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Abstract. In a groundbreaking paper, T. Fukaya and K. Kato proved a slight weakening of a conjec-
ture of the author under an assumption that a Kubota—Leopoldt p-adic L-function has no multiple
zeros. This article describes a refinement of their method that sheds light on the role of the p-adic
L-function.
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1. Introduction

1.1. Overview

For a positive integer M, we explore the conjectural relationship between

e modular symbols in the quotient P of the real part of a first homology group of a mod-
ular curve of level M by the action of an Eisenstein ideal 7, and

e cup products of cyclotomic units in a second Galois cohomology group Y of the
cyclotomic field Q () with ramification restricted to M.

More specifically, we consider the likewise-denoted maximal quotients of p-parts of the
inverse limits P and Y of the above groups in towers of levels M = Np” on which the
group (Z/NpZ)™ acts through a given even character 6 via diamond operators and Galois
elements, respectively. For the precise conditions on p, N, and 6, see Notation 2.1 and
Hypothesis 2.29, or the next subsection.

In [19], we constructed two maps @w: P — Y and Y:Y — P and conjectured them
to be inverse to each other, up to a canonical unit suspected to be 1 (see Conjecture 3.9).
The map w was defined explicitly to take a modular symbol to a sum of cup products
of cyclotomic Np-units, while Y was defined through the Galois action on the homology
of a modular curve, or a tower thereof, in the spirit of the Mazur—Wiles method of proof
of the main conjecture. By the main conjecture, both the homology group P and the
Galois cohomology group Y are annihilated by a power series £ in the Iwasawa algebra
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corresponding to a p-adic L-function. This power series £ is (roughly) both a generator
of the characteristic ideal of ¥ and the constant term of an ordinary family of Eisenstein
series determined by 6.

In a 2012 preprint (now published [4]), Fukaya and Kato proved the key identity

ETow =¢ (1.1)

modulo p-power torsion in P, where &’ is the derivative of £ with respect to the variable
of the p-adic L-function. In Theorem 5.21, we show that this identity holds in P itself,
employing joint work from [6]. At least up to torsion in P, the conjecture follows if &
happens to be relatively prime to £ in the relevant Iwasawa algebra.

Considerable progress has been made in the study of ¥ by Wake and Wang—Erick-
son [22] and Ohta [17], by different methods. In the cases that Y is known to be an
isomorphism and Y is pseudo-cyclic, the identity of Fukaya and Kato implies the original
conjecture, i.e., up to unit. This pseudo-cyclicity was related to the question of local-
izations of Hecke algebras being Gorenstein in the work of Wake and Wang—Erickson,
as well as to the question of Y being a pseudo-isomorphism. Ohta shows that Y is in fact
an isomorphism under an assumption on the relevant Dirichlet character that holds in the
case of trivial tame level, and supposing a certain nonvanishing of L-values modulo p.
We note that this implies in particular that P has no torsion in such eigenspaces, as ¥
does not.

The pseudo-cyclicity of Y is expected to hold as a consequence of a well-known and
widely believed conjecture of Greenberg’s on the finiteness of the plus part of the unram-
ified Iwasawa module. Moreover, since the p-adic L-functions in question are unlikely
to ever have multiple zeros, one would expect the unit in our conjecture to always be 1,
as in its stronger form. Nevertheless, this might appear to reduce the conjecture to chance,
which is less than desirable. This motivates us to attempt a finer study.

Our primary aim in this paper is to study the role of &’ in the work of Fukaya—Kato and
ask whether it is possible to remove it in the method. For this, we will need to reconcile
the distinct natures of the two occurrences of ¢’ in the Fukaya—Kato identity (1.1). On the
left-hand side, £”: Y — Y is identified with a Bockstein-like connecting map between two
Galois cohomology groups, both isomorphic to Y. On the right-hand side, §’: P — P
arises as an Eisenstein reduction of a composition of a zeta map carrying modular symbols
to sums of Beilinson—Kato elements and a Coleman map that serves as a p-adic regulator.
The zeta map is the tie that binds the two sides of (1.1) together, for when its negative is
composed with pullback by the cusp co, one obtains the map w: P — Y.

As we shall see, it would be possible to remove &' from both sides of (1.1) but
for a global obstruction related to the existence of a zeta map at an intermediate level.
Shapiro’s lemma allows one to view an Iwasawa cohomology group over the cyclotomic
Zp-extension Qo of @, which is to say an inverse limit of cohomology groups up the
cyclotomic tower under corestriction, as a Galois cohomology group over Q with coef-
ficients in an induced module. The latter module is the completed tensor product of the
original coefficients with a free cyclic module A over the Iwasawa algebra A = Z,[X]
on which Galois elements act as inverses of group elements.
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Our key innovation is the consideration of the cohomology of a quotient of these
induced coefficients by an arithmetically relevant two-variable power series divisible by
the first variable X . In particular, the cohomology of this intermediate quotient (see Def-
inition 4.11) is not the cohomology of any intermediate extension, yet it lies between the
cohomology over Q and the Iwasawa cohomology over Q. In Theorem 4.15, we give
a surprisingly clean and quite general construction of intermediate Coleman maps on the
local-at- p first cohomology groups of intermediate quotients for Tate twists of unramified
Zp[Gq,]-modules. We hope these will find application beyond this work.

We show that the global obstruction to removing &” would vanish under a divisibility
of Beilinson—Kato elements by one minus the pth Hecke operator at an intermediate stage
between Iwasawa cohomology and cohomology at the ground level, see Question 5.26.
This “intermediate global divisibility” can be rephrased as the existence of a certain inter-
mediate zeta map. The main result of this paper, Theorem 5.25, states that the global
obstruction to our conjecture is equivalent to the weaker statement of existence of what
would be a reduction of this map modulo the Eisenstein ideal. This reduced map is
required to be compatible with the reduced zeta map at the ground level of Q and the
reduction of a local-at- p intermediate zeta map that we construct.

Of course, this leaves us with the question of whether these global intermediate zeta
maps are likely to exist. As such, we perform a feasibility check for an analogue of the
conditions of Theorem 5.25 in a simpler setting, with cyclotomic units in place of Beilin-
son—Kato elements. That is, in Section 6, we explore the analogues of global obstruction
and divisibility for cohomology with coefficients in a Tate module, rather than the étale
homology of a tower of modular curves. We show that the global obstruction in the coho-
mology of the intermediate quotient does in fact vanish in this setting, while verifying
intermediate global divisibility only under an assumption of vanishing of a p-part of
a class group of a totally real abelian field. This is in line with our suspicions that interme-
diate global divisibility may be too much to hope for in general, while still lending some
credence to the conjecture that T and @ are indeed inverse maps, and not just by chance.

1.2. Detailed summary

As a guide to a thorough reading of this rather involved work, we review the method of
Fukaya and Kato (see [5, Section 2] for another review) in order to describe our refinement
and the constructions it involves.

1.2.1. Lattices and their reductions. Fix an integer N > 1 and a prime p > 5 such that
Pt No(N).Let 0 be an even p-adic character of (Z/NpZ)™ of conductor divisible by N
such that p | B, g—1 and such that 6 does not induce the mod p cyclotomic character
on decomposition at p. The 0-isotypical component by of the Eisenstein localization
of Hida’s ordinary Hecke algebra is a module over an Iwasawa algebra Ay of inverse
diamond operators, with coefficient ring the Z ,-algebra generated by the values of 8. That
the Eisenstein quotient has the form (/1 )g = Ag/& was proven in [23] as a consequence
of the Iwasawa main conjecture.
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Let Ty be the inverse limit of §-Eisenstein components of the étale cohomology groups
H (X, (Np’)/@, Zp (1)) under trace maps. It is a rank two hg-module with a commuting
global Galois action that on decomposition at p that fits into a short exact sequence

Oﬁiub%%_)?:]uoﬁo»

where Tgp = by as an hg-module, and Jg,, has an unramified Galois action and is iso-
morphic over by to the -Eisenstein component Sy of the A-adic cusp forms.
The Eisenstein quotient T = T/ I Ty fits into an exact sequence

0—->P—>T—-0—0 (1.2)

of global, locally split Galois modules with P —> Tquo/1 Tquo and Teun/ I Towy —> Q via
the canonical maps. Here, Q can be identified with the Tate twist of Ay /& by considering
its generator that is Poincaré dual to a particular modular symbol. This identification is
the ingredient that makes Y canonical in [19]. For more detail, see Section 2.

1.2.2. Left-hand side. We can reinterpret the left-hand side &’ Y o @w of (1.1) via the fol-

lowing identifications:

e Themap Y:Y — P isaconnecting map H2(Q(1)) — H2(P(1)) for the Tate twist
of (1.2), from unramified outside Np to compactly supported cohomology over Q.
In fact, we have identifications H?(Q(1)) = Y fori € {1,2}, while H:(P(1)) = P

fori € {2, 3}. See Section 3.1 for more detail.

e The map —w: P — Y is the composition Eg of the reduction z#: P — H'(T(1)) of
a zetamap z%: Sg — H'(Ty(1)) with the canonical map H(T(1)) — H'(Q(1)).
Here, the composition H!(T(1)) — Y has a reinterpretation as the pullback by the

cusp oo mentioned earlier, and Z* is the reduction of a zeta map z¥#: Sg — H'(75(1)) (see

Theorems 5.19 and 5.20).

e The map £:Y — Y is a connecting map 9: H'(Q(1)) — H?(Q(1)) for the tensor
product of Q (1) with the exact sequence

027, 5 AYX? > Z, 0. (1.3)

This is recalled in Theorem 3.17 (see [4, §9.3]). The rough idea expounded upon in
Remark 3.29 is that 9 is the derivative of £ in Q = (Ag/&)"(1) with respect to the X in
the map of (1.3).

The left-hand side of (1.1) may then be viewed as coming from the commutative
diagram

5t
P —2 HY(Q(1)) —2— H2(Q(1)) —— H2(P(1))
(1.4)

| | H
Y § Y x P.
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1.2.3. Intermediate quotients. We remove & from the center square of (1.4) using inter-
mediate quotients. For a compact hg-module M with a commuting continuous Galois
action, the intermediate quotient for M with respect to an element « of the completed
tensor product A ® z,, 9g is defined (cf. Definition 4.11) as

o Al ®Zp M
© Xa(A'®z, M)’

a quotient of A‘ @)Z[, M of which M is a quotient. If / annihilates M, then so does
& € by. In this case, we typically take X« to be the slight modification §— 1 ® & of the
diagonalization § € ARz » g of &, which makes it divisible by X, see Section 3.2.

In place of the tensor product of Q with (1.3), we consider in Section 3.3 the exact
sequence

3 5 =
0— 0> (A'®z, 0)/XE— QT —o0. (1.5)
In Theorem 3.27, we prove the following.

Theorem. The connecting map 3%: H'(QT(1)) — H?(Q(1)) arising from (1.5) factors
through the quotient H'(Q(1)) and induces the identity on Y .

As explained in Remark 3.29, since the first map in (1.5) is now gwith §(0) =&, the
map 9T induces on Y multiplication by the derivative 1 of & with respect to itself, instead
of X.

Finally, there exists a map ETQ: P — H'(0QT(1)) (see the proof of Theorem 5.25)
making the triangle in the following diagram commute:

5t
P—2 HY (1)~ H2(Q(1) —— H3(P(1))

N

Y ! Y P.

1.2.4. Right-hand side. The right-hand side of (1.1) is the composition of a zeta map
and a Coleman map. The Coleman map for the Tate module takes a norm compatible
sequence of units in the cyclotomic Z ,-extension of Q, to a logarithm of its Coleman
power series [1]. For Coleman maps in general, see Section 4.1. We focus here on the
case central to [4].

A modified logarithm and A-adic Eichler—Shimura [15] provide an isomorphism

Col’: H! (Tauo(1)) = G4

from the absolute Galois cohomology of Q,. Here, &g is a group of A-adic cusp forms
noncanonically isomorphic to Sy. Up the cyclotomic Z,-extension, there is a Coleman
map

Col: Hy, joe (Tawo(1) = A &z, G
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on the Iwasawa cohomology group th,’loc(?}un(l)) = H] (A ®Zp Tquo(1)). Both Sy
and &y are canonically P modulo 7, and we fix an isomorphism Sy =5 &g that reduces
to the identity.

The remaining key ingredient from [4,6] is a zeta map

z: A®z, So — Hyp\,(Tp(1))

to Iwasawa cohomology over Q. Let zg,, be the composition of z with the canoni-
cal map to Hy, o (Tquo(1)). A p-adic regulator computation recalled from [4] in Theo-
rem 5.18 gives

Col OZquo = A ®Zp @9 — A ®Zp 39 (1.6)

for a particular o« € A ®z, hg with & = (0) mod /.
The ground level maps z¥ and Col® compare with z and Col after applying evaluation-
at-0 maps evg: A — Z, and inverse limits of corestriction maps as follows:

1- Up)z# oevg =coroz and Col’ocor = (1 =Up)evgoCol (1.7)

(see Theorem 5.19 and Proposition 4.8). Combining (1.6) and (1.7) allows one to show
that
Col® ozquo = a(0): Sy — Gp,

where Zfluo is the composition of z# with H'(T5(1)) — H,..(Tquo(1)), and Col” ozquO
mod [ provides the §’: P — P on the right-hand side of (1.1), see Proposition 4.22.

1.2.5. Equating the two sides. Let EP denote the composition of z#: P — H'(T'(1)) with
the canonical map H'(T(1)) — H! (P(1)), i.e., the reduction of z§u0 Fukaya and Kato
obtain a commutative diagram

loc

L(P(1)) —— H2(P(1)) —— H3(P(1))
H Xﬁj H H (1.8)
P P,
34 1

where the middle horizontal arrow is from the Poitou—Tate sequence, and the right-hand
one is the connecting map in the tensor product of (1.3) with P(1) (see Lemmas 5.4
and 3.16).

Additionally, cohomological lemmas (see Corollary 5.6 and Lemma 3.32) provide the
commutativity of

P—>H1

HY(T(1)) —— HY(Q(1)) —— H2(Q(1))

S T

(P(1) — HZ(P(1) —— HZ(P(1)).

loc



An extension of the Fukaya—Kato method 7

Since z#: P — H'(T(1)) induces both Eﬁ, and E”Q, diagrams (1.4) and (1.8) can be com-
bined using (1.9), as in (5.3). This yields Theorem 5.21 (asserted in [6]), which improves
the same identity of Fukaya and Kato on P ® Q.

Theorem. We have §'Y o w = &' as endomorphisms of P.

1.2.6. Intermediate Coleman and local zeta maps. In Section 4.2, we construct interme-
diate Coleman maps sitting between Col and Col’ but with properties similar to the latter.
The central example for us is the following (see Corollary 4.18 of Theorem 4.15 in the
general setting).

Theorem. There is an isomorphism of A ® z, hg-modules

_ 0-Up o)A ®z, )

Col™: Hyg(Tho(1) = Xa(A ®z, Gy)
»

that equals (1 — Up) Col when precomposed with HﬂN toe (Tquo(1)) = H,L. (’quo(l)).

The map Col' is an amalgamation of Col modulo X« with the invariant map of local
class field theory. The composition Col of Col' with the surjection

G — ©p/(Up, —1)Gy

given by “reduction modulo 1 — U, and division by «(0)” allows us to construct, some-
what artificially, a local intermediate zeta map

zht A®z, So > Hyi (T1, (1)

quo

with
CO] OZ A®Zp So = ©9/(U, — 1)&y

the canonical quotient, see Proposition 6.10. Its reduction modulo / induces 1 on P,
which now replaces &’ on the right-hand side of (1.1).

1.2.7. Reduced intermediate zeta maps. Our refinement of (1.8), the cohomological lem-
mas for which are proven in Section 5.4, is a commutative diagram

(

A&z, P —25 H (PT(1)) —— H2(PT(1)) —— H3(P(1))

levo N H H
P p P,
1 1

where z} p is the mod I reduction of Z, uno However we do not know whether an intermedi-
ate reduced zeta map z' that induces both Z z pandZ, ZQ exists. That is, the tie that would bind
the two sides of the identity T o @ = 1 is missing. Our main theorem (Theorem 5.25) is
as follows.
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Theorem. Conjecture 3.9 holds if and only if there exists a A ®z,, (b/1)g-module homo-
morphism

T A®z, P — HY (T (1)
compatible with both z% and the reduction modulo T of Z;w

In an ideal world, ZT would be the reduction of an intermediate zeta map
T. S 1T
2" A®z, S¢ - H (T, (1))

that induces z;uo and for which (1 — Up)zT agrees with the composition of z with the map
HL(To(1)) - H! (‘T(j(l)). Unlike the existence of zT, this seems somewhat unlikely to
hold in all cases. See Section 5.4 and the test case of Section 6 in the cyclotomic setting.

2. Background

In this section, we introduce many of our objects of study, both modular and Galois coho-
mological, and known results on them.

2.1. Ordinary Hecke modules

Notation 2.1. Let p > 5 be a prime and N > 4 a positive integer with p  No(N), for ¢
the Euler-phi function.

As described, for instance, in [15, Section 2], let H°"¢ denote Hida’s 7 p-Hecke alge-
bra acting on the space & of ordinary “A-adic” cusp forms of level Np*°. Similarly,
let $° denote Hida’s Hecke algebra acting on the space I° of ordinary A-adic forms
of level Np®°. Note that H° is a quotient of $H°.

In addition to &°, we have two related H°"4-modules.

Definition 2.2. The following inverse limits are taken with respect to trace maps:
(a) We let §° denote the fixed part under complex conjugation (or “plus part”, denoted

by the superscript “+)

§7 = lim Hi (X1 (Np")(C). Z,)"*

r
of the space of ordinary A-adic cuspidal modular symbols.
(b) We let 7° denote the inverse limit

T = lim HY (X1 (Np') g, Zp(1)™

r

of ordinary parts of first étale cohomology groups of the closed modular curves
X1(Np").
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Remark 2.3. Viewing Q as the algebraic numbers in C, the usual comparisons of étale
and Betti cohomology at the individual stages of the modular tower induce an isomor-
phism 7%+ =~ §od of hod_modules. We note that Hecke actions on inverse limits of
cohomology (as opposed to homology) groups are via the dual, or adjoint, operators.

Similarly but less crucially for our purposes, we have the following $°-modules.
Definition 2.4. (a) We let M°™ denote the plus part
MO = lim H, (X1(Np")(C), {cusps}, Z,)+

r

of the space of ordinary A-adic modular symbols.

(b) We let 7o denote the inverse limit

T = lim Hy (Yi(Np") 1. Zp(1)™
:

of ordinary parts of étale cohomology groups of open modular curves. Similarly, we
let 7. denote the inverse limit of the ordinary parts of the compactly supported étale
cohomology groups Hcl’ét(Yl (Np’)/@, Zp(1)).

Remark 2.5. As in the cuspidal case, the $°-modules M° and Ford+ are isomorphic.
Throughout this paper, let us use Gk to denote the absolute Galois group of a field K.

Remark 2.6. Since signs are quite subtle in this work, we mention some conventions of
algebraic topology used here and in [4] (cf. [9, §2.7]), as well as some calculations which
follow from them. Consider the compatible Gg-equivariant Poincaré duality pairings on
étale cohomology:

U
HéI[(Xl (Npr)/@, Zp(1)) x Hélt(Xl (Npr)/@, Zp(1)) = Zp(1),
U
Hélt(Yl (NPr)/@» Zp(1)) x Hcl,ét(Yl (NPr)/(y Zp(1)) = Zp(1).
Viewing Q as the algebraic numbers in C, these are compatible with the usual pairings
of Poincaré duality for the isomorphic Betti cohomology groups of the C-points of the
modular curves, which are given by evaluation of the cup product on a fundamental class

given by the standard orientation of the Riemann surface X (Np”)(C). These cup prod-
ucts induce identifications

Hg (X1 (Np") 5. Zp(1)) = Hi(X1(Np")(C), Zp),

Hg(Yi(Np") 5. Zp(1)) = Hy(X1(Np")(C), {cusps}, Zj)
that take a class g to the unique homology class y such that the map & — g U h agrees
with evaluating the cohomology class g on y.

Now, any unit g on Y1 (Np”) /@ gives rise via Kummer theory to a similarly denoted
class in H}(Y; (Np')/@, Zp(1)). The order ordy g of the zero of g at a cusp x satisfies

ord,g = g Uhy = 0yg, 2.1
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where h, € Hlet(Yl (Np"),g- Zp(1)) is the image of x under the canonical connecting
map, and where 0 g is the boundary at x in Ho({x},Z,) = Z, of the relative homology
class corresponding to g. These identities can be verified by comparison with de Rham
cohomology,

1 1 d
Ny = — % = ordyg

Uhy = —
§ YT 2mi x g 2wi Jop, &

for a smooth function 7, that is 1 on a small closed disk D, about x and O outside of
a larger one in Y7 (Np”). On the other hand, if g is sent to the class of y, then

gUhx :/dnx - Zaygnx(y) :axgv
14 y

where the sum is taken over all cusps y of X1 (Np").

2.2. Iwasawa modules
Definition 2.7. SetZ, v = hm Z/Np"Z, A =7 plZ, n/{—1)],and A = (Z/NpZ)*.
Note that we have a canonical decomposition Z;’ N = AX(+ pZpy).

Definition 2.8. Set A = Z,[1 + pZ,], let y denote the isomorphism
x==pHlog 1+ pLy = Zp,

lett € 1 + pZ, be such that y(¢) = 1, let y € A be the group element defined by ¢, and
set X =y —1¢€A.

These definitions allow us to consider A as the A = Z »[X]-algebra A[A/{—1)].

Definition 2.9. (a) Set T' = Gal(Q(unp=)t/Q).
(b) Let Qq denote the cyclotomic Z,-extension of Q, and set I' = Gal(Qoo/Q).

We have an 1s0m0rph1sm = zx PN /{—1) given by the cyclotomic character, which
we use to identify A with Z,[T]. We similarly identify A with Z, [I']. We also use this
isomorphism to identify A /(—1) with a subgroup (and quotient) of T".

Remark 2.10. Note that §H° is a K-algebra on which group elements act as inverses of
diamond operators. (This choice of inverses, as opposed to actual diamond operators, is
made so that the maps that feature in Conjecture 3.9 that is the subject of this work are
of /~\-m0dules.) At times, we may work with A-modules with distinct actions of inverse
diamond operators and Galois elements. The action that we are considering should be
discernable from context.

Definition 2.11. (a) Let Z, denote the integer ring of Q.

(b) Set® = Z[NLP] and Qo = ZOO[NLP]. For r > 1, let O, be the ring of Np-integers

r—1

in the degree p” " extension of Q in Q.
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(c) Let Qp,o0 denote the cyclotomic Z,-extension of Q,, and let Q, , denote the
unique degree p”~! extension of Q, in Q, co-

(d) For each prime £ # p, let Q¢ o, denote the unramified Z ,-extension of Qy.

Definition 2.12. For any algebraic extension F of QQ, we consider the set S of primes
dividing Npoo. We let Gr s denote the Galois group of the maximal S-ramified (i.e.,
unramified outside S) extension of F'.

Remark 2.13. For a compact Z,[Gg,s]-module M, we use the notation H' (9, M) to
denote the ith continuous Galois cohomology group Hcits(G@,S, M). This is consistent
with the common interpretation of this group as the continuous étale cohomology group
of the locally constant sheaf on the étale site of Spec @ attached to M (cf. [12, Propo-
sition 11.2.9]). Here, note that the continuous Galois and étale cohomology groups of M
are isomorphic to the corresponding inverse limits of cohomology groups of the finite
Gq,s-quotients of M [10, §3.2].
We also have compactly supported and local-at-¢ cohomology groups, denoted

H!(O.M) = H (Gg,s.M) and H'(Qq. M) = H.(Gg,. M),

respectively, in the latter case for M a compact Z,[Gg,]-module. Since p is odd, the
compactly supported Galois cohomology groups agree with compactly supported étale
cohomology in its usual sense (cf. [12, §I1.2]).

We extend this notation to define H' (O, M) as the continuous S-ramified cohomol-
ogy group of the fraction field of @, with M -coefficients, and likewise in other settings.

We may view I as a quotient of Gaq,s.

Definition 2.14. For a A-module M, we consider M asa A [Gg,s]-module M* by letting
o € Gg,s act by multiplication by the inverse of its image in I'.

By taking completed tensor products with A‘, we may define Iwasawa cohomology
groups, see [20]. (Note that 0 € Gq,s acts on A* by multiplication by the inverse of its
imagein I'.)

Definition 2.15. For a compact Z,[Gq,s]-module M, the ith S-ramified Iwasawa co-
homology group of M is

H{, (0o, M) = H (O, N ®z, M).

Remark 2.16. We have compactly supported Iwasawa cohomology groups and local-
at-¢, for primes £, Iwasawa cohomology groups

H. (000, M) = H(O, A &z, M)

and

H (Qp 0. M) = H (Qq. Zp[Ie]' ®2z, M)
of a compact Z,[Gq,s]-module or, respectively, Z,[Gq, |-module M, where I'; denotes
the decomposition group at £ in I'. We also consider Iwasawa cohomology for Oxo[ttnp],
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defined using A in place of A (and similarly the local-at-¢ cohomology for the decompo-
sition group).

We make some remarks on Galois cohomology with restricted ramification, Poitou—
Tate duality, and Iwasawa cohomology, and we refer the reader to [13], [10] and [20,
Section 2] for a more thorough review of their various properties, as well as, for instance,
the analogous but simpler Tate duality.

Remark 2.17. Let M be a compact Z,[Gq,s]-module.

(a) Via Shapiro’s lemma, we have an identification

H{\(Oco, M) = lim H' (O, M),
r

where the inverse limit is taken with respect to corestriction maps, and similarly for
the other sorts of Iwasawa cohomology groups. For a prime £, the cohomology group
H (Q, A' Q7 » M) is the product of Iwasawa cohomology groups wa (Q¢,00. M) over
the finite set of primes of Q dividing £. For £ = p, this is just a single prime.

(b) Poitou-Tate duality provides canonical isomorphisms
H(0.M(1) = H>™(Gg,s. MY)",

where on the right we use the profinite Gg,s-cohomology group of the discrete Pontrya-
gin dual M". This in turn gives isomorphisms

H 1, (Oso, M(1)) = H>(Ggo.,s. MY)Y
of A-modules. For i = 3, we obtain the invariant maps
H}(O.M(1)) = Mgy, g and HZ (Oco. M(1)) = Mg, 5.

and in particular third compactly supported cohomology functors are right exact.

2.3. Local actions at p

Notation 2.18. We fix an even p-adic Dirichlet character 6: A — (QTI,X, and we let R
denote the Z,-algebra generated by the values of 0.

We consider R as a quotient of Z,[A] via the Z,-linear map to R induced by 0.

Definition 2.19. The 0-part My of a Z,[A]-module M is the R-module
My =M ®z,[A] R.

Remark 2.20. Given a compact A-module M , we view My as a module over the com-
plete local ring Ag := R[I'] = R[X]. We will most typically think of Ay as the 6-part of
the algebra of inverse diamond operators, whereas A will often be viewed as an algebra
of Galois elements.
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Definition 2.21. (a) Let 70¢! (resp. 7.0¢') denote the maximal unramified $4[Gq, ]-
quotient of 7™ (resp. 7).
(b) Let 75" denote the kernel of the quotient map T, — %, which is also the

Gord Gord
kernel of 75" — T 7.

Definition 2.22. For a compact unramified #[Gg, |-module U with ;% a compact Z -
algebra, we set
DU) = (U &z, W)=,

i.e., the fixed part of the completed tensor product for the diagonal action of the Frobe-
nius Frp, where W is the completion of the valuation ring of Q.
Remark 2.23. In the notation of Definition 2.22, the following hold:

(a) There is a noncanonical natural isomorphism between the forgetful functor from
compact unramified #[Gq, |-modules to compact f-modules and D, under which
each U — D(U) is an isomorphism [4, Proposition 1.7.6].

(b) Endowing D(U) for each U with the additional action of ¢ = 1 ® Fr,, any choice
of natural isomorphism as above induces canonical isomorphisms

U/(1=Fr,)U = DU)/(1—¢)D(U).

The following A-adic Eichler—Shimura isomorphisms can be found in [4, Proposi-
tion 1.7.9] and extend work of Ohta [15].

Theorem 2.24 (Ohta, Fukaya—Kato). We have canonical isomorphisms

D(Tod) = @y and  D(Tor) = Mg

quo quo

of g)grd-modules.

Remark 2.25. A well-known result of Hida theory (see Ohta [15, Theorem 1.4.3]) states
that ’J‘bord and "fb"rd are Ag-free of finite rank.

Ohta [15, Section 4] constructed a perfect “twisted Poincaré duality” pairing
() TP x T — Aly(1) (2.2)

of Ag[Gq,s]-modules for which (T'x,y) = (x,Ty) forallx,y €e Tgand T € b‘érd. This
is compatible with an analogously defined pairing

() TP x T — Ap(1) (2.3)
of Ohta [16, Theorem 1.3.3] with the same properties, but taking T € 85‘9’“’.

Remark 2.26. The submodule Tsﬁgd is isotropic with respect to Ohta’s pairing, yielding

a perfect A g-duality between the §3*[Gq, ]-modules 70! and 7.0 [15, Theorem 4.3.1].

sub

qrord s ; d _
As a consequence, T3 is isomorphic to hi(1) as an hy“[Goy]-module, where Q}f

denotes the maximal unramified extension of Q, [4, §1.7.13].
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2.4. Eisenstein parts and quotients

For an $°“-module M, we let My, denote its Eisenstein part: the product of its localiza-
tions at the maximal ideals containing Ty — 1 — £(£) for primes £ } Np and Uy — 1 for
primes £ | Np.

Definition 2.27. (a) We define the cuspidal Hecke algebra }) as the Eisenstein part bf;d
of Hida’s ordinary cuspidal Hecke algebra H™.

(b) The Eisenstein ideal I of Y is the ideal generated by T, — 1 — £({) for primes
£} Np and U; — 1 for primes £ | Np.

We also set & = $° and in general use the following notational convention.
Notation 2.28. For an $°9-module denoted M9, we set M = Mr‘gfd.

By applying this convention, we obtain $-modules &, M, §, M, T, T, Tquos ‘J:;uo,
and Tgp. (Note that Fgy, and Tgy, are a submodule and a quotient of Ty, rather than just 7.)
It is only these Eisenstein parts that will be of use to us in the rest of the paper, so we focus
solely on them, eschewing greater generality, but obtaining somewhat finer results in the
later consideration of zeta elements.

We make the following assumptions on our even character 6.

Hypothesis 2.29. We suppose that the following conditions on 6 hold:
(a) p divides the generalized Bernoulli number B g-1.

(b) 6 has conductor N or Np,

© 0#1Lo>(fN=1),

(d) either 0w~z pz)y< # 1 0r 0(z/N2)<(P) # 1,

Remark 2.30. Hypothesis 2.29 (a) tells us that hg # 0.

Using Hypothesis 2.29 (d), we have the following exactly as in the work of Ohta
[16, §3.4] (cf. [4, §6.3.12]).

Lemma 2.31. The exact sequence
0— Touo = Tg = Tquo > 0
is canonically split as a sequence of hg-modules.

We consider the following power series corresponding to the Kubota—Leopoldt p-adic
L-function of interest.

Definition 2.32. Let £ € Ay be the element characterized by the property that
ES—1) = Ly(0*07 ', s —1)

forall s € Z,.
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The Mazur—Wiles proof of the main conjecture over QQ implies the following, first
stated by Wiles [23, Theorem 4.1] in the more general context of totally real fields, and
reproven in the Mazur—Wiles setting by Ohta in [16, Corollary A.2.4].

Theorem 2.33 (Wiles). We have (§/1)g = Ag/E.
Definition 2.34. Welet T = Ty /1 Ty.
We recall the following from [4, Section 6.3] (cf. [19, Corollary 4.9]).

Proposition 2.35. The reduced lattice T has an (h/1)g[Gq,s]-quotient Q canonically
isomorphic to (/1) (1).

Proof. Consider the Manin—Drinfeld modification of the inverse limit of the first homol-
ogy groups of X;(Np”) relative to the cusps, which is isomorphic to T ®s by [19,
Lemma 4.1]. Its quotient by ™ is isomorphic to §/ I, generated by the image e, of the
compatible sequence of relative homology classes {0 — oo}, of the geodesic paths from 0
to oo in the upper half-plane [19, Lemma 4.8]. The Ag-module T Q¢ b is free as it has
no X -torsion and its quotient by X is R-free as the Manin—Drinfeld modification of the
Eisenstein part of the relative homology of X;(Np) (cf. [4, §6.2.9]). By Remark 2.25
and Theorem 2.33, we then see that £e,, must be an element of a Ag-basis of Ty (cf.
[4, Corollary 6.2.10]). The desired surjection is given by y > (£eoo, y) on y € Ty, using
the nondegeneracy of Ohta’s pairing (2.2). ]

Remark 2.36. We have made a sign change here from our original map and that of [4,
§6.3.18]. That is, we pair with £es, on the left, rather than the right.

We define P as the kernel of the quotient map 7" — Q, yielding an exact sequence
0->P—->T—->0—0 2.4)

of (h/1)9[Gq,s]-modules. We recall the following from the main results of [4, Sec-
tion 6.3].

Proposition 2.37. The canonical maps P — Tquo/ 1 Tquo and T/ 1 oy — Q are isomor-
phisms of (h/1)¢[Gq,]-modules. Moreover, the action of Gq,s on P is trivial, and P
can be identified with the fixed part of T under any complex conjugation.

Proof. The cokernel of the map 7: Ty /I Touy — Q is an (§/1)g[Gq,,]-module quo-
tient of Tquo/ 1 Tquo- The Ap-action on Tquo/ I Tquo is trivial, while the Ajp-action on Q is
via w071, so by Hypothesis 2.29 (d), we have that 7 is surjective. Moreover, Teu /I Taup
and Q are both free of rank one over (§/1)g, so & must also be injective. This forces the
other map to be an isomorphism as well.

Next, let us briefly outline the argument of Kurihara and Harder—Pink yielding the
triviality of the action on P, as in [4, §6.3.15]. By Lemma 2.31, we have a direct sum
decomposition 7' = P @ Q as (h/1)g-modules, with P being Gg,s-stable. The char-
acter defining the determinant of the action of Gg,s on the modular representation in
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which Ty is a lattice reduces exactly to the character defining the action on Q. Conse-
quently, Gg,s must act trivially on P. Since complex conjugation then acts trivially on P
and as —1 on the quotient Q, we have the final claim. |

Corollary 2.38. The maps 7:9"' — Tquo and 319-1- — rfauo are isomorphisms.

Proof. The maps Tg/ ’T9+ — ‘fg / "J:;' and Ty — iub are isomorphisms, so it suffices to
show that Ty, — T5/ %+ is an isomorphism. We know that it is surjective by Proposi-
tion 2.37 and Nakayama’s lemma. But Ty, is a free hg-module of rank 1, and T/ Te+ is
an hg-module of rank 1, so the surjectivity forces the map to be an isomorphism. ]

As in [4, Proposition 6.3.4], we see that our sequence (2.4) is uniquely locally split.

Proposition 2.39. For each prime £ | Np, sequence (2.4) is uniquely split as a sequence
of (h/1)g [[GQeﬂ-modules.

Proof. For £ = p, this is a direct consequence of Proposition 2.37. For £ | N, this follows
from Hypothesis 2.29 (b) and the facts that the decomposition group Ay at £ in A acts
trivially on P and via w9~ on Q. ]

We also have the following results on P.

Remark 2.40. (a) The Gg,s-action on P is trivial, and we have a canonical isomor-
phism P = Gy /1Sy of hg-modules. For this, note that U, acts as an arithmetic Frobenius
on Jquo by [4, Proposition 1.8.1] and that D(7qu,) = &g, and apply Proposition 2.37 and
Remark 2.23 (b).

(b) The p-adic L-function £ divides the A g-characteristic ideal of P for the action of
inverse diamond operators by an argument of Mazur—Wiles and Ohta (see [4, §7.1.3]).

Putting these isomorphisms together with Remark 2.23 (a) and Proposition 2.24, we
have isomorphisms &g =~ Te+ >~ §p and My = fl:(;r >~ My on Eisenstein components.
Note that the first of each of these pairs of isomorphisms is noncanonical, only becoming
canonical upon reduction modulo U, — 1, but we can and do fix compatible choices.

3. Cohomological study

In this section, we first introduce known results on the cohomology of the reduced lattice
that is the quotient 7' of Ty by the Eisenstein ideal. We recall the work of Fukaya and
Kato [4] in which the derivative &’ of a Kubota—Leopoldt p-adic L-function & appears
in the study of certain connecting homomorphisms in the cohomology of subquotients
of T'(1). We then perform an analogous study, replacing T by the “intermediate” quotient

T = (A'®z, T)/E(A &z, T)

of A' Rz, » T, where Eg:is a diagonalization of £ in A ®z » N g. We show that in this setting
the role of £ is played more simply by 1.
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3.1. Cohomology of the reduced lattice

In this subsection, we define the explicit map w: P — Y and the map Y:Y — P obtained
from the Galois action on 7', and we recall our conjecture that they are mutual inverses.
We then describe Galois cohomological aspects of the work of Fukaya and Kato on the
conjecture. In particular, we provide an interpretation of Y as a connecting map in the
cohomology of T'(1), and we identify a connecting map in the compactly supported coho-
mology of P (1) with &’.

Definition 3.1. We set Y = H2 (Ooolitnp], Zp(2))s and consider it as a A g-module for

w
the action of inverse diamond operators.

Remark 3.2. Let Y’ denote the 0-eigenspace of the Tate twist of the minus part of the
unramified Iwasawa module over Q (1 npoc). Then the canonical maps

1
Y — HI%N(ZOO[—,MNI,],ZP(Z))O Y
p
are isomorphisms by our hypotheses on 6. In particular, the characteristic ideal of Y is

generated by £ by the Iwasawa main conjecture.
Remark 3.3. It follows from Shapiro’s lemma that
H'(0.A§(2)) 2= Hy,(Ocolitnp). Zp(2))e
for i € Z. In particular, we may identify ¥ with H2(0, A}(2)).
We recall the following [4, §9.1.4].

Lemma 3.4 (Fukaya—Kato). The cohomology groups H' (9, Q(1)) are zero fori ¢ {1,2}
and are isomorphic to Y otherwise. More precisely, the connecting map in the long exact
sequence attached to

0= AYQ2) 5 ALQR) = 0(1) > 0

induces an isomorphism H'(OQ, Q(1)) = Y, and the quotient map in said sequence
induces an isomorphism Y = H?(O, Q(1)).

Proof. The group H'(0, A} (2)) vanishes since it is isomorphic to the Tate twist of the
group of norm compatible systems of p-completions of p-units in the cyclotomic Z,-
extension of Q(unp), its O-eigenspace is zero since 6 is even, not equal to w?, and
Hypothesis 2.29 (d) holds. Since Gg,s has p-cohomological dimension 2 [13, Propo-
sition 10.11.3], we have an exact sequence

0= HY(0.0(1)) = HX(0.A5(2) 5> H2(0.AY(2)) - HX(0.0(1)) - 0

in which the middle map is zero by Stickelberger theory (or the main conjecture and the
fact that Y has no p-torsion). ]

We also note the following simple lemma on the compactly supported cohomology
of P, employing Poitou—Tate duality as in Remark 2.17 (b).
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Lemma 3.5. The compactly supported cohomology groups Hci (O, P(1)) are zero for
i ¢ {2,3} and are isomorphic to P otherwise. For i = 3, the isomorphism is given by
the invariant map, whereas fori = 2, we have a canonical isomorphism H Cz (0,P(1)) =
r @Zp P of Poitou—Tate duality that we compose with the map induced by —y:T" — Zp.
Moreover, the natural maps

H: (Z[%], P(l)) — HI(0.P(1))
are isomorphisms.

Proof. As P has trivial Galois action, the invariant map of Remark 2.17 (b) provides
a canonical isomorphism H2(0, P(1)) =~ P.Fori = 1, we similarly have

H} O, P(1) = H*(O,PY)" =0

in that H2(O9,Z/ pZ) = 0 (as seen by a standard argument involving inflation-restriction
for Q(ip)/Q and Kummer theory). Since the above arguments work for any compact
Z,-module M with trivial Gg, s-action, the functors M — HI(O, M(1)) are exact for
i = 2,3 and are trivial for all other ;. The maximal pro-p, abelian, S-ramified extension
of Q is Qo in that no prime dividing N is 1 modulo p, so we have

HZ(O,P(1) =~ HX(0O,Zy(1)) ®z, P =~ H'(0,Q,/Z,)" ®z, P =T ®z, P,

and we apply the isomorphism — y: I — Z,, to obtain the result. A similar argument gives
the analogous statements for Z[%] and through it the isomorphisms. ]

We can define a cocycle b: Gg,s — Homy (0, P) using the exact sequence (2.4) by

b(o)(q) = o0 'q)—

for ¢ € Q, letting X denote the image of x under a fixed hg-module splitting Q — T.
Then b restricts to an everywhere unramified homomorphism on the absolute Galois
group of Q(unpee) by Proposition 2.39, which we can view as having domain Y by
Remark 3.2. Through the isomorphism of Proposition 2.35, we have moreover a canoni-
cal isomorphism Homy (0, P) = P of Ag-modules. The result is the desired map T (see
[19, Section 4.4], though note that we have not multiplied by any additional unit here).

Definition 3.6. Let Y:Y — P denote the homomorphism of Ag-modules induced by b
and Proposition 2.35.

We also have a map in the other direction that takes a trace-compatible system of
Manin symbols to a corestriction compatible system of cup products of cyclotomic units.

Definition 3.7. Let w: Sy — Y denote the map constructed in [19, Proposition 5.7], with
reference to [4, Theorem 5.3.3], where the latter is shown to factor through P.

We also use @ to denote the induced map w: P — Y.
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Remark 3.8. We recall that w is the restriction of the inverse limit under trace and core-
striction of maps

1 +
@ Hy(Xa(Np"). CYNP). 2p) " — HE (2| vy 57 | 2,)
[u:vlr = (1 =CNprs 1 = ERpr)rs

forr > 1, where u,v € Z/Np"Z — {0} with (u, v) = (1). We briefly define the symbols
that appear.

On the right-hand side of (3.1), the symbol ( , ), denotes the projection to the +-part
of the pairing on cyclotomic Np-units induced by the cup product

Hgl(z[wpr, Nip],zp(l)) x Hélt(z[mvpr, Nip],z,,(l))

U 1
=y Hé%(z[u,vpr, N_p],zp(z))

3.1

and Kummer theory. We also set {3y = e2™i/M for M > 1, again viewing @ inside C.
On the left-hand side of (3.1), we have

4
[u:v], = (wr (CCI Z) {0 — oo},) ,

where w, is the Atkin—Lehner involution of level Np” and the matrix (‘; Z) e SL,(Z)
has bottom row (u, v) mod Np”. (Note that w,{0 — 0o}, = {00 — 0},.) We project the
resulting element to the plus part after the operations, denoting this with ( )*. Since
u, v # 0, the symbol [u : v], lies in Hy(X1(Np"), CX(Np"), Z,)*, where CX(Np")
denotes the cusps not over 0 € Xo(Np").

We recall the conjecture of [19].
Conjecture 3.9. The maps w: P — Y and Y:Y — P are inverse maps.

Actually, Conjecture 3.9 was originally conjectured by the author up to a canonical
unit. There were indications that this unit might be 1 (if sign conventions were correct),
but while the author advertised this suspicion rather widely and included it in preprint
versions of the paper, he opted not to conjecture it in the final published version. It was
the work of Fukaya and Kato in [4] that finally made it clear that the unit should indeed
be 1, not least because one would expect that the hypotheses under which they can prove
it should hold without exception. Nevertheless, one does not actually know how to prove
that their hypotheses always hold. Indeed, this paper is motivated by a desire to explore
where the difficulty lies in removing them.

Remark 3.10. Hida theory tells us that the A g-characteristic ideal of P is divisible by (§)
in that g, is he-faithful and (/1) is annihilated by (a multiple of) §. Moreover, the
main conjecture [11] tells us that the Ag-characteristic ideal of Y is equal to (£). As Y
is well known to be p-torsion free (i.e., by results of Iwasawa and Ferrero—Washington),
Conjecture 3.9 is reduced to showing that Y o o = 1 on P.
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Consider the complex

Cs(0.T(1)) = Cone (C((D, T(1) - € C(@Q. P(l)))[—l], 3.2)

{INp

where “C” here is used to denote the standard inhomogeneous cochain complexes, and the
map in the cone uses the local splitting 7 — P. We have an exact sequence of complexes

0—Cc(0,P(1)) = Cr(O, T(1)) = C(O,0(1)) = 0,

where C, is the complex defining compactly supported cohomology, which has connect-
ing homomorphisms
H'(0.Q(1)) - H; (0. P(1) (3.3)

fori > 0. Fori = 1, let us denote this connecting homomorphism by ®. The connecting
homomorphism for i = 2 can be identified with Y, which follows from [4, Proposi-
tion 9.4.3], noting Remark 3.12 below. One could simply take this as the definition of T
for the purposes of this article. Nevertheless, we give a fairly detailed sketch of the
proof using the results of [20], as it is by now an old result due independently to the
author.

Lemma 3.11. Under the identifications of Lemmas 3.4 and 3.5, the connecting homo-
morphism
H*(0.0(1)) — HZ(0. P(1)

isT:Y — P.

Proof. We consider a diagram

H{, (Ooo[inp). Zp(2))o — HZ 1 (Ocolitny]. P(1))

I I
H2(0. 0(1) —————— HA(0. P(1).

where the connecting homomorphism that is the lower map is given by left cup product
with b: Gg,s — Homy(Q, P) by [20, Proposition 2.3.3]. The left vertical map employs
the surjection Ay (1) — Q determined by Proposition 2.35, and the right vertical map uses
the quotient map A7 p» Which is to say it becomes corestriction via Shapiro’s lemma.
The diagram is then commutative taking the upper horizontal map to be given by left cup
product with the cocycle G(u y,00),s —> P given by following the restriction of b with
evaluation at the canonical generator of Q. Recall that this cocycle is a homomorphism
that by definition factors through Y:Y — P. That the upper horizontal map then agrees
with T via the identifications of the groups with ¥ and P is seen by noting that it is
Pontryagin dual via Poitou-Tate duality to the Pontryagin dual of Y, via an argument
mimicking the proof of [20, Proposition 3.1.3] (noting Proposition 2.4.3 therein, which in
particular implies that the signs agree). ]
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Remark 3.12. The connecting map H2(O9, Q(1)) — H2(O, P(1)) that we use is the
negative of the corresponding map in [4], since the identification of Q with (h/1)j(1)
of Proposition 2.35, and hence of ¥ with H2(©9, Q(1)), is of opposite sign to that of [4,
§6.4.3]. This explains why the connecting map is identified with Y in Lemma 3.11,
whereas it is identified with —Y in [4, Proposition 9.4.3].

Definition 3.13. Fora Z,[Gq,s]-module (or Z,[Gq,]-module) M, let d3s denote a con-
necting homomorphism in a long exact sequence in cohomology attached to the Tate twist
of the exact sequence

0> M5 A/(XD) &z, M 25 M 0. (3.4)

Remark 3.14. The maps dps for any Z,[Gq,s]-module M agree with left cup prod-
uct by the cocycle —y defining the extension class (3.4) (cf. [20, Proposition 2.3.3]).
As pointed out in [4, Lemma 9.3.4], the sign in —y occurs as Gg acts on A through left
multiplication by the inverse of its quotient map to I' C A.

Lemma 3.15. Let M be a compact or discrete Z,[Gq,s]-module. Then the diagram

Doy H' Qe M) 2 @y HA Qe M(1))

l |

oM

H2(O,M(1)) ————— H3(0, M(1))
anticommutes.

Proof. Recall that

Ce(0. M(1) = ker(€(O, M(1)) = @D C(Qe. M(1))[-1]
L|Np
which is to say that
ClO.M(1) = (P €7@ M(1) @ C(0. M()).

{INp

with the differential taking (x, y) to (—=d~1(x) —res(y), d’(y)). The composition

H'(Qe. M(1) 25 H? Q. M(1) — HX(O. M(1))

takes a class ¢ to the image of the compactly supported cocycle (dar(¢), 0), whereas the
composition

HY(Qq. M(1) > HX(0. M(1)) 25 H3(O. M(1)

takes ¢ to dps (¢p,0) = (—3ps (), 0) in that the differential used to compute the connecting
homomorphism restricts to the negative of the local differential. ]
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We also have the following lemma.

Lemma 3.16. The connecting homomorphism dp: H2(O, P(1)) — H3(O, P(1)) is iden-
tified with the identity map on P via the isomorphisms of Lemma 3.5.

Proof. As noted in Remark 3.14, the connecting map dp is given by left cup prod-
uct with —y € H'(O, Z,). By the commutativity (with elements of the even degree
cohomology group H2(O, P(1))) and associativity of cup products, dp is Poitou-Tate
dual to the map H°(O, PV) — H'(O, PV) also given by left cup product with —y.
In turn, this dual is identified with the dual of the isomorphism I' ®z, P — P induced
by —x: T — Z,. Finally, this is exactly our prior identification of H2(®, P(1)) with
P =~ H3(0O, P(1)). L]

The following exercise in Galois cohomology encapsulates a key aspect of the work of
Fukaya—Kato [4, Sections 9.3-9.5]. We omit the proof, as the reader will find its key ideas
contained in the refined study that follows (cf. Proposition 3.35 for the commutativity of
the left-hand square and Lemma 3.32 for the middle square on the right).

Theorem 3.17 (Fukaya—Kato). Let &' = &) € Ag be such that
g —1) =L (007 s—1)

foralls € Z,,. Then the diagram

Y Y

8 14

HY(0. T (1)) ——— H1(0. 0(1)) =2 H2(0, 0(1)

Devp H'(Qe. P(1)) —— HZ(O, P(1)) 2y HA(O. P(1)

¢ 14

P i“ P
%
commutes, where the indicated vertical isomorphisms are those of Lemmas 3.4 and 3.5,

and the leftmost vertical map uses the unique local splittings of Proposition 2.39.

In particular, note that © is identified with —&’Y as a map Y — P. In this section,
we aim to remove the derivative by modifying the diagram.

3.2. Intermediate quotients

Let ®z , denote the completed tensor product over Z,. We use it consistently even in
cases for which the usual tensor product gives the same module, in part to indicate that
our modules carry a compact topology.
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In this brief subsection, we introduce and study the diagonalized zeta function §
We then define the intermediate quotient M T = (A ®7 , M)/ § of a compact Ag[Go,s]-
module M that is annihilated by &. This quotient of A' ®z , M has M as a quotient,
s0 it can be said to be intermediate between A' ®z », M and M. We note that though
the Gg,s-cohomology of M T then sits between the Iwasawa cohomology and the Gg_s-
cohomology of M, it is not identified with the cohomology of M in an intermediate
extension.

In the following, when we write A (as opposed to A‘), we shall consider this A as
carrying a trivial Gg_s-action. Let £ € A ®z, Ap = R[I'?] be the diagonal image of
& € Ag = R[T']. More concretely, we can make the following definition.

Definition 3.18. Write § = Y 72 a; X' = Y 72 ai(y — 1)’ for some a; € R. We define
the element £ of A ®z, Ag by

E=) a(yey-1'.

i=0

Definition 3.19. Forn > 0, set

1 d"& > AN
™ —(x +1)'— = (X + 1) ; X" e Ay.
E0 = (X ) o = (XD Y e € A

i=n
Remark 3.20. Note that £ is £ of Proposition 3.17.

We have A ®7,, Ag = R[X ® 1,1 ® X]. We frequently referto X ® 1 € A ®z, Ag
more simply by X, and we set V' = 1 ® X as needed to make the identification

A®z, A = R[X,V].
While not used later, the following description of E gives one some insight into its
form; we thank the referee for suggesting this simple proof.
Proposition 3.21. We have £ = YR X REM,
Proof. We have E =Y "2,ai(X +V + XV)'. By the binomial theorem, we have

n=0

— Xn. V 1n ) Vi—n’
Sy a,)

i=n

&) ) (]
dDaX+V+XV) =) a
i=0 i=0

the latter term being Y 00, X" ® £, n

The following applies to E with i = Ay by the Ferrero~Washington theorem [3], as
the reduction of £ modulo V is & under the identification A ®z » Mo/ (V) = Ag.
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Lemma 3.22. Let R be a complete local 7 p,-algebra with residue field ¥, and let M be
a compact R-module. Let 1 € A ®Zp N with nontrivial image in A ®Zp £. Then p is an
injective A @Zp R-module endomorphism of A @Zl, M.

Proof. We must verify injectivity. Replacing M by its associated graded for the powers
of the maximal ideal of R, it suffices to consider M = £, s0 A ®Zp M = ¥[X]. Since u
acts as a nonzero element of [ X on the integral domain ¥[X], it is clearly injective. m

If M of Lemma 3.22 has the further structure of a continuous R-linear Gg,s-action,
then multiplication by 1 € A ®z,, R is a continuous (A ®z, R)[Gq,s]-module endo-
morphism of A ®Zp M . In the case that ! = Ay and M that is annihilated by &, our
interest is in the intermediate quotient

MY = (A'®z, M)/E(AN &z, M),

where §: A ®z » M — A ®7z » M is injective by the lemma. We give this dagger notation
and the notion of an intermediate quotient a more general definition in Definition 4.11.

Remark 3.23. Let us remark on our choice of the word “intermediate”: since M is anni-
hilated by &, the intermediate quotient M T is also the quotient of A' ®z, » M by §— I®E,
which is divisible by the variable X of A, so indeed M T has M as a quotient. We will
often write

H=x"E-108.

3.3. Refined cohomological study

In this subsection, we study the cohomology of intermediate quotients. Specifically,
we study the S-ramified cohomology of QT(1), the compactly supported cohomology
of PT(1), and their relationship via the cohomology of 7T (1). We shall replace the com-
mutative diagram of Theorem 3.17 by a similar commutative diagram
id

Y Y

¢

R
HY(0.T(1)) ——— H'(0, 0 (1)) Lo, H?(0.0(1)

T
Dy H' Q. PT(1)) —— H2(0. PT(1)) —2— H(O. P(1))

which has the distinguishing feature that the connecting map 8TQ that takes the place of d¢g
induces the identity on Y, as opposed to &’.
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Definition 3.24. We denote by w the continuous Z,-algebra automorphism of A Rz » A
and Z,[Gq,s]-module isomorphism

w: A'®z, A" S A ®z, A
satisfying
wlo®t)=0®0c 't
foro, 7 €T.

We will apply the map induced by w to A' ®z, Ay = (A' ®z, A') ®z, R', which
we can think of as landing in A} ®g Ag = (A' ®z, A) ®z, R".

Proposition 3.25. Fori € Z, we have isomorphisms
H'(0,07(1)) = H' (0, 0(1) ®& (Ag/§)

of A ®Zp Ag-modules, where f € A ®Zp Ag acts as usual on the left and as w(f) on
the right.

Proof. Consider the diagram

0 0 0
0—— AL @R Ag(1) —215 AL @R Ag(1) —— Q ®rAg ——0
1®¢ 1®¢ 1®¢
0—— AL @R Ag(1) —25 AL @ Ag(1) —— Q BrAg ——0 (3.5
00— A®z, 0 —+A‘®z, 0 of 0
0 0 0

with exact rows and columns, where the maps Ay ®r Ag(l) = A* ®Zp Q are given
by the composition of w™! with the quotient by 1 ® £. Since 1 ® £ = w(l ® £) and
E®l = w(g) in Ag ®g Ag, the diagram commutes. If we let f € A @Zp Ag act as
w( f) on the terms in the first two rows and as usual in the third, then the diagram is of
(A ®z, Ag)[Gg,s]-modules.

In particular, we have a canonical isomorphism QT = Q ®g (Ag/£) of modules over
(A QA{)ZP Ag)[Go,s]. again understanding that f € A (EA@ZP Ay acts on the right by w(f)
(so, e.g., 1 ® £ acts as zero). As Ag is free profinite over R with trivial Gg,s-action,
we then have

H' (0,0 ®rAg(1)) = H' (0, 0(1)) ®r Ag
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for all i. So, we have an exact sequence

s HI0,0(1) ®r Ag 25 HI(0. 0(1) ®r Ag — H(0. 01(1))
— HIT1(0. (1) &k Ag > HITI(0. Q(1) ®r Ag — -
of A @Zp Ag-modules. Since 1 ® £ has trivial kernel on
H'* (0, 0(1) &R Ag
by the Ferrero-Washington theorem, the exact sequence provides the result. ]

For a compact Ay[Gg,s]-module M annihilated by &, we have exact sequences
X ~ ~
0> M = (A" ®z, M)/XE— M —0, (3.6)
0= M5 (A &z, M)/XE— Mt >0 3.7)

of (A @)Z,, Ag)[Go,s]-modules, the left exactness of which is a consequence of Lem-
ma 3.22.

Notation 3.26. We use BL to denote connecting maps in the cohomology of the Tate
twist of (3.7).

The following refines [4, Proposition 9.3.3] in our case of interest.

Theorem 3.27. Let £g denote the composition
H'(0,0(1)) = H*(0,Ay(2)) = H*(0, 0(1))

of the isomorphisms of Lemma 3.4, which is identified with the identity on Y. Then BTQ
equals the composition

HY(0.01(1) » H'(0.0(1) ~> H*(0.0(1).
where the first map is a surjection induced by the quotient map QT — Q.

Proof. The commutative diagram

0 AL(1) —— 5 AL(D) 0 0
‘ TmodX Tmod w(X)
0 AL(1) — (A &7, AY(1)/XE—— Q &r Ag —— 0

| |

0 0—F (A&, 0)/XE ot 0
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with exact rows (the right horizontal arrow of the middle row being induced by w and the
quotient) gives rise to a commutative diagram of connecting maps

H' (0, 0(1)) ———— H?(0. Ay(2))

Tmod w(X) H

H'(0,0(1)) ®r Ag —» H*(0, Ay(2)) (3.8)
l |
HY(0,07(1)) ——— H?(0, Q(1)),

where the composition H!(9, Q(1)) — H?(O9, Q(1)) is eg.
By Proposition 3.25, the map H'(O, 0T(1)) — H' (O, Q(1)) is identified with the

reduction modulo w(X) =y ® y~! — 1 map
H'(0,0(1)) ®& (Ag/§) - H'(O, 0(1)). (3.9)
Combining this with (3.8) gives the result. ]

Remark 3.28. Given (3.9) and the identifications of Lemma 3.4, we may rephrase The-
orem 3.27 as the assertion that 8TQ: Y ®r (Ag/E) — Y is given by multiplication: i.e.,
satisfies BTQ(y ® f)=f-yforyeY and f € Ag/E.

Remark 3.29. Let us mention another approach, closer to the original work of Fukaya
and Kato in [4, Section 9.3], to elucidate why this removes the &’ from the left-hand side
of (1.1). For this, we recall (cf. [4, Lemma 9.3.5]) that BTQ is the negative of a snake
lemma map H'(9, 07(1)) - HZ,(Oco, Q(1)) for the cohomology of the Tate twist of
diagram (3.5) followed by corestriction HZ,(Ooo, Q(1)) — H?(O, Q(1)). The map

H2,(0os, Q(1)) — H?*(0, 07(1))

is an isomorphism, so the former group, like H'(®, Q7(1)), is canonically identified with
Y ®g (Ag/£) via Lemma 3.25. Under these identifications, we claim that the negative of
the snake lemma map is the identity on ¥ ®g (Ag/£).

To see this, we start with an element of H'(O, QT(1)), which is necessarily annihi-
lated by § We must apply 1 ® £ to a lift to H?(0, Ay(2) ®Rr Ag of its image under
the connecting map induced by the rightmost column of (3.5). This amounts to applying
I®€&— E to said lift, taking into account that f € A & z, A acts on the latter group
by w( f). We must then “divide” this quantity by § = w1 (£ ® 1), which in the quotient
HZ, (000, O(1)) = Y ®r (Ag/E) by 1 ® & can be taken as division by E— 1 ® £. Then
we just note that ~

1®&-§&
E-10%

If, as in [4, Proposition 9.3.1], we had used X in place of § and the Bockstein exact

sequence arising from Definition 3.13 in place of (3.7), then the map do would similarly

1.
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have been given by the negative of dividing 1 ® £ — & ® 1 by w(X) and then taking its
image under the multiplication map Ag ® g Ay — Ag. To compute this, we can first apply
w ! to w(X)TN(E®1—1® &) to obtain §1, and then the multiplication map becomes
evaluation at X = 0, without changing the result. This yields the quantity & = El (0) on
the left of (1.1).

Proposition 3.30. We have a commutative square of isomorphisms

H2(0, P(1)) —— H}(0O, PT(1))

I I

H2(0, PT(1)) 8—:> H2(9,P(1)),

between A-modules canonically isomorphic to P, in which every vertical and horizon-
tal map is identified with the identity map on P, and where the horizontal maps are
the connecting homomorphisms from (3.7) and (3.6), and the vertical maps are induced
by multiplication by §1 and the canonical quotient. The same holds with O replaced
by Z[%].

Proof. Commutativity follows from the morphism of exact sequences

0— P —> (A'®z, P)/XE— PT ——0

b

0—— Pt X5 (A &z, P)/XE—— P ——0.

Via Poitou-Tate duality as in Remark 2.17 (b) (which in particular tells us that M +—
H32(O, M) is right-exact), we have

H2(O.PY(1)) = H},,(Oco, P(1))/E = PJEP = P,

c,Iw

and an exact sequence

HZ\(Oos., P(1)) i H?, (O, P(1)) = H2(O, PT(1))

c,Iw
f
— H2 (0o, P(1)) > H2\(Ocs, P(1)).

Note that ch,lw((%o’ P(1)) =~ HY(Gg.,.s, P¥)V is isomorphic to the tensor product
with P of the Galois group of the maximal abelian pro-p, S-ramified extension of Q o,
which is trivial (since no prime dividing N is 1 modulo p), so the first two terms are zero.

The last map is also zero since multiplication by £ is trivial on P. Thus, we have

H2(0,PT(1)) = H2,(Oco. P(1)) = P,
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We choose the identification of H2(©@, PT(1)) with P which makes this the identity map,
and the right-hand vertical map is identified with the identity map on P via invariant
maps. As for the upper map, note that it factors as

HZ(0.P(1)) - H3, (O, P(1)) — H2(O, PT(1)),

where the first map is the connecting homomorphism, which is seen to be the iden-
tity map by using Poitou-Tate duality as in Lemma 3.16, and the second map is again
clearly identified with the identity map on P. The same argument works with O replaced
by Z[%]. L]

Definition 3.31. We use ep: H2(O, P(1)) — H2(O, P(1)) to denote the composition of
isomorphisms in Proposition 3.30.

As a consequence of Lemma 3.22, the sequence 0 — PT — Tt — QT — 0 induced
by (2.4) is exact. We then have the connecting map

of: H'(0,0"'(1) — HZ(0, PT(1)
analogous to ® (see (3.3)).

Lemma 3.32. The diagram of connecting homomorphisms

T
HI(0. 0(1) —2 H2(0, 0(1))

l@* lr
ap

HZ(0, PT(1)) —— H2(0, P(1))
is anticommutative.

Proof. Let us set M* = (A! ®Zp M)/ XE for any compact Ag [Go,s]-module M. We
have a commutative diagram of exact sequences of complexes

0 0 0
0 —— C.(0, P(1)) —— C.(O, P¥(1)) —— C.(O, PT(1)) —— 0
0 —— Cr (0, T(1)) —— Cr(0,T*(1)) —— Cr(0,TT (1)) —— 0

0 ——C(0,Q(1)) —— C(0, 0¥(1)) —— C(0, 07 (1)) ——0
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where the Selmer complexes of the middle row are defined as in (3.2). The lemma is then
just the anticommutativity of connecting homomorphisms for a commutative square of
short exact sequences of complexes. |

It follows from Theorem 3.27, Proposition 3.30, and Lemma 3.32 that O factors as
1 + 1 @ .2 ~_ 172 +
H(0.0'(1)) » H(0.0(1)) = H; (O, P(1)) — H; (O, P'(1))
for ® = —e;l oY o ggp, which we may also view as amap ®:Y — P.
Lemma 3.33. The connecting homomorphism H' (9, QT (1)) — H?(O, PT(1)) is zero.

Proof. Consider the commutative diagram

H'(0,07(1)) ————— H*(0, PT(1))

| |

DPevp H'(Qe. Q7(1) —— Byjw, H*(Qe, PT(1)) (3.10)

| l

H2(0,07(1)) ——— H3(09. PT(1))

with exact columns. Since Gg,s and G, for £ | Np all have p-cohomological dimen-
sion 2 [13, Proposition 10.11.3, Theorem 7.1.8], and similarly third compactly supported
cohomology is right-exact by Remark 2.17 (b), the right-hand column of (3.10) is isomor-
phic to the quotient by gof the middle terms of the short exact sequence

0= HZ (Oco. P(1)) > P H*(Qe. A' ®z, P(1)) = H} 1, (0. P(1)) — 0.
{|Np

where the first map is injective since H;. 2 (O, P(1)) = 0 (as noted in the proof of
Proposition 3.30). In the second sum, for £ | Np, we have H?(Qy, A* ®Z,, P(1)) =~
@v| ¢ P, with the sum over primes of Q, by Remark 2.17 (a) and Tate duahty The
third term is isomorphic to P via the invariant map. As these groups are killed by E the
sequence remains exact upon taking the quotient by the action of S and the map

H?*(0, PT(1)) > @) H*(@Q¢. PT(1))

LN

is an isomorphism. By diagram (3.10), it therefore suffices to show that H'(Qg, QT(1))
is zero for all primes £ | N. We verify this claim.

Let Ky = Q(tnpee), and set I, = Gal(K¢/Qy),
A = Gal(K¢/Qq,00), and Ty = Gal(K¢/Qe(np))-

Inflation-restriction provides an exact sequence

0— H' (T, 0T(1) > H' Qe 0T(1) - H' (K¢, 0T ().



An extension of the Fukaya—Kato method

31

We have H'(K;, 0T (1)) 2 QT by Kummer theory and the valuation map (since all roots
of unity are infinitely divisible by p in K). As A; acts on 0T through the restric-
tion of 671, the Ag-invariants of OT are trivial by Hypothesis 2.29 (b). So, we have
H'(Kg, QT(1)F'¢ = 0. Moreover, since Ay has prime-to-p order, inflation provides an

isomorphism
H'(Te. (2T ()2 = H (T, 07 (1)),
and again the inertia subgroup of A acts nontrivially on QT (1) by assumption.

Lemma 3.34. The connecting homomorphisms
3h: H'(Qe. PT(1) > H>(Qu. A &z, P(1))
for £ | N are all isomorphisms.

Proof. We have an exact sequence
A )8 -
H' Q. A' ®z, P(1) - H'(Qe. PT(1) = H*Qq. A Bz, P(1))
£ -
= H?*(Qq, A' ®z, P(1)),
and H1(Qg, A* ®Z,, P(1)) = O since ¢ is unramified in Qo, while

H*(Q.A'®z, P) =P P
v|l

via the invariant map. Since § acts as £ on P, and £ kills P, we have the result.
Proposition 3.35. The square
HY (0, TH(1)) —— H'(0,01(1)
| |-
DBy H' Qe PT(1)) —— HZ(0, PT(1))
is commutative.

Proof. Applying Lemma 3.33, we have a diagram
H'(0,0%(1)

HYO,PT(1)) ——— HY 0O, TT(1)) —— H (0, 07(1)) —— 0

| |

Doy H'(Qe. PT(1) == Dy n, H'(Qe. PT(1)

|

HZ(0. PT(1))
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with exact rows and columns. The snake lemma map from the diagram is then the negative
of the connecting homomorphism @ by a standard lemma. ]

We now have that all squares in the diagram

HY(0.TT(1)) —— H'(0. 0'(1)) — H'(0. (1)) = H>(0. Q(1))

R

Dy, H'(Qe, PT(1)) — H2(O, PT(1)) < H2(0, P(1)) = H3(O, P(1))

are commutative.

4. Local study

In this section, we let R denote a complete Noetherian semi-local Z,-algebra. We let A
denote a compact, unramified R[Gq, |-module. Exactly when discussing this general
setting, we shall allow p to be any odd prime.

In its simplest form, a Coleman map assigns power series to norm compatible systems
of p-units in the cyclotomic Z ,-extension of Q,; this is the case of the Z,[Gq, ]-module
A = Zp. In general, the Coleman map attached to 4 is a map

Coly: Hph(Qpoo. A(1)) > X 'A ®z, D(A),

closely related to a dual exponential map (see [4, §4.2.10]).
We construct a Coleman-type map for the intermediate quotient

AT = (A'®z, A)/Xa(A' ®z, A)
with respect to an element o € A @z , R. We call this map
Coll: H'(Q,, AT(1)) - €*(4)

an intermediate Coleman map, and its value group is a certain A ®z » R-module €*(A4)
annihilated by Xo. We show that (1 — 1) Col4 modulo X« agrees with the composition
of Colj1 with the map from Iwasawa cohomology, and the quotient of €*(A4) by the image
of this composition is isomorphic to the maximal unramified quotient of A.

For A = T4u0, we also show that there exists an intermediate local zeta map

zguot A @Zp So — Hl(@p’ 7:;20(1))

such that (1 — Up)z;uo agrees with a local zeta map zg,, to Iwasawa cohomology (after
mapping to intermediate cohomology). While Col oz, is multiplication by an element
aeA®z ,» bg with & (0) = £’ mod I, the composition Col' o Z;uo induces amap P — P
that is just the identity, see Proposition 4.23. This occurrence of 1 serves as the replace-
ment for £ on the right-hand side of (1.1).
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4.1. Coleman maps

In this subsection, we review the theory of Coleman maps, largely following [4, §4].

Let UYL (resp. K3.) denote the pro-p completion of the group of norm compatible
sequences of units (resp. of nonzero elements) in the tower given by the cyclotomic Z -
extension Q. of Q). Recall that W denotes the completion of the valuation ring of Q).
Attached to a sequence of norm compatible elements (u,), in UL, there is a unique
power series f(y) € W[y] with f({pr — 1) = Fr},(u,) for all r, known as the Coleman
power series of (u,), (see [1, Theorem A]).

Definition 4.1. The Coleman map Col: X2 — X 'W[X] is the unique map of A-
modules restricting to a map U — W[X] = W]l + pZ,] defined on (u;)r>1 € UL
with u, € Q. by

v
p
Here, W[X] acts continuously and W-linearly on W [x] with the result of h € W[X]

acting on x denoted by [A](x), via the action determined by [a](x) = x¢ € W[x] for
a€l+ pZy. Also, f(x —1) € W[x — 1] is the Coleman power series of (1), and ¥

is defined on g(x) € W[p~"][x] by ¥(g)(x) = Fry(g)(x?).

We can extend this definition as follows.

[Col((ur)r=DI(x) = (1= = ) log(f(x = 1)).

Definition 4.2. The Coleman map for 4 is the map
Coly: H\(Qp oo, A(1)) = X' D(A)[X]

of A® z,, R-modules defined as the composition

Inf A~ _ 1®Col A~ _ _
HL(Qp o0, A(1)) = (487, KE)Fr=1 225 (A&7, X' W[X])Fr=!

= X 'DA)[X].
where Fr), acts diagonally on the tensor products.

The following is a slight extension, allowing A¥»=! to be nonzero, of the restriction
of [4, Proposition 4.2.7] to invariants for A = Gal(Qp,(ipec)/Qp,00). Note that Coly
agrees with the map denoted Col in [4] on the fixed part under Gal(Q, (tp)/Qp).

Lemma 4.3. The map Coly is injective with image in X 1 D(A)[X] equal to
C(A) = X1 4"=1 1 D(A)[X].

Proof. Since A(1) has no Gqy _-fixed part and Gal(Q} oo/ Qp,00) = 7 has cohomolog-
ical dimension 1, the inflation map Inf in the definition of Coly is an isomorphism. It is
well known that the Coleman map Col is injective and, as follows, for instance, from the
proof of [4, Proposition 4.2.7], it restricts to an isomorphism UL —> W [X]. In particular,
Coly is injective.
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It follows that we have an exact sequence
0> A®z, W[X] > A®z, K& — A —0

with the first map being the inverse of 1 ® Col and the second determined by the valuation
map on the norm to Q" of an element of K. The kernel of 1 — Fr,, applied to this
sequence gives

0 — D(A)[X] — HL(Qp.o0o, A(1)) — A"P=1 0,

the surjectivity since K3 contains the Frobenius fixed sequence that is the projection of
(1 = &pn)p to the A-invariant group. By the injectivity of Coly, this forces the induced
map AF7=! — X~1D(A)[X]/D(A)[X] to have image X ! AF»=1  Since the image
of Coly contains D(A)[X], it must then equal €(A). L]

Remark 4.4. If AF»=! = 0, then Coly is an isomorphism
H}\(Qp 00 A(1)) > D(A[X].
This occurs, for instance, for A = 74y, by [4, Proposition 3.3.3].

In addition to Coly, we also have a homomorphism at the level of Q,, following
[4, §4.2.2].

Definition 4.5. We let
Col’y: H'(Q,. A(1)) — D(A)

denote the map of Ji-modules given by the composition

Yo

~ _, (1=3)log ~ 1 o~
H'(Qp, A(1)) = (AB®z, (1 + pW)P=! — 2 (A&7, W)= = D(4),

where ¢ = 1 ® Fr, is as in Definition 2.23, and the first map is induced by restriction
to Q)" and the map

HY(Qy . Zp(1) = p% x (1+ pW) — 1+ pW
given by projection to the second summand.

Remark 4.6. The map Colﬁ1 is in general only split surjective with kernel A¥»=1, It has
a canonical splitting given by the valuation map

HY Q. A1) 5 (@, A(1y)Fr=t 25 gFr=1,
as the valuation map v, has kernel (A4 ®Zp (1 + pW))Fr=1,
Recall that
H?*(Qp. A(1)) = A/(Fr, — )4 = D(A)/(¢ — 1)D(A) (4.1)

via Tate duality, i.e., the invariant map of local class field theory. The following is [4,
Proposition 4.2.4].
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Lemma 4.7. The composition of Coli with the quotient map
D(A4) — D(A)/(¢ —1)D(4)
is identified through (4.1) with the connecting homomorphism

da: H'(Qp, A(1) = H?(Qp, A(1))
of Definition 3.13.

Proof. By replacing A by A/(Fr, — 1) A, we may suppose that A has trivial Galois action,
and it then suffices to consider A = Z,. The connecting homomorphism d4 is given by left
cup product with —y by Remark 3.14. Note that for a € Q, we have y Ua = y(p(a)),
where p: Q; — Gg’p is the local reciprocity map (cf. [18, Chapter XIV, Propositions 1.3
and 2.5]). But

p() (o) = &4

foru € 1+ pZp and p(p)(§pn) = Epn. Then x(p(p)) = 0 and —x(p(u)) = (1—p~")-
log(u) foru € 1 + pZ,. Thus, 0z, = Col"Zp. |

The relationship between Col and Col’ is given by the following [4, Proposition 4.2.9].

Proposition 4.8. Let evy: D(A)[X] — D(A) denote evaluation at 0, and let cor be the
corestriction map HI{V(QP’OO, A(l)) — Hl((@p, A(1)). Then we have

evoo(l — ¢~ 1) Coly = ColE1 ocor
as maps HI{V(QP,OO, A(1)) — D(A).

Abusing notation for easier comparison with the inverse ColZ1 of Coly, we introduce
the following notation for the canonical splitting of Colﬁ1 determined by Remark 4.6.

Definition 4.9. We denote the canonical splitting of the surjection ColE1 by
(Col’)™': D(A) — H'(Q,. A(1)).
We then have the following corollary of Proposition 4.8.

Corollary 4.10. We have the equality
coro Colzl = (Collf’l)_1 oevgo(l —¢™h)
as maps D(A)[X] — HY(Q,, A(1)).

Proof. The p-adic valuation and the map ColE1 provide an isomorphism H!(Q,, A(1)) —
AFr=1' @ D(A), and (Col’)~" is the resulting injection from D(A). The image of
D(A)[X] under Coly" is contained in (4 ®z, U)F =1, as in the proof of Lemma 4.3.
The image of the restriction of cor to the latter group is (4 &z , (1+ pW))F»=1_which
is the image of (Colj:)_l. Thus, we can compose the equation of Proposition 4.8 with
(ColZ)_l and precompose with Col;1 to obtain the equality. |
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4.2. Intermediate Coleman maps

In this subsection, we construct a map Coljf1 that plays an analogous role to Col; for what
we call an intermediate quotient of A' ®7 » A
We suppose that R is local to simplify the discussion and fix an element

o€ A®z, R = R[X]

with nonzero image in £[X] for £ the residue field of . The multiplication-by-oz map is
then injective on A @)Z,, A.

Definition 4.11. The intermediate quotient AT of A' ®7 , A with respect to « is the com-
pact (A ®z, R)[Gq, [-module defined as

AT = (A'®z, A)/Xa(A' Rz, A).

By the Weierstrass preparation theorem, AT is a finite direct sum of copies of A as an
R-module.

Definition 4.12. (a) Set €T(4) = €(4)/Xa€(A), where €(A) is the image of Coly,
as in Lemma 4.3.

(b) Let €*(A) denote the pushout of the diagram

6T(4) & Dy 25 pa,

where the first map sends a € D(A) to a(l ® a) € €T(A).
(c) Let B
A= A/(Fr, —1)A = D(A)/(¢ — 1)D(A).

(d) Let
invg: HZ(Qpoo, A(1)) => A and invg: H*(Qp, A(1)) — A

denote the invariant maps, which agree via corestriction from Iwasawa to usual coho-
mology.

The pushout €*(A) has the following relatively simple explicit descriptions in the
cases that A¥»=1 = 0 or AT»=1 = 4.

Lemma 4.13. If AF»=1 = 0, then

(1—¢.a)A ®z, D(A)
Xa(A ®z, D(A))

" (4)

Il

as A @)Z,, NR-modules. Moreover, the injective pushout map from

A ®z, D(A)
Xa(A ®z, D(A))

ch) =

to €*(A) is given by multiplication by 1 — ¢~ 1,
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Proof. 1t suffices to see that

(CT(4) ® D(A)) (-l (1—@,0)A®z, D(A)

¢ (A) = {(ozx,((p_l _ I)X) | x € D(A)} Xa(A ®Zp D(A))

is an isomorphism. Well-definedness and surjectivity are clear from the definitions.

Let us prove injectivity. Since « reduces to a nonzero element of ¥[X], Lemma 3.22
tells us that it provides an injective endomorphism of A ®7 » (D(A)/(1 —¢)D(A)). Thus,
if y,ze A ®Zp D(A) are such that (1 — ¢~ ')y + az = 0, then z = (¢! — 1)x for
some x € A ®Zp D(A). As 1 — ¢~ ! is injective on A @Z[, D(A) by assumption (see
Remark 2.23 (b)), this forces y = ax. Then (y, z(0)) = (ax, (¢! — 1)x(0)) has trivial
image in €*(A). |

Lemma 4.14. IfFr, acts trivially on A, then the pushout C* (A) is the direct sum
C*(4) = CT(A) ® D(A)
of A Q7 » R-modules. Moreover, multiplication by X induces an isomorphism
cfa) = 47

Proof. Note that 1 — ¢! is the trivial endomorphism of D(A) by assumption. Given this,
we have €T(4) = (X7'A ®z, A)/a(A ®z, A), so a: D(A) — €T (A) is also zero. The
second statement is a direct consequence of this description of €7(A) and the definition
of A%, n

The following defines an intermediate Coleman map Colj1 for the unramified mod-
ule A.

Theorem 4.15. There is an isomorphism
Coll: H'(Q,, AT(1)) = 6*(4)
of A Rz » R-modules fitting in an isomorphism of exact sequences

0 —— H}\(Qp,o0. A1)/ Xt — H'(Qp, AT(1) —— H{ (Qp,00. A(1)) —— 0

w
lcm A lcmjl lmv A

0 ct(A) C*(A) v Y 0,

where the left lower horizontal map is given by the pushout, and  is inverse to the
isomorphism A — €*(A)/CT(A) induced by the other pushout map.

Proof. We shall construct an isomorphism A: €*(4) — H'(Q,, AT(1)) such that the
desired map Coljf1 is its inverse. Consider the composition

D(A) - H'(Q,, AT(1))
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of (Col{l’gl)_1 with the map a: H'(Q,, A(1)) — H'(Q,, AT(1)) induced by a: A — AT,
We claim that the composition

D) = D(A) > HY(Qp. AT(1))

agrees with the composition

1

o Coly
D(4) = CT(4) —— HL(Qpoo, A(1))/ X — H'(Q,, AT(1)),

where we abuse notation (as in the statement of the theorem) and use Coly4 to denote its
reduction modulo Xe. Given the claim, we define A as the map given by the universal
property of the pushout €*(A).

To see the claim, consider the diagram

D(A) ——— C(A)/ XC(A) ——— C(A)/ XaC(A)
1! l lColZl lcc)gl
D(4A) Hy, (Qp,00, A1)/ X —— Hy, (Qp 00, A1)/ Xat

cor
m l l

H'(Qp. A(1)) ———— H'(Q,. AT(1))

in which the two compositions are found by tracing its perimeter. The two right-hand
squares clearly commute. Since the multiplication-by-o maps in this diagram are all
injective, we are reduced to the commutativity of the left part of the diagram. This com-
mutativity is Corollary 4.10, as it tells us that the two compositions

G(A)/XG/(A) — HI(QP, A(1))
agree on the image of D(A) in
S(A)/XE(A) = X A" @ D(A)/ ¥ =1,

Thus, we have the claim, and thereby the map A.
The left-hand square in the diagram

0 cT(4) C*(A) v by 0
T

lColZ] l)& linvgl (4.2)
8A

0 — Hy,(Qpoo, A1)/ Xat — H'(Qp, AT(1)) == H{ (Qp,00, A(1)) — 0

commutes by the universal property defining A, where we have departed from our earlier
notation to also use 8; to denote the connecting map in (Q,-cohomology for the Tate
twist of
L5 Xa 5 i
0>A®z,A— AN ®z,4— A" —0.
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For the commutativity of the right-hand square, consider the diagram

inv4

2 04 1 (Colg) 1
H*(Qp. A(1)) «—— H(Qp. A(1)) D(A)

ZTcor la l H (43)
BT

H2, (Qp.oo. A1) 2 H'(Qp. AT(1) 21— ¥ () Y 4

inv4

in which the outer part and the right-hand square commute by construction. The left-hand
square of (4.3) commutes due to the maps of exact sequences

0 A—X S AYX?>®g, 4 A 0
J/a J]a

0 A—X (N ®z, A/ X0 — AT ——0

0—— A'®z, A—25 s A @y, A 0.

The middle square commutes as the larger diagram

) (Col’)~!
H(Qp, A(1)) «+————— D(4)

Lok

H (Qpoo. A(1)/ X 2 67 (4)

HY(Qp, AT(1)) «+—2—— 6*(4)

does by our earlier claim and the commutativity of the left-hand square of (4.2). Finally,
the top row commutes with the invariant map by Lemma 4.7. Consequently, the lower
row commutes with the invariant map as well, and therefore the right-hand square in (4.2)
commutes. Setting Colj1 = A1, we have the theorem. [

Remark 4.16. The middle square of the commutative diagram (4. 3) gives a comparison
between Col’; and ColT Note that in the case & = 1, the map Col) | is defined as a split
surjection (as we have kept the conventions of [4]), whereas ColT is an isomorphism to
AFr=1 @ D(A).
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Remark 4.17. In [4, Section 4], Coleman maps are defined on the Iwasawa cohomology
of A(1) for the extension Q, (ipoo) of Qp, as opposed to just Q, . The second Iwasawa
cohomology groups of A(1) for each of these extensions are isomorphic via corestriction.
Outside of the trivial eigenspace for Gal(Q(up)/Qp,00) that we consider here, anal-
ogously defined intermediate Coleman maps would simply amount to reductions of the
original Coleman maps. In other words, we have restricted our discussion exactly to the
setting where our constructions can be of interest.

We end this subsection by explaining what Theorem 4.15 tells us in the setting of
central interest to this work, returning at this point to the notation and hypotheses of ear-
lier sections. Recall from Theorem 2.24 that D(Tg,,) is canonically isomorphic to &g,
and from Remark 2.40 (a) that the action of ¢! on D(Tqu0) agrees with the action of U,
on &y. As in [4, Proposition 3.3.3], these facts imply that Tqu{)” =1 — 0. Given the identi-
fications of Lemma 4.13, Theorem 4.15 has the following corollary for A = 74, (for any
choice of @ € A &7 » Do as above). For this choice of A, we drop the subscript from our

Coleman and invariant maps for compactness of notation.

Corollary 4.18. Set
Gy = (@, 1 — Up)A Bz, Gp/Xa(A &z, Bp) C ) = ARz, Gp/Xa(A &z, Gy).
There is an isomorphism

Col®: HY(Q,, 7.1, (1)) — &}

quo

of A Q7 » Do-modules fitting in an isomorphism of exact sequences

0 — HL (Qp.oos Tauo(1))/ Xt — HY(Qp, Toho (1)) — HZ(Qp.00s Tauo(1)) — 0

lCol lCO]T J/inv
1-Up ¥

0 el e, So 0,

where Sg = ©g/(U, — 1)S¢g and where V factors through the inverse to the map induced
by multiplication by a on the cokernel of multiplication by 1 — U, on &,
We make the following definition of a “reduced” Coleman map for later use.
Definition 4.19. We let
Col': HY(Q,. T4 (1)) = Sp.

quo

denote the composition ¥ o Col.

4.3. Local zeta maps

In this subsection, we construct and employ an ad hoc local version of the global zeta map
of Fukaya—Kato. We shall see how it ties in with global elements in Section 5.
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Fix an isomorphism Mg —> Mg of $Hg-modules that reduces to the canonical isomor-
phism
Mo/ (Up — )My = Mo/ (Up — H)My.

We use it, in particular, to identify g with &y in the remainder of the paper. We then have
isomorphisms

Hom, g, g, (A ®z, So. A ®z, ©9) —> End, 82,00 (A ®z, Gp) — A &z, be,

the second being the inverse of the map that takes an element to the endomorphism it
defines.
We will specify the following element « precisely in Section 4.

Notation 4.20. Let o € A ®z » Dg denote an element with image equal to the image of
£ = X 1(§ — 1 ® ) in the quotient of the ring A ®Zp (h/1)g by the image of £.

Note that & has nonzero image in R/ p[X], as X E,:] (X,0) = £ mod p, so it satisfies
the condition on « in Section 4.2. We may then define a local zeta map. Its significance
lies in that is induced by the restriction of a zeta map of Fukaya and Kato for our later
good choice of .

Definition 4.21. Let zy,, denote the unique map of A Rz » Da-modules
uno: A @Zp SQ — Hl{y(@p,OOs 7:1110(1))

such that the composition Col 0zq: A ®z, Sg — A ®z, Gy is identified with multipli-
cationby @ € A @)Z,, be.

The following is due to Fukaya and Kato (see [4, Proposition 4.3.8, Theorems 3.3.9,
4.4.3 and 8.1.2]).

Proposition 4.22 (Fukaya—Kato). There exists a unique bg-module homomorphism
bt So = H' (Qp. Tuo(1))

for which
1- Ul,,)z’i 0 Vg = COr OZqyo

quo

on A @)Zp 8¢, and such that Col° ozguo is multiplication by &' modulo 1.

Proof. Since zqy, is defined so that Col ozgy, is multiplication by « and
(1=Up)evgoCol = Col’ o cor

by Proposition 4.8, we have that

Col’ o cor 0zZquo = (1 = Up) evgoColozg, = (1 — Up)a(0) o evy.

Since Col’ is an isomorphism for Jgy,, we can define zguo to be the unique map satisfying
Col’ ozgLlo = «(0). As «(0) modulo 7 is £ (0) = & by definition, we are done. |
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We prove an analogue of Proposition 4.22 not involving the derivative & for the inter-
mediate quotient Tqyo.

Proposition 4.23. There exists a unique map

it So > H' (Qp. T, (1)

quo

of A ®7z » Do-modules with the property that the square

+
Zquo©evo

A8z, So HY(Qp. Taro(1))

J/uno ll—Up

HL (Qp00, Tauo(1)) —— H'(Qp, Tabo (1))

commutes, and the composition @T ) Z;uoi So — Sy is reduction modulo (U, — 1).

Proof. We define ZIUO as the composition

S9 > Gy > G,
which is in particular a map of A-modules as it lands in the kernel of multiplication by X
in 65 On the other hand, the composition

Zquo

A~ C lf .
A®z, S6 — H(Qp.oo. Tquo(1)) = H (Qp. T (1)) — &}

is induced by multiplication by (U, — 1) by definition of o and Col®. The composition
of zguo with ¢ of Corollary 4.18 is reduction modulo (U, — 1), which gives the final
statement. L]

5. Global study

This section has two primary goals: first, to recall what goes into and refine the main result
of [4] that 'Y o = = £’ as an endomorphism of P ®z, Q. After some needed results on
the cohomology of T (1) and its subquotients of interest, we recall various modular and
Manin-type symbols and then Beilinson—Kato elements. We then define the zeta map z
and its ground-level analogue z* which were alluded to in Section 4; these carry compat-
ible systems of Manin symbols to compatible systems of cup products of Beilinson—Kato
elements. We remove denominators present in the construction of z and ztin [4, Sec-
tion 3] by employing the results of [6]. In particular, we recall without proof the p-adic
regulator computation Col oz = ¢ in Theorem 5.18 from [4, Proposition 4.3.6] and its
consequence that Col’ ozt = &’. We put everything together to obtain that &Y o w = £’
as an endomorphism of P itself in Theorem 5.21, filling out the commutative diagram of
Theorem 3.17 in (5.3).
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We then turn to the study of the cohomology of the intermediate quotient TGT (1) and,
again, its subquotients of interest. Our second goal is to prove the equivalence of Conjec-
ture 3.9 that Y o w = 1 with the existence of a reduced refined zeta map z' compatible
with reductions z# and zguo modulo /. This is done in Theorem 5.25. In fact, we provide
a candidate for zT which is compatible with z¥, and which is compatible with z;ruo if and
only if Conjecture 3.9 holds. Diagram (5.6) for intermediate cohomology refines (5.3) and
encapsulates many of our results.

5.1. Global cohomology

We first consider torsion in global cohomology groups. As we are working only with the
needed eigenspace of the Fisenstein part of cohomology, we can obtain finer results than
[4, Section 3] in our case of interest.

Lemma 5.1. We have two exact sequences

0 — H(Oco, To(1)) = HL (oo, To(1)) = HLL (0o, To /T (1)),
0— HY(0, (1)) - H' (9, T5(1)) — H'(O,T5/Ta(1))

of A &z » $9-modules. In the first, the terms have no nonzero A ®z » Ng-torsion, and in
the second, they have no A g-torsion.

Proof. The first sequence is automatically exact, as zeroth Iwasawa cohomology groups
are trivial. Note that 75 /75 has trivial Gq(uy)-action by [4, Proposition 3.2.4]. (Alterna-
tively, one can see this by observing that the action factors through the Galois group of the
totally ramified at p extension Q(unpoc)/Q (1w ), since all cusps of Yq (Np”) are defined
over Q(unpr), and then that the Gg,-action on 7:9 /To = 'J:quo/ Tquo is unramified.) So,
the second sequence is exact as H%(O, %/%(1)) = 0.

We can filter any hy[Go,s]-quotient M of Ty by the powers of /, and we clearly have
HO(O,M(1)) =0if HO(O,1*M/I*T1M(1)) = 0forall k > 0. Let i € Ag be nonzero,
and set M = Ty /1uTy. As Ty is Ag-free, we have an exact sequence

- Mo~
0—>T9g—>T9g > M — 0,

so H%(©, M(1)) surjects onto (in fact, is isomorphic to) the p-torsion in H (O, Ty(1)).
Set T = Ik‘Tg/Ik'HTg. Let Py denote the hy[Gg,s]-module that is the image of the
multiplication map 7¥ ®yp, P — Ti. The Gg-action on Py is then trivial, and in that
the quotient Qp = T/ Py is also a quotient of / k ®p, O, the Gg-action on Qy factors
through Z;‘, N With A acting as w871, As a nonzero by[Ggl-quotient of T (1), it then
follows (since 6 # w? by Hypothesis 2.29 (c)) that 1¥M/I¥+'M(1) has no nonzero
G-fixed elements. Thus, H'(O, 75(1)) has no u-torsion. Replacing M by A‘ @)Z,, M
and i by a nonzero element A € A @)Zp Ag, a similar argument applies to show that
H'(O, A ®Zp T9(1)) has no nonzero A-torsion (as the A-action on A' is trivial).
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It remains to deal with the ’fg / Tg-terms. We first claim that the restriction map
Hy\(000. 5/ To (1)) = H}\,(Qp.00. T/ To (1))

is injective. Since p } ¢(N), it suffices to show this after adjoining px on both sides.
Since the Gy y),s-action on ’J:e/ Jg is trivial, this then follows from the known weak
Leopoldt conjecture for the cyclotomic Z,-extension of Q(uy), see [13, §10.3]. Fol-
lowing this restriction map with the injective Coleman map (Lemma 4.3), we obtain an
injection

H (0o, To/To (1)) > X'A ®z, Mp/Gp = A &z, Ag,

where the latter isomorphism uses [ 16, Proposition 3.1.2] and Hypothesis 2.29 (d). (In the
case where said hypothesis fails, we have (A ®Zp Ag)? instead, and the result is the
same.) Clearly, the latter module is A ®Zp A g-torsion free.

Next, consider the prime-to- p degree inflation map

H'(0.53/To(1)) = H'(Olun]. To/To (1)) @Ur/D,

By Kummer theory, the right-hand side is the Gal(Q(uy)/Q)-invariant group of the
direct sum @v| Np "J:Q /Ty over places over Np in Q(lﬁN) (this direct sum being the
completed tensor product of the p-torsion-free group Jy/Ty and the p-completion of
OlunT/ZuN]*). That is, we have the isomorphism in

H%@,fg/%(l)) ~ @(%/%)GHI(QE(MN)/QK) s @ Ag.
{|Np L|Np

The latter injection (which is actually an isomorphism) is a consequence of Theorem 2.24,
[16, Proposition 3.1.2], and Hypothesis 2.29 (d) (the latter again being unnecessary for the
result), and €Dy, Ag is plainly Ag-torsion free. m

Lemma 5.2. Multiplication by 1 — U, is an injective endomorphism of H'(O, Ty(1))
and of H'(Qp, Tquo(1))-

Proof. Since multiplication by 1 — U, is injective on Ty, showing that 1 — U, is injective
on H'(O, Ty(1)) amounts to showing that the Tate twist of Ty/(U, — 1)Tp has trivial
Gq-invariants. Note that the Gg,,-action Ty, is unramified, and therefore, the action of
Gy on Tquo(1) is given by multiplication by the cyclotomic character. Therefore, we
have

H(Qp, (Tauo/ (Up = D) Tquo)(1)) = 0

and the statement for H!(Qp, Tquo(1)).

Next, we observe that any element of (75/(U, — 1)75)(1) with nontrivial image in
(Tquo/ (Up — 1)Tquo)(1) is not Gg-fixed in that its image is not Gg,-fixed. Since 7y =
Tsub D Tquo as hg-modules, it therefore suffices to show that no nontrivial element of
(Tsuv/ (Up — 1) Tqup)(1) is fixed by G inside the hg[Gg]-module (75 /(Up — 1)Tg)(1).
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Now, Tgub is isomorphic to by as an hg-module, and Tgyp/ I Toup i an h[Gg]-sub-
module of T /1 Ty mapping isomorphically to the quotient Q of the latter module. For
m =1 + (p, X)bhg, we then have

(Taun/mTsun) (1) = (Ag/(p, X))(2) = (R/pR)(2)

as Gg-modules (where G acts on R through §~1), and this has no fixed elements since
0 # w? mod p by Hypothesis 2.29. If x € Toup (1) — (Up — 1) Taup (1) has G-fixed image
in (T5/(Up — 1)Tp)(1), then it is also fixed in hyx/(mx + (Up — 1)Tqup(1)). This is iso-
morphic to a nonzero quotient of (Tg, /1 T5yp)(1) under multiplication by x, so it has no
fixed elements, which contradicts x # 0. [

Lemma 5.3. For primes { | N, the groups H'(Qq, Tp(1)) and H'(Qq, A* ®Zp To(1))
are trivial.

Proof. We remark that H'(Qy, A* ®Z,, T9(1)) is isomorphic to a finite product of in-
verse limits limr HY(Qqg,r, T9(1)) as an hp-module, where Qg denotes the unramified
degree p” extension of Q. It suffices to show that the terms in this inverse limit vanish.
Fukaya and Kato showed that the inflation map

H'(F, H(QY (1)) — H'(Qe, To(1))

is an isomorphism [4, Lemma 9.5.2], and their argument works with Q; , and the field Iy
of order £?" replacing Q; and [y, respectively.

Let T = H°(Q}', Tg). It remains only to show that the groups H'(Fy,,, T(1)) are
trivial. The operator Uy acts on T as an arithmetic Frobenius (see [8, Theorem 4.2.4],
[2, Lemma 4.2.2], [11, Proposition 3.2.2] for the quotients of Ty attached to newforms,
from which this statement follows by Hida theory), and its eigenvalues are congruent to 1
modulo the maximal ideal of by since Uy — 1 € I. Since this Frobenius generates the
procyclic group G, , we have

H'(Fe,r (1) = T/((CUYY ~ DT,
and the latter quotient is zero since £7" % 1 mod p. |

Lemma 5.4. Under the identification of H}(O, P(1)) with P of Lemma 3.16, the canon-
ical map H' (Q,, P(1)) = H2(0O, P(1)) agrees with — Col’,.

Proof. Lemma 3.15 provides an anticommutative square

HY(Qy. P(1) =2 H?(Q,. P(1))

l |

ap

H2(0. P(1)) —2— H3(O. P(1)).

The identifications of H2(Q,, P(1)) and H2(O, P(1)) with P by invariant maps agree.
By Proposition 3.30 for @ = 1, the latter identification agrees with the identification of
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HZ2(O, P(1)) with P via dp. On the other hand, invodp: H(Q,, P(1)) — P equals
Col'} by Lemma 4.7. The result follows. ]

Lemma 5.5. The exact sequences
0— H'(O,P(1)) - H' (O, T(1)) - H'(9,0(1)) = 0

and
0— H'(0.P(1)) > @ H'(Qq. P(1)) > HX(O. P(1)) >0
{|Np

are canonically split, compatibly with the map from the former sequence to the latter.

Proof. Since the Gg-action on P is trivial, we have isomorphisms

H'@Qe, P(1) = lim Q7 /Q;”" &z, P

r

for every £ dividing Np. The £-adic valuation then induces a map from this group to P
which is an isomorphism if £ # p and otherwise induces a splitting of

0 — H'(Z[;]. P(1)) = H'(Qp. P(1)) — HZ(Z[]. P(1)) - 0.

Noting that HCZ(Z[%], P(1)) and H2(O, P(1)) are canonically isomorphic, the sum of
the £-adic valuation maps then gives the desired splitting of the injection in the second
sequence. The splitting of the injection in the first sequence is given by the composition

H'(0,T(1)) > @ H' Q¢ P(1)) > H'(0, P(1)),
L|Np

where the first map is induced by the local splittings of Proposition 2.39, and the second
map is the splitting of the second sequence. The final statement follows. ]

We can now slightly refine the left-hand square in Theorem 3.17.

Corollary 5.6. The square
HY(0.T(1)) —— H'(0, Q(1))
l |-
H'(Qp. P(1)) — HZ(0, P(1))
is commutative.

Proof. Both compositions are clearly trivial on H!(©9, P(1)) inside H'(©9,T(1)). On the
other hand, Lemma 5.5 tells us that the composition

H'(0,0(1) > H'(0,T(1)) > P H' Q¢ P(1)

{INp
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takes image in the image of H2(®, P(1)) (using the splittings induced by said lemma).
This image is contained in H!(Q p» P (1)) inside the direct sum as the kernel of the p-adic
valuation map H'(Q p» P(1)) — P. The result then follows from the commutativity of
the left-hand square in Theorem 3.17. |

5.2. Modular symbols
We very briefly review modular symbols and Manin symbols.

Definition 5.7. For r > 1 and cusps « and 8 on X1 (Np”)(C), the modular symbol
{a = B}r € Hi(X1(Np")(C), {cusps}, Zp)
is the class of the geodesic from « to § on X (Np")(C).

Definition 5.8. For r > 1 and u, v € Z/Np"Z with (u, v) = (1), the Manin symbol of
level Np” attached to (u, v) is defined as

—d —
il = = i, = e (0 4) 0 oo

for (‘C’ 3) € SL,(Z) withu = ¢ mod Np” and v = d mod Np”, where w, is the Atkin—
Lehner involution.

Remark 5.9. The Manin symbols of level Np” generate H; (X1 (Np”)(C), {cusps},Z,),
and the relations
w:vly=—[-v:iuly=u:u+vl,+u+v:v
provide a presentation of said Z,-module.
Definition 5.10. Forr > 1,u,v € Z/Np"Z with (u,v) = (1), and integers ¢, d > 1 with
(c,6Np) = (d,6Np) = 1, we have the (c, d)-symbol
edlu vl = 2d*u )y — 2u: dv], — d?[eu : v), + [cu : dv],.

The quotient maps X (Np™+!) — X{(Np") take [pu : v],4; to [u : v], for u,v €
7. /Np"t1Z with (u,v) = (1), and similarly for the (c, d)-symbols. Let [u : v]:g denote
the image of [u : v], in the 6-eigenspace of the Eisenstein component of the relative
homology group Hy(X1(Np")(C), {cusps}, Zp)*.

Definition 5.11. For integers u and v with p } v and (u,v, N) = 1, let

(u:v)g = ([p" w2 v]fy)r € M.
Note that (u : v)g depends upon u only modulo Np. By [4, Lemma 3.2.5], the ele-
ments (1 : v)g generate My, and under Hypothesis 2.29, the group Sy is generated by the
symbols (1 : v)g with u £ 0 mod Np by [4, §6.2.6].



R. Sharifi 48

Definition 5.12. Let
M ={(c.duv)eZ|c.d>11(c.6Np)=(d,6Np) = (u,v,N) = (v, p) = 1},

and let
Iy = {(c,d,u,v) € IT | u # 0 mod Np}.

We define symbols attached to elements of these sets.

Definition 5.13. For (¢, d,u,v) € I, let
cd(U 1 v)g = c2d?(u :v)g —d*(cu i v)g —c*(u : dv)g + (cu : dv)g € My,
and define . 4 (4 : v]g € A ®Zp Mg by

c.d 1 v]g = c2d?> ® (u:v)g —d?k(c) @ (cu : v)g —c2k(d) ® (u : dv)g
+k(cd) ® (cu : dv)g,

where k:Z 7 — A sends a unit to the group element of its projection to 1 + pZp.

5.3. Zeta elements

We first very briefly recall the Beilinson—Kato elements (or zeta elements) of [4, Sec-
tion 2]. We then, in the form we shall require, slightly refine the resulting maps of Fukaya
and Kato [4, Section 3] and describe the properties of them that we need.

The following definition is from [4, §2.4.2].

Definition 5.14. For r,s > 0 and u, v € Z with (u, v, Np) = (1), and supposing that
u,v # 0mod Np” if s = 0, we define the zeta element . zz,(u : v) to be the image
under the norm and Hochschild—Serre maps

H2(Y (0 ND"™) 112 2p(2) = HA (V1 (ND') 0, Z(2)
— H' (5. H' (Y1(Np") 5. 2,(2)))

of the cup product

Uggo

c8& 4 b __d__
gﬂv PS> Npr+s

of Siegel units on Y(p*, Np"*) .5 1, where (¢ §) € SL(Z) withu = ¢ mod Np” and
/2 x] cd
v =d mod Np".

Remark 5.15. As a consequence of [4, Propositions 2.4.4 and 3.1.9], the elements
c.dZr,s(u 1 v) are for r,s > 1 compatible with the maps induced by quotients of mod-
ular curves and corestriction maps for the ring extensions. Moreover, the corestriction
map

HY(O5. H' (Y/(Np") 5. Z,(2)) — H'(O. H'(Yi(Np") ;5. Z5(2)))

takes ¢ gzrs (U : V) to (1 = Up)c.azro(u 1 v) if (c,d,u,v) € Iy.
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Let us use . 42rs(u : v)g to denote the projection of . 4z, s(u : v) to the Eisenstein
component for 6.

Definition 5.16. For (¢, d,u,v) € I, we set
cdz(:)g = (c.azrs( 1 0)g)rs=1 € Hyy (0o, (1)),
and for (c,d,u,v) € Iy, we set
cd?"(u 1 0)o = (c.azrolu  V)g)r=1 € H'(O. Tp(1)).

In accordance with Remark 5.15, the corestriction of . 4z (u : v)g to H(0, To(1)) is
1- U,,)Z”(u 1 v)g for (¢, d,u,v) € I.

Definition 5.17. Let Z denote the unique element of X ~'Z,[X] such that
Z(t*—1) =1 —5)
for all s € Z,, where {, denotes the p-adic Riemann zeta function.

The following result, constructing a zeta map, is a refinement of a result of Fukaya
and Kato [4, Proposition 3.3.3]. It is in essence a consequence of [6, Theorem 3.15].

Theorem 5.18. There exists a A @7 » Dg-module homomorphism
2 A8z, So — Hi\ (O, To(1))
such that its composition with the injective map
Hyy(Oo0, Tp(1) = Hi, (Qp,c0, T (1))

equals the map zq, of Definition 4.21 for an element o € A @Zp hg with image XZ§1 €
A ®z, (H/1)e.

Proof. In [6, Theorem 3.15], we show the existence of a map
Z: A gz, My — H (O, To(1))
of A ®z » $9-modules that satisfies
Z(c,a(u 2 v]g) = —caz(u:v)g ® 1

forall (¢, d,u,v) € II.
By composition with restriction, we obtain a map

Zquot A Bz, Mg — H(Qp.00, Tquo(1))-
Via the fixed isomorphism My = Mg and the canonical isomorphism

EndA ®Zp Ho (A ®Zp MG) :> A ®Z[) 359»
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the map Col oZ,, is given by multiplication by an element 8 in X 1A ®z » $¢. This map
induces an endomorphism of A ® z, S¢ by [4, Theorem 4.4.3], and the resulting map
on the latter module is given by multiplication by the image o € A Rz » Do of the ele-
ment Bin X 1A @)Zp bhg. The element o reduces to X Z&; € A @Zp (H/1)g by [4, Theo-
rem 8.1.2 (1)]. (This rests on the p-adic regulator computation of [4, Proposition 4.3.6],
which we do not reverify in this work.) Note that the congruence X Z = 1 mod X implies
that the image of « in (/1 )2; agrees with that of 51, so « has the property of Def-
inition 4.20. Thus, Zg,, restricted to A @Zp S equals zg,, of Definition 4.21 for this
value of .
The composition

H (O, T (1)) = HL(Qp oo, To(1) = X 1A Bz, My

is injective by [4, Lemma 3.1.4 and §4.2.10] and Lemma 5.1. We must prove the claim
that the restriction of Z to A ®z » Sg takes values in HL, (O, Ty(1)). By what we have
shown above, Z carries A & z, S¢ to the kernel of

HL (O, T3/ To (1)) = HE(Qp.00s Tauo/ Tauo(1)) = X 1A 87, My/Gy.

Since the surjection ’1:9 /To — ?Tauo / Tquo 18 in fact an isomorphism (see Definition 2.21),
this kernel is trivial, as shown in the proof of Lemma 5.1. By the exactness of the first
sequence in Lemma 5.1, we have the claim. [

From now on, we take o to be as given in Theorem 5.18. We prove the following
slight refinement of [4, Theorem 3.3.9] on a zeta map at the level of Q as a consequence
of [6, Theorem 3.17].

Theorem 5.19. There exists a unique map
2% Sg — H'(0.T5(1)

of bg-modules with the property that for the map cor: H{, (O, T5(1)) — H(O, Ty(1))
induced by corestriction, we have

coroz = (1 — Up)zti oevy.
The composition of z% with
H'(0,T5(1)) — H'(Qp, Tp(1))
equals the map Zguo of Proposition 4.22 for a as in Theorem 5.18.

Proof. In [6, Theorem 3.17] (noting [4, Proposition 3.3.14]), we prove (using Lemma 5.1
of this paper) the existence of an $g-module homomorphism

% 8g - HY(O, Tp(1))
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with the property that
(e 1)) = —c.az*(u 1 v)g (5.1)
forall (¢, d,u,v) € Iy.
The comparison with z is [4, Theorem 3.3.9 (ii)], the uniqueness being Lemma 5.2.

The comparison with zguo follows from Proposition 4.22, the comparison with z, and
Theorem 5.18. u

Fukaya and Kato prove the following in [4, Proposition 5.3.10, §5.3.11 and Propo-
sition 9.2.1]. We sketch their proof primarily to make clear how to obtain the sign in its
comparison. That is, there are two sign differences from their proof which effectively can-
cel each other, and the sign of the second map in the composition in its statement is the
opposite of that of [4, Proposition 6.3.9].

Theorem 5.20 (Fukaya—Kato). The composition of z% with the maps
H'Y(0,75(1)) - H'(0,0(1)) =Y

given by Proposition 2.35 and Lemma 3.4 equals —w.

Proof. The results of [4, Sections 5.2 and 5.3] yield a map

0o™: H'(0, Tg(1)) = lim H?(Y1(Np") 0. Zp(2)mo — Y.
r

given by composing the inverse of the Hochschild—Serre map with a specialization-at-oo
map. It follows from [4, §5.2.9] that this composition takes ¢ 4 Huv)pgtow (c,a(u:v)g).
(Note that the sign here is opposite to that in the proof of [4, §5.3.11] in the current
version, as an unexplained sign appears in the proof of Claim 1 therein.) By (5.1) and
[6, Proposition 3.1.6], the composition co* o z# is then —w.

By [4, Lemma 9.2.5], the map oo™ agrees with the connecting map

H'Y(0.Tp(1)) — H*(0. Ay(2))
in the long exact sequence associated to the Tate twist of the short exact sequence
0— Ay(1) > Tep — Tp — 0,

where 1 € Aj(1) corresponds to the cusp at oo. It then suffices to show that there is
a commutative diagram of continuous Gg-module homomorphisms

0 Aj(1) T T 0
T
0 —— AY(1) —— A (1) —— 0 —— 0,

where the right-hand vertical map is the surjection of Proposition 2.35 given by v —
(£€00, v) modulo £.
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Consider the element g € J~9 given by the 8-projection of the compatible system of
Siegel units (g, - )r and Kummer theory. The boundary map J@ — Ay at O-cusps of
[4, §6.2.5] carries g to —£, the equivariant sum of its orders of vanishing at the O-cusps; for
this, see [11, Chapter 1, §6, Proposition 3 and Chapter 4, §2, Proposition 1], as well as the
equality of the first and last terms in (2.1). (Note that we obtain here the opposite sign to
[4, Lemma 6.2.13], which leads us to replace g with g~ in the pairing map below, without
further effect.) Much as in [4, Lemma 9.2.3], the desired commutative diagram (5.2) is
given by taking the center vertical map to be the pairing map w — (g~', w), which is
Gq-equivariant as g is Gg-fixed. For the right-hand square, the commutativity is just as
in [4, Lemma 9.2.3], but note that we have changed the side on which we are pairing
with £eqo in Proposition 2.35. The left-hand square commutes (instead of anticommutes,
as suggested by the proof of [4, Lemma 9.2.3]) as a consequence of the first equality
in (2.1), though here we use Ohta’s twisted Poincaré pairing (2.3), which is a system of
compatible pairings, each involving an Atkin-Lehner involution that takes co-cusps to
0-cusps (cf. [4, §1.6.2]). [

The main result [4, Theorem 0.14] in the work of Fukaya and Kato states that &’ o w
and £ induce the same endomorphism of P ®z, Q,. As P is not known to be p-torsion
free, this is slightly weaker than equality as endomorphisms of P. With the results of [6]
in hand, it is now a relatively straightforward matter to show that the stronger statement
holds by following the argument of [4].

Theorem 5.21 (Fukaya—Kato, Fukaya—Kato—Sharifi). One has
'Y ow = ¢ € Endg, (P).

Proof. Theorems 3.17, 5.19 and 5.20, Proposition 4.22, Corollary 5.6, and Lemma 5.4
provide a commutative diagram

Y Y
1§ ¢
P =5 HI(O.T(1) —— HY(O. Q(1) — 2 H2(0. 0(1)

—® Y (53)

HY(Qp. P(1)) —— HX(O. P(1)) —%— H}O. P(1))

This completes the proof. ]
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5.4. Refined global cohomology

We prove analogues for intermediate cohomology of earlier results on global cohomology.
We begin with an extension of Lemma 5.4. Let us use @L: Hl(Qp, PT(1)) - P to
denote the composition ¥ o Col}.

Lemma 5.22. Under the identification of HZ(O, PT(1)) with P of Lemma 3.16, the
canonical map H'(Q,, PT(I))—>H62((9, PT(1)) agrees with —@P.

Proof. The anticommutativity of the square

i)
HY(Qp. PT(1)) —— H?(Qp, P(1))

L,

H2(0. PT(1) —2— H}O. P(1)

is proven by the analogous argument to that of Lemma 3.15, and the identifications of
H?(Qp, P(1)) and H3((9 P(l)) with P agree as before. By Proposition 3.30, the latter
1dent1ﬁcat10n agrees via 3 with the identification of H2(0O, P T(1)) with P. Finally,
Col p =inv 03T by the commutat1v1ty of (4.3). [ ]

Next, we have an analogue of Lemma 5.5.

Proposition 5.23. The exact sequences
0— H'(0,PT(1) - H'(O.T(1)) - H'(9,07(1)) - 0

and
0— H'(0.PT(1) — P H' Q. PT(1)) > HZ(O. PT(1)) >0
LINp

are canonically split, compatibly with the map from the former sequence to the latter. The
splitting of the surjection in the latter sequence takes image in H'(Q,, PT(1)) inside
the direct sum. Moreover, the splittings are compatible with the maps of these sequences
to (via the quotient map PT — P) and from (via a: P — PT) the corresponding split
sequences of Lemma 5.5.

Proof. Since Fr;, acts trivially on P, the exact sequence

—+
A ~ Col
0— XY (A &gz, P)/a(A &z, P) > H(Q,, PT(1)) =5 P -0 (5.4)

of Theorem 4.15 is canonically split as in Lemma 4.14, with the first term identified with
HL,(Qp,00, P(1))/ Xo and the third identified with HZ,(Qp,00, P(1))—> H?(Q,, PT(1)).
The restriction map

Hi\(Zoo[3], P(1)) = Hy(Qpe0, P(1))
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is an isomorphism, since the p-completion of QX is generated by pand 1 4 p, with p
generating the universal norms from Q) . Moreover, H? (Zoo[ ], P(1)) = 0 since Q
has trivial class group and Q has a unique prime over p. Thus, we have

HIW(ZOO[ ] P(l))/Xa ~ H! (Z[l],PT(l)).

Therefore, the first term in (5.4) can be identified with and replaced by H'! (Z[ . PT(1)).
The third term P can then be replaced by H2(0, PT(1)) via the negative of our fixed
identification from Lemma 3.5. (Here, we use the negative, so the resulting sequence is
that of Poitou-Tate, as follows from Lemma 5.22.) That is, the exact sequence

0— H'(Z[3], PT(1)) > H'(Qp, PT(1)) > HZ(O, PT(1)) =0 (5.5

canonically split.
We take the splitting of the surjection in the second exact sequence in the statement to
be given by the composition

H2(0, PT(1)) > H'(Q,, PT(1)) > € H' Qe PT(1)),

{|Np

of the splitting of the surjection in (5.5) and the inclusion of the summand for £ = p. The
composition

H'(0,T7(1) > @ H' Qe PT(1) — H'(0, PT(1)
{|Np

of the map given by the local splittings of Proposition 2.39 and the splitting of the injection
in the second exact sequence of the proposition then gives a canonical splitting of the first
exact sequence of the proposmon and it is compatible with the map between the two.

The splitting of ColP HY(Qp, PT(1)) — P is by definition given by composing the
pushout map P = D(P) — €*(P) with (Col")~!. By its construction in Theorem 4.15,
it also given by the composition of the canonical splitting (Col5)~': P — H(Q,, P(1))
of Col?D from Definition 4.9 (determined by the p-adic valuation as in Lemma 5.5) with
the map induced by a: P — PT. This gives the commutativity of

HY(Qp, PT(1)) —— H2(Qp.o0, P(1)) —2 P

| | l

H'(Qp. P(1)) —— H2(Qp 0. P(1)) —2 P

| |

HY(Qp. P1(1)) —— HZ(Qpooo. P(1) —2 P,

where the horizontal compositions are @L in the first and last rows and Col'jD in the
middle row (see (4.3)) and are compatibly split. The final statement of the proposition
follows easily from this and the definitions of the splittings in question. ]
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Corollary 5.24. The square

H'Y(0,TT(1)) —— H'(0, 0T(1))

-

H'(Qp, PT(1)) —— HZ(0, PT(1))
s commutative.

Proof. Both compositions are trivial on the image of H'(OQ, PT(1)) in H'(O, TT(1)).
Proposition 5.23 implies that the composition (using the splittings of said proposition)
H'(0.07(1) - H'(0.TT(1)) > @ H'(Q¢. PT(1)
L|Np
takes image in the image of HZ2(0, PT(1)). This image is contained in H! (Qp, PT(1))

by construction. The result then follows from the commutativity of the square in Proposi-
tion 3.35. ]

5.5. Refined zeta maps
In this subsection, we show how the existence of a refined zeta map
N ARz, Se > HYO, T, (1)

would imply Conjecture 3.9, see Proposition 5.28. Here, (1 — Up)zT should equal the
composition of z with the map Hﬁv(@oo, To(1)) - HY(0O, ’]:QT(I)), in analogy with The-
orem 5.19.

Moreover, we show that the existence of a reduced refined zeta map

T A®z, P — H' (0, T (1),

one which is compatible with 7% and EJ{UO, is equivalent to the conjecture. In fact, in the
proof of the following theorem, we construct a candidate for z* as a direct sum of maps to
H'(0, PT(1)) and H'(O, 0T(1)), and we show that Conjecture 3.9 is equivalent to this
candidate being compatible with Z;ruo, as it is already by construction compatible with z*.

Theorem 5.25. Conjecture 3.9 holds if and only if there exists a map Z: A ®7 , P —
HY 0O, T (1)) of Ag @)Zp (b/1)g-modules making the diagrams

A®z, P~ HY(O.TT(1) A®z, P—2— HY(O.TT(1)
l l and l l
P—2 L HY0O,TO)) PLHl(Qp,PT(l))

commute, where the vertical maps in the first diagram are induced by the augmentation
on A.
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Proof. By Remark 3.10, Conjecture 3.9 holds if and only if T o @ = 1. We use this form
of the conjecture. If a map ZT as in the statement exists, then the composition of —z1 with

the maps
H'(0.T'(1) - H'(0.0"(1)) » H'(0.0(1)) = Y

is necessarily @ (after application of evy) by the commutativity of the first diagram
and Theorem 5.20, and its further composition via —OT to H 2(0,P (1)) is necessarily
Y o w since we have seen that —®" induces amap ¥ — P that equals Y in Section 3.3.
At the same time, by the commutativity of the second diagram, this composition agrees
with the composition of —Ze 0 evo with H1(Q,. PT(1)) — H2(0, P1(1)) = P, which
is 1 by Lemma 5.22 and Proposition 4.23. Thus Y o w = 1.

Conversely, suppose that T o @ = 1. Using the isomorphism

HY0,TT(1) = HY (0, PT(1)) @ H' (0, 0T (1))

given by the splitting of Proposition 5.23, we may define the projections of Z to these

components separately: let us label them E;r, and ETQ. We will similarly write Z# as the

sum of its components Eg, and E#Q corresponding to projection to H'(©9, P(1)) and

H' (0, Q(1)).

Recall from Lemma 3.25 that we have

H'(0,07(1)) = Y ®& (Ag/§),

where f € A ®z » g acts as w( f) on the right. Using this isomorphism to identify the
two sides, we define
ETQ: A®Z,, P—Y®rAg/E

to be the unique homomorphism such that ETQ (1® p)=—w(p) ® 1 for p € P and which
is amap of A ®z ,» Ng-modules for the usual action of f € A Rz ,» g on the left and its
action by w( f) on the right. Via the splitting of Lemma 5.5, we have an isomorphism

P H'@Qc PT(1) = H'(O, PT(1) @ HZ(O, PT(1)),
L|Np

and we let E;r, be the projection of E;ruo o evy to the first component.

We next check commutativity of the first diagram. By Proposition 5.23, we may do
this after projection to the summands corresponding to P and Q, respectively. For the
P -components, note that E;r, is the projection of Eguo oevg to H(O, PT(1)). The com-
position of this map with the surjection to H(©, P(1)) is the projection of Eguo oevy to
H'(O, P(1)). This equals Efg o evy in that the restriction of E&, to H'(Qg, P(1)) is trivial
for primes £ | N. That is, Ef, is a reduction of z#: §g — H(O, Ty(1)), and H'(Qy, Ty (1))
is trivial by Lemma 5.3.

For the Q-components, we need only remark that the composition of ETQ with the
map to H'(O, Q(1)) is E”Q = —w (see Remark 3.28), so we see that the first diagram
commutes on the summands corresponding to Q.
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For the second diagram, we have by definition that E}: equals the projection of

E;ruo oevy to H' (O, PT(1)). The composition of —ETQ with

ot HY(0, 0%(1)) > H2(0, PT(1)),

the latter group being identified with P, factors through the map Y o @ = 1 on P. As the
composition of —Zi,e with H(Q,, PT(1)) — H2(0, P1(1)) is also identified with 1,
the commutativity holds. ]

Note that the data of Z is equivalent to the data of its restriction to an (§/I)g-module
homomorphism P — H'(OQ, TT(1)) sending x € P to z(1 ® x) and fitting in the cor-
responding commutative diagrams arising from restriction to P.

The above discussion can be summarized by the diagram
id

P @ Y Y

evp N

A®z, P-—»H'(0.TT(1)) — H'(0.07(1)) 224 H2(0. 0(1))

evo l _ot T (5.6)

T
P ——— H'(Qp. PT(1)) — H2(O., PT(1)) = H3(O. P(1)

TZquo

which fully commutes if we know the existence of the conjectural map z' in Theo-
rem 5.25. The equality Y o @w = 1 is then seen by tracing the outside of the diagram.
This begs the following question, which would be in analogy with the construction of z#
by Fukaya and Kato were it to hold.

Question 5.26. Does there exist a A ® » Dg-module homomorphism
A&z, So - HY(O, T, (1)

such that the diagram

~ T
A&z, Sg ——— HY (0,7, (1)

Jz [-es

HL (Oco, To(1)) — HY(O, 7, (1))

commutes?
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Such a map zT is uniquely determined if it exists by the following lemma.
Lemma 5.27. Multiplication by 1 — U, is injective on H'(0, rJ"J(l))

Proof. As in the proof of Lemma 5.2, it suffices to see that (7, T/(Up — l)J T)(l) has
trivial Gg-invariants. First, we note that Gg,, ., acts on (quo /Uy — 1)Jqu0)(1) via the
p-adic cyclotomic character, so (7 Jquo /Uy — l)JqJ[lo)(l) has trivial G, -invariant group.

We claim that the quotient (Jsjb/ Up — 1)7;11,)(1) has no elements that are fixed
by Gq inside (7, T/(Up — 1)7;)(1). Let m denote the maximal ideal of hy. We know
from the proof of Lemma 5.2 that for any x € (T — (Up — 1)Tsuw)(1), the subgroup
(xTun/ (xm + (Up — 1)) Taup) (1) of (xTg/ (xm + (U, — 1)) Tp) (1) is isomorphic to a quo-
tient of QO /mQ(1), hence can be viewed as a Gg-module with action factoring through
Gal(Q(unp)/Q) via w2671 Since G acts trivially on A' modulo the maximal ideal
of A, theimage of y € bub(l) U, — l)Jsub(l) is then similarly acted on by G through

@20~ in the nonzero quotient (A ®Zp ho)y/ My + (U, — 1)7T sub(1)) of

(‘/sub/g“n qub)(l) = (Toun/mTgup) (1),
where I is the unique maximal ideal of A & z, Dg. Since 0 # w?, we have the result. m

A positive answer to Question 5.26 appears likely to be too much to hope for in gen-
eral. However, if it does hold, so does Conjecture 3.9.

Proposition 5.28. If a map z* as in Question 5.26 exists, then the reduction
i A®gz, P — H'(0,TT(1))

of z¥ modulo I satisfies the conditions of Theorem 5.25, and in particular Conjecture 3.9
holds.

Proof. By construction, we have that the composition of (1 — UI,)ZT with the map
H'(0. 7, (1)) > H'(0,T5(1))

is (1 — Up)zﬁ. By Lemma 5.2, we see that the composition of z* with the latter map is z*.
In particular, the first diagram in Theorem 5.25 commutes.
Moreover, since (1 — Up)z;uo agrees with the composition of zgqy, with the map

Hy (Qpo0s Tquo(1) = H' (Qp, Tl (1))

and 1 — U, has trivial kernel on &7, we have that the composition of z with the map

H'Y (0.7, (1) = H'(Qp. T,1,(1))

is z];uo. That is, the second diagram in Theorem 5.25 commutes. |
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6. Test case

We explore the feasibility of the equivalent conditions to Conjecture 3.9 found in Theo-
rem 5.25, working with cyclotomic units in place of Beilinson—Kato elements. We find,
somewhat reassuringly, that an analogue of the conditions of Theorem 5.25 holds in this
setting.

On the other hand, an analogue of the stronger Question 5.26, which amounts to
a norm relation for a good choice of zT, has a potential obstruction. We show that this
norm relation does hold if an even eigenspace of the completely split Iwasawa module
vanishes.

6.1. Notation

Let us first introduce changes to our notation from the previous sections. Most impor-
tantly, we now allow our prime p to divide ¢(N). That is, we let p be an odd prime, and
we let N > 3 be a positive integer with p  N.Let A = (Z/NpZ)™ as before, which we

identify with Gal(Q (1vpe=)/Qoo) = Gal(Q (1ip)/Q).

Definition 6.1. (a) Let A, and A’ be the Sylow p-subgroup of A and its prime-to-p
order complement, respectively.

(b) Let 0: A’ — @px be a nontrivial even character of A’ which is trivial on decom-
position at p and primitive at all primes dividing N.

(c) Let R be the Z,[Ap]-algebra of values of 6, which we then view as a Z,[A]-
module with A’ acting through 6.

(d) Let Ag = R[I'] = R[X], where T = Gal(Q(1np>)/Q(1np)), and X is as
before.

(e) Let R = R*bethe Z,[A]-module that is R endowed with the inverse of the Galois
action described above.

Definition 6.2. The 6-part My of a Z,[A]-module M is the R-module
My =M ®z,a] R.

Remark 6.3. Our choice of R is made so that
. . 1 . 1
l ~ 4 _ ~ l .
HO.RW) = H (2] 1w |- 2,0) = (2] 3w |- 2,1),
for any i > 0 by Shapiro’s lemma, and similarly for Iwasawa cohomology.

We shall also use the following.

Definition 6.4. (a) Let o denote the image of the Frobenius Fr, at p in A,,.

(b) Let Ry—; denote the maximal quotient and R°=! the maximal submodule of R
on which o acts trivially.

(c) Let Y (resp. Y) denote the Galois group of the maximal completely locally split
(resp. unramified) abelian pro-p extension of Q (i ypoo).
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(d) Let X denote the Galois group of the maximal abelian, unramified outside Np,

pro-p extension of Q(unpoo).
(e) Let & (resp. €) denote the group of norm compatible systems of p-completions
of global units (resp. cyclotomic units) in the tower Q(unpo)/Q.

Noting Remark 6.3, Kummer theory provides an isomorphism &g = H. (Ooo, R(1)).
For interpretations of Yy and Xy in terms of étale (or Galois) cohomology, see Sec-
tion 6.3.

6.2. Zeta and Coleman maps

Using the identifications of Remark 6.3, we take our zeta map as having image the 6-part
of the cyclotomic units.

Definition 6.5. (a) The zefa map z is the A g-module homomorphism
z: Ag = HY (Oco, R(1))

that sends —1 to the projection of the norm compatible sequence (1 — Ef,_r {pr)r>1 to the
O-part of HL (Ooolitnp], Zp(1)).
(b) We define a Z,[A]-module homomorphism
z#' R —> HY (0, R(1))
as the unique such map taking —1 to the projection of 1 — ¢y in H'(O[un], Z,(1))s-

Remark 6.6. The use of negative signs in Definition 6.5 is perhaps not the ideal conven-
tion, but it is consistent with our conventions for the zeta maps in the prior sections, which
took Manin symbols to (compatible systems of) negatives of cup products of Siegel units.

We use zgy, and zgm to denote the precompositions of z and z# with restriction to the
cohomology of Gg,,.

Remark 6.7. The zeta map and its ground level analogue satisfy the well-known norm
relation
Ap ——— Hy,(Oco, R(1))

lznowo l
HY (0. R(1) =2 HY(0.R(1)
among cyclotomic units.

Definition 6.8. We let £ € Ag be the unique element satisfying

pEW' ™ — 1) = Ly(bp.s)

for all s € Z, and p-adic characters p of A,, where we use p to denote the map R — Q,
induced by p.
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We note the following equivariant formulation of a theorem which emanates from
work of Iwasawa and is proven by Tsuji [21, Theorem 4.3] in the form and generality we
need, improving upon work of Greither [7].

Remark 6.9. As an R-module, D(R) is free of rank 1, and it can be identified with R
as a Zp-algebra after a choice of normal basis of the valuation ring of the unramified
extension of Q(u,) defined by the decomposition group of A,. We can and do choose
this identification such that the Coleman map

Col = Colg: H(Qp.00, R(1)) = X 1Ay

satisfies Col oz = £. While Tsuji proves this equality after application of an arbitrary p-
adic character of A, this equivariant formulation is immediate from its derivation. In fact,
one could take £ to be defined by & = Col oz (for a good choice of basis as in [21]), and
Tsuji’s result tells us that this & satisfies the characterizing property of Definition 6.8.

To shorten notation, let us write € for the image C(R) of Col and similarly with
superscripts adorning €. Consider the Coleman map

Col': HY(Q,, RT(1)) — ¢*

for A = R and o = & of Theorem 4.15. The analogous argument to that of Proposi-
tion 4.23 yields the following.

Proposition 6.10. There exists a canonical A g-module homomorphism

zh ot R = HY(Q,, RT(1))

quo*

such that @T o Z]]Luo = 1 and such that the diagram

Ag ————— H\(Qp,00, R(1))

lz ;uo oevo l

HY Q. RT(1) —=2 s HY(@Q,. RT(1))

commutes. Moreover, Zguo is the composition of z;uo with the map

H'(Qp, RT(1)) — H'(Qp, R(1)).

Proof. Identifying H'(Q,, RT(1)) with €* via Col', we define Z;ruo to be as the pushout
map R = D(R) — C*. By definition of €*, following this by 1 — o ~!, we get the com-
position

R i ¢t = ¢*,
which is to say, recalling Remark 6.9, the composition of zq,, with HL(Qp,00, R(1)) —
H'(Qp. RT(1)). .
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6.3. Brief cohomological study
We describe the structure of some relevant cohomology groups.

Lemma 6.11. For each prime £|N andi €{1,2}, the cohomology groups H' (Qg, R(1)),
H (Qq, RT(1)), and H (Qq, A* @zl, R(1)) are trivial.

Proof. By Shapiro’s lemma, the group H'(Qy, R(1)) is isomorphic to the -eigenspace
of the product of the groups H' (Q¢(unp), Ag(1)) over primes over £ in the field Q (unp),
where Ay is the Z,-algebra of 6-values with the trivial action of Galois. Since the pro-p
completion of Qg(np)™ is generated by a uniformizer and a p-power root of unity,
each of these first cohomology groups is isomorphic to a direct sum of Ag and a quotient
of Ag(1) via the Kummer isomorphism. The second cohomology groups are isomorphic
to Ag via the invariant map. Since the inertia group at £ in Gal(Q¢ (1 np)/Qy) acts trivially
on this product and 6 is primitive at £, the 8-eigenspace of the product is zero.
Note that A ®7 » R = Ay. We have an exact sequence

0— H'(Qe Ap(1))/XE - H' Qe RT(1)) - H*(Qe, Ag(1)[XE] -0,

and H2(Qg, RT(1)) is a quotient of H2(Qy, Aj(1)). The groups Hi(Qy, A} (1)) are zero
for i € {1, 2}, each being isomorphic to the #-eigenspace of the product of the groups
H (Qq(inpoo), Ag(1)) over primes of Q(uuypoo) over . |

The invariant map provides an isomorphism
inv: H2 (Qp.00, R(1)) = Ry=1

since Ry= is the maximal unramified quotient of R. Note also that H S,Iw((%o, R(1))=0
since A’ acts on R through the nontrivial prime-to- p order character 67!,

Lemma 6.12. We have an exact sequence of A-modules
0— Yy — HZ (O, R(1)) = Ry=1 — 0.

Proof. This is immediate from the Poitou—Tate sequence, the invariant map for Qp oo,
the triviality of H?(Qy, Ay (1)) for each £ | N of Lemma 6.11, and the triviality of
HS’IW((%O, R(1)). (]

Lemma 6.13. We have H} (O, R(1)) = 0 and H: (O, RT(1)) = X4 fori € {1,2}.

Proof. We employ some well-known results of classical Iwasawa theory, see, for instance,

the book of Ochiai [14]. Recall that X4 is pseudo-isomorphic to (Y*(1))g, where Y'is ¥

with the inverse Gal(Q(unpoo)/Q)-action. (In this eigenspace, there is no difference

between Y and the unramified Iwasawa module.) The group (Y*(1))g is annihilated by &

by Stickelberger theory. Since ¢4 has no finite A g-submodules, it too is annihilated by &.
Since H?  (Ooo, R(1)) is trivial and

c,Iw

H24,(Oce, RO) = (H' Zo[ 13y, Nip],@p/zpw)g ~ %,
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by Poitou—Tate duality, we have
ch((9, RT(I)) ~ HCZJW((QOO, R(1))/XE =Xg/XE = Xy.
Next, note that we have an exact sequence

0— H!

c,Iw

(Oco. R(1))/XE —> HI (O, RT(1)) > HZ,, (0o, R(1)[XE] — 0,

and H} |,,(Ooo, R (1)) vanishes by the weak Leopoldt conjecture. So, H} (9, RT(1)) =X

by the above description of the rightmost group in the sequence. Similarly, H!(@, R(1))
is trivial by the Leopoldt conjecture for abelian fields. ]

6.4. Questions and answers
We first show that an analogue of Proposition 5.26 does indeed hold.
Proposition 6.14. There exists a Ag-module homomorphism

' Ag = HY (O, RT(1))

such that the diagrams

Ao 25 HY(0. RT(1) Ao —2— HI(O, R (1))

T T

R—2 s HY(0,R(1)) RiHI(QP,RT(U)
commute.

Proof. The definition of compactly supported cohomology and Lemma 6.11 provide
a map of exact sequences

0— HNO.R1(1) — H'(O. R (1)) — H'(Qp. R (1)) — H2(O. R (1))

l l l l

0—— HYO, R(1)) — HY(O, R(1)) — HY(Q,, R(1)) — H2(O, R(1)).

As already noted, z% induces a map Zc’iu0 that lifts to a map Zg;uo. The image of Z;uo
lies by definition in the T'-invariant group of H'(Qp, RT(1)) and therefore maps into
HZ2(0, RTa)r = %g by Lemma 6.13. But %g = 0 by the weak Leopoldt conjecture
(cf. [13, Proposition 11.3.3 and Theorem 11.3.5]).

So, there exists an element x € H' (O, R7(1)) with image z4,0(1) in H'(Q,. R (1)),
which since H!(O, R(1)) = 0 by Lemma 6.13, necessarily then also has image Z#(1)
in H'(O, R(1)). We can then take z' as the unique Ag-module homomorphism with
Zf(1) = x. "
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Note that zT in Proposition 6.14 is unique only up to an element of H Lo, RI(1)) =
Xg (by Lemma 6.13). The analogue of Question 5.26 is the following.

Question 6.15. Does there exist a A g-module homomorphism
zf Ag = HY (O, RT(1))
as in Proposition 6.14 such that the diagram

Ag ———— H (0o, R(1))

= |
HY(0, RT(1)) —="" H'(0, R (1))

commutes?

Remark 6.16. It is easy enough to construct a map y: R — H{ (O, R(1)) such that
(1—0"1)yT oevy is the image of £ (0)z. For this, compose z* with the multiplication-by-£
map H'(0, R(1)) - H'(Ow. R(1)). This, however, is not ideal: it is the analogue of
multiplying by the derivative £’ in the setting of the other sections of this paper. In general,
one cannot do better than this if we ask for a map from R, rather than Ag.

If we suppose that Yy = 0, then a map z' as in Question 6.15 does indeed exist. To see
this, we first compute the relevant Iwasawa modules under this assumption (assuming
some standard results of classical Iwasawa theory without reference).

Lemma 6.17. If Yy = 0, then the Coleman map fits in an isomorphism of exact sequences

0 —— H (Ooos R(1) —— HL (Qp.oo. R(1) %y 0
J/? CO]J/Z j{?
0 c ; c C/EC 0

of Ag-modules. Moreover, we have a A g-module isomorphism Yy =~ RO=1/E(0)RO=1,

Proof. The exactness of the top row in the diagram follows from the Poitou—Tate se-
quence, the three lemmas of Section 6.3, and, for right exactness, our assumption that
Yy = 0. Note that Col gives an isomorphism H, (Q, 0, R(1)) = €. Since Yy = 0, the
Iwasawa module X¢ is then a quotient of €. By Stickelberger theory, we know it is anni-
hilated by £. The main conjecture tells us that the characteristic ideal of the maximal
quotient of Xy upon which A, acts through a given character is generated by the image
of & in the resulting Iwasawa algebra. Note that € /£C€ has this property: since £(0) # 0
in Ry—1, the exact sequence 0 — Ay — € — R°=! — 0 yields the exact sequence

0—> Ag/E > €/EC — R=/E(O)R™! - 0

of kernels and cokernels of multiplication by . Since X4 has no finite A g-submodules,
we must therefore have X9 =~ C/£C.
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Since Yy = 0, the group Yy is finite. Then g = €4 by a standard argument, and
€y = Ay, generated by the projection of (1 — é‘f\’,_r Cpr)r. As Coloz = £, the resulting
composition

Ag = 89 — HL(Qpoo, R(1) = €

is given by multiplication by £. Kummer theory then gives a map of exact sequences

0—— Ag — Hl (O, R(1)) RO=1 7 0,
0 Ag c RO=1 0,

where the upper map to R°=! is given by the valuations at the primes over p (cf. [13,
Theorem 11.3.10]). Since € has no A-torsion, any element a € HI{V((%O, R(1)) with
Xa = b € Ay is taken to X 1£b € €, and therefore has image £(0)b in R°=1!. In other
words, we have a surjection Yy — RZ=1/£(0)R°='. At the same time, £ annihilates X,
so £(0) annihilates Yp, and this map is an isomorphism.

We then have a surjective map H., (O, R(1)) — R°=! given by £(0)~! times the
valuation maps, and the resulting map R°=! — R°=! becomes multiplication by &(0),
or £. This identifies H}, (O, R(1)) with £C as a subgroup of €. In other words, we have
an isomorphism H! (Oco, R(1)) = € such that the resulting map € — € is multiplication

by &. |

Note that the composition of z with the isomorphism H}! (O, R(1)) — € of Lem-
ma 6.17 is the canonical injection Ay — €.

Proposition 6.18. Suppose that Y9 = 0. Then Question 6.15 has a positive answer.

Proof. Since € has no A-torsion and Xy is annihilated by X§&, the short exact sequence
of Lemma 6.17 gives rise to the first row in the commutative diagram

0 0 0
|
0 %o ct : Gt Xo 0
| |
0—— %9 — H'(O, RT(1)) c* Xo 0
HZ (Ooo. R(1)) —— Ro=1
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with exact rows and columns. The exactness of the middle row is by the Poitou-Tate
sequence, Theorem 4.15, and Lemmas 6.11 and 6.13, while the isomorphism of the final
row is Lemma 6.12.

Let x € H'(O, RT(1)) mapto 1 € Ry—y, and set y = (1 — o~ 1)x € €T, using the
identification given by Lemma 6.17. By definition of €*, the image x),. of x in €* has the
property that yio. = (1 — 0~ )xjc = £ € €T, This forces £y = &, and hence y = 1 mod X
in the image of Ag in €. Choose A € Ay such that Ay = 1. We then define zT as the
unique A g-module homomorphism with zT(1) = Ax.

By construction, xjoc = Colt ozguo(l). Since zg;uo(l) is I'-fixed, we have that Axj,. =
Xioes and zT restricts to zguo. Moreover, (1 —o~1)z%(1) = 1 € €T is the image of z(1),
so we have the commutativity of the diagram in Question 6.15. Finally, (1 — o~ 1)zT(1)
has image (1 —o~")z#(1) € H'(O, R(1)), and the norm of z#(1) under the subgroup
generated by o is trivial, so zT(1) maps to z#(1) as well. |

Without assuming that Yy = 0, the existence of zT as in Question 6.15 requires the
splitting of the exact sequence of Lemma 6.12 as R-modules.
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