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Abstract

1. The biodiversity crisis necessitates spatially extensive methods to monitor 
multiple taxonomic groups for evidence of change in response to evolving 
environmental conditions. Programs that combine passive acoustic monitoring 
and machine learning are increasingly used to meet this need. These methods 
require large, annotated datasets, which are time- consuming and expensive 
to produce, creating potential barriers to adoption in data-  and funding- poor 
regions. Recently released pre- trained avian acoustic classification models 
provide opportunities to reduce the need for manual labelling and accelerate the 
development of new acoustic classification algorithms through transfer learning. 
Transfer learning is a strategy for developing algorithms under data scarcity that 
uses pre- trained models from related tasks to adapt to new tasks.

2. Our primary objective was to develop a transfer learning strategy using the feature 
embeddings of a pre- trained avian classification model to train custom acoustic 
classification models in data- scarce contexts. We used three annotated avian 
acoustic datasets to test whether transfer learning and soundscape simulation- 
based data augmentation could substantially reduce the annotated training data 
necessary to develop performant custom acoustic classifiers. We also conducted 
a sensitivity analysis for hyperparameter choice and model architecture. We 
then assessed the generalizability of our strategy to increasingly novel non- avian 
classification tasks.

3. With as few as two training examples per class, our soundscape simulation 
data augmentation approach consistently yielded new classifiers with improved 
performance relative to the pre- trained classification model and transfer learning 
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1  |  INTRODUC TION

Passive acoustic monitoring (PAM) is an efficient and non- invasive 
sensor- based sampling approach that can be used to simultane-

ously collect data for multiple species (Shonfield & Bayne, 2017). 
However, large data volumes and challenges associated with cor-
rectly identifying target sounds have hindered the widespread 
adoption of PAM (Gibb et al., 2019; Hartig et al., 2023). Recent 
advances in machine learning offer a promising path towards 
semi- automated detection and classification of animal vocaliza-

tions (Stowell, 2022); however, these algorithms require iterative 
training over large annotated datasets, which take substantial re-

sources, effort and specialized knowledge to construct. Building 
training datasets is a significant challenge for new PAM pro-

grammes, especially in highly biodiverse regions where conserva-

tion needs are high, but financial resources for labelling species 
vocalizations are low (Cui et al., 2023).

When faced with these challenges, PAM managers typically 
adopt one of three approaches based on project objectives and 
available resources. First, project support staff can exhaustively 
search PAM recordings for target vocalizations. Second, projects 
may use existing classification and detection algorithms, such as 
BirdNET (Kahl et al., 2021), Perch (Ghani et al., 2023) or PNW- Cnet 
(Ruff et al., 2023), and dedicate time to reviewing predictions and 
calibrating outputs. This involves fine- tuning species- specific detec-

tion thresholds and adjusting sampling protocols to manage the risk 
of false- positive and false- negative predictions (Cole et al., 2022; 

Wood & Kahl, 2024). Third, some projects may invest considerable 
resources to annotate acoustic files and train custom local classifica-

tion algorithms from scratch (Gaylord et al., 2023; Ruff et al., 2023).
Alternatively, PAM managers can adopt an intermediate trans-

fer learning approach that leverages both pre- trained models and 

local data to iteratively develop custom acoustic classifiers tailored 
to specific project needs. Transfer learning is a machine learning 
technique that adapts the knowledge from pre- trained models to im-

prove performance on related tasks (Pan & Yang, 2010). A common 
approach to transfer learning uses the penultimate layer output from 
a pre- trained model—an ‘embedding’—as input to train a new classi-
fier for a different task (Oquab et al., 2014). This approach has been 
used extensively in computer vision tasks (Kornblith et al., 2019), 
acoustic classification (Kong et al., 2020) and natural language pro-

cessing (Houlsby et al., 2019). In ecological acoustic classification, 
transfer learning has recently shown promise (Ghani et al., 2023; 

Incze et al., 2018; Nolasco et al., 2023), and pre- trained acoustic clas-

sification models like BirdNET (Kahl et al., 2021) and Perch (Ghani 
et al., 2023) offer strong pre- trained model options. For example, 
Dufourq et al. (2022) used pre- trained image classification models 
to develop new acoustic classifiers for Hainan gibbon (Nomascus 

hainanus), black- and- white ruffed lemur (Varecia variegata), thyolo 
alethe (Chamaetylas choloensis) and pin- tailed whydah (Vidua mac-

roura). Transfer learning remains underutilized in PAM due to its 
novelty in ecology, perceived complexity and the misperception that 
substantial training data are required; however, improved transfer 
learning strategies could potentially shorten the development cycle 
and lead to increased adoption of active learning frameworks (Zhao 
et al., 2020).

Here, we test whether simulated soundscape data augmentation 
can be used with transfer learning- based acoustic classifiers to sub-

stantially reduce training data requirements. We used three anno-

tated avian acoustic datasets, ranging in complexity from 1 to 10 
classes. We compared transfer learning- based classifier performance 
under different model architectures, explored a range of hyperpa-

rameter choices and demonstrated that the simulated soundscape 
approach outperforms simpler data augmentation techniques. We 

classifiers trained with other augmentation approaches. Performance increases 
were evident for three avian test datasets, including single- class and multi- 
label contexts. We observed that the relative performance among our data 
augmentation approaches varied for the avian datasets and nearly converged for 
one dataset when we included more training examples.

4. We demonstrate an efficient approach to developing new acoustic classifiers 
leveraging open- source sound repositories and pre- trained networks to reduce 
manual labelling. With very few examples, our soundscape simulation approach 
to data augmentation yielded classifiers with performance equivalent to those 
trained with many more examples, showing it is possible to reduce manual label-
ling while still achieving high- performance classifiers and, in turn, expanding the 
potential for passive acoustic monitoring to address rising biodiversity monitoring 
needs.

K E Y W O R D S
amphibian sounds, avian sounds, biodiversity monitoring, data scarcity, few- shot learning, 
mammal sounds, orthopteran sounds, passive acoustic monitoring
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test the performance of our custom acoustic classifiers relative to 
the baseline classification performance of two pre- trained avian 
classification models, BirdNET version 2.4 which targets a global set 
of species (Kahl et al., 2021) and PNW- Cnet version 4 a local model 
developed to support Northwest Forest Plan PAM in the Pacific 
Northwest, USA (Lesmeister & Jenkins, 2022; Ruff et al., 2023). Last, 
we explore the generalizability of our approach with three non- avian 
annotated acoustic datasets, ranging in complexity from 1 to 11 
classes that vary in overlap with BirdNET's training data.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

We assembled six acoustic evaluation datasets, independent of 
training data for BirdNET version 2.4, ranging in complexity from a 
single- class classification problem to an 11- class multi- label classifi-
cation problem. Three datasets, which we refer to as avian datasets, 
were used to develop strategies for transfer learning under data 
scarcity (Table 1). The other three datasets, which we refer to as 
non- avian datasets, were used to explore the generalizability of our 
strategies when applied to non- avian taxa. The evaluation datasets 

were all annotated at the recording level (e.g. one annotation per 
recording that indicates the presence of at least one vocalization 
from a species). All the audio examples were resampled to 48 kHz 
using Librosa (version 0.10.0; McFee et al., 2023) and, in some cases, 
reduced from stereo to mono.

2.1.1  |  Avian datasets

We downloaded recordings of our avian target species from 
XenoCanto spatially filtered to the Pacific Northwest Region be-

tween latitudes from 37.730 to 49.030° N and longitudes ranging 
from 125.000 to 120.500° W, overlapping the sampling area of 
the PAM datasets. The XenoCanto recordings are focal record-

ings that feature specific target species and do not typically dif-
ferentiate calls from songs or annotate background non- target 
species sounds (Figure 1a; van Merriënboer et al., 2024; Vellinga 

& Planque, 2015). In addition, the XenoCanto recordings are an-

notated at the recording level, which vary in length from a few 
seconds to multiple minutes. We annotated the XenoCanto re-

cordings using predefined target vocalizations (Table 1; Vellinga & 
Planque, 2015). We then developed two independent annotated 
evaluation datasets for each avian dataset: one with 3- s sound 

TA B L E  1  Descriptions of the avian evaluation datasets.

Dataset Species Sonotype Call description

No. of  
examples

No. of evaluation clips

3 s 12 s

Marbled 
murrelet

Marbled murrelet marmur_call_1 ‘keer’ 40 345 1000

non- target 216 1000

Blue 
mountains

Clark's nutcracker clanut_call_1 ‘kraa’ 53 100 387

clanut_call_2 ‘keer’ 39 100 62

clanut_call_3 ‘reek’ 41 100 1056

American goshawk norgos_call_1 Screech series 27 99 229

norgos_call_2 Wail 18 100 496

White- headed woodpecker whhwoo_call_1 ‘pittik’ 69 100 1034

non- target 0 0

Passerine Hermit thrush herthr_song_1 Song 42 137 517

herthr_call_2 Whine 36 8 62

Olive- sided flycatcher olsfly_song_1 Song 50 128 114

olsfly_call_1 ‘pip’ series 40 100 69

Spotted towhee spotow_song_1 Song 278 22 125

Swainson's thrush swathr_song_1 Song 42 134 331

swathr_call_1 ‘pwut’ 127 42 142

swathr_call_3 ‘wee’ 101 44 195

Varied thrush varthr_song_1 Song 101 51 500

Wrentit wrenti_song_1 Song 55 13 54

non- target 33 2232

Note: Each dataset is described by its name, the included sonotypes, the number of training examples obtained from XenoCanto, and the number of 
evaluation clips available in both 3- s and 12- s formats.
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clips and the other with 12- s sound clips (Table 1). The source files 
for both datasets were independent recordings but originated 
from the same PAM projects.

The marbled murrelet (Brachyramphus marmoratus; eBird code: 
marmur) dataset is a single- class classification problem that in-

cludes 0.46 h of annotated 3- s clips and 6.67 h of annotated 12- s 

clips. The recordings were collected and annotated by the United 
States Department of Agriculture (USDA) Forest Service in asso-

ciation with the annual Northwest Forest Plan (NWFP) PAM of 
northern spotted owl (Strix occidentalis caurina; eBird code: stroca) 
populations and other old- forest- associated species (Duarte, 
Weldy, et al., 2024; Lesmeister & Jenkins, 2022). The recordings 

F I G U R E  1  Conceptual representation of (a) our training data collection and (b) our training data construction approaches including 
training on few raw examples (‘raw’), augmenting the raw examples with standard Gaussian noise (‘embedding’), time shifting (‘timeshift’) and 
soundscape simulation (‘simulated clips’).
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are selected clips from a larger 644,111- h acoustic dataset col-
lected from March to September 2020. During 2020, PAM oc-

curred on 1494 US Federally managed forest sites west of the 
Cascade Mountain Range in Oregon and Washington, USA. The 
acoustic data were collected using Song Meter SM4 autonomous 
recording units (hereafter ARU) at a sampling rate of 32 kHz and a 
16- bit resolution.

The Blue Mountains dataset is a six- class multi- label classifica-

tion problem that includes annotated vocalizations for three spe-

cies that are either an indicator of forest management activities or 
are of conservation concern (Altman & Bresson, 2017): Clark's nut-
cracker (Nucifraga columbiana; eBird code: clanut), American gos-

hawk (Accipiter atricapillus; eBird code: norgos) and white- headed 
woodpecker (Dryobates albolarvatus; eBird code: whhwoo). The 
six- class labels identify three Clark's nutcracker call types, two 
American goshawk call types and one white- headed woodpecker 
call type. The recordings were collected by the USDA Forest Service 
in Oregon, USA, in the northern Blue Mountains on the Wallowa- 
Whitman and Umatilla National Forests as part of ongoing PAM for 
the Northern Blues Collaborative Forest Landscape Restoration 
Program (Duarte, Vernasco, et al., 2024; https:// resea rch. fs. usda. 
gov/ pnw/ under story/  north ern-  blue-  mount ains-  wildl ife-  monit 
oring -  2022-  2023). The recordings are selected clips from a larger 
122,052- h dataset collected on 420 US Federally managed forest 
sites. The acoustic data were collected using Song Meter SM4 
ARUs at a sampling rate of 32 kHz and a 16- bit resolution (Wildlife 
Acoustics, Concord, NY, U. S. A.).

The passerine dataset is a 10- class multi- label classification 
problem that includes annotated vocalizations for six species: hermit 
thrush (Catharus guttatus; eBird code: herthr), olive- sided flycatcher 
(Contopus cooperi; eBird code: olsfly), spotted towhee (Pipilo macula-

tus; eBird code: spotow), Swainson's thrush (Catarus ustulatus; eBird 
code: swathr), varied thrush (Ixoreus naevius; eBird code: varthr) and 
wrentit (Chamaea fasciata; eBird code: wrenti). The six- class labels 
identify three Swainson's thrush call types, two hermit thrush call 
types, two olive- sided flycatcher call types, one spotted towhee call 
type, one varied thrush call type and one wrentit call type. These 
recordings were obtained from Weldy et al. (2024) and included a 
subset of dawn chorus recordings collected during the 2022 NWFP 
PAM, described above. In 2022, PAM expanded to include 2572 
US Federally managed forest sites west of the Cascade and Sierra 
Mountain Ranges in California, Oregon and Washington, recording 
1,477,751.64 h of sound. The sampling protocol and acoustic charac-

teristics were consistent with those described in the marbled mur-
relet dataset.

2.1.2  |  Non- avian datasets

The non- avian datasets are multi- label classification problems that 
represent a range of classification complexities, varying in number 
of target classes and the degree to which the evaluation data differs 
from BirdNET's base training data.

The amphibian dataset includes 2494 5- s recordings anno-

tated for two amphibian species: American bullfrog (Lithobates 

catesbeianus; code: amebul) and Pacific chorus frog (Pseudacris re-

gilla; code: pacfro). We obtained training examples from California 
Herps, a web resource documenting the life history of California's 
reptiles and amphibians (Nafis, 2021; acoustic data obtained with 
permission). The annotated evaluation data were collected by the 
United States Geological Survey (USGS) and its partners at 86 wet-
land sites across Oregon and Washington, USA (Hill et al., 2019). 
The objective was to monitor bullfrog vocalization activity in the 
range of federally threatened Oregon spotted frogs (Rana pre-

tiosa); non- target Pacific chorus frogs also occurred in the study 
areas. The recordings were collected using AudioMoth ARUs at 
a sampling rate of 48 kHz in 2020 and 16 kHz in 2021. The anno-

tated clips were identified using the Kaleidoscope software clus-

ter analysis feature targeting the bullfrog call's frequency range 
(187.5–5250 Hz; Bielinski et al., 2020) and manually reviewed. 
Audio collection by USGS was covered under annual USFWS 
Special Use Permits 20- 04 and 21- 01.

The cricket dataset includes 1000 2- min recordings an-

notated for 10 species of cricket and one cricket subfamily: 
Archenopterus bouensis, Bullita fusca, Bullita mouirangensis, Bullita 

obscura, Calscirtus magnus, Koghiella flammea, Koghiella nigris, 
Notosciobia affnis paranola, Notoscioba minoris, Pseudotrigonidium 

caledonica and Trigonidiinae spp. We obtained training examples 
from the Muséum National d'Histoire Naturelle of Paris (https:// 
sonot heque. mnhn. fr; Sound Catalog accessed 8/01/2024). The 
annotated PAM data used for evaluation were recorded in New 
Caledonia as a component of long- term research on the effects of 
the invasive little fire ant Wasmannia auropunctata on biodiversity 

(Jourdan et al., 2001). Gasc et al. (2018) collected PAM recordings 
on 24 forest, pre- forest and shrubland sites during the dry season 
of 2013 and used these recordings to assess acoustic- based detec-

tion of Wasmannia auropunctata through changes in the acoustic 
calling behaviour of crickets. The recordings were collected using 
SongMeter SM2 and SM2+ ARUs at a sampling rate of 48 kHz and 
a 16- bit resolution (Wildlife Acoustics, Concord, NY, USA). We 
used two versions of this dataset: the first includes 11 classes, 
treating species- level classes separately. The second includes 
seven classes pooling species- level annotations at the taxonomic 
resolution of genus. We created the second version of this dataset 
to create a potentially easier classification task because we sus-

pected that the first task would be a difficult out of domain task 
for BirdNET.

The small mammal dataset includes 1737 12- s recordings anno-

tated for three sounds from two species: American pika (Ochotona 

pinceps; code: amepik) and Douglas squirrel (Tamiasciurus douglasii; 

code: dousqu). The three class labels identify two Douglas squirrel 
vocalizations and one American pika vocalization. The recordings 
were collected and annotated by the USDA Forest Service during 
NWFP PAM, described above. The sampling protocol and acoustic 
characteristics were consistent with those described in the marbled 
murrelet dataset.
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2.1.3  |  Annotated clip selection and annotation

The recordings for the marbled murrelet, Blue Mountains, small 
mammal and amphibian datasets were annotated opportunisti-
cally during the manual review of project focal species predictions. 
The passerine dataset recordings were selected for annotation in 
a stratified random sample that included three randomly selected 
recordings from each site from the dawn chorus period during the 
first hour following sunrise from May to August. For the cricket 
dataset, recordings were randomly selected from each site, with se-

lections constrained to exclude recordings affected by wind or rain 
noise. Taxonomic experts conducted exhaustive annotations of all 
selected recordings, identifying the presence or absence of target 
sounds within designated sample windows that varied by dataset (5 s 
for amphibian, 3 s for Blue Mountains, 2 min for cricket and 12 s for 
marbled murrelet and small mammal).

2.2  |  Experimental methodology

Our analysis consisted of two main parts. For both parts, we ac-

quired training data from publicly available sound repositories and 
evaluated performance using annotated data collected during PAM. 
First, we developed a transfer learning strategy using BirdNET's 
feature embeddings in four experimental steps and assessed the 
performance of custom neural network linear acoustic classifiers 
relative to BirdNET and PNW- Cnet for shared classes. Second, we 
leveraged our transfer learning strategy to build acoustic classifiers 
for non- avian species.

We used a transfer learning approach leveraging embeddings, 
which are numeric representations produced by the penultimate 
layer of a pre- trained model. These embeddings represent charac-

teristic features of the input data—in this case, variation in magni-
tude of acoustic signals across frequencies or time—that are useful 
for training new classifiers (Ghani et al., 2023). We used BirdNET 
as an embedding model throughout our experiments (Kahl 
et al., 2021), which maps every 3 s of audio, sampled at 48 kHz, to 
a 1024- dimensional numeric embedding. We trained new classifi-
ers over embedded training data using the Adam optimizer, binary 
cross- entropy loss and a fixed number of gradient descent steps 
(Kingma & Ba, 2015).

We assessed model performance relative to the annotations in the 
evaluation datasets using two threshold- independent metrics: area 
under the receiver operating characteristic curve (hereafter AUC) 
and average precision (AP). AUC is the probability that a randomly 
selected positive example scores higher than a randomly selected 
negative example (Fawcett, 2006; van Merriënboer et al., 2024). AP 
measures how well the model correctly predicts positive examples 
across many thresholds. For single- class binary classifiers, we report 
AUC and AP directly; for multi- class, multi- label classifiers, we report 
macro averaged AUC (AUCmacro) and AP (mAP). We repeated each 
experimental step 10 times and reported an average of all metrics 
to reduce the stochastic sensitivity of our performance estimates. In 

addition, because we are developing acoustic classifiers in a transfer 
learning context, we ensured our evaluation datasets were indepen-

dent of the training data for BirdNET.
For evaluation datasets where the annotated clip lengths (e.g. 

12 s) exceeded the receptive field of the classifier (3 s for BirdNET 
and our transfer learning classifiers), we divided each clip into non- 
overlapping 3- s subsets, applied the classifier to each subset and 
aggregated the predicted scores. Specifically, we selected the max-

imum score for each class among all subsets of a given clip. To eval-
uate BirdNET's performance on vocalization- specific annotations 
below the species level (e.g. call types), we treated each vocaliza-

tion type within a species as a distinct class and repeated BirdNET's 
species- level predictions accordingly. For example, the passerine 
dataset includes two vocalization- specific classes for hermit thrush: 
the hermit thrush song (herthr_song_1) and the hermit thrush call 
(herthr_call_1; Table 1). To evaluate BirdNET's performance for these 
two classes, we repeated BirdNET's species- level hermit thrush pre-

diction for both classes.

2.2.1  |  Part 1: Transfer learning strategy

In Experiment 1, we estimated linear classifier performance for all 
combinations of three hyperparameter value sets (i.e. an ablation), 
including batch size (16, 32, 64, 128), learning rate (0.1, 0.01, 0.001) 
and the number of gradient descent steps (100, 500, 1000, 2000). 
For all hyperparameter combinations, we compiled training datasets 
by selecting up to 100 vocalizations for each class from the anno-

tated XenoCanto recordings, without restricting selection to one 
vocalization per original recording, and paired them with an equal 
number of simulated background clips. We then embedded the data-

sets and fitted linear classifiers using each hyperparameter value 
combination. We evaluated the relative performance of the trained 
linear classifiers using the 3- s evaluation datasets. We assessed 
the overall performance of each hyperparameter value by averag-

ing performance metrics across the hyperparameter combination 
replications and ranking the average performance by the number of 
times each hyperparameter value was included in the top 10 combi-
nations. Our hyperparameter search was not exhaustive; however, 
we sought a reliable combination of hyperparameters that yielded 
consistent performance without overfitting to the simulated training 
data. We adopted the optimal hyperparameter values in subsequent 
experimental steps.

In Experiment 2, we evaluated four approaches to constructing 
training datasets under five levels of imposed data scarcity (2, 4, 8, 
16, 32 training examples per sound type; Figure 1b). For each level 
of data scarcity, we first randomly selected annotated XenoCanto 
examples of each class, without restricting selections to one vocal-
ization per original recording, and used these examples to construct 
four training datasets. We then embedded the datasets and fit lin-

ear classifiers. The first data construction approach (‘raw’) uses 3- s 
sound windows extracted from around the selected XenoCanto 
annotations in the original recordings. The second approach 
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(‘embedding’) augments the raw examples to 100 examples per 
class by adding randomly generated standard normal Gaussian noise 

(μ = 0, σ = 1) to the embeddings of the ‘raw’ training data. The third 
approach (‘timeshift’) augments the ‘raw’ training dataset by shifting 
the acoustic window by up to 0.5 s around the selected annotations 
in the original XenoCanto recordings. The fourth approach (‘simu-

lated clip’) implements stochastic soundscape simulation using the 
python (version 3.10.9) scaper package (Salamon et al., 2017). We 
evaluated the relative performance of the linear classifiers using the 
12- s evaluation datasets.

The scaper python package provides tools to programmatically 
generate novel audio soundscapes through additive layering of 
sounds, where the parameters describing the placement and rela-

tive loudness of sounds are randomly sampled from user defined 
probabilistic distributions. Each generated soundscape consists of 
randomly sampled foreground examples (e.g. in this case isolated 
avian vocalizations) layered over a randomly selected background 
sound. We compiled a collection of foreground vocalizations from 
publicly available sound repositories for each sound of interest. The 
collected vocalizations were then preprocessed with a source sep-

aration model (Denton et al., 2022), which splits multi- source audio 
recordings into four separate channels (Figure 1b). From the source- 
separated multi- channel output, we manually selected the isolated 
target sound. We simulated 400 background sound examples of four 
types of noise (100 each) and included one clip of silence. The noise 
types included Gaussian noise (μ = 0, σ = 1), mixtures of Gaussian 
noise with Butterworth low- pass filtered noise, and impulse aug-

mented examples of both. The Butterworth low- pass clips included 
order one and two filters with cut- off frequencies ranging from 
500 Hz to 5 kHz. The impulse augmented examples included one to 
five short, high- intensity spikes added to the audio (Figure 1b).

In Experiment 3, we performed an ablation over eight classifi-
cation model architectures. These included a single- layer linear 
classifier (a neural network with no hidden layers) and 3 two- layer 
multilayer perceptrons (MLP), which are neural networks consist-
ing of an input layer, one fully connected hidden layer and an out-
put layer. The hidden layers in these MLPs consisted of 512, 1024, 
2048 units with rectified linear unit activations, which introduce 
potential non- linearities to the models. Additionally, we tested four 
modified versions of these architectures that included a dropout 
layer—a regularization technique which can reduce overfitting—
with a dropout rate of 0.3, as the penultimate layer. We simulated 
100,000 3- s audio clips for each avian dataset using the simulated 
clip approach described in Experiment 2 and embedded the clips. 
We randomly selected 1000 of the embeddings and fit the eight 
model architectures to the selection. We evaluated the relative per-
formance of the classifiers using the 12- s evaluation datasets.

In Experiment 4, we evaluated the effect of increasing the num-

ber of simulated examples (128, 256, 512, 1024, 2048, 4096, 8192, 
16,384, 32,768) and the effects of two additional acoustic augmen-

tations. The acoustic augmentations included pitch shifting up and 
down by a random amount sampled from a uniform distribution rang-

ing from −2 to 2 semitones and time stretching by a random factor 

sampled from a uniform distribution ranging from 0.8 to 1.2 times 
the original clip length. In addition to 100,000 3- s embeddings gen-

erated in Experiment 3 (simulated with no acoustic augmentations), 
we simulated three additional sets of 100,000 3- s embeddings for 
each avian dataset by simulating acoustic clips while applying pitch 
shifting, time stretching and their combination to the preprocessed 
examples. We randomly selected a fixed number of embeddings for 
each embedding set and fitted single- layer linear classifiers to each 
selection. We evaluated the relative performance of the linear clas-

sifiers using the 12- s evaluation datasets.
We then developed new classifiers for each avian dataset using 

our transfer learning strategy developed in Experiments 1–4. For 
shared classes, we compared the performance of our custom classi-
fiers to the off- the- shelf performance of BirdNET and PNW- Cnet for 
vocalization- specific classification. The custom classifiers were lin-

ear classifiers with one layer of dropout trained with 8192 simulated 
clips generated using four known examples and no pitch shifting or 
time stretching.

2.2.2  |  Part 2: Generalization to non- avian sounds

We applied our simulation- based transfer learning strategy to de-

velop new acoustic classifiers for three non- avian datasets repre-

senting a range of potential complexities. The amphibian dataset, the 
least complex, includes two species that are part of BirdNET's train-

ing dataset. The small mammal dataset is slightly more complex than 
the amphibian dataset because American pika and Douglas squir-
rel vocalizations are not included in the BirdNET training dataset. 
However, BirdNET does include at least two other squirrel species 
with similar vocalizations. The cricket dataset is more complex than 
the other non- avian datasets; it includes 10 species from at least 
seven genera and one subfamily that are not part of the BirdNET 
training dataset.

2.3  |  Visualization of BirdNET embeddings

We visualized BirdNET's 1024- dimensional feature embeddings 
using t- distributed stochastic neighbour embeddings (t- SNE; Hinton 
& Roweis, 2002). t- SNE is a dimensionality reduction technique that 
attempts to preserve local distances between data points while map-

ping high- dimensional data into lower dimensions (van der Maaten & 
Hinton, 2008). We first filtered the 3- s evaluation datasets to back-

ground clips with no annotations and clips with one annotation and 
embedded these clips with BirdNET. We then mapped the BirdNET 
feature embeddings for each avian dataset to two dimensions using 
a principal component initialized t- SNE fit for 5000 iterations with a 
learning rate of 10. We considered four perplexity values—perplex-

ity balances t- SNE's relative optimization on local and global repre-

sentations and approximates the number of neighbours each point 
has—ranging from 3 to 50 to examine the stability of the t- SNE map-

ping (Figure S1; Wattenberg et al., 2016).
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8  |    WELDY et al.

3  |  RESULTS

We found that training custom acoustic classifiers with as few as 
two positive examples improves classifier performance relative 
to BirdNET's off- the- shelf predictions (Experiment 2; Figure 2). 
For all three avian datasets, average relative performance 
increased asymptotically as the number of training source 
examples increased, while the variance of the average relative 
performance among training replicates decreased (Experiment 
4; Figure 3; Table S4). Average performance of the classifiers 
trained with soundscape simulation saturated quickly, with both 
AUCmacro and mAP reaching 95% of the maximum performance 

for each avian dataset with just four training samples. Of the 
four approaches to training data construction, the simulated 
clips approach consistently performed the best and yielded 
improvements relative to the BirdNET baseline. The other three 
training data strategies often failed to improve upon the BirdNET 
baseline, except for the Blue Mountains dataset, where all four 
strategies resulted in higher AUCmacro and mAP relative to the 
baseline. We observed a plateau in model performance gains, 
similar to other transfer learning applications, where increases in 
data can show diminishing relative performance improvements 
(Ghani et al., 2023; Kath et al., 2024). These diminishing gains 
may reflect inherent limitations to the information content of the 

F I G U R E  2  Relative performance of four training data strategies for developing acoustic classification algorithms using transfer learning 
under data scarcity. The simulated clips data augmentation approach consistently performed the best and yielded improvements relative to 
the BirdNET baseline. The number of raw examples varied, and the dataset construction and training were replicated 10 times for 2, 4, 8, 16 
and 32 raw examples. Dark points and lines show the average performance of the four training approaches. Light points indicate replicate- 
level performance. Area under the receiver operating characteristic (ROC) curve (AUC) measures the probability that a randomly selected 
true positive example is scored higher than a randomly selected true negative example. Average precision (AP) is the weighted mean of 
precision across all thresholds. AUCmacro and mAP are the mean of all class- specific metrics. of precision across all thresholds. AUCmacro and 

mAP are the mean of all class- specific metrics.
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embeddings, such as limited discriminatory power to differentiate 
among different sounds produced by the same species (Figure 4), 
or differences among training and evaluation datasets.

Average classifier performance varied little among the eight clas-

sifier architectures for classifiers with up to 10 classes (Experiment 
3; Table 3). All four base architectures were competitive, and future 
studies facing more complex classification problems should evalu-

ate classifier architectures with higher relative capacity. Adding a 
hidden layer decreased classifier performance relative to the linear 
classifier, likely due to overfitting. This overfitting was evidenced by 
continued decreases in training loss over batches of simulated data, 
even after generalization performance on the evaluation datasets 
plateaued. However, applying dropout before prediction partially 
mitigated this decrease in performance, preventing overfitting to 

the simulated training data and restoring two- layer model perfor-
mance closer to the level of the linear classifier.

Increasing the number of simulated soundscapes increased 
relative model performance, with no evidence for overfitting 
(Experiment 4; Figure 3). However, the rate of increase in per-
formance was slow at greater than 1000 simulated soundscapes 
(Figure 3). Adding acoustic augmentations, such as pitch shifting and 
time stretching, to the positive training examples during the simula-

tions did not increase average relative performance (Figure 3).
Each hyperparameter value was included in the top 10 average 

hyperparameter combinations at least once, and the relative perfor-
mance varied across replicate linear classifier fits with the same hy-

perparameter combination (Experiment 1; Table 2). We found slight 
evidence of overfitting for the marbled murrelet and Blue Mountains 

F I G U R E  3  Relative effects of increasing the number of simulated clips and three acoustic data augmentation techniques relative to 
soundscape simulation without acoustic augmentations for acoustic classification algorithms using transfer learning under data scarcity. 
Increasing the number of simulated soundscapes consistently improved relative model performance, with no evidence of overfitting. The 
number of simulated examples varied, and the dataset construction and training were replicated 10 times. Dark points and lines indicate the 
average performance of the acoustic augmentations.
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10  |    WELDY et al.

classifiers because model performance estimates across the set of 
hyperparameter combinations were within a range of 0.05 (Table S3). 
The hyperparameter evaluation provided weak evidence that larger 
batch sizes and intermediate learning rates marginally improved rela-

tive performance. We adopted the following hyperparameter values 
for the remainder of our analyses: batch size: 128, learning rate: 0.01 
and 500 gradient descent steps. Our choice for the number of gra-

dient descent steps represents a compromise between reducing the 
tendency for overfitting while training long enough for the model to 
be exposed to all the data at least once.

Overall, BirdNET and PNW- Cnet performed well on the avian 
evaluation datasets. PNW- Cnet AUC and AP scores were higher 
than BirdNET for 80% of the shared acoustic classes (n = 10; 
Table 4). The average class- specific performance of the simulation- 
based classifiers trained using four known examples was higher than 
BirdNET for all classes except for two cases where the AP of the 
simulation- based classifiers did not improve upon BirdNET's per-
formance (Table 4). However, the maximum class- specific perfor-
mance of the simulation- based classifiers was higher than BirdNET's 
score for all classes. The average class- specific performance of the 

F I G U R E  4  t- distributed stochastic neighbour embedding (t- SNE) plots of the 3- s avian evaluation datasets. The t- SNE embeddings were 
fit for 5000 iterations using a learning rate 10 and a perplexity value 50. Each point on the plots is the 2- dimensional t- SNE projection of 
the 1024- dimensional BirdNET feature embedding for a 3- s annotated audio clip. The t- SNE visualization illustrates the variability among 
acoustic clips based on BirdNET feature embeddings. Different colours indicate groups of distinct sound types (sonotypes). See Table 1 for 
descriptions of sonotypes and corresponding species.

Hyperparameter Value

Marbled murrelet Blue mountains Passerine

AUC AP AUCmacro mAP AUCmacro mAP

Batch size 16 2 2 2 0 2 0

32 1 2 2 3 2 3

64 3 3 3 3 2 2

128 4 3 3 4 4 5

Learning rate 0.001 2 0 4 0 0 3

0.01 7 8 4 3 2 7

0.1 1 2 2 7 8 0

Training steps 100 2 1 5 5 5 0

500 0 0 5 4 1 2

1000 4 4 0 1 2 3

2000 4 5 0 0 2 5

Note: We varied batch size, learning rate and the number of gradient descent steps. The 
value indicates the number of times the average performance in terms of area under the 
curve (AUC) and average precision (AP) for a specific hyperparameter value was in the 
top 10 average hyperparameter combinations. Area under the ROC curve (AUC) measures 
the probability that a randomly selected true positive example is scored higher than a 
randomly selected true negative example. Average precision (AP) is the weighted mean of 
precision across all thresholds. AUCmacro and mAP are the mean of all class- specific metrics. 
Bold values indicate the top- performing value for a specific hyperparameter, metric and 
avian dataset. Bold and italic values indicate shared top- performing values for a specific 
hyperparameter.

TA B L E  2  Hyperparameter ablation 
for simulation- based transfer learning 
classifiers built over BirdNET embeddings 
for the three avian datasets.
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simulation- based classifiers only surpassed PNW- Cnet's scores for 
classes in which BirdNET also scored higher, but the maximum per-
formance of the simulation- based classifier was competitive or sur-
passed PNW- Cnet for all classes (Table 4).

For the three non- avian datasets, relative performance de-

creased with increasing task complexity (Table 5). BirdNET's 
overall baseline performance for the amphibian dataset was high 
(AUCmacro: 0.993; mAP: 0.991) with high class- specific performance: 

the American bullfrog AUCmacro was 0.995 and mAP was 0.995, the 
Pacific chorus frog AUCmacro was 0.991 and mAP was 0.987. AUC 
and AP scores for our methods were consistent with, but slightly 
lower than, BirdNET's baseline performance for these species 
(Table 5). We could not estimate BirdNET's baseline performance 
for the cricket and small mammal datasets because the species com-

prising those datasets are not included in BirdNET's training data. 
For our approach, the overall performance of the cricket dataset was 

TA B L E  3  Model structure ablation for the three avian datasets.

Structure No. of units Dropout

Marbled murrelet Blue mountains Passerine

AUC AP AUCmacro mAP AUCmacro mAP

LP N 0.990 0.991 0.955 0.866 0.898 0.602

Y 0.990 0.991 0.958 0.872 0.90 0.609

MLP 1024 N 0.934 0.934 0.952 0.861 0.893 0.591

Y 0.953 0.938 0.953 0.860 0.897 0.602

2048 N 0.933 0.929 0.953 0.863 0.893 0.591

Y 0.933 0.913 0.954 0.862 0.897 0.601

512 N 0.966 0.958 0.951 0.859 0.893 0.590

Y 0.974 0.962 0.955 0.865 0.897 0.600

Note: We report the average performance for eight classifier model architectures across 10 replicate model trainings. LP refers to a single- layer linear 
probe. Three two- layer perceptron (MLP) architectures vary in the number of units included in a single hidden layer. Area under the ROC curve (AUC)  
measures the probability that a randomly selected true positive example is scored higher than a randomly selected true negative example. Average 
precision (AP) is the weighted mean of precision across all thresholds. AUCmacro and mAP are the mean of all class- specific metrics.

TA B L E  4  Comparative class- specific performance of BirdNET, PNW- Cnet and simulation- based transfer learning classifiers built over 
BirdNET embeddings and four known examples for shared classes in the 12- s avian evaluation datasets.

Sonotype

AUC AP

BirdNET PNW- Cnet Simmean Simmax BirdNET PNW- Cnet Simmean Simmax

marmur_call_1 0.976 0.998 0.988 0.991 0.977 0.999 0.989 0.992

clanut_call_1 0.782 0.958 0.981 0.221 0.847 0.915

clanut_call_2 0.741 0.934 0.961 0.084 0.713 0.770

clanut_call_3 0.897 0.843 0.939 0.969 0.736 0.611 0.872 0.945

norgos_call_1 0.820 0.953 0.969 0.320 0.840 0.877

norgos_call_2 0.920 0.976 0.985 0.610 0.916 0.942

whhwoo_call_1 0.964 0.987 0.992 0.956 0.980 0.988

herthr_song_1 0.810 0.928 0.849 0.877 0.570 0.863 0.642 0.709

herthr_call_2 0.875 0.874 0.908 0.190 0.589 0.622

olsfly_song_1 0.836 0.926 0.902 0.933 0.243 0.673 0.605 0.656

olsfly_call_1 0.911 0.924 0.959 0.541 0.619 0.651

spotow_song_1 0.888 0.803 0.922 0.951 0.606 0.120 0.540 0.633

swathr_song_1 0.897 0.971 0.931 0.945 0.484 0.886 0.733 0.759

swathr_call_1 0.907 0.962 0.974 0.541 0.745 0.822

swathr_call_3 0.891 0.896 0.920 0.512 0.605 0.678

varthr_song_1 0.833 0.924 0.854 0.871 0.607 0.836 0.656 0.697

wrenti_song_1 0.806 0.922 0.847 0.874 0.373 0.637 0.364 0.426

Note: We report the average and maximum area under the receiver operator curve (AUC) and average precision (AP) for each class across 10 replicate 
datasets and model training steps.
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moderate (AUCmacro: 0.777; mAP: 0.323) and improved slightly after 
aggregating species- level classes by genus (AUCmacro: 0.769; mAP: 

0.360). For the species- level classifier, overall performance was low-

ered by the poor performance of the Bullita obscura and Koghiella 

flammea classes (Table 5). Overall performance on the mammalian 
dataset was strong (AUCmacro: 0.948; mAP: 0.876), with all three 
classes scoring high in terms of AUC and AP (Table 5).

4  |  DISCUSSION

The recent release of pre- trained avian classification models 
marks an important advancement for PAM. These models offer 

ready- to- use acoustic detection and classification for many vocal-
izing species (Kahl et al., 2021) and strong foundations for devel-
oping custom acoustic classifiers using transfer learning. Here, we 
demonstrate a low- cost, rapid computational workflow that lev-

erages pre- trained models to develop custom acoustic classifiers 
with as few as two vocalization examples. The performance of our 
custom acoustic classifiers typically exceeds the off- the- shelf per-
formance of pre- trained models targeting global sets of species 
and approaches the performance of specialized pre- trained local 
classifiers that may take years and substantial investment to build 
(Gibb et al., 2019). This workflow reduces reliance on large anno-

tated datasets, expediting the time it takes to transform acoustic 
data into ecological insights, potentially increasing stakeholder 

TA B L E  5  Overall and class- specific performance for three out- of- domain linear classifiers trained with few examples using a simulation- 
based transfer learning approach.

Taxa Species No. of examples No. of evaluations AUC AP

Amphibian Bullfrog 45 965 0.996 0.995

Pacific chorus frog 51 912 0.994 0.992

Non- target 895

Overall 0.995 0.994

Cricket—Genus Archenopterus 11 163 0.787 0.538

Bullita 13 132 0.831 0.346

Calscirtus 1 221 0.814 0.076

Koghiella 6 147 0.647 0.252

Notosciobia 5 126 0.938 0.870

Pseudotrigonidium 6 29 0.598 0.200

Trigonidiinae 15 53 0.767 0.239

Non- target 509

Overall 0.769 0.360

Cricket—Species Archenopterus bouensis 11 163 0.787 0.540

Bullita fusca 6 88 0.825 0.344

Bullita mouirangensis 2 20 0.811 0.078

Bullita obscura 5 24 0.664 0.260

Calscirtus magnus 1 221 0.934 0.863

Koghiella flammea 3 43 0.598 0.201

Koghiella nigris 3 104 0.756 0.233

Notosciobia affnis paranola 2 105 0.810 0.499

Notosciobia minoris 3 21 0.836 0.185

Pseudotrigonidium caledonica 6 29 0.846 0.179

Trigonidiinae spp. 15 53 0.683 0.171

Non- target 509

Overall 0.777 0.323

Small mammal American pika 60 845 0.970 0.977

Douglas squirrel: chirp 30 236 0.959 0.876

Douglas squirrel: rattle 30 157 0.915 0.774

Non- target 515

Overall 0.948 0.876

Note: We report the dataset properties, as well as overall and class- specific average area under the receiver operator curve (AUC ) and average 
precision (AP) for the amphibian, cricket and small mammal datasets.
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engagement and the conservation impact (Makiola et al., 2020; 

Weiskopf et al., 2022).
Transfer learning is a promising approach for adapting pre- 

trained foundational models to local problems. This study provides a 
transfer learning strategy for developing custom acoustic classifiers 
(Table 6). Simple linear classifiers trained on supervised embeddings 
are a robust approach for developing custom classifiers to improve 
performance for in- domain sounds, adapt species- level predictions 
to within- species sound types, or classify novel sounds (Ghani 
et al., 2023; Kath et al., 2024). We found that the performance of 
simple linear classifiers trained on raw examples improved by train-

ing on simulated soundscapes, while other augmentations included 
in this study failed to produce consistent improvements over the 
baseline (Figure 2).

Adopting a transfer learning approach that leverages pre- trained 
classification models allows new and ongoing PAM programmes to 
mitigate the risks associated with developing computational pro-

cessing tools by shortening the time between model training and 
performance feedback. This shortened feedback loop allows PAM 
programmes to quickly incorporate new monitoring targets or re-

spond to changing environmental conditions. Additionally, the 
shorter development cycle facilitates the use of an active learning 
framework (Zhao et al., 2020). In an active learning framework, users 
start with a simple linear classifier and iteratively develop an infor-
mative local training dataset through model training, prediction and 
review cycles—training both ‘what is’ and ‘what is not’ an acoustic 
target (Williams et al., 2024). In our analysis, a local classification 
model had higher class- specific performance than a global model's 
off- the- shelf predictions for eight of 10 shared classes, revealing 
room for global models to improve when adapted to local problems. 
But in all these cases, our soundscape simulation- based transfer 

learning classifier, trained with a few examples, substantially nar-
rowed the gap in performance between these two pre- trained mod-

els, and the transfer learning model will likely continue to improve 
after exposure to more annotated local data.

Our method is applicable to other pre- trained embedding mod-

els, including other wildlife- focused acoustic models like Perch 
(Ghani et al., 2023) and PNW- Cnet (Ruff et al., 2023), as well as 
general- purpose acoustic classification (Hershey et al., 2017; Kong 
et al., 2020). Embedding models map acoustic training datasets to 
numeric embeddings, with differences in training datasets reflected 
in the information content of the embeddings (Turian et al., 2022). 
Consequently, the effectiveness of transfer learning depends on 
the chosen embedding model, particularly when the target data dif-
fer from the training dataset (Williams et al., 2024). For instance, 
BirdNET's species- level training may cause its feature space to col-
lapse dissimilar acoustic sounds from the same species into similar 
representations, limiting the utility of its embeddings to distinguish 
among call types within a species (Figure 4). Transfer learning appli-
cations will likely perform better when embedding models are se-

lected based on project- specific factors, such as similarities between 
the training and sample data domains, alignment of model context 
window length with vocalization duration or the model's receptive 
frequency range with the target vocalizations. Nonetheless, other 
embedding models should be considered for complex problems, as 
they may yield different performance outcomes. However, special 
care should be given to ensure that evaluation datasets for transfer 
learning tasks are independent of both the transfer learning classifi-
er's training data and that of the embedding model.

There is potential for our approach to extend beyond the origi-
nal training scope of BirdNET (Table 5), enabling PAM programmes 
to rapidly adapt pre- trained global classifiers to local monitoring 

TA B L E  6  Suggested transfer learning strategy for training custom acoustic classification models.

Consideration Experiment Finding Suggestion

Hyperparameter 
values

1 There were multiple competitive combinations 
of hyperparameter values

We suggest starting with large batch sizes, moderate 
learning rates and short training schedules. However, 
project- specific hyperparameter ablations may yield 
marginal relative performance gains

Data augmentation 2 Soundscape simulation consistently improved 
performance, while other augmentations had 
no effect

In data- scarce contexts, use soundscape simulation

Model architecture 3 Single- layer linear classifiers were surprisingly 
robust for all three avian datasets. However, 
applying a dropout prior to prediction 
marginally improve relative performance

Use a linear classifier directly on pre- trained 
embeddings. Apply dropout on the embeddings during 
training

Acoustic 

augmentations

4 Additional acoustic augmentations, such as 
pitch shifting and time stretching, did not 
increase model performance and slowed down 
the simulation process

Avoid adding additional acoustic augmentations to the 
soundscape simulation

Increasing the 
number of 
simulated clips

4 Increasing the number of simulated clips when 
using soundscape simulation augmentation 
marginally improved model performance, but 
the relative gains were slow after 4000 clips

Simulating at least ~4000 clips, increasing the number 
when practical, especially for multi- label tasks

Note: We report our findings and suggestions for five transfer learning model training considerations.
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or management objectives. For in- domain (amphibian) and close- 
domain (small mammal) problems, transfer learning over embed-

dings is expected to achieve high accuracy for many classes (Table 5). 
However, for tasks diverging further beyond the original pre- trained 
model training domain (crickets)—where stridulation classification 
requires fine- scale differentiation of frequencies and repeated sylla-

bles—more annotated training data, alternative embedding methods 
(Evci et al., 2022) or deeper levels of fine- tuning on the embedding 
model (Dufourq et al., 2022) may be necessary to achieve compa-

rable performance. Our findings underscore the need for further 
refinement and additional training data to address challenging out- 
of- domain classification tasks.

Our approach could be particularly impactful for regions where 
data are extremely scarce and off- the- shelf pre- trained model pre-

dictions are unavailable because the local species are not included 
in the pre- trained model datasets. Notably, many parts of the world 
with the highest biodiversity, which are often under the greatest 
threat (Betts et al., 2017; Cui et al., 2023), lack extensive annotated 
datasets (van Merriënboer et al., 2024). In these biodiverse yet data- 
poor regions, our transfer learning strategy, which utilizes a mini-
mal number of vocalization examples and simulated soundscapes, 
offers a viable method for developing effective acoustic classifiers. 
This approach equips managers and policymakers with the neces-

sary tools to quickly develop monitoring systems for understanding, 
detecting and responding to emerging biodiversity threats, and fa-

cilitates the monitoring of otherwise overlooked species due to the 
lack of pre- existing data, thereby supporting conservation efforts in 
some of the most ecologically critical areas on the planet.

Despite the potential of simulated soundscapes and transfer 
learning to improve acoustic classification models, several limita-

tions remain. First, the relative performance gains of our approach 
may vary depending on the specific ecological context, the quality of 
the initial training data and the characteristics of the target species' 
vocalizations. For instance, species with long, highly variable or low- 
amplitude calls may still pose challenges for accurate classification, 
even with advanced augmentation techniques (Zhao et al., 2023). 
Furthermore, we view strong classification performance on rela-

tively simple classification tasks (e.g. Amphibian, Marbled Murrelet 
and Small Mammal) as an indication of success in favourable con-

texts and not as evidence of robustness in all classification contexts. 
Second, the generalizability of our methods to different ecosystems 
and taxa requires further validation, particularly when the ecosys-

tem or focal taxa are novel relative to an embedding model's training 
dataset (Table 5). Lastly, while our approach offers strong classifica-

tion performance and significant efficiency gains in the short term, 
it does not replace the need for high- quality, manually annotated 
data. For example, in data- scarce contexts, classifier performance 
can vary widely across training runs (Figure 3), and it can be chal-
lenging to assess model performance. In these situations, investing 
resources in iterative classifier training in pursuit of a highly per-
formant classifier could be tempting, which would likely result in a 
classifier over- optimized for a specific and likely small evaluation 
dataset. Instead, leveraging the trained classifiers to identify and 

annotate additional data in model- guided data review will likely re-

sult in more substantial increases in classifier performance and more 
relevant insights into its overall performance.

Our study demonstrates the potential for simulated soundscapes 
to improve the performance of acoustic classification models in con-

texts with limited training data. By leveraging transfer learning and our 
simulation- based augmentation approach, we offer an effective and 
efficient workflow that improves the performance of acoustic classi-
fication models and reduces the need for extensive manual data label-
ling. To support the application of our methods to novel classification 
tasks, we include a general- purpose Python script (11_new_applica-

tions.py) in the manuscript Zenodo archive and a vignette describ-

ing the application of this script to develop an acoustic classifier for 
golden- crowned kinglet (Regulus satrapa) songs using two vocalization 
examples extracted from a XenoCanto recording. Our findings have 
practical implications for PAM programmes and other domains of 
bioacoustic research, both enabling the rapid development of classi-
fiers for data- deficient, rare or understudied species and facilitating 
fine- grained classification tasks, including vocalization- associated be-

haviours and spatiotemporal variation in vocalizations.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1: Description of the discrete audio examples from the training 
and evaluation datasets, including passive acoustic recordings (PAM) 
and simulated soundscapes (sim).
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Table S2: Description of BirdNET's embedded values of the training 
and evaluation datasets, including passive acoustic recordings (PAM) 
and simulated soundscapes (sim).
Table S3: Hyperparameter ablation for simulation- based transfer 
learning classifiers built over BirdNET embeddings for the three 
avian datasets.

Table S4: Standard deviation (σ) of macro averaged Area Under 
the ROC curve and mean Average Precision among ten replicate 
trainings for four training data strategies for developing acoustic 
classification algorithms using transfer learning under data 
scarcity.

Figure S1: t- distributed stochastic neighbor embedding (t- SNE) plots 
of the 3- s avian evaluation datasets demonstrating the effect of 
increasing the perplexity value.
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