3d and
— satisfies 234(V,7) = & - ,OnN, for all primes n { N and € I'1(N) with ¥ € Hy(X1(N), Z,)°™.

It is Hecke equivariant for the prime-to-level Hecke operators in the sense of Theorem 7.4.1.

Proof. The proof mirrors that of Proposition 7.2.6. Consider the Z,-algebra of endomorphisms
Tas generated by the Hecke operators of Ty for £ N, Uy for £| N, and [d]' for d € (Z/NZ)*
acting on H'(I'\(N), M) = H'(T'(N), M),. The Uj-ordinary part T$;® of this Hecke algebra

acts on

HY(T1(N), M) = Hom(H; (Y1 (N), Z)S™, M).

First, we note this Hecke algebra T‘j&d is a quotient of the Hecke algebra T°™ for Up-ordinary
modular forms of weight 2 for I'y (V) that is generated by these operators, by a map taking an
operator to its adjoint, that is, via the map that sends T} to Ty, Uy to U}, and {(d)~! to [d]’ (see
§7.2.2). For the direct summand ¢ - H'(I'y(N), M) = HY(T'\(N), e - M)°"4, the corresponding
Hecke algebra is a quotient of e - T,

We claim that the operators V;* = £(¢3 — £(£) 1T, + (¢)~1) generate ¢ - T4, which will tell us
that the operators V; generate Tj}}d. Suppose they do not. We then have a nonzero homomorphism
¢: - T — F to an algebraically closed field F of characteristic p such that V€ ker ¢ for all
(1 N.

Let N’ be the prime-to-p part of N. Hida theory (see [Hid86, Theorem 1.2]) provides a U,-
ordinary eigenform f in Mo (T'1(N'p), F)°d such that ¢(T}) for £+ N or ¢(Uy) for £ | N is its £th
Fourier coefficient ay(f) € F. Let w’ for 1 < j < p— 1 be the restriction of the Nebentypus of
f to (Z/pZ)*, where w denotes the mod p cyclotomic character. A result of Ohta [Oht05,
Proposition 1.3.5] implies that f arises from an eigenform f’ in the Tp-ordinary part of
M;j12(T1(N'), F) with ae(f) = ae(f') for £ # p.

2475

https://doi.org/10.1112/S0010437X24007322 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007322

R. SHARIFI AND A. VENKATESH

As in the proof of Proposition 7.2.6,we may associate to f’ a semisimple Galois representation
p: Gg — GLo(F) satisfying p|7, ~ w/* @ 1 (again by [Edi92, Theorem 2.5]). On the other hand,
since £Ty — 1 — £3{¢) € ker ¢ for all £{ Np by assumption, we must have

(Trp(pe) = 14+ 01X (0) € F

for some F-valued Dirichlet character x of modulus N’, where ¢, denotes the Frobenius at
¢. By Cebotarev density, we then have p ~ w™! @ w/t2y. This in turn forces j = —2, but the
w2 1,-eigenspace of € - To™d is trivial. Thus, we have the necessary contradiction.

Since the operators V; generate T?\}d, as in the proof of Theorem 7.2.2 we may construct a Uy-

ordinary parabolic cocycle @%d: f‘l(N ) — e - M as a Tps-linear combination of the restrictions
of the cocycles ,0n to fl(N ), where the coefficients sum to Hida’s ordinary idempotent in Tp;.
The class of Vn@%d for a prime n t N is the ordinary projection of the class of ,,© . This in turn
gives rise to the homomorphism z})\}d in the statement of the proposition. In particular, note that

its image lands in H?(X1(N),Z,(2)) via the argument of Proposition 7.3.2. O

We remark that we do not show that z?\}d is equivariant for pth Hecke operators, as prior to
this point we only considered prime-to-level operators on our cocycles. It would be interesting
to prove this. Passing to étale cohomology, the explicit formula for © , of Theorem 6.4.1 holds
in H2 (Y, Qp(2)) without ambiguity, since ¥ vanishes there. From this, we see that the Q,-linear
extension of the p-adic étale realization of our ordinary zeta map z?\}d induces ¢ applied to the
restriction of the zeta map z?\?%t of Fukaya and Kato to H1(X1(V),Zp). This is Hecke equivariant

for the full Hecke algebra by Theorem 7.4.2.
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