
PHYSICAL REVIEW B 110, L220501 (2024)
Letter

Superconducting magnetoelectric effects in mesoscopic hybrid structures

Mostafa Tanhayi Ahari 1,2 and Yaroslav Tserkovnyak 2

1Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Illinois 61801, USA
2Department of Physics and Astronomy and Bhaumik Institute for Theoretical Physics,

University of California, Los Angeles, California 90095, USA

(Received 26 April 2024; revised 25 July 2024; accepted 25 November 2024; published 5 December 2024)

In superconductors that lack inversion symmetry, a supercurrent flow can lead to nondissipative magne-
toelectric effects. We offer a straightforward formalism to obtain a supercurrent-induced magnetization in
superconductors with broken inversion symmetry, which may have orbital, layer, sublattice, or valley degrees
of freedom—multiband noncentrosymmetric superconductors. The nondissipative magnetoelectric effect may
find applications in fabricating quantum computation platforms or efficient superconducting spintronic devices.
We explore how the current-induced magnetization can be employed to create and manipulate Majorana zero
modes in a simple hybrid structure.
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Introduction. Hybrid structures involving magnetic mate-
rials and normal metals are one of the building blocks of
spintronic devices. Motivated by mitigating dissipation and
enhancing device performance, combining superconductiv-
ity with spintronics has led to interesting equilibrium and
nonequilibrium phenomena that fuel interest in supercon-
ducting spintronics [1]. The injection of a spin-polarized
(super)current into the superconductor, whose transport may
be facilitated by an unconventional superconducting order,
such as a triplet pairing, has been of central interest. In this
Letter, we primarily focus on the effect of the supercurrent-
induced magnetization on an adjacent material in a hybrid
structure with an emphasis on potential utility in supercon-
ducting spintronics and quantum computation devices.

In multiband superconductors, where electrons have mul-
tiple degrees of freedom, such as orbital, layer, sublattice, or
valley, a supercurrent flow may lead to a sizable induced mag-
netization. The source of the induced magnetization is spin
polarization [2] and/or orbital magnetic moments [3], where
the former is due to spin-orbit coupling (SOC) and the latter
is related to a Berry curvature of the Bloch electronic bands
in these materials. Importantly, the supercurrent-induced or-
bital magnetization can be orders of magnitude greater than
that due to the spin [4]. Due to the increasing accessibil-
ity of multiband superconductors with strong SOC, such
as transition metal dichalcogenides (TMDs) [5], or large
orbital moments, such as twisted bilayer graphene [6–8],
the supercurrent-induced magnetoelectric effects may play a
more functional role in mesoscopic hybrid structures, par-
ticularly in enhancing the efficiency of magnetic memory
manipulations [9].

In this Letter, we offer a simple formulation of supercon-
ducting magnetoelectric effects for multiband superconduc-
tors in the static regime, encompassing both orbital and spin
magnetization contributions. The superconducting magneto-
electric effect has been studied in Ref. [8], where the evolution
of the magnetoelectric effect across the superconductor-
normal metal phase transition is discussed. As we show, our

results do not match Ref. [8] (in the dc limit) and reveal
a greater sensitivity to the characteristics of the pairing gap
function. Therefore, we suggest that our approach more accu-
rately accounts for the influence of anisotropic pairing gaps.
Importantly, the magnetization induced by supercurrents in
our study may provide additional means to probe the uncon-
ventional superconducting pair potentials. Furthermore, we
provide an expression for supercurrent flow in multiband su-
perconductors that agrees with earlier results, such as those in
Refs. [10–12], establishing connections between supercurrent
density, Fermi-surface parameters, and the superconducting
energy gap. Additionally, we highlight the reciprocal nature of
this phenomenon: Coupling to a dynamic magnetization, such
as that of an adjacent magnet, or an applied magnetic field can
induce supercurrent. Conversely, supercurrent-induced mag-
netization can exert torque on the adjacent magnet (see Fig. 1).

When a superconductor is in contact with a nonsupercon-
ducting material, a weak superconductivity is induced in the

FIG. 1. Schematic of a superconductor-magnet hybrid structure.
When the inversion symmetry in the superconductor is broken, a
uniform supercurrent with Cooper momentum 2q may induce mag-
netization M(q), which can exert a torque τr ∼ M(q) × n on the
adjacent magnet. Reciprocally, coupling to the magnetization n can
induce a supercurrent js, e.g., for a superconductor with an out-of-
plane polar axis ẑ, one gets js ∝ ẑ × n.
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normal material over mesoscopic distances (superconducting
proximity effect) [13]. We will show that the topological char-
acter of the induced superconductivity in the normal material
can be controlled by the magnetoelectric effect in the “parent”
superconductor. The physics here is analogous to the induced
topological phase in a quantum wire discussed in Ref. [14],
where zero-energy Majorana bound states are formed in the
topological phase. However, here we propose a setup in which
the Majorana fermions are electrically created and manipu-
lated via the magnetoelectric effect, without the need for an
external magnetic field. In particular, we propose a simple
supercurrent protocol that realizes a braiding operation for the
Majorana zero modes in a trijunction formed by the wires. Our
setup can be relevant for fabricating a platform for quantum
computation in a web of nanowires [15–17].

Magnetoelectric effect in multiband superconductors. From
the viewpoint of symmetry, a linear current-induced magne-
tization can occur if inversion symmetry is broken [18,19]
(a noncentrosymmetric material). As a result, we consider a
superconductor with broken inversion symmetry described by
a time-reversal symmetric normal state Hamiltonian H0(p).
We assume that close to the Fermi surface, the Bloch band
Kramers’ splitting due to the broken symmetry is much larger
than the superconducting gap, as is often a realistic limit for
the multiband superconductors [20,21]. This assumption jus-
tifies a semiclassical treatment of small perturbations (relative
to the band splitting), under which the electron dynamics
would be confined within the individual Bloch bands. More-
over, in the superconducting state, Cooper pairs are formed
by time-reversal electron partners belonging to the same
Bloch band with opposite momentum |uν,p〉 and |uν,−p〉 [22],
where ν is the band index. It has been shown that the resul-
tant “intraband” Cooper pairing is the energetically favorable
(stable) superconducting state [23,24]. As a consequence of
projecting physical quantities onto a single band, we focus
on the intraband effects, with interband contributions related
to quantum metric effects being overlooked [11,12,25–27]
(see the Discussion for further details). The Bogoliubov–
de Gennes Hamiltonian written in the Bloch band basis
reads

Ĥ (p) =
(

ξ (p) #(p)
#∗(p) −ξ (p)

)
, (1)

where ξ (p) = ξ (−p) is a diagonal matrix whose entries are
the Bloch band energies ξν (p) (measured from chemical
potential), which are obtained by a unitary transforma-
tion Up H0(p)U †

p = ξ (p). The pairing gap function #(p) =
Up #0(p)U T

−p is a diagonal matrix with elements #ν (p),
where #0(p) is the usual pairing function written in the space
of the electronic degrees of freedom such as spin and valley
[28]. Finally, the quasiparticle energy for band ν is given by
Eν =

√
ξ 2
ν + |#ν |2.

Under a uniform supercurrent flow, quasiparticle energies
get shifted (Doppler shift [29,30]) as Eν + q · vν , where vν =
∇pξν (p), and 2q is the Cooper pair momentum (q/me is usu-
ally called the superfluid velocity, where me is the electron
mass). It can be checked [28] that the total supercurrent and
supercurrent-induced magnetization can be written as js =

T · q and M = Q · q, respectively, where

Ti j =
∫

dτ
∑

ν

(
∂ fν
∂Eν

vν, j − ∂nν

∂ p j

)
evν,i, (2a)

Qi j =
∫

dτ
∑

ν

(
∂ fν
∂Eν

vν, j − ∂nν

∂ p j

)
Mν,i. (2b)

Here, fν ≡ f (Eν ) is the Fermi-Dirac distribution function
which determines the quasiparticle occupancy, nν = 1

2 (1 −
ξν

Eν
(1 − 2 fν )) is the occupancy of the electronic single-particle

state at band ν with momentum p in the superconducting state
[10,31], and dτ = dd p/(2π h̄)d with d being the dimension of
the system. Mν (p) is the total magnetization pertaining to the
Bloch band ν that can be decomposed into spin and orbital
[19] components, Mν (p) = sν (p) + mν (p), where

sν (p) = 〈uν,p|gµB
σ

2
|uν,p〉 (3)

is the spin magnetic moment, and mν (p) is the orbital mag-
netic moment [32,33] for a three-dimensional (3D) crystal

mν (p) = eh̄
2

Im〈∇puν,p| × [H0(p) − ξν (p)]|∇puν,p〉. (4)

A nonzero orbital magnetic moment is an intrinsic property
of the band that can roughly be interpreted as a self-rotation
of the electron wave function around its center of mass
[32], which could indicate a nonzero Berry curvature #ν,p =
ih̄2〈∇puν,p| × |∇puν,p〉 in the band structure.

The terms proportional to ∂nν/∂ p j in Eqs. (2) differ from
those obtained in Ref. [8] (in the dc limit), wherein the nor-
mal state occupancy of the single-particle state at band ν,
denoted as f (ξν ), is employed instead of nν [34]. However,
Eq. (2a) concurs with the conventional (intraband) superfluid
density as established in prior studies [10–12], where the
terms proportional to ∂ fν/∂Eν and ∂nν/∂ p j are identified, re-
spectively, as the paramagnetic and diamagnetic contributions
to the supercurrent [30]. This alignment offers reassurance
regarding the validity of Eq. (2b) in capturing the intraband
current-induced magnetization. The dependence of nν on the
superconducting pair potential enhances the sensitivity of our
results to nonuniform (in momentum space) gap functions.
Given the growing discovery of superconductivity in layered
van der Waals materials with anisotropic pairing gap func-
tions, our findings are particularly relevant for understanding
how such unconventional gaps influence the magnetoelectric
response.

Application to two- and four- band models. Let us first
consider a two-band system described by a normal state
Hamiltonian H0(p) = ξpσ0 + gp · σ, where σ is the vector of
Pauli matrices acting on the spin basis, and σ0 is a 2 × 2
identity matrix. As a result of broken inversion symmetry,
gp = −g−p, the spin degeneracy of electrons is lifted, sug-
gesting a two-band description of the Fermi surface ξν (p) =
ξp + ν|gp|, with ν = ±1 labeling the bands. Finally, it can be
checked that the spin magnetic moment of band ν is given by
sν (p) = 〈uν,p|gµB

σ
2 |uν,p〉 = ν

2 gµBĝp.
H0(p) can also describe a minimal model for novel quan-

tum systems such as Weyl semimetals, in which σ acts
on orbital space (valence and conduction orbitals mixed
with spin), e.g., see Refs. [35,36]. In this case, the orbital
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FIG. 2. (a) Schematic of band dispersion in the normal state.
The inset shows ν = 1, 2, 3, and 4 bands, which represent in-
dices (a1, a2) = (1, 1), (−1, 1), (1, −1), and (−1,−1), respectively.
(b) The orbital magnetic moment in the y direction vs px for bands
ν = 3, 4. In this plot, we set α1 = e = t = 1 and α2 = 3. (c) Orbital
component of Q̄xy ≡ Qxy/Qxy|α2=0 vs the strength of SOC (α1 = 1).
The Rashba and Dresselhaus SOC have the same contribution to
the orbital magnetization. (d) Spin component of Q̄xy vs strength
of SOC (α1 = 1). For the Dresselhaus system, the spin component
is zero for all α2 values. As a result, to avoid confusion about
renormalized Qxy, the plot shows Qxy = 0. Here, we use parameters
T = 0.1Tc, me = 0.4, µ = 0, λ = 3, and # = 0.5 (in units of kBTc

with kB being the Boltzmann constant).

magnetic moment is given by mν,i(p) = − h̄e
2 εi jl

1
|gp|2 gp ·

(∂p j gp × ∂pl gp), where εi jl is the rank-3 Levi-Civita tensor
[19].

Next, we consider a bilayer system with a spin-independent
coupling between layers,

H0 =
(

H1 V
V H2

)
, (5)

where Hi is the Hamiltonian of layer i = 1, 2, and V =
λσ0 with λ being the interlayer interaction [37]. As illustra-
tive examples, we consider each layer to be described by a
2D Rashba or Dresselhaus Hamiltonian Hi = ( p2

2me
− µ)σ0 +

gi
p · σ, where gi

p = αi(py,−px ) and gi
p = αi(px,−py) for the

Rashba and Dresselhaus systems, respectively. The band dis-
persion relation is given by

ξν (p) = p2

2me
− µ + a1|g+

p | + a2

√
|g−

p |2 + λ2, (6)

where g±
p = (g1

p ± g2
p)/2 and a1, a2 = ±1. Here we iden-

tify indices (a1, a2) = (1, 1), (−1, 1), (1,−1), and (−1,−1),
with ν = 1, 2, 3, and 4, respectively. For the Rashba system,
Fig. 2(a) shows the normal state energy spectrum. Eqs. (3)
and (4) can now be used to evaluate the spin and orbital
magnetization in the band basis. For the Rashba system [37],
we get

sν = a1

2
gµBĝR, (7a)

mν (p) = sgn[α+]
a1

4
etλ2α−

|g−
p |2 + λ2

ĝR, (7b)

where ĝR = (py,−px )/p, α± = α1 ± α2, and t is the distance
between the layers [38]. We note that the magnitude of the
spin magnetic moment is solely determined by the g factor,
while the orbital moment is influenced by multiple param-
eters, offering greater tunability. Figure 2(b) shows the the
orbital magnetization in the y direction vs momentum px for
bands ν = 3 and 4. Note that mν (p) for bands ν = 1 and
2 is identical to bands ν = 3 and 4, respectively. For the
Dresselhaus system, we get

sν = a1

2
gµBĝD, (8a)

mν (p) = sgn[α+]
a1

4
etλ2α−

|g−
p |2 + λ2

ĝR, (8b)

where ĝD = (px,−py)/p. It is interesting to note that, un-
like the Rashba SOC, in the Dresselhaus SOC, the magnetic
moment perpendicular to the current direction is only due to
the orbital one. Moreover, the orbital moment has the same
direction for both systems, as it can be seen from Eqs. (8b)
and (7b). In both systems, a nonzero orbital magnetic moment
arises from the fact that the electron state in a band can be
a superposition of two layers with different Fermi velocities.
Consequently, a similar Fermi pocket shift due to Rashba or
Dresselhaus SOC can lead to an equivalent orbital magnetic
moment. To obtain the current-induced magnetization, we
consider the induced magnetization in the y direction by a
current in the x direction. Figures 2(c) and 2(d) show the
orbital and spin component of Q̄xy ≡ Qxy/Qxy|α2=0 vs the
relative strength of SOC.

Topological superconductivity manipulated by the magne-
toelectric effect. Consider a semiconductor wire with Rashba
spin-orbit coupling (such as electron-doped InAs [39]), where
proximity to a superconducting substrate induces supercon-
ducting pairing. In the presence of an external Zeeman field,
the spin degeneracy of electronic bands in the wire is bro-
ken, potentially leading to a transition to a topological phase,
as discussed in Ref. [40]. This transition corresponds to
symmetry class D in the Altland-Zirnbauer classification,
characterized by a nontrivial Z2 topological number and zero-
energy Majorana edge modes.

Additionally, as outlined in Ref. [14], a supercurrent
flowing in the substrate superconductor can induce such a
transition in the wire. Interestingly, the supercurrent can
lower the critical Zeeman field required for the topological
phase transition. This suggests the possibility of a topological
phase transition solely driven by the supercurrent, without the
need for an external Zeeman field, which breaks time-reversal
symmetry. Various model superconductors with diverse spin-
orbit couplings have been examined in Ref. [41], showing
that a finite supercurrent alone can trigger a topological
phase transition. However, in simple s-wave superconductors,
a relatively high supercurrent density is necessary for this
transition, resulting in the quasiparticle spectrum intersecting
the zero-energy level and burying the Majorana states within
the bulk continuum.

We propose an alternative approach to topological su-
perconductivity induced and manipulated by supercurrent-
induced magnetization. We consider a semiconducting wire
with Rashba SOC placed on top of a superconducting TMD,
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FIG. 3. (a) Schematic of a quantum wire with SOC on a su-
perconductor. The supercurrent flow characterized by q induces a
Zeeman field on the wire leading to a topological phase transition.
The nontrivial phase has two Majorana modes that appear on both
ends of the wire (shown by gray shades). (b) Adiabatic exchange
of two Majorana bound states. The segments in red are topologi-
cally nontrivial (q > qT ), where the localized Majorana modes are
sketched as the (light and dark shade) gray circles at the ends of the
wires. The supercurrent direction and magnitude can be controlled
by electrodes connected to the superconductor at points A, B, and
C. Starting from a supercurrent between A-B and C-B (configuration
1), we can decrease the A-B current and simultaneously increase C-A
current to transition to configuration 2 adiabatically. Now, decreasing
C-B and increasing B-A currents results in configuration 3. Similarly,
by decreasing C-A and increasing B-C, we return to configuration 1
with the reversed current directions, in which the Majorana modes
are exchanged. Repeating the same steps resets the currents and leads
to a double exchange (braiding) of Majorana modes.

as shown in Fig. 3(a). Quasi-2D superconducting TMDs with
C1, C2, C1v , or C2v point group symmetry possess an in-plane
polar axis, which allows an in-plane supercurrent to induce
an out-of-plane magnetization M(q) [18]. The substrate su-
perconductor affects the wire band structure in two ways: an
effective Zeeman field on the wire ∼M(q) and proximity-
induced superconductivity with a pairing #(q) = #0 ei2q‖rW /h̄,
where q‖ is the Cooper pair momentum component parallel
to the wire and rW is the position vector along the wire [see
Fig. 3(a)]. The extra phase factor leads to a Doppler shift in
the quasiparticle spectrum of the wire. For simplicity focusing
on µ = 0, as discussed in Ref. [14], the boundary between
topologically trivial and nontrivial (gapped) phases in a 1D
superconductor is when the Zeeman energy in the wire is
EZ =

√
#2

0 − α2
W q2

‖ > #2
0/4ESOC, where ESOC = meα

2
W /2 +

#0 is the SOC energy scale in the wire and αW determines
the Rashba SOC in the wire. The lower limit for the Zee-
man energy, #2

0/4ESOC, ensures that the phase transition
takes place between two trivial and nontrivial gapped phases,
which is essential in realizing the isolated Majorana zero
modes. Specifically, considering #0 = 0.1 meV and ESOC =
0.1 eV, the induced Zeeman energy in the wire must be
EZ > 10−4 meV. As a result, the topological phase transition
may occur at some momentum, denoted by |q| = qT . To en-
hance the effective Zeeman field on the wire and to maintain
qT below the critical depairing momentum in the substrate
superconductor, a semiconductor wire with a large g factor
can be employed [42].

The supercurrent-induced topological phase may enable
the implementation of quantum computation operations using
Majorana modes. To see this, consider a trijunction fabricated
from the wires on the substrate superconductor [28]. When a
finite supercurrent |q| > qT is crossing a branch of wire in the
trijunction, the wire is in the nontrivial phase. Consequently,
as sketched in Fig. 3(b), an adiabatically slow switching of
the supercurrent flow between points A, B, and C leads to
the exchange of the Majorana zero modes. The supercurrent
switching steps here leads to a similar adiabatic exchange of
Majorana fermions first proposed in Ref. [15], where tunable
local gate voltages were employed to perform an exchange
operation. However, here we propose a supercurrent-induced
exchange operation. We note that a double exchange (braid-
ing) operation could realize a σz gate [17]. If the two Majorana
fermions comprising a qubit share no quasiparticle (even elec-
tron parity) the braiding leaves the qubit unchanged. However,
if the qubit has an odd electron parity, the braiding gives a
minus sign.

Discussion. For a Rashba system with SOC strength of
α1 = 2α2 = 5 × 104 m/s [43], the estimated spin and orbital
magnetizations are 10−2ξ−1µB/nm2 and 10−5ξ−1µB/nm2, re-
spectively, where ξ is the superconducting coherence length
in nanometers. For a superconductor with ξ = 90 nm, the
corresponding magnetizations would be 10−4µB/nm2 for
spin and 10−7µB/nm2 for orbital magnetization. We note
that measuring this magnetization is feasible within current
experimental capabilities, such as employing single-spin mi-
croscopy [nitrogen-vacancy (NV) center microscopy] [46]
or superconducting quantum interference device (SQUID)
magnetometry [7].

In a superconductor-magnet hybrid structure, exchange
coupling the superconductor to an adjacent magnet, the
supercurrent-induced magnetization can exert the so-called
reactive torque [47,48] on the magnet, τr ∼ M(q) × n (even
under time reversal), where n is the magnetization. Recipro-
cally, the exchange interaction can modify the supercurrent
near the interface [49]. Note that in addition to the reactive
torque, a current carrying normal metal with SOC (broken
inversion symmetry) could in general also exert a dissipative
torque on the adjacent magnet, τd ∼ n × M(q) × n (odd un-
der time reversal). However, the dissipative torque is absent in
the superconductor-magnet hybrid structure [50].

In Ref. [51], a spintronic Josephson phase qubit based on
spin superfluidity and spin Hall phenomena is proposed in a
metal-magnet hybrid structure. The basic idea is that the qubit
state can be manipulated by injecting spin current (torque),
engendered from an electric current flow in the normal metal
with SOC [52]. Motivated by eliminating the Joule heating,
a natural generalization of the proposal in Ref. [51] would
be to replace the metal with a superconductor. The super-
current can be used for magnetic qubit manipulations and
readout.

In our treatment, we are projecting physical quantities onto
a single band, and in doing so, we are neglecting interband
coherent effects linked to the quantum metric of the Bloch
wave function, discussed in previous works [11,12,25–27].
Consequently, without considering these interband effects,
under a uniform supercurrent superconducting pair potential
remains approximately unchanged and the quasiparticle
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energies experience a Doppler shift. However, incorporating
interband effects introduces an anomalous term for super-
fluid density, particularly prominent in flat- or nearly-flat-band
superconductors [53]. Exploring the impact of these geomet-
ric effects on supercurrent-induced magnetization using our
formalism would be an interesting future step. In particular,
investigating supercurrent-induced magnetization in flat-band
superconductors could offer an additional means to explore
and probe unconventional superconductivity [54].

We close this Letter by noting that while we have
studied the supercurrent-induced magnetization in a clean

superconductor (where physically the superconducting gap is
much larger than the disorder scattering rate), we expect that
our results remain qualitatively valid at a low concentration of
impurities. Indeed, as shown in Ref. [55], the magnetoelectric
effect (spin magnetization), although weakened by impurity
scattering, is not destroyed in dirty superconductors where
the superconducting gap is smaller than the disorder scattering
rate.
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]
, t

where vx = ∂H0
∂ px

.
[39] Yu. A. Bychkov and E. I. Rashba, Oscillatory effects and the

magnetic susceptibility of carriers in inversion layers, J. Phys.
C: Solid State Phys. 17, 6039 (1984).

[40] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and
Majorana bound states in quantum wires, Phys. Rev. Lett. 105,
177002 (2010).

[41] K. Takasan, S. Sumita, and Y. Yanase, Supercurrent-induced
topological phase transitions, Phys. Rev. B 106, 014508 (2022).

[42] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Exponential protection of zero modes in Majorana islands,
Nature (London) 531, 206 (2016); G. W. Winkler, D. Varjas,
R. Skolasinski, A. A. Soluyanov, M. Troyer, and M. Wimmer,
Orbital contributions to the electron g factor in semiconductor
nanowires, Phys. Rev. Lett. 119, 037701 (2017).

[43] The strength of SOC in Bi/Ag bilyers is comparable to
this value. Here, we provide estimates for spin and orbital
magnetizations in the bilayer Rashba system with the follow-
ing parameters: λ = 2.5 meV, #0 = 5 meV, µ = 0.3 eV, T =
0.1Tc, t = 2 Å, g = 2, me = 0.3m0, where m0 is the electron
bare mass. For the Cooper pair momentum q, we consider the
inverse of the superconducting coherence length ξ , h̄/ξ , as an
upper limit [44,45].

[44] H. J. Zhang, S. Yamamoto, B. Gu, H. Li, M. Maekawa, Y.
Fukaya, and A. Kawasuso, Charge-to-spin conversion and spin
diffusion in Bi/Ag bilayers observed by spin-polarized positron
beam, Phys. Rev. Lett., 114, 166602 (2015).

[45] A. Johansson, J. Henk, and I. Mertig, Theoretical aspects of the
Edelstein effect for anisotropic two-dimensional electron gas
and topological insulators, Phys. Rev. B 93, 195440 (2016).

[46] L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-
Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo,
and P. Maletinsky, Probing magnetism in 2D materials at
the nanoscale with single-spin microscopy, Science 364, 973
(2019).

[47] Y. Tserkovnyak and S. A. Bender, Spin Hall phenomenology of
magnetic dynamics, Phys. Rev. B 90, 014428 (2014).

[48] F. S. Bergeret and I. V. Tokatly, Manifestation of extrinsic
spin Hall effect in superconducting structures: Nondissipative
magnetoelectric effects, Phys. Rev. B 94, 180502(R) (2016).

[49] S. Mironov and A. Buzdin, Spontaneous currents in supercon-
ducting systems with strong spin-orbit coupling, Phys. Rev.
Lett. 118, 077001 (2017).

L220501-6

https://doi.org/10.1038/s41535-023-00584-5
https://doi.org/10.21468/SciPostPhys.16.2.044
https://doi.org/10.21468/SciPostPhysLectNotes.15
https://doi.org/10.1103/PhysRevResearch.2.012073
https://doi.org/10.1103/PhysRevLett.116.077201
https://doi.org/10.1103/PhysRevB.98.024501
https://doi.org/10.1103/PhysRevB.69.094514
https://doi.org/10.1103/PhysRevLett.121.157003
https://doi.org/10.1088/1367-2630/15/7/073006
https://doi.org/10.1103/PhysRevB.94.104501
https://doi.org/10.1103/PhysRevLett.126.187001
https://doi.org/10.1103/PhysRevLett.131.240001
https://doi.org/10.1103/PhysRevB.95.024515
http://link.aps.org/supplemental/10.1103/PhysRevB.110.L220501
http://jetpletters.ru/ps/0/article_4754.shtml
https://doi.org/10.1103/PhysRevB.53.7010
https://doi.org/10.1103/PhysRevB.92.235205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevResearch.5.043294
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.106.014508
https://doi.org/10.1038/nature17162
https://doi.org/10.1103/PhysRevLett.119.037701
https://doi.org/10.1103/PhysRevLett.114.166602
https://doi.org/10.1103/PhysRevB.93.195440
https://doi.org/10.1126/science.aav6926
https://doi.org/10.1103/PhysRevB.90.014428
https://doi.org/10.1103/PhysRevB.94.180502
https://doi.org/10.1103/PhysRevLett.118.077001


SUPERCONDUCTING MAGNETOELECTRIC EFFECTS IN … PHYSICAL REVIEW B 110, L220501 (2024)

[50] The dissipative torque is also absent in a current-carrying 2D
massless Dirac system [47], which arises on the surfaces of
strong 3D topological insulators [57].

[51] S. Takei, Y. Tserkovnyak, and M. Mohseni, Spin super-
fluid Josephson quantum devices, Phys. Rev. B 95, 144402
(2017).

[52] A. Manchon and S. Zhang, Theory of nonequilibrium intrinsic
spin torque in a single nanomagnet, Phys. Rev. B 78, 212405
(2008); Theory of spin torque due to spin-orbit coupling, 79,
094422 (2009).

[53] K.-E. Huhtinen, J. Herzog-Arbeitman, A. Chew, B. A.
Bernevig, and P. Törmä, Revisiting flat band superconductivity:

Dependence on minimal quantum metric and band touchings,
Phys. Rev. B 106, 014518 (2022).

[54] P. Törmä, S. Peotta, and B. A. Bernevig, Superconductivity,
superfluidity and quantum geometry in twisted multilayer sys-
tems, Nat. Rev. Phys. 4, 528 (2022).

[55] V. M. Edelstein, Magnetoelectric effect in dirty superconductors
with broken mirror symmetry, Phys. Rev. B 72, 172501 (2005).

[56] D. Hara, M. S. Bahramy, and S. Murakami, Current-induced
orbital magnetization in systems without inversion symmetry,
Phys. Rev. B 102, 184404 (2020).

[57] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

L220501-7

https://doi.org/10.1103/PhysRevB.95.144402
https://doi.org/10.1103/PhysRevB.78.212405
https://doi.org/10.1103/PhysRevB.79.094422
https://doi.org/10.1103/PhysRevB.106.014518
https://doi.org/10.1038/s42254-022-00466-y
https://doi.org/10.1103/PhysRevB.72.172501
https://doi.org/10.1103/PhysRevB.102.184404
https://doi.org/10.1103/RevModPhys.82.3045


1

Supplementary Material for
Superconducting magnetoelectric e↵ects in mesoscopic hybrid structures

Mostafa Tanhayi Ahari
1,2

, Yaroslav Tserkovnyak
2

1Materials Research Laboratory, The Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL
61801, USA

2Department of Physics and Astronomy & Bhaumik Institute for Theoretical Physics, University of California, Los
Angeles, California 90095, USA

Magnetoelectric e↵ects in multiband superconductors: static limit

Here, employing the Bogoliubov-de Gennes formalism, we o↵er a straightforward derivation of supercurrent-induced

magnetization in multiband superconductors. Additionally, we provide an expression for supercurrent flow in multi-

band superconductors, aligning with the findings of Ref.[1] and Ref.[2] (excluding the quantum metric e↵ects).

Consider the normal state Hamiltonian H0(p). The Bloch band basis representation of the Hamiltonian is achieved

by an unitary transformation as

U(p)H0(p)U
†
(p) ⌘ ⇠̂(p) = diag[⇠1(p), ⇠2(p), . . . ], (S1)

where ⇠⌫(p) is the single-particle energy of Bloch band ⌫ (measured from the chemical potential in the system).

Similarly, we apply the unitary transformation to the Bogliubov-de Gennes (BdG) Hamiltonian of the corresponding

superconductor

✓
U(p) 0

0 U⇤
(�p)

◆✓
H0(p) �(p)
�

†
(p) �H⇤

0 (�p)

◆✓
U†

(p) 0

0 U⇤†
(�p)

◆
=

✓
⇠̂(p) �̂(p)
�̂

⇤
(p) �⇠̂(�p)

◆
, (S2)

where U(p)�(p)U⇤†
(�p) ⌘ �̂(p). The energetically favorable pairing function in the superconducting phase �(p)

is obtained [3–5] by the fitness criteria H0(p)�(p) � �(p)H⇤
0 (�p) = 0. Assuming that the electrons with opposite

momentum are degenerate, ⇠⌫(p) = ⇠⌫(�p), the fitness criteria becomes ⇠̂(p)�̂(p)��̂(p)⇠̂(p) = 0. This, in general, im-

plies that the pair potential is diagonal in the band basis (intraband Cooper pairing), �̂(p) = diag[�1(p), �2(p), . . . ].
As a result, interband pairings are ignored here. Within an isolated band, the BdG Hamiltonian for a supercurrent-

carrying superconductor reads

Ĥ =
1

2V

X

p,⌫

(c†p+q,⌫ c�p+q,⌫)

✓
⇠⌫(p+ q) �⌫,q(p)
�

⇤
⌫,q(p) �⇠⌫(�p+ q)

◆✓
cp+q,⌫

c†�p+q,⌫

◆
, (S3)

where 2q is the Cooper momentum. To diagonalize this Hamiltonian, we can now apply the Bogoliubov-Valatin

transformation,

✓
cp+q,⌫

c†�p+q,⌫

◆
=

✓
u⇤⌫ �v⌫
v⇤⌫ u⌫

◆✓
↵p,⌫

�†
p,⌫

◆
, (S4)

where ↵p,⌫ and �p,⌫ are quasiparticle annihilation operators, and |u⌫ |2 = 1� |v⌫ |2 with

|v⌫ |2 =
1

2

⇣
1�

�
⇠⌫(p+ q) + ⇠⌫(p� q)

�
/2

q
1
4

�
⇠⌫(p+ q) + ⇠⌫(p� q)

�2
+ |�⌫,q(p)|2

⌘
. (S5)

Consequently, we obtain

Ĥ =
1

2

X

p,⌫

�
E+

⌫ (p, q)↵†
p,⌫↵p,⌫ + E�

⌫ (p, q)�†
p,⌫�p,⌫

�
+ const. (S6)

where the positive energies E±
⌫ (p, q) > 0 (we assume su�ciently small q so that a stable Cooper pair state exists [6])

are given by

E±
⌫ (p, q) = ±1

2

�
⇠⌫(p+ q)� ⇠⌫(p� q)

�
+

r
1

4

�
⇠⌫(p+ q) + ⇠⌫(p� q)

�2
+ |�⌫,q(p)|2. (S7)



2

In the presence of a uniform supercurrent, we express a single-particle operator Â in the Nambu space as

Â =
1

2V

X

p,⌫

(c†p+q,⌫ c�p+q,⌫)

✓
A⌫(p+ q) 0

0 �A⇤
⌫(�p+ q)

◆✓
cp+q,⌫

c†�p+q,⌫

◆
, (S8)

where A⌫(p) is the intraband component of operator Â pertaining to band ⌫. The examples of A⌫(p) include ⌫ĝp for

spin, rp⇠⌫ for velocity, and m⌫(p) for orbital magnetization. Applying the Bogoliubov transformation to Eq. (S8)

and taking the thermal average, where h↵†
p,⌫↵p,⌫i = f(E+

⌫ ), h�†
p,⌫�p,⌫i = f(E�

⌫ ), and h↵†
p,⌫�p,⌫i = h↵p,⌫�p,⌫i = 0, we

obtain (assuming A⌫(p) = A⇤
⌫(p))

hÂi = 1

2V

X

p,⌫

h⇣
u⌫A⌫(p+ q)u⇤⌫ � v⌫A⌫(�p+ q)v⇤⌫

⌘
f(E+

⌫ ) +

⇣
v⇤⌫A⌫(p+ q)v⌫ � u⇤⌫A⌫(�p+ q)u⌫

⌘
(1� f(E�

⌫ ))

i

(S9)

For small q, we obtain E±
⌫ (p, q) ⇡ E⌫ ± q · rp⇠⌫ + O(q)2, where E⌫ ⌘ E±

⌫ (p, 0), ⇠⌫ ⌘ ⇠⌫(p, 0), and |�⌫,q(p)|2 ⇡
|�⌫(p)|2 +O(q)2 [2]. Assuming that A⌫(�p) = �A⌫(p) (odd under time-reversal symmetry), Taylor expanding and

keeping terms linear in q, we present the (thermal averaged) quantity as

hÂi = 1

V

X

p,⌫

⇣ @f⌫
@E⌫

q · v⌫ � q ·rpn⌫

⌘
A⌫(p), (S10)

where f⌫ ⌘ f(E⌫) and n⌫ = |u⌫ |2f⌫ + |v⌫ |2(1 � f⌫) =
1
2

⇣
1 � ⇠⌫

E⌫
(1 � 2f⌫)

⌘
is the occupancy of the single-particle

state at momentum p and band ⌫ in the superconducting state, where |u⌫ |2 is the probability that the pair state at

momentum p is empty, and |v⌫ |2 is the probability that it is occupied [1, 7].

Now taking the infinite-volume approximation
1
V

P
p ! 1

(2⇡~)2
R
d2p and substituting A⌫(p) = M⌫(p) and ev⌫(p),

we obtain the expressions given in the main text. We also observe that when dealing with a momentum-independent

pairing potential, such as the examples discussed in the main text, the expression above can be rewritten as follows:

hÂi = 1

V

X

p,⌫

⇣ @f⌫
@E⌫

� @n⌫

@⇠⌫

⌘
(q · v⌫)A⌫(p). (S11)
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