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environmental conditions. Programs that combine passive acoustic monitoring

require large, annotated datasets, which are time-consuming and expensive

Handling Editor: Sara Beery regions. Recently released pre-trained avian acoustic classification models
provide opportunities to reduce the need for manual labelling and accelerate the
development of new acoustic classification algorithms through transfer learning.
Transfer learning is a strategy for developing algorithms under data scarcity that
uses pre-trained models from related tasks to adapt to new tasks.

2. Our primary objective was to develop a transfer learning strategy using the feature
embeddings of a pre-trained avian classification model to train custom acoustic
classification models in data-scarce contexts. We used three annotated avian
acoustic datasets to test whether transfer learning and soundscape simulation-
based data augmentation could substantially reduce the annotated training data
necessary to develop performant custom acoustic classifiers. We also conducted
a sensitivity analysis for hyperparameter choice and model architecture. We
then assessed the generalizability of our strategy to increasingly novel non-avian
classification tasks.

3. With as few as two training examples per class, our soundscape simulation
data augmentation approach consistently yielded new classifiers with improved

performance relative to the pre-trained classification model and transfer learning
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classifiers trained with other augmentation approaches. Performance increases
were evident for three avian test datasets, including single-class and multi-
label contexts. We observed that the relative performance among our data
augmentation approaches varied for the avian datasets and nearly converged for
one dataset when we included more training examples.

. We demonstrate an efficient approach to developing new acoustic classifiers
leveraging open-source sound repositories and pre-trained networks to reduce
manual labelling. With very few examples, our soundscape simulation approach
to data augmentation yielded classifiers with performance equivalent to those
trained with many more examples, showing it is possible to reduce manual label-
ling while still achieving high-performance classifiers and, in turn, expanding the

potential for passive acoustic monitoring to address rising biodiversity monitoring

needs.

KEYWORDS

1 | INTRODUCTION

Passive acoustic monitoring (PAM) is an efficient and non-invasive
sensor-based sampling approach that can be used to simultane-
ously collect data for multiple species (Shonfield & Bayne, 2017).
However, large data volumes and challenges associated with cor-
rectly identifying target sounds have hindered the widespread
adoption of PAM (Gibb et al., 2019; Hartig et al., 2023). Recent
advances in machine learning offer a promising path towards
semi-automated detection and classification of animal vocaliza-
tions (Stowell, 2022); however, these algorithms require iterative
training over large annotated datasets, which take substantial re-
sources, effort and specialized knowledge to construct. Building
training datasets is a significant challenge for new PAM pro-
grammes, especially in highly biodiverse regions where conserva-
tion needs are high, but financial resources for labelling species
vocalizations are low (Cui et al., 2023).

When faced with these challenges, PAM managers typically
adopt one of three approaches based on project objectives and
available resources. First, project support staff can exhaustively
search PAM recordings for target vocalizations. Second, projects
may use existing classification and detection algorithms, such as
BirdNET (Kahl et al., 2021), Perch (Ghani et al., 2023) or PNW-Cnet
(Ruff et al., 2023), and dedicate time to reviewing predictions and
calibrating outputs. This involves fine-tuning species-specific detec-
tion thresholds and adjusting sampling protocols to manage the risk
of false-positive and false-negative predictions (Cole et al., 2022;
Wood & Kahl, 2024). Third, some projects may invest considerable
resources to annotate acoustic files and train custom local classifica-
tion algorithms from scratch (Gaylord et al., 2023; Ruff et al., 2023).

Alternatively, PAM managers can adopt an intermediate trans-
fer learning approach that leverages both pre-trained models and

amphibian sounds, avian sounds, biodiversity monitoring, data scarcity, few-shot learning,
mammal sounds, orthopteran sounds, passive acoustic monitoring

local data to iteratively develop custom acoustic classifiers tailored
to specific project needs. Transfer learning is a machine learning
technique that adapts the knowledge from pre-trained models to im-
prove performance on related tasks (Pan & Yang, 2010). A common
approach to transfer learning uses the penultimate layer output from
a pre-trained model—an ‘embedding’—as input to train a new classi-
fier for a different task (Oquab et al., 2014). This approach has been
used extensively in computer vision tasks (Kornblith et al., 2019),
acoustic classification (Kong et al., 2020) and natural language pro-
cessing (Houlsby et al., 2019). In ecological acoustic classification,
transfer learning has recently shown promise (Ghani et al., 2023;
Incze et al., 2018; Nolasco et al., 2023), and pre-trained acoustic clas-
sification models like BirdNET (Kahl et al., 2021) and Perch (Ghani
et al., 2023) offer strong pre-trained model options. For example,
Dufourq et al. (2022) used pre-trained image classification models
to develop new acoustic classifiers for Hainan gibbon (Nomascus
hainanus), black-and-white ruffed lemur (Varecia variegata), thyolo
alethe (Chamaetylas choloensis) and pin-tailed whydah (Vidua mac-
roura). Transfer learning remains underutilized in PAM due to its
novelty in ecology, perceived complexity and the misperception that
substantial training data are required; however, improved transfer
learning strategies could potentially shorten the development cycle
and lead to increased adoption of active learning frameworks (Zhao
et al,, 2020).

Here, we test whether simulated soundscape data augmentation
can be used with transfer learning-based acoustic classifiers to sub-
stantially reduce training data requirements. We used three anno-
tated avian acoustic datasets, ranging in complexity from 1 to 10
classes. We compared transfer learning-based classifier performance
under different model architectures, explored a range of hyperpa-
rameter choices and demonstrated that the simulated soundscape
approach outperforms simpler data augmentation techniques. We
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test the performance of our custom acoustic classifiers relative to
the baseline classification performance of two pre-trained avian
classification models, BirdNET version 2.4 which targets a global set
of species (Kahl et al., 2021) and PNW-Cnet version 4 a local model
developed to support Northwest Forest Plan PAM in the Pacific
Northwest, USA (Lesmeister & Jenkins, 2022; Ruff et al., 2023). Last,
we explore the generalizability of our approach with three non-avian
annotated acoustic datasets, ranging in complexity from 1 to 11

classes that vary in overlap with BirdNET's training data.

2 | MATERIALS AND METHODS
2.1 | Datasets

We assembled six acoustic evaluation datasets, independent of
training data for BirdNET version 2.4, ranging in complexity from a
single-class classification problem to an 11-class multi-label classifi-
cation problem. Three datasets, which we refer to as avian datasets,
were used to develop strategies for transfer learning under data
scarcity (Table 1). The other three datasets, which we refer to as
non-avian datasets, were used to explore the generalizability of our
strategies when applied to non-avian taxa. The evaluation datasets

TABLE 1 Descriptions of the avian evaluation datasets.

Dataset Species Sonotype
Marbled Marbled murrelet marmur_call_1
murrelet non-target
Blue Clark's nutcracker clanut_call_1
mountains clanut_call_2
clanut_call_3
American goshawk norgos_call_1
norgos_call_2
White-headed woodpecker whhwoo_call_1
non-target
Passerine Hermit thrush herthr_song_1
herthr_call_2
Olive-sided flycatcher olsfly_song_1
olsfly_call_1

Spotted towhee spotow_song_1

Swainson's thrush swathr_song_1
swathr_call_1
swathr_call_3
Varied thrush

Wrentit

varthr_song_1
wrenti_song_1

non-target

[E&~ Methods n Ecology and Evolution
were all annotated at the recording level (e.g. one annotation per
recording that indicates the presence of at least one vocalization
from a species). All the audio examples were resampled to 48 kHz

using Librosa (version 0.10.0; McFee et al., 2023) and, in some cases,
reduced from stereo to mono.

2.1.1 | Avian datasets

We downloaded recordings of our avian target species from
XenoCanto spatially filtered to the Pacific Northwest Region be-
tween latitudes from 37.730 to 49.030° N and longitudes ranging
from 125.000 to 120.500°W, overlapping the sampling area of
the PAM datasets. The XenoCanto recordings are focal record-
ings that feature specific target species and do not typically dif-
ferentiate calls from songs or annotate background non-target
species sounds (Figure 1a; van Merriénboer et al., 2024; Vellinga
& Planque, 2015). In addition, the XenoCanto recordings are an-
notated at the recording level, which vary in length from a few
seconds to multiple minutes. We annotated the XenoCanto re-
cordings using predefined target vocalizations (Table 1; Vellinga &
Planque, 2015). We then developed two independent annotated
evaluation datasets for each avian dataset: one with 3-s sound

No. of evaluation clips

No. of

Call description examples 3s 12s
‘keer’ 40 345 1000
216 1000
‘kraa’ 53 100 387
‘keer’ 39 100 62
‘reek’ 41 100 1056
Screech series 27 99 229
Wail 18 100 496
‘pittik’ 69 100 1034
0 0
Song 42 137 517
Whine 36 8 62
Song 50 128 114
‘pip’ series 40 100 69
Song 278 22 125
Song 42 134 331
‘pwut’ 127 42 142
‘wee’ 101 44 195
Song 101 51 500
Song 55 13 54
33 2232

Note: Each dataset is described by its name, the included sonotypes, the number of training examples obtained from XenoCanto, and the number of

evaluation clips available in both 3-s and 12-s formats.
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FIGURE 1 Conceptual representation of (a) our training data collection and (b) our training data construction approaches including
training on few raw examples (‘raw’), augmenting the raw examples with standard Gaussian noise (‘embedding’), time shifting (‘timeshift’) and

soundscape simulation (‘simulated clips’).

clips and the other with 12-s sound clips (Table 1). The source files
for both datasets were independent recordings but originated
from the same PAM projects.

The marbled murrelet (Brachyramphus marmoratus; eBird code:
marmur) dataset is a single-class classification problem that in-
cludes 0.46 h of annotated 3-s clips and 6.67 h of annotated 12-s

clips. The recordings were collected and annotated by the United
States Department of Agriculture (USDA) Forest Service in asso-
ciation with the annual Northwest Forest Plan (NWFP) PAM of
northern spotted owl (Strix occidentalis caurina; eBird code: stroca)
populations and other old-forest-associated species (Duarte,
Weldy, et al., 2024; Lesmeister & Jenkins, 2022). The recordings
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are selected clips from a larger 644,111-h acoustic dataset col-
lected from March to September 2020. During 2020, PAM oc-
curred on 1494 US Federally managed forest sites west of the
Cascade Mountain Range in Oregon and Washington, USA. The
acoustic data were collected using Song Meter SM4 autonomous
recording units (hereafter ARU) at a sampling rate of 32kHz and a
16-bit resolution.

The Blue Mountains dataset is a six-class multi-label classifica-
tion problem that includes annotated vocalizations for three spe-
cies that are either an indicator of forest management activities or
are of conservation concern (Altman & Bresson, 2017): Clark's nut-
cracker (Nucifraga columbiana; eBird code: clanut), American gos-
hawk (Accipiter atricapillus; eBird code: norgos) and white-headed
woodpecker (Dryobates albolarvatus; eBird code: whhwoo). The
six-class labels identify three Clark's nutcracker call types, two
American goshawk call types and one white-headed woodpecker
call type. The recordings were collected by the USDA Forest Service
in Oregon, USA, in the northern Blue Mountains on the Wallowa-
Whitman and Umatilla National Forests as part of ongoing PAM for
the Northern Blues Collaborative Forest Landscape Restoration
Program (Duarte, Vernasco, et al., 2024; https://research.fs.usda.
gov/pnw/understory/northern-blue-mountains-wildlife-monit
oring-2022-2023). The recordings are selected clips from a larger
122,052-h dataset collected on 420 US Federally managed forest
sites. The acoustic data were collected using Song Meter SM4
ARUs at a sampling rate of 32kHz and a 16-bit resolution (Wildlife
Acoustics, Concord, NY, U. S. A)).

The passerine dataset is a 10-class multi-label classification
problem that includes annotated vocalizations for six species: hermit
thrush (Catharus guttatus; eBird code: herthr), olive-sided flycatcher
(Contopus cooperi; eBird code: olsfly), spotted towhee (Pipilo macula-
tus; eBird code: spotow), Swainson's thrush (Catarus ustulatus; eBird
code: swathr), varied thrush (Ixoreus naevius; eBird code: varthr) and
wrentit (Chamaea fasciata; eBird code: wrenti). The six-class labels
identify three Swainson's thrush call types, two hermit thrush call
types, two olive-sided flycatcher call types, one spotted towhee call
type, one varied thrush call type and one wrentit call type. These
recordings were obtained from Weldy et al. (2024) and included a
subset of dawn chorus recordings collected during the 2022 NWFP
PAM, described above. In 2022, PAM expanded to include 2572
US Federally managed forest sites west of the Cascade and Sierra
Mountain Ranges in California, Oregon and Washington, recording
1,477,751.64 h of sound. The sampling protocol and acoustic charac-
teristics were consistent with those described in the marbled mur-

relet dataset.

2.1.2 | Non-avian datasets

The non-avian datasets are multi-label classification problems that
represent a range of classification complexities, varying in number
of target classes and the degree to which the evaluation data differs
from BirdNET's base training data.

B Methodsin Eclogy and Evalution |

The amphibian dataset includes 2494 5-s recordings anno-
tated for two amphibian species: American bullfrog (Lithobates
catesbeianus; code: amebul) and Pacific chorus frog (Pseudacris re-
gilla; code: pacfro). We obtained training examples from California
Herps, a web resource documenting the life history of California's
reptiles and amphibians (Nafis, 2021; acoustic data obtained with
permission). The annotated evaluation data were collected by the
United States Geological Survey (USGS) and its partners at 86 wet-
land sites across Oregon and Washington, USA (Hill et al., 2019).
The objective was to monitor bullfrog vocalization activity in the
range of federally threatened Oregon spotted frogs (Rana pre-
tiosa); non-target Pacific chorus frogs also occurred in the study
areas. The recordings were collected using AudioMoth ARUs at
a sampling rate of 48kHz in 2020 and 16kHz in 2021. The anno-
tated clips were identified using the Kaleidoscope software clus-
ter analysis feature targeting the bullfrog call's frequency range
(187.5-5250Hz; Bielinski et al., 2020) and manually reviewed.
Audio collection by USGS was covered under annual USFWS
Special Use Permits 20-04 and 21-01.

The cricket dataset includes 1000 2-min recordings an-
notated for 10 species of cricket and one cricket subfamily:
Archenopterus bouensis, Bullita fusca, Bullita mouirangensis, Bullita
obscura, Calscirtus magnus, Koghiella flammea, Koghiella nigris,
Notosciobia affnis paranola, Notoscioba minoris, Pseudotrigonidium
caledonica and Trigonidiinae spp. We obtained training examples
from the Muséum National d'Histoire Naturelle of Paris (https://
sonotheque.mnhn.fr; Sound Catalog accessed 8/01/2024). The
annotated PAM data used for evaluation were recorded in New
Caledonia as a component of long-term research on the effects of
the invasive little fire ant Wasmannia auropunctata on biodiversity
(Jourdan et al., 2001). Gasc et al. (2018) collected PAM recordings
on 24 forest, pre-forest and shrubland sites during the dry season
of 2013 and used these recordings to assess acoustic-based detec-
tion of Wasmannia auropunctata through changes in the acoustic
calling behaviour of crickets. The recordings were collected using
SongMeter SM2 and SM2+ ARUs at a sampling rate of 48 kHz and
a 16-bit resolution (Wildlife Acoustics, Concord, NY, USA). We
used two versions of this dataset: the first includes 11 classes,
treating species-level classes separately. The second includes
seven classes pooling species-level annotations at the taxonomic
resolution of genus. We created the second version of this dataset
to create a potentially easier classification task because we sus-
pected that the first task would be a difficult out of domain task
for BirdNET.

The small mammal dataset includes 1737 12-s recordings anno-
tated for three sounds from two species: American pika (Ochotona
pinceps; code: amepik) and Douglas squirrel (Tamiasciurus douglasii;
code: dousqu). The three class labels identify two Douglas squirrel
vocalizations and one American pika vocalization. The recordings
were collected and annotated by the USDA Forest Service during
NWEFP PAM, described above. The sampling protocol and acoustic
characteristics were consistent with those described in the marbled
murrelet dataset.
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2.1.3 | Annotated clip selection and annotation

The recordings for the marbled murrelet, Blue Mountains, small
mammal and amphibian datasets were annotated opportunisti-
cally during the manual review of project focal species predictions.
The passerine dataset recordings were selected for annotation in
a stratified random sample that included three randomly selected
recordings from each site from the dawn chorus period during the
first hour following sunrise from May to August. For the cricket
dataset, recordings were randomly selected from each site, with se-
lections constrained to exclude recordings affected by wind or rain
noise. Taxonomic experts conducted exhaustive annotations of all
selected recordings, identifying the presence or absence of target
sounds within designated sample windows that varied by dataset (5s
for amphibian, 3s for Blue Mountains, 2min for cricket and 12s for

marbled murrelet and small mammal).

2.2 | Experimental methodology

Our analysis consisted of two main parts. For both parts, we ac-
quired training data from publicly available sound repositories and
evaluated performance using annotated data collected during PAM.
First, we developed a transfer learning strategy using BirdNET's
feature embeddings in four experimental steps and assessed the
performance of custom neural network linear acoustic classifiers
relative to BirdNET and PNW-Cnet for shared classes. Second, we
leveraged our transfer learning strategy to build acoustic classifiers
for non-avian species.

We used a transfer learning approach leveraging embeddings,
which are numeric representations produced by the penultimate
layer of a pre-trained model. These embeddings represent charac-
teristic features of the input data—in this case, variation in magni-
tude of acoustic signals across frequencies or time—that are useful
for training new classifiers (Ghani et al., 2023). We used BirdNET
as an embedding model throughout our experiments (Kahl
et al., 2021), which maps every 3s of audio, sampled at 48 kHz, to
a 1024-dimensional numeric embedding. We trained new classifi-
ers over embedded training data using the Adam optimizer, binary
cross-entropy loss and a fixed number of gradient descent steps
(Kingma & Ba, 2015).

We assessed model performancerelative to the annotationsinthe
evaluation datasets using two threshold-independent metrics: area
under the receiver operating characteristic curve (hereafter AUC)
and average precision (AP). AUC is the probability that a randomly
selected positive example scores higher than a randomly selected
negative example (Fawcett, 2006; van Merriénboer et al., 2024). AP
measures how well the model correctly predicts positive examples
across many thresholds. For single-class binary classifiers, we report
AUC and AP directly; for multi-class, multi-label classifiers, we report
macro averaged AUC (AUC and AP (mAP). We repeated each
experimental step 10 times and reported an average of all metrics

macro)

to reduce the stochastic sensitivity of our performance estimates. In

addition, because we are developing acoustic classifiers in a transfer
learning context, we ensured our evaluation datasets were indepen-
dent of the training data for BirdNET.

For evaluation datasets where the annotated clip lengths (e.g.
125s) exceeded the receptive field of the classifier (3s for BirdNET
and our transfer learning classifiers), we divided each clip into non-
overlapping 3-s subsets, applied the classifier to each subset and
aggregated the predicted scores. Specifically, we selected the max-
imum score for each class among all subsets of a given clip. To eval-
uate BirdNET's performance on vocalization-specific annotations
below the species level (e.g. call types), we treated each vocaliza-
tion type within a species as a distinct class and repeated BirdNET's
species-level predictions accordingly. For example, the passerine
dataset includes two vocalization-specific classes for hermit thrush:
the hermit thrush song (herthr_song_1) and the hermit thrush call
(herthr_call_1; Table 1). To evaluate BirdNET's performance for these
two classes, we repeated BirdNET's species-level hermit thrush pre-
diction for both classes.

2.2.1 | Part 1: Transfer learning strategy

In Experiment 1, we estimated linear classifier performance for all
combinations of three hyperparameter value sets (i.e. an ablation),
including batch size (16, 32, 64, 128), learning rate (0.1, 0.01, 0.001)
and the number of gradient descent steps (100, 500, 1000, 2000).
For all hyperparameter combinations, we compiled training datasets
by selecting up to 100 vocalizations for each class from the anno-
tated XenoCanto recordings, without restricting selection to one
vocalization per original recording, and paired them with an equal
number of simulated background clips. We then embedded the data-
sets and fitted linear classifiers using each hyperparameter value
combination. We evaluated the relative performance of the trained
linear classifiers using the 3-s evaluation datasets. We assessed
the overall performance of each hyperparameter value by averag-
ing performance metrics across the hyperparameter combination
replications and ranking the average performance by the number of
times each hyperparameter value was included in the top 10 combi-
nations. Our hyperparameter search was not exhaustive; however,
we sought a reliable combination of hyperparameters that yielded
consistent performance without overfitting to the simulated training
data. We adopted the optimal hyperparameter values in subsequent
experimental steps.

In Experiment 2, we evaluated four approaches to constructing
training datasets under five levels of imposed data scarcity (2, 4, 8,
16, 32 training examples per sound type; Figure 1b). For each level
of data scarcity, we first randomly selected annotated XenoCanto
examples of each class, without restricting selections to one vocal-
ization per original recording, and used these examples to construct
four training datasets. We then embedded the datasets and fit lin-
ear classifiers. The first data construction approach (‘raw’) uses 3-s
sound windows extracted from around the selected XenoCanto
annotations in the original recordings. The second approach
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(‘embedding’) augments the raw examples to 100 examples per
class by adding randomly generated standard normal Gaussian noise
(x=0, 6=1) to the embeddings of the ‘raw’ training data. The third
approach (‘timeshift’) augments the ‘raw’ training dataset by shifting
the acoustic window by up to 0.5s around the selected annotations
in the original XenoCanto recordings. The fourth approach (‘simu-
lated clip’) implements stochastic soundscape simulation using the
python (version 3.10.9) scaper package (Salamon et al., 2017). We
evaluated the relative performance of the linear classifiers using the
12-s evaluation datasets.

The scaper python package provides tools to programmatically
generate novel audio soundscapes through additive layering of
sounds, where the parameters describing the placement and rela-
tive loudness of sounds are randomly sampled from user defined
probabilistic distributions. Each generated soundscape consists of
randomly sampled foreground examples (e.g. in this case isolated
avian vocalizations) layered over a randomly selected background
sound. We compiled a collection of foreground vocalizations from
publicly available sound repositories for each sound of interest. The
collected vocalizations were then preprocessed with a source sep-
aration model (Denton et al., 2022), which splits multi-source audio
recordings into four separate channels (Figure 1b). From the source-
separated multi-channel output, we manually selected the isolated
target sound. We simulated 400 background sound examples of four
types of noise (100 each) and included one clip of silence. The noise
types included Gaussian noise (¢=0, 6=1), mixtures of Gaussian
noise with Butterworth low-pass filtered noise, and impulse aug-
mented examples of both. The Butterworth low-pass clips included
order one and two filters with cut-off frequencies ranging from
500Hz to 5kHz. The impulse augmented examples included one to
five short, high-intensity spikes added to the audio (Figure 1b).

In Experiment 3, we performed an ablation over eight classifi-
cation model architectures. These included a single-layer linear
classifier (a neural network with no hidden layers) and 3 two-layer
multilayer perceptrons (MLP), which are neural networks consist-
ing of an input layer, one fully connected hidden layer and an out-
put layer. The hidden layers in these MLPs consisted of 512, 1024,
2048 units with rectified linear unit activations, which introduce
potential non-linearities to the models. Additionally, we tested four
modified versions of these architectures that included a dropout
layer—a regularization technique which can reduce overfitting—
with a dropout rate of 0.3, as the penultimate layer. We simulated
100,000 3-s audio clips for each avian dataset using the simulated
clip approach described in Experiment 2 and embedded the clips.
We randomly selected 1000 of the embeddings and fit the eight
model architectures to the selection. We evaluated the relative per-
formance of the classifiers using the 12-s evaluation datasets.

In Experiment 4, we evaluated the effect of increasing the num-
ber of simulated examples (128, 256, 512, 1024, 2048, 4096, 8192,
16,384, 32,768) and the effects of two additional acoustic augmen-
tations. The acoustic augmentations included pitch shifting up and
down by arandom amount sampled from a uniform distribution rang-

ing from -2 to 2 semitones and time stretching by a random factor

B+ Methodsin Ecology and Evalution |
sampled from a uniform distribution ranging from 0.8 to 1.2 times
the original clip length. In addition to 100,000 3-s embeddings gen-
erated in Experiment 3 (simulated with no acoustic augmentations),
we simulated three additional sets of 100,000 3-s embeddings for
each avian dataset by simulating acoustic clips while applying pitch
shifting, time stretching and their combination to the preprocessed
examples. We randomly selected a fixed number of embeddings for
each embedding set and fitted single-layer linear classifiers to each
selection. We evaluated the relative performance of the linear clas-
sifiers using the 12-s evaluation datasets.

We then developed new classifiers for each avian dataset using
our transfer learning strategy developed in Experiments 1-4. For
shared classes, we compared the performance of our custom classi-
fiers to the off-the-shelf performance of BirdNET and PNW-Cnet for
vocalization-specific classification. The custom classifiers were lin-
ear classifiers with one layer of dropout trained with 8192 simulated
clips generated using four known examples and no pitch shifting or
time stretching.

2.2.2 | Part2: Generalization to non-avian sounds

We applied our simulation-based transfer learning strategy to de-
velop new acoustic classifiers for three non-avian datasets repre-
senting a range of potential complexities. The amphibian dataset, the
least complex, includes two species that are part of BirdNET's train-
ing dataset. The small mammal dataset is slightly more complex than
the amphibian dataset because American pika and Douglas squir-
rel vocalizations are not included in the BirdNET training dataset.
However, BirdNET does include at least two other squirrel species
with similar vocalizations. The cricket dataset is more complex than
the other non-avian datasets; it includes 10 species from at least
seven genera and one subfamily that are not part of the BirdNET

training dataset.

2.3 | Visualization of BirdNET embeddings

We visualized BirdNET's 1024-dimensional feature embeddings
using t-distributed stochastic neighbour embeddings (t-SNE; Hinton
& Roweis, 2002). t-SNE is a dimensionality reduction technique that
attempts to preserve local distances between data points while map-
ping high-dimensional data into lower dimensions (van der Maaten &
Hinton, 2008). We first filtered the 3-s evaluation datasets to back-
ground clips with no annotations and clips with one annotation and
embedded these clips with BirdNET. We then mapped the BirdNET
feature embeddings for each avian dataset to two dimensions using
a principal component initialized t-SNE fit for 5000 iterations with a
learning rate of 10. We considered four perplexity values—perplex-
ity balances t-SNE's relative optimization on local and global repre-
sentations and approximates the number of neighbours each point
has—ranging from 3 to 50 to examine the stability of the t-SNE map-
ping (Figure S1; Wattenberg et al., 2016).
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3 | RESULTS

We found that training custom acoustic classifiers with as few as
two positive examples improves classifier performance relative
to BirdNET's off-the-shelf predictions (Experiment 2; Figure 2).
For all three avian datasets, average relative performance
increased asymptotically as the number of training source
examples increased, while the variance of the average relative
performance among training replicates decreased (Experiment
4; Figure 3; Table S4). Average performance of the classifiers
trained with soundscape simulation saturated quickly, with both
AUC

macro @Nd MAP reaching 95% of the maximum performance

AUC

for each avian dataset with just four training samples. Of the
four approaches to training data construction, the simulated
clips approach consistently performed the best and yielded
improvements relative to the BirdNET baseline. The other three
training data strategies often failed to improve upon the BirdNET
baseline, except for the Blue Mountains dataset, where all four

macro @nd MAP relative to the

strategies resulted in higher AUC
baseline. We observed a plateau in model performance gains,
similar to other transfer learning applications, where increases in
data can show diminishing relative performance improvements
(Ghani et al., 2023; Kath et al., 2024). These diminishing gains
may reflect inherent limitations to the information content of the
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Increasing the number of simulated soundscapes consistently improved relative model performance, with no evidence of overfitting. The
number of simulated examples varied, and the dataset construction and training were replicated 10 times. Dark points and lines indicate the

average performance of the acoustic augmentations.

embeddings, such as limited discriminatory power to differentiate
among different sounds produced by the same species (Figure 4),
or differences among training and evaluation datasets.

Average classifier performance varied little among the eight clas-
sifier architectures for classifiers with up to 10 classes (Experiment
3; Table 3). All four base architectures were competitive, and future
studies facing more complex classification problems should evalu-
ate classifier architectures with higher relative capacity. Adding a
hidden layer decreased classifier performance relative to the linear
classifier, likely due to overfitting. This overfitting was evidenced by
continued decreases in training loss over batches of simulated data,
even after generalization performance on the evaluation datasets
plateaued. However, applying dropout before prediction partially
mitigated this decrease in performance, preventing overfitting to

the simulated training data and restoring two-layer model perfor-
mance closer to the level of the linear classifier.

Increasing the number of simulated soundscapes increased
relative model performance, with no evidence for overfitting
(Experiment 4; Figure 3). However, the rate of increase in per-
formance was slow at greater than 1000 simulated soundscapes
(Figure 3). Adding acoustic augmentations, such as pitch shifting and
time stretching, to the positive training examples during the simula-
tions did not increase average relative performance (Figure 3).

Each hyperparameter value was included in the top 10 average
hyperparameter combinations at least once, and the relative perfor-
mance varied across replicate linear classifier fits with the same hy-
perparameter combination (Experiment 1; Table 2). We found slight
evidence of overfitting for the marbled murrelet and Blue Mountains
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FIGURE 4 t-distributed stochastic neighbour embedding (t-SNE) plots of the 3-s avian evaluation datasets. The t-SNE embeddings were
fit for 5000 iterations using a learning rate 10 and a perplexity value 50. Each point on the plots is the 2-dimensional t-SNE projection of
the 1024-dimensional BirdNET feature embedding for a 3-s annotated audio clip. The t-SNE visualization illustrates the variability among
acoustic clips based on BirdNET feature embeddings. Different colours indicate groups of distinct sound types (sonotypes). See Table 1 for

descriptions of sonotypes and corresponding species.
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TABLE 2 Hyperparameter ablation

Passerine . . .
for simulation-based transfer learning

AUC

>
o

AUC

Value A

Hyperparameter

Batch size 16
32
64
128
0.001
0.01
0.1

Learning rate

Training steps 100
500

1000

2000
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mAP

classifiers built over BirdNET embeddings
for the three avian datasets.

AUC

macro

mAP
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Note: We varied batch size, learning rate and the number of gradient descent steps. The
value indicates the number of times the average performance in terms of area under the
curve (AUC) and average precision (AP) for a specific hyperparameter value was in the
top 10 average hyperparameter combinations. Area under the ROC curve (AUC) measures
the probability that a randomly selected true positive example is scored higher than a
randomly selected true negative example. Average precision (AP) is the weighted mean of

precision across all thresholds. AUC___

and mAP are the mean of all class-specific metrics.

Bold values indicate the top-performing value for a specific hyperparameter, metric and
avian dataset. Bold and italic values indicate shared top-performing values for a specific

hyperparameter.

classifiers because model performance estimates across the set of
hyperparameter combinations were within a range of 0.05 (Table S3).
The hyperparameter evaluation provided weak evidence that larger
batch sizes and intermediate learning rates marginally improved rela-
tive performance. We adopted the following hyperparameter values
for the remainder of our analyses: batch size: 128, learning rate: 0.01
and 500 gradient descent steps. Our choice for the number of gra-
dient descent steps represents a compromise between reducing the
tendency for overfitting while training long enough for the model to
be exposed to all the data at least once.

Overall, BirdNET and PNW-Cnet performed well on the avian
evaluation datasets. PNW-Cnet AUC and AP scores were higher
than BirdNET for 80% of the shared acoustic classes (n=10;
Table 4). The average class-specific performance of the simulation-
based classifiers trained using four known examples was higher than
BirdNET for all classes except for two cases where the AP of the
simulation-based classifiers did not improve upon BirdNET's per-
formance (Table 4). However, the maximum class-specific perfor-
mance of the simulation-based classifiers was higher than BirdNET's
score for all classes. The average class-specific performance of the
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TABLE 3 Model structure ablation for the three avian datasets.

-

Marbled murrelet Blue mountains Passerine
Structure No. of units Dropout AUC AP AUC,.cro mAP AUC,,.cro mAP
LP N 0.990 0.991 0.955 0.866 0.898 0.602
Y 0.990 0.991 0.958 0.872 0.90 0.609
MLP 1024 N 0.934 0.934 0.952 0.861 0.893 0.591
Y 0.953 0.938 0.953 0.860 0.897 0.602
2048 N 0.933 0.929 0.953 0.863 0.893 0.591
Y 0.933 0.913 0.954 0.862 0.897 0.601
512 N 0.966 0.958 0.951 0.859 0.893 0.590
Y 0.974 0.962 0.955 0.865 0.897 0.600

Note: We report the average performance for eight classifier model architectures across 10 replicate model trainings. LP refers to a single-layer linear
probe. Three two-layer perceptron (MLP) architectures vary in the number of units included in a single hidden layer. Area under the ROC curve (AUC)

measures the probability that a randomly selected true positive example is scored higher than a randomly selected true negative example. Average
precision (AP) is the weighted mean of precision across all thresholds. AUC,,.,, and mAP are the mean of all class-specific metrics.

TABLE 4 Comparative class-specific performance of BirdNET, PNW-Cnet and simulation-based transfer learning classifiers built over
BirdNET embeddings and four known examples for shared classes in the 12-s avian evaluation datasets.

AUC AP
Sonotype BirdNET PNW-Cnet Sim,_ .. Sim,_ BirdNET PNW-Cnet Sim_ . Sim_
marmur_call_1 0.976 0.998 0.988 0.991 0.977 0.999 0.989 0.992
clanut_call_1 0.782 0.958 0.981 0.221 0.847 0.915
clanut_call_2 0.741 0.934 0.961 0.084 0.713 0.770
clanut_call_3 0.897 0.843 0.939 0.969 0.736 0.611 0.872 0.945
norgos_call_1 0.820 0.953 0.969 0.320 0.840 0.877
norgos_call_2 0.920 0.976 0.985 0.610 0.916 0.942
whhwoo_call_1 0.964 0.987 0.992 0.956 0.980 0.988
herthr_song_1 0.810 0.928 0.849 0.877 0.570 0.863 0.642 0.709
herthr_call_2 0.875 0.874 0.908 0.190 0.589 0.622
olsfly_song_1 0.836 0.926 0.902 0.933 0.243 0.673 0.605 0.656
olsfly_call_1 0.911 0.924 0.959 0.541 0.619 0.651
spotow_song_1 0.888 0.803 0.922 0.951 0.606 0.120 0.540 0.633
swathr_song_1 0.897 0.971 0.931 0.945 0.484 0.886 0.733 0.759
swathr_call_1 0.907 0.962 0.974 0.541 0.745 0.822
swathr_call_3 0.891 0.896 0.920 0.512 0.605 0.678
varthr_song_1 0.833 0.924 0.854 0.871 0.607 0.836 0.656 0.697
wrenti_song_1 0.806 0.922 0.847 0.874 0.373 0.637 0.364 0.426

Note: We report the average and maximum area under the receiver operator curve (AUC) and average precision (AP) for each class across 10 replicate

datasets and model training steps.

simulation-based classifiers only surpassed PNW-Cnet's scores for
classes in which BirdNET also scored higher, but the maximum per-
formance of the simulation-based classifier was competitive or sur-
passed PNW-Cnet for all classes (Table 4).

For the three non-avian datasets, relative performance de-
creased with increasing task complexity (Table 5). BirdNET's
overall baseline performance for the amphibian dataset was high
(AUC :0.993; mAP: 0.991) with high class-specific performance:

macro®

the American bullfrog AUC
Pacific chorus frog AUC

macro Was 0.995 and mAP was 0.995, the
macro Was 0.991 and mAP was 0.987. AUC
and AP scores for our methods were consistent with, but slightly
lower than, BirdNET's baseline performance for these species
(Table 5). We could not estimate BirdNET's baseline performance
for the cricket and small mammal datasets because the species com-
prising those datasets are not included in BirdNET's training data.

For our approach, the overall performance of the cricket dataset was
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TABLE 5 Overall and class-specific performance for three out-of-domain linear classifiers trained with few examples using a simulation-

based transfer learning approach.

Taxa Species No. of examples No. of evaluations AUC AP
Amphibian Bullfrog 45 965 0.996 0.995
Pacific chorus frog 51 912 0.994 0.992
Non-target 895
Overall 0.995 0.994
Cricket—Genus Archenopterus 11 163 0.787 0.538
Bullita 13 132 0.831 0.346
Calscirtus 221 0.814 0.076
Koghiella 6 147 0.647 0.252
Notosciobia 126 0.938 0.870
Pseudotrigonidium &) 29 0.598 0.200
Trigonidiinae 15 53 0.767 0.239
Non-target 509
Overall 0.769 0.360
Cricket—Species Archenopterus bouensis 11 163 0.787 0.540
Bullita fusca 6 88 0.825 0.344
Bullita mouirangensis 2 20 0.811 0.078
Bullita obscura 5 24 0.664 0.260
Calscirtus magnus 1 221 0.934 0.863
Koghiella flammea 3 43 0.598 0.201
Koghiella nigris 3 104 0.756 0.233
Notosciobia affnis paranola 2 105 0.810 0.499
Notosciobia minoris 3 21 0.836 0.185
Pseudotrigonidium caledonica 6 29 0.846 0.179
Trigonidiinae spp. 15 53 0.683 0.171
Non-target 509
Overall 0.777 0.323
Small mammal American pika 60 845 0.970 0.977
Douglas squirrel: chirp 30 236 0.959 0.876
Douglas squirrel: rattle 30 157 0.915 0.774
Non-target 515
Overall 0.948 0.876

Note: We report the dataset properties, as well as overall and class-specific average area under the receiver operator curve (AUC) and average

precision (/ﬁ) for the amphibian, cricket and small mammal datasets.

moderate (AUC :0.777; mAP: 0.323) and improved slightly after

macro®
aggregating species-level classes by genus (AUC_ . : 0.769; mAP:
0.360). For the species-level classifier, overall performance was low-
ered by the poor performance of the Bullita obscura and Koghiella
flammea classes (Table 5). Overall performance on the mammalian
dataset was strong (AUC_ . : 0.948; mAP: 0.876), with all three

classes scoring high in terms of AUC and AP (Table 5).

4 | DISCUSSION

The recent release of pre-trained avian classification models
marks an important advancement for PAM. These models offer

ready-to-use acoustic detection and classification for many vocal-
izing species (Kahl et al., 2021) and strong foundations for devel-
oping custom acoustic classifiers using transfer learning. Here, we
demonstrate a low-cost, rapid computational workflow that lev-
erages pre-trained models to develop custom acoustic classifiers
with as few as two vocalization examples. The performance of our
custom acoustic classifiers typically exceeds the off-the-shelf per-
formance of pre-trained models targeting global sets of species
and approaches the performance of specialized pre-trained local
classifiers that may take years and substantial investment to build
(Gibb et al., 2019). This workflow reduces reliance on large anno-
tated datasets, expediting the time it takes to transform acoustic
data into ecological insights, potentially increasing stakeholder

ASURDIT SUOWWO)) 2ANEaI) d[qearidde Ay Aq pauIaA0S Ie S3[ONIE V() $asn JO ST 10§ ATeIqU] SUIUQ AJ[IA UO (SUONIPUOI-PUB-SULIA)/WOY" KI[1m’ AIRIqI[UI[U0y/:sdY) SUONIPUOD) PUE SWISL, 3y 298 [S707/90/9] U0 AIeiqry aurjuQ AIM ‘6800L X01Z-1+0T/1111°01/10p/wod Ka[im AIeiqraurjuosfeuinolsaqy/:sdny woiy papeofumod ‘0 X012 140T



WELDY ET AL.

S ety anbvoin.

TABLE 6 Suggested transfer learning strategy for training custom acoustic classification models.

Consideration Experiment Finding

Hyperparameter 1 There were multiple competitive combinations

values of hyperparameter values

Data augmentation 2 Soundscape simulation consistently improved
performance, while other augmentations had
no effect

Model architecture 3 Single-layer linear classifiers were surprisingly
robust for all three avian datasets. However,
applying a dropout prior to prediction
marginally improve relative performance

Acoustic 4 Additional acoustic augmentations, such as

augmentations pitch shifting and time stretching, did not
increase model performance and slowed down
the simulation process

Increasing the 4 Increasing the number of simulated clips when

number of
simulated clips

using soundscape simulation augmentation
marginally improved model performance, but

Suggestion

We suggest starting with large batch sizes, moderate
learning rates and short training schedules. However,
project-specific hyperparameter ablations may yield
marginal relative performance gains

In data-scarce contexts, use soundscape simulation

Use a linear classifier directly on pre-trained
embeddings. Apply dropout on the embeddings during
training

Avoid adding additional acoustic augmentations to the
soundscape simulation

Simulating at least ~4000 clips, increasing the number
when practical, especially for multi-label tasks

the relative gains were slow after 4000 clips

Note: We report our findings and suggestions for five transfer learning model training considerations.

engagement and the conservation impact (Makiola et al., 2020;
Weiskopf et al., 2022).

Transfer learning is a promising approach for adapting pre-
trained foundational models to local problems. This study provides a
transfer learning strategy for developing custom acoustic classifiers
(Table 6). Simple linear classifiers trained on supervised embeddings
are a robust approach for developing custom classifiers to improve
performance for in-domain sounds, adapt species-level predictions
to within-species sound types, or classify novel sounds (Ghani
et al., 2023; Kath et al., 2024). We found that the performance of
simple linear classifiers trained on raw examples improved by train-
ing on simulated soundscapes, while other augmentations included
in this study failed to produce consistent improvements over the
baseline (Figure 2).

Adopting a transfer learning approach that leverages pre-trained
classification models allows new and ongoing PAM programmes to
mitigate the risks associated with developing computational pro-
cessing tools by shortening the time between model training and
performance feedback. This shortened feedback loop allows PAM
programmes to quickly incorporate new monitoring targets or re-
spond to changing environmental conditions. Additionally, the
shorter development cycle facilitates the use of an active learning
framework (Zhao et al., 2020). In an active learning framework, users
start with a simple linear classifier and iteratively develop an infor-
mative local training dataset through model training, prediction and
review cycles—training both ‘what is’ and ‘what is not’ an acoustic
target (Williams et al., 2024). In our analysis, a local classification
model had higher class-specific performance than a global model's
off-the-shelf predictions for eight of 10 shared classes, revealing
room for global models to improve when adapted to local problems.
But in all these cases, our soundscape simulation-based transfer

learning classifier, trained with a few examples, substantially nar-
rowed the gap in performance between these two pre-trained mod-
els, and the transfer learning model will likely continue to improve
after exposure to more annotated local data.

Our method is applicable to other pre-trained embedding mod-
els, including other wildlife-focused acoustic models like Perch
(Ghani et al., 2023) and PNW-Cnet (Ruff et al., 2023), as well as
general-purpose acoustic classification (Hershey et al., 2017; Kong
et al., 2020). Embedding models map acoustic training datasets to
numeric embeddings, with differences in training datasets reflected
in the information content of the embeddings (Turian et al., 2022).
Consequently, the effectiveness of transfer learning depends on
the chosen embedding model, particularly when the target data dif-
fer from the training dataset (Williams et al., 2024). For instance,
BirdNET's species-level training may cause its feature space to col-
lapse dissimilar acoustic sounds from the same species into similar
representations, limiting the utility of its embeddings to distinguish
among call types within a species (Figure 4). Transfer learning appli-
cations will likely perform better when embedding models are se-
lected based on project-specific factors, such as similarities between
the training and sample data domains, alignment of model context
window length with vocalization duration or the model's receptive
frequency range with the target vocalizations. Nonetheless, other
embedding models should be considered for complex problems, as
they may vyield different performance outcomes. However, special
care should be given to ensure that evaluation datasets for transfer
learning tasks are independent of both the transfer learning classifi-
er's training data and that of the embedding model.

There is potential for our approach to extend beyond the origi-
nal training scope of BirdNET (Table 5), enabling PAM programmes
to rapidly adapt pre-trained global classifiers to local monitoring
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or management objectives. For in-domain (amphibian) and close-
domain (small mammal) problems, transfer learning over embed-
dings is expected to achieve high accuracy for many classes (Table 5).
However, for tasks diverging further beyond the original pre-trained
model training domain (crickets)—where stridulation classification
requires fine-scale differentiation of frequencies and repeated sylla-
bles—more annotated training data, alternative embedding methods
(Evci et al., 2022) or deeper levels of fine-tuning on the embedding
model (Dufourq et al., 2022) may be necessary to achieve compa-
rable performance. Our findings underscore the need for further
refinement and additional training data to address challenging out-
of-domain classification tasks.

Our approach could be particularly impactful for regions where
data are extremely scarce and off-the-shelf pre-trained model pre-
dictions are unavailable because the local species are not included
in the pre-trained model datasets. Notably, many parts of the world
with the highest biodiversity, which are often under the greatest
threat (Betts et al., 2017; Cui et al., 2023), lack extensive annotated
datasets (van Merriénboer et al., 2024). In these biodiverse yet data-
poor regions, our transfer learning strategy, which utilizes a mini-
mal number of vocalization examples and simulated soundscapes,
offers a viable method for developing effective acoustic classifiers.
This approach equips managers and policymakers with the neces-
sary tools to quickly develop monitoring systems for understanding,
detecting and responding to emerging biodiversity threats, and fa-
cilitates the monitoring of otherwise overlooked species due to the
lack of pre-existing data, thereby supporting conservation efforts in
some of the most ecologically critical areas on the planet.

Despite the potential of simulated soundscapes and transfer
learning to improve acoustic classification models, several limita-
tions remain. First, the relative performance gains of our approach
may vary depending on the specific ecological context, the quality of
the initial training data and the characteristics of the target species’
vocalizations. For instance, species with long, highly variable or low-
amplitude calls may still pose challenges for accurate classification,
even with advanced augmentation techniques (Zhao et al., 2023).
Furthermore, we view strong classification performance on rela-
tively simple classification tasks (e.g. Amphibian, Marbled Murrelet
and Small Mammal) as an indication of success in favourable con-
texts and not as evidence of robustness in all classification contexts.
Second, the generalizability of our methods to different ecosystems
and taxa requires further validation, particularly when the ecosys-
tem or focal taxa are novel relative to an embedding model's training
dataset (Table 5). Lastly, while our approach offers strong classifica-
tion performance and significant efficiency gains in the short term,
it does not replace the need for high-quality, manually annotated
data. For example, in data-scarce contexts, classifier performance
can vary widely across training runs (Figure 3), and it can be chal-
lenging to assess model performance. In these situations, investing
resources in iterative classifier training in pursuit of a highly per-
formant classifier could be tempting, which would likely result in a
classifier over-optimized for a specific and likely small evaluation
dataset. Instead, leveraging the trained classifiers to identify and

annotate additional data in model-guided data review will likely re-
sult in more substantial increases in classifier performance and more
relevant insights into its overall performance.

Our study demonstrates the potential for simulated soundscapes
to improve the performance of acoustic classification models in con-
texts with limited training data. By leveraging transfer learning and our
simulation-based augmentation approach, we offer an effective and
efficient workflow that improves the performance of acoustic classi-
fication models and reduces the need for extensive manual data label-
ling. To support the application of our methods to novel classification
tasks, we include a general-purpose Python script (11_new_applica-
tions.py) in the manuscript Zenodo archive and a vignette describ-
ing the application of this script to develop an acoustic classifier for
golden-crowned kinglet (Regulus satrapa) songs using two vocalization
examples extracted from a XenoCanto recording. Our findings have
practical implications for PAM programmes and other domains of
bioacoustic research, both enabling the rapid development of classi-
fiers for data-deficient, rare or understudied species and facilitating
fine-grained classification tasks, including vocalization-associated be-

haviours and spatiotemporal variation in vocalizations.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1: Description of the discrete audio examples from the training
and evaluation datasets, including passive acoustic recordings (PAM)

and simulated soundscapes (sim).
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Table S2: Description of BirdNET's embedded values of the training
and evaluation datasets, including passive acoustic recordings (PAM)
and simulated soundscapes (sim).

Table S3: Hyperparameter ablation for simulation-based transfer
learning classifiers built over BirdNET embeddings for the three
avian datasets.

Table S4: Standard deviation (s) of macro averaged Area Under
the ROC curve and mean Average Precision among ten replicate
trainings for four training data strategies for developing acoustic
classification algorithms using transfer learning under data
scarcity.

Figure S1: t-distributed stochastic neighbor embedding (t-SNE) plots
of the 3-s avian evaluation datasets demonstrating the effect of

increasing the perplexity value.
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