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Abstract: The sliced inverse regression (SIR) is the most recognized method in sufficient
dimension reduction. For high-dimensional multivariate applications, there is promising
progress related to the theory and methods of a high-dimensional SIR. However, two problems
remain in this context. First, choosing the number of slices in an SIR is difficult, and
depends on the sample size, distributions of the variables, and other practical considerations.
Second, extending the SIR from a univariate response to a multivariate response is not
trivial. Targeting the same dimension reduction subspace as that of the SIR, we propose
a new slicing-free method that provides a unified solution to sufficient dimension reduction
for high-dimensional covariates and univariate or multivariate responses. We achieve this
by adopting the martingale difference divergence matrix (MDDM) and penalized eigen-
decomposition algorithms. To establish the consistency of our method for a high-dimensional
predictor and a multivariate response, we develop a new concentration inequality for the
sample MDDM around its population counterpart using U-statistics theory, which may be
of independent interest. Simulations and a real-data analysis demonstrate the favorable

finite-sample performance of the proposed method.
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1. Introduction

Sufficient dimension reduction (SDR) is an important statistical analysis tool for
data visualization, summary, and inference. SDR extracts low-rank projections
of the predictors X that contain all information about the response Y, without
prespecifying a parametric model. The semiparametric nature of SDR leads to
great flexibility and convenience in practice. After performing SDR, we can model
the conditional distributions of the response, given the lower-dimensional projected
covariate, using existing parametric or nonparametric methods. A salient feature
of SDR is that the low-rank projection space can be estimated accurately at a
parametric rate, with the nonparametric part treated as an infinite-dimensional
nuisance parameter. For example, in multi-index models, SDR is used to estimate
the multiple projection directions, without estimating the unspecified link function.

A cornerstone of SDR is the sliced inverse regression (SIR), pioneered by Li
(1991), who first discovered the connection between the low-rank projection space
and the eigen-space of cov(E(X | Y)), under suitable assumptions. An SIR is
performed by slicing the response Y, and then aggregating the conditional mean
of the predictor X, given the response Y within each slice. For example, consider a

univariate response Y. Slicing involves picking K + 1 constants —oco = ag < a; <
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. < ag = 00, and defining a new random variable H, where H = k if and only
if ap_1 <Y < ai. After a centering and standardization of the covariate, that is,
X X = Z_;(l/ (X —E(X)), a simple eigen-decomposition can be used to find linear
projections that explain most of the variability in the conditional expectation of the
transformed predictor given the response across slices, that is, cov(E(X | H)). An
important variation of the SIR is the sliced average variance estimation (Cook and
Weisberg; 1991), which uses the conditional variance across slices. A key step in
these inverse regression methods is the choice of the slicing scheme. If Y is sliced too
coarsely, we may not be able to capture the full dependence of Y on the predictors,
leading to significant bias in the estimation of cov(E(X | Y)). In contrast, if Y is
sliced too finely, then the within-slice sample size becomes too small, leading to large
variability in the estimation. Although Li (1991) and Hsing and Carroll (1992) show
that SDR can still be consistent in a large sample even when the slicing scheme is
chosen poorly, Zhu and Ng (1995) argue that the choice of slicing scheme is critical
to achieve high estimation efficiency. However, to the best of our knowledge, there is
little generally applicable guidance in the literature on how to choose a good slicing
scheme.

Zhu et al. (2010) and Cook and Zhang (2014) show that it is beneficial to
aggregate multiple slicing schemes, rather than relying on one, although their methods
focus only on a univariate response, and in many real-life problems, multi-response

data are common. Here, a component-wise analysis may not be sufficient, because
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it does not make full use of the component-wise dependence in the response. However,
slicing a multivariate response is notoriously difficult, owing to the curse of dimensionality,
a common problem in multivariate nonparametric smoothing. As the dimension for
the response becomes moderately large, it becomes increasingly difficult to ensure
that each slice contains a reasonable number of samples, and the estimation can be
unstable in practice. Hence, it is highly desirable to develop new SDR methods that

do not involve slicing.

An important line of research in the recent SDR literature is to develop SDR
methods for data sets with high-dimensional covariates, as motivated by many contemporary
applications. The idea of SDR is naturally attractive for high-dimensional data
sets, because an effective reduction of the dimension in X allows us to use existing
modeling and inference methods for low-dimensional covariates. However, most
classical SDR methods are not directly applicable to the large p small n setting,
where p is the dimension of X and n is the sample size. To overcome the challenges
associated with high-dimensional covariates, several methods have been proposed.
Lin et al. (2018) show that the SIR estimator is consistent if and only if limp/n =
0. When the dimension p is larger than n, they propose a diagonal thresholding
screening SIR (DT-SIR) algorithm, and show that it is consistent in terms of recovering
the dimension reduction space, under certain sparsity assumptions on both the
covariance matrix of the predictors and the loadings of the directions. Lin et al.

(2019) introduce a simple Lasso regression method that estimates the SDR space by
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constructing artificial response variables from the top eigenvectors of the estimated
conditional covariance matrix. Tan et al. (2018a) propose a two-stage computational
framework to solve the sparse generalized eigenvalue problem, which includes the
high-dimensional SDR as a special case, and propose a truncated Rayleigh flow
method (RIFLE) to estimate the leading generalized eigenvector; see also Lin et al.
(2020) and Tan et al. (2018b). Although these methods provide valuable tools
to tackle the high-dimensional SDR problem, they still rely on the SIR in their
methodology and involve choosing a single slicing scheme, with little guidance on
how to choose such a scheme. Consequently, these methods cannot be applied easily
to data with a multivariate response, and the effect of the choice of slicing scheme is
unclear.

In this article, we propose a novel slicing-free SDR method in the high-dimensional
setting. Our proposal is inspired by a recent nonlinear dependence metric, called the
martingale difference divergence matrix (MDDM, Lee and Shao; 2018). Lee and
Shao (2018) developed the MDDM as a matrix-valued extension of the martingale
difference divergence (MDD) of Shao and Zhang (2014), which measures the (conditional)
mean dependence of a response variable given a covariate, and used it to reduce the
dimension of a multivariate time series. As recently revealed by Zhang et al. (2020),
at the population level, the eigenvectors (or generalized eigenvectors) of the MDDM
are always contained in the central subspace. Building on these prior works, we

propose using a penalized eigen-decomposition on the MDDM to perform SDR in
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high dimensions. When the covariance matrix of the predictor is the identity matrix,
we use the truncated power method with hard thresholding to estimate the top- K
eigenvectors of the MDDM. For a more general covariance structure, we apply the
RIFLE algorithm (Tan et al.; 2018a) to the sample MDDM instead of to the sample
SIR estimator of cov(E(X | Y)). By using the sample MDDM, this approach is
free of slicing, enabling us to treat univariate and multivariate responses in a unified
way, and thus circumvent the practical difficulty of selecting the number of slices
(especially for a multivariate response). From a theoretical perspective, we derive a
concentration inequality for the sample MDDM around its population counterpart by
using U-statistics theory, and obtain a rigorous nonasymptotic theoretical justification
for the estimated central subspaces for both settings. The results of simulations and
a real-data analysis confirm that the proposed penalized MDDM outperforms slicing-
based methods in terms of estimation accuracy.

The rest of this paper is organized as follows. In Section 2, we give a brief
review of the MDDM, and then present a new concentration inequality for the
sample MDDM around its population counterpart. In Section 3, we present our
general methodology of adopting the MDDM in both model-free and model-based
SDR problems, where we establish population-level connections between the central
subspace and the eigen-decomposition and the generalized eigen-decomposition of
the MDDM. Algorithms for regularized eigen-decomposition and generalized eigen-

decomposition problems are proposed in Sections 4.1 and 4.2, respectively. Theoretical
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properties are established in Section 5. Section 6 contains numerical studies. Finally,
Section 7 concludes the paper. The Supplementary Material provides all additional

technical details and numerical results.

2. The MDDM and its concentration inequality

Consider a pair of random vectors V € R? and U € R?, such that E(||U[]?+||V|]*) <

oo. We use ||U|| = |U|, to denote the Euclidean norm in R?. Define
MDDM(V | U) = —E [{V = E(V)H{V' - B(V)}|[U = U'|] & Rv™,

where (V’,U’) is an independent copy of (V,U). Lee and Shao (2018) established
the following key properties of MDDM(V | U): (i) it is symmetric and positive semi-
definite; (i) E(V | U) = E(V), almost surely, is equivalent to MDDM(V | U) = 0;
(iii) for any p x d matrix A, MDDM(ATV | U) = ATMDDM(V | U)A; (iv) there
exist p — d linearly independent combinations of V that are (conditionally) mean
independent of U if and only if rank(MDDM(V|U)) = d.

Given a random sample of size n, that is, (U, V)i, the sample estimate of

MDDM(V | U), denoted by MDDM,,(V | U), is defined as

1 < — —
MDDM, (V | U) = == 3 (V; = V.)(Vi = V)T |U; = Uply. (21)
k=1
where V,, = n~! Zzzl V. is the sample mean.

In the following, we present a concentration inequality for the sample MDDM

around its population counterpart, which plays an instrumental role in our consistency
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proof for the proposed penalized MDDM method later. To this end, we let V. =

(Vi,---,V,)T € RP, and assume the following condition.

(C1) There exist two positive constants o and Cj such that

sup max E{exp(200V})} < Co,
p 1<j<p (2.2)

Efexp(200|UI)} < Gy,
For a matrix A = (a;;), we denote its max norm as || A||ma, = max;; |a;|.

Theorem 1. Suppose that Condition (C1) holds. There ezists a positive integer
no = ng(og, Co,q) < 00, v = v(00,Co,q) € (0,1/2), and a finite positive constant

Do = Dy(09, Cy, q) < 00, such that when n > ny and 16 > € > Don~", we have

2
P(|[MDDM,,(V[U) — MDDM(V|U)||max > 12¢) < 54p? exp {—6—2} .
36log”(n)

The above bound is nonasymptotic and holds for all (n,p,€), as long as the

2

condition is satisfied. The exponent is from the use of a truncation argument,

log®(n)
along with Hoeffding’s inequality for U-statistics, and seems hard to improve. Nevertheless,
we achieve an exponential-type bound under a uniform sub-Gaussian condition on
both V and U. This result may be of independent theoretical interest. For example,
in the time series dimension reduction problem studied by Lee and Shao (2018),

our Theorem 1 could potentially help extend their theory from low-dimensional

multivariate time series to higher dimensions.
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3. Slicing-free Inverse Regression using the MDDM

3.1 Inverse regression subspace in SDR

SDR methods aim to identify the central subspace that preserves all information
in the predictors. In this study, we consider the SDR problem of a multivariate
response Y € R? on a multivariate predictor X € RP. The central subspace Sy|x
is defined as the intersection of all subspaces § such that Y L X | PsX, where
Ps is the projection matrix onto §. By construction, the central subspace Sy|x
is the smallest dimension reduction subspace that contains all information in the
conditional distribution of Y given X. Many methods have been proposed for
recovering the central subspace or a portion of the central subspace (Li; 1991; Cook
and Weisberg; 1991; Bura and Cook; 2001; Chiaromonte et al.; 2002; Yin and Cook;
2003; Cook and Ni; 2005; Li and Wang; 2007; Zhou and He; 2008); see Li (2018)
for a comprehensive review. Although the central subspace is well defined for both
univariate and multivariate responses, most existing SDR methods consider the case
with a univariate response, and an extension to a multivariate response is nontrivial.

The definition of a central subspace is not very constructive, because it requires
taking the intersection of all subspaces S C RP such that Y 1L X | PsX. It is difficult
to estimate the central subspace without specifying a model between Y and X. To
achieve this, we often need additional assumptions, such as the linearity and the

coverage conditions. The linearity condition requires that, for any basis of the central
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subspace 3, we must have that E(X | 87X) is linear in 8" X. The linearity condition
is guaranteed if X is elliptically contoured, and allows us to connect the central
subspace to the conditional expectation E(X | Y). Define ¥x as the covariance of

X, and the inverse regression subspace

Sexjy) =span{E(X | Y =y) — E(X) : y € R? such that E(X | Y =y) exists}.
(3.1)

The following property is well known, and is often used to develop SDR methods.
Proposition 1. Under the linearity condition, we have Sgxjy) € ExSyx € RP.

The coverage condition further assumes that Sgx|y) = XxSyx. It follows that
we can estimate the central subspace by modeling the conditional expectation of X.
Indeed, many SDR methods approximate E(X | Y). For example, the SIR slices
the univariate Y into several categories, and estimates the mean of X within each
slice. Most methods follow this slice-and-estimate procedure. The number of slices
is important to the estimation. If there are too few slices, we may not be able to
fully capture the dependence of X on Y'; however, if there are too many slices, there

are insufficient samples within each slice to allow an accurate estimation.

3.2 The MDDM in SDR

In this section, we lay the foundation for applying the MDDM to SDR. We show that

the subspace spanned by the MDDM coincides with the inverse regression subspace

10
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in (3.1). In particular, we have Proposition 2, which is also used in Zhang et al.

(2020), without a proof, in the context of a multivariate linear regression.

Proposition 2. For multivariate X € RP and Y € R, assuming the existence of

E(X), E(X|Y), and MDDM(X | Y), we have Sgx|y) = span{MDDM(X | Y)}.

Therefore, the rank of MDDM(X | Y) is the dimensionality of the inverse
regression subspace, and the nontrivial eigenvectors of MDDM(X | Y) contain all
the information for Sgx|y). Combining Propositions 1 & 2, we immediately have
that (i) under the linearity condition, £x'span{MDDM(X | Y)} C Syyx, and (ii)
under the linearity and coverage conditions, Xx'span{MDDM(X | Y)} = Sy|x.

Henceforth, we assume both the linearity and coverage conditions, which are
assumed either explicitly or implicitly in inverse regression-type dimension reduction
methods (e.g., Li; 1991; Cook and Ni; 2005; Zhu et al.; 2010; Cook and Zhang; 2014).
Then, the central subspace is related to the eigen-decomposition of MDDM(X | Y).
Specifically, we have the following scenarios.

If cov(X) = ¢%I, for some o > 0, then obviously span{MDDM(X | Y)} =
Sy|x. This includes single-index and multiple-index models with uncorrelated predictors.
Let K be the rank of MDDM(X | Y). Then, the dimension of the central subspace
is K, and the first K eigenvectors of MDDM(X | Y) span the central subspace.

If cov(X | Y) = 021, for some o2 > 0, then we have ¥x = 0?L,+cov{E(X | Y)}.
Because spanfcov{E(X | Y)}] = Sg(x|y), we can show that Sy|x = 3% span{MDDM(X |

Y)} = span{MDDM(X | Y)}. To see this, let cov{E(X | Y)} = UUT, for some

11
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U € RP*E. Then, span(U) = span[cov{E(X | Y)}] = span{MDDM(X | Y)}, and
we may also write MDDM(X | Y) = U®U?, for some symmetric positive-definite
matrix ¥ € REXK_ The result follows by applying the Woodbury matrix identity
to 3" = (0L, + UUT)™! = 6721, — 07 2U(0%Ix + UTU)"'UT. The nontrivial
eigenvectors of MDDM(X | Y) again span the central subspace.

For a general covariance structure, the d-dimensional central subspace Syx =
Y<'span{MDDM(X | Y)} can be obtained by using a generalized eigen-decomposition.

Specifically, consider the generalized eigenvalue problem
MDDM(X | Y)VZ = SOiEXVia Y > 0, v; € Rp’ (32)

where v Xxv; = 0, for i # j. Then, similarly to Li (2007) and Chen et al.
(2010), it is straightforward to show that the generalized eigenvector spans the central
subspace, Syjx = span(vy,...,Vg).

Existing works on SDR often focus on the eigen-decomposition or the generalized
eigen-decomposition of cov{E(X | Y = y)}, where nonparametric estimates of E(X |
Y = y) are obtained by slicing the support of the univariate response Y. In contrast,
the MDDM approach requires no tuning parameter selection (i.e., specifying a slicing
scheme). Moreover, a high-dimensional theoretical study of the MDDM is easier, and
does not require additional assumptions on the conditional mean function E(X | Y),
such as smoothness in the empirical mean function of X given Y (e.g., sliced stable

condition in Lin et al. 2018).

12
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3.3 The MDDM for model-based SDR

Thus far, we have discussed model-free SDR. Another important research area in
SDR is model-based methods, which provide valuable insights when using an inverse
regression estimation under the assumption that the conditional distribution of X |
Y is normal. In this section, we consider the principal fitted component (PFC)
model, which is discussed in detail in Cook and Forzani (2009) and Cook (2007),
and generalize it from a univariate response to a multivariate response. We argue
that the (generalized) eigen-decomposition of the MDDM is potentially advantageous
to likelihood-based approaches under the PFC model. This is somewhat surprising,
but reasonable, considering that the advantages of the MDDM over least squares and
likelihood-based estimations are demonstrated in Zhang et al. (2020) for multivariate

linear models.

Let Xy ~ X | (Y =y) denote the conditional variable. Then, the PFC model is
Xy =p+Tv,+e, e~ N(0,A), (3.3)

where I' € RP*X for K < p, is a nonstochastic orthogonal matrix, and vy, € R¥
is the latent variable that depends on y. Then, the latent variable vy is fitted as
vy = afy,, with some user-specified functions fy, = (fi(y),..., fm(y))* € R™, for
m > K, which maps a g-dimensional response to an m-dimensional response. In the
univariate PFC model, ¢ = 1, so the m functions can be viewed as an expansion of

the response (similar to slicing). For our multivariate extensions of the PFC model,

13
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there is no requirement of m > ¢. The PFC model can be written as
X, =p+Taf, +e, (3.4)

where I' and ¢ are estimated similarly to the multivariate reduced-rank regression,
with X € RP being the response and f, € R™ being the predictor. Finally, the central
subspace under this PFC model is A~ *span(T'), which simplifies to span(T") if we
further assume the isotropic error (i.e., isotropic PFC model) A = cov(X | Y) =
0?1,
For the PFC model, our MDDM approach is the same as the model-free MDDM
counterpart, and has two main advantages over the likelihood-based PFC estimation:
(1) there is no need to specify the functions f;,, and thus no risk of misspecification,
and (ii) extensions to high-dimensional settings are much more straightforward.

Moreover, under the isotropic PFC model, the central subspace Syjx = span(T")

is exactly the first K eigenvectors of MDDM(X | Y).

4. Estimation

4.1 Penalized decomposition of the MDDM

Based on the results in the last section, we can use the penalized eigen-decomposition
of the MDDM to estimate the central subspace in a high dimension when the
covariance Xx or the conditional covariance cov(X | Y) is proportional to the

identity matrix I,,. Here, we construct such an estimate. Note that the penalized

14
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decomposition of the MDDM we develop here is immediately applicable to the
dimension reduction of multivariate stationary time series in Lee and Shao (2018).
However, this is beyond the scope of this study. Moreover, it is well known that
%' is not easy to estimate in high dimensions. Then, even for a general covariance
structure, the eigen-decomposition of the MDDM provides an estimate of the inverse
regression subspace (though it may differ from the central subspace) that is useful for
exploratory data analysis (e.g., detecting and visualizing a nonlinear mean function).

As such, we estimate the eigenvectors of MDDM(X | Y). We assume that
MDDM(X | Y) has K nontrivial eigenvectors, denoted by 34, ..., Bk, respectively.
We use the shorthand notation M = MDDM(X | Y). In addition, note that,
given the first £ — 1 eigenvectors, 3, is the top eigenvector of My, where M =
M -3, (B MB)B,B; -

It is well known that the eigenvectors cannot be estimated accurately in high
dimensions without additional assumptions. We adopt the popular sparsity assumption
that many entries in 3, are zero. To estimate these sparse eigenvectors, denote
M, = MDDM,,(X | Y), where the sample MDDM,, is defined in (2.1). We find Bk,

for k =1,..., K, as follows:

,(Ai'k = argmgxﬁTﬁk,B s.t. ,BT,B =1,|I8llo < s, (4.1)

— —~ —~ ~ ~T
where M; = MDDM,,(X | Y), M, = My — },_. 88,8, , for k > 1, with § =
AT~ ~
B; M13,, and s is a tuning parameter.

We solve the above problem by combining the truncated power method with

15
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hard thresholding. For a vector v € RP and a positive integer s, denote v} as
the sth largest value of |v;|, for j = 1,...,p. The hard-thresholding operator is
HT(v,s) = (viI(Jv1] > v2), ..., 0,0 (Jvp| > v}))T, which sets the p — s elements in
v to zero. We solve (4.1) using Algorithm 1, where the initialization Bio) may be
randomly generated. Note that Yuan and Zhang (2013) proposed Algorithm 1 to
perform a principal component analysis using the penalized eigen-decomposition on
the sample covariance.

In our algorithm, we require a prespecified sparsity level s and subspace dimension
K. In terms of theory, we show that our estimators for 3,, for k = 1,... K, are
all consistent for their population counterparts when the sparsity s is sufficiently
large (i.e., larger than the population sparsity level) and the number of directions
K is no bigger than the true dimension of the central subspace. Therefore, our
method is flexible in the sense that the prespecified s and K do not have to be
exactly correct. In practice, especially in exploratory data analysis, the number
of sequentially extracted directions is often set to be small (i.e., K = 1,2, or 3).
Determining the true central subspace dimension is a separate and important research
topic in SDR (e.g., Bura and Yang; 2011; Luo and Li; 2016), and is beyond the
scope of this study. Moreover, the prespecified sparsity level s combined with £y-
regularization is potentially convenient for post-dimension reduction inference (Kim
et al.; 2020), as in the post-selection inference of a canonical correlation analysis over

subsets of variables with prespecified cardinalities (McKeague and Zhang; 2020).
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Algorithm 1 Penalized eigen-decomposition of MDDM.

1. Input: s, K, M; = M = MDDM, (X | Y).
2. Initialize ,[Ai'io).
3. Fork=1,..., K, do

(a) Iterate over ¢t until convergence:
— ~(t-1)

i Set B\ = MyB,

i 18 BV 1o < s, set
~(t)
U ,Bk .
BT S0,
18 [l2

else

ko= ~(t)
HT (B, 5) |2

(b) Set B, = BS) at convergence and My 1 = M, — BZﬁBk . Bkaz

~(t)
~(8) HT(3, ,s
3 (B 5 3)

~

4. Output gy‘x = span(ﬁl, o Br)-

As pointed out by a referee, other sparse principal component analysis (PCA)
methods can potentially be applied to decompose the MDDM. We choose to extend
the algorithm in Yuan and Zhang (2013) to facilitate computation and theoretical
development. For computationally efficient sparse PCA methods such as Zou et al.
(2006); Witten et al. (2009), their theoretical properties are unfortunately unknown.
Hence, we expect the theoretical study of their MDDM-variants to be very challenging.
On the other hand, for the theoretically justified sparse PCA methods such as Vu

and Lei (2013); Cai et al. (2013), the computation is less efficient.

17
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4.2 Generalized eigenvalue problems with the MDDM

Now, we consider the general (arbitrary) covariance structure Xx. We continue to
use B, ..., B to denote the nontrivial eigenvectors of 3x'span(MDDM (X | Y)) so
that the central subspace is spanned by 8. Again, we assume that these eigenvectors
are sparse. In principle, we could assume that E)_Cl is also sparse, and construct its
estimate accordingly. However, X3 is a nuisance parameter for our ultimate goal,
and additional assumptions on it may unnecessarily limit the applicability of our
method. Hence, we take a different approach.

To avoid estimating 2)_(1, we note that 84,...,8x can also be viewed as the

generalized eigenvectors defined as follows, which is equivalent to (3.2):
B, = arg mﬁax,@TM,B, st. B18xB=1,8/2xB =0 for any [ < k. (4.2)

Directly solving the generalized eigen-decomposition problem in (4.2) is not
easy if we want to impose further penalties, because it is difficult to satisfy the
orthogonality constraints. Therefore, we consider another form for (4.2) that does
not involve the orthogonal constraints. This alternative form is based on the following

lemma.
Lemma 1. Let \; = B;MB; and M, = M — Sx (32, _, \;8;8; ) Zx. We have

B, = arg max BTM,38, st B'ExB=1. (4.3)

Motivated by Lemma 1, we consider the penalized problem that 3, = arg maxg BTﬁkﬂ

such that 87¥x8 = 1,80 < s, where M, = MDDM,,(X | Y) and M), = M, —

18
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Sx (Zkk 51[‘31[‘3?) ix, for £ > 1, with §;, = BITR/I\EZ, and s is a tuning parameter.
We adopt the RIFLE algorithm of Tan et al. (2018a) to solve this problem; see
Algorithm 2. In our simulation studies, we consider a randomly generated initial
value 350) and a fixed step size n = 1, and observe reasonably good performance.
Although Algorithm 2 is a generalization of the RIFLE algorithm of Tan et al.
(2018a), there are important differences between the two. On the one hand, the
RIFLE algorithm extracts only the first generalized eigenvector, whereas Algorithm 2
is capable of estimating multiple generalized eigenvectors by properly deflating the
MDDM. In SDR problems, the central subspace often has a structural dimension
greater than one, and it is necessary to find more than one generalized eigenvector.
Hence, Algorithm 2 is potentially more useful than the RIFLE algorithm, in practice.
On the other hand, the usefulness of the RIFLE algorithm has been demonstrated
in several statistical applications, including sparse sliced inverse regression. Here,
Algorithm 2 decomposes the MDDM, which is the first time the penalized generalized
eigenvector problem has been used to perform SDR in a slicing-free manner in high
dimensions. A brief analysis of the computation complexity is included in Section S3

in the Supplementary Material.

5. Theoretical properties

In this section, we consider the theoretical properties of the generalized eigenvectors

of (MDDM(X | Y),Xx). Recall that if we know that ¥x = I, the generalized
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Algorithm 2 Generalized eigen-decomposition of MDDM.

—~

1. Input: s, K, /1\/\[1 = M, and step size n > 0.
2. Initialize ,@io).
3. Fork=1,...,K,do

(a) Iterate over ¢ until convergence:

By

: -1y _ Pk

i. Set pt=1) = N e
(B )TExBy,

i C =T+ (/o) (Mg p " Ex)
A1)

o () (=1
iii. B, = CpB N/Hcﬁk -
) HT(/Bk7S)

) ors 3(-1)

iV. k _—=
IHT(By: 5)l2
(b) Set Z‘]k = ,(Ai';:) at convergence and scale it to obtain Bk = fk
B Xx By,

~ — ~ AT~~~ o~ AT~
(c) Set Myy1 = My, — ExB8,MB,, - 8,8, Ex.

~

4. Output S\Y‘X = span(Bl, ooy Br)-

eigenvectors reduce to eigenvectors, and can be estimated using Algorithm 1. If we
do not have any information about Xx, we can find the generalized eigenvectors using
Algorithm 2. Either way, we let 3,, for k = 1,..., K, be the first K (generalized)
eigenvectors of MDDM(X | Y). Throughout the proof, we let C' denote a generic
constant that can vary based on the context. We show the consistency of Bk by
proving that 7, = |sin @(Bk,,ﬁkﬂ < Cse. We assume that K is fixed, and se < 1.

Recall that we define \; = B}Mﬁj as the (generalized) eigenvalue. Further, define
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d = max2_ {||Bsllo}. When we study Algorithm 1 or Algorithm 2, we assume that
s = d+ 25, where s = Cd for a sufficiently large C'. To apply the concentration
inequalities for the MDDM, we restate Condition (C1) in terms of X and Y as

Condition (C1’), along with other suitable conditions:

(C1’) There exist two positive constants og and Cy such that E{exp(200[Y||?)} < Co

and sup, maxj<;<p E{eXp(QO'OX]Z>} < Cp.

(C2) There exist A > 0 such that ming—1 g (Ax — Apr1) > A.

-----

(C3) There exist constants U, L that do not depend on n,p such that L < A\ <

A < U.
(C4) Asn — oo, dn%(logp)/?(logn)3/? — 0.

Condition (C2) guarantees that the eigenvectors are well defined. Condition
(C3) imposes bounds on the eigenvalues of M. Researchers often impose similar
assumptions on the covariance matrix to achieve consistent estimation. Condition
(C4) restricts the growth rate of p, d with respect to n. Note that d is the population
sparsity level of B,, and s is the user-specified sparsity level in Algorithms 1 and 2.
If we fix d, the dimension is allowed to grow at the rate logp = o(nlog™>n). When
we allow d to diverge, we require it to diverge more slowly than {n/ (log plog® n)}%

We present the nonasymptotic results for Algorithm 1 in the following theorem,
where the constants Di, Dy, 09,7, Cy are defined previously in Theorem 1 under
Condition (C1).
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Theorem 2. Assume that Conditions (C1'), (C2), and (C3) hold, and ¥x = L.
Further, assume that there exists 0 € (0,1/2) such that, for k = 1,..., K, we have

(B)'B, > 20, and

d d
poo= e Spacomaena- ) < LG
_3
where v* = —‘11. Then, there exists a positive integer ng = ng(og, Co, q) < 00,
Ak — A

v = (00, Co,q) € (0,1/2), and a finite positive Dy = Dy(0¢, Co,q), such that when
A A

n > ng, we have Don™" < o and for any Don™7 < e < min{4—,0}, with a
s s

2
probability greater than 1 — 54p? exp —6—713 ;
36log”n

|sin®(B,,B,)| < Cse, k=1,... K. (5.2)

Let n='2(logp)*/?log3?n < € < d~'. Then, Theorem 2 directly implies the

following asymptotic result that justifies the consistency of our estimator.

Corollary 1. Assume that Conditions (C1') and (C2)-(C4) hold. Suppose there

1
n2

exists v > 0 such that d < s < min{n”?, = +. Under the conditions in

(log p)? (log )2
Theorem 2, the quantities |sin @(3,, B,)| — 0 with probability tending to one, for

k=1,... K.

Corollary 1 reveals that, without specifying a model, Algorithm 1 can achieve
consistency when p grows at an exponential rate of n. To be exact, we can allow

logp = o{n/(d*log®n)}. Here, the theoretical results are established for the output
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of Algorithm 1, instead of the solution of the optimization problem (4.1). Note that
it is possible for there to be a difference between the theoretical optimal solution
of (4.1) and the estimate we use in practice, because the optimization problem is
nonconvex, and, numerically, we might not achieve the global maximum. Thus, it
might be more meaningful to study the property of the estimate obtained as the
output of Algorithm 1. The above theorem guarantees that the estimate we use in
practice has the desired theoretical properties.

Although our rate in Theorem 2 is not as high as that of a sparse SIR, as
established very recently by Lin et al. (2018) when ¥x = I and for general ¥x by
Lin et al. (2019), and by Tan et al. (2020), we have some unique advantages over
these proposals. For simplicity, we assume that d is fixed in the subsequent discussion.
First, both SIR methods require an estimation of within-slice means, rather than the
MDDM. As shown in Theorem 1, the MDDM converges to its population counterpart
at a slower rate than the sample within-slice mean does. However, by adopting the
MDDM, we no longer need to determine the slicing scheme, and we do not encounter
the curse of dimensionality when slicing a multivariate response. Second, Lin et al.
(2018) only achieve the optimal rate when p = o(n?), and cannot handle ultrahigh
dimensions. In contrast, Algorithm 1 allows p to diverge at an exponential rate of
n, and is more suitable for ultrahigh-dimensional data. Third, although Tan et al.
(2020) achieve consistency when logp = o(n), their model assumptions are much

more restrictive. For example, they assume that Y is categorical and X is normal
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within each slice of Y, and they randomly split the data set to form independent
batches to facilitate their proofs, which is not done in their numerical studies.
The theoretical properties for their proposal are unclear beyond the (conditionally)
Gaussian model and without sample splitting. In contrast, our method makes no
model assumption between X and Y, and our theory requires no sample splitting.
Thus, our results are more widely applicable, and we obtain good rates. Furthermore,
unlike the theory in Tan et al. (2020), our theoretical result characterizes the same
method we use in practice. Moreover, the convergence rate of our method has an
additional factor of log®(n) compared to Tan et al. (2020), which grows at a slow
rate of n that only imposes mild restriction on the dimensionality. For example, for
any positive constant £ € (0, 1), if logp = O(n'~%), our method is consistent. In this
sense, although we cannot handle the optimal dimensionality of log p = o(n), the gap
is very small.

Next, we consider the penalized generalized eigen-decomposition in Algorithm 2.

We assume that the step size 7 satisfies PAnax(Ex) < 1/2, and

M min (Zx) (1 — 32)
16k(2x) + 1642

[1+2{(§)1/2—|—§}][1— ] <1, (5.3)

where Apax (Ex), Amin(Xx), and x(Xx) are the largest eigenvalue, smallest eigenvalue,

and condition number of ¥x, respectively. The nonasymptotic results are as follows.

Theorem 3. Assume that Conditions (C1'), (C2), and (C3) hold. Suppose there
existsy € (0,1/2) such thatd < s = o(n”), and there exists a constant 0(k(Xx), Amax(2x), A, A1, Ak, 1)
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(BB,

€ (0,1) such that ~—%5—— > 1 — 0. Then, there exists a positive integer ny =
no(sp, Co) < 00 andHl[;ok?Ui finite positive constants Dy = Dy(v,00,Co) € (0,00),
Dy = Dy(Cy) € (0,00), Dy = Dsy(09,Cp) € (0,00), and €y = €(A1, A2, Amin(2), A)
such that for any € that satisfies se < ey and Dyn™" < e < 1, with a probability

greater than 1 — Dip*nexp{—Dye>n/log®n}, we have |sin @(Bk,ﬁk)l < Cse, for

k=1,..., K.

Theorem 3 is proved by showing that ﬁk and f)x are close to their counterparts
in the sense that u™Mju and u™Sxu are close to uTMju and uT Zxu, respectively,
for any u with only s nonzero elements. Then, because Algorithm 2 is a generalization
of the RIFLE algorithm |Tan et al. (2018a)|, some properties of the latter allow us to
establish the consistency of Algorithm 2. By comparison, our proofs are significantly
more involved than that in Tan et al. (2018a), because we have to estimate K
generalized eigenvectors, instead of just the first one. We need to carefully control
the error bounds to guarantee that the estimation errors do not accumulate to a
higher order beyond the first generalized eigenvector.

Analogous to Corollary 1, we can easily obtain asymptotic consistency results by

translating Theorem 3.

Corollary 2. Assume that Conditions (C1)-(C4) hold. Suppose there exists v €

(0,1/2) such that d < s < min{n?, #} Under the conditions in Theorem 3,
ogplog®n)z

the quantities | sin @(,@k, Bi)| — 0 with a probability tending to one, fork =1,... K.
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Corollary 2 shows that Algorithm 2 produces consistent estimates of the generalized
eigenvectors (3, even when p grows at an exponential rate of the sample size n,
and thus is suitable for ultrahigh-dimensional problems. Similarly to Corollary 1,
Corollary 2 has no gap between the theory and the numerical outputs, because it
concerns the outputs of Algorithm 2. Note that the dimensionality in Corollary 2
is the same as that in Corollary 1. Thus, with a properly chosen step size 7, the
penalized generalized eigen-decomposition is intrinsically no more difficult than the
penalized eigen-decomposition. However, if we have knowledge about 3x being the
identity matrix, it is still beneficial to exploit such information and use Algorithm 1,
because Algorithm 1 does not involve the step size and is more convenient in practice.
Furthermore, although Algorithm 2 does not achieve the same rate of convergence as
recent sparse SIR proposals, it has many practical and theoretical advantages, just
as for Algorithm 1, as discussed earlier.

Finally, note that our theoretical studies require conditions on the initial value.
Specifically, we require the initial value to be non-orthogonal to the truth. This is
a common technical condition for iterative algorithms; see Yuan and Zhang (2013)
and Tan et al. (2018a), for example. Such conditions do not seem critical for our
algorithms to work in practice. In our numerical studies, we use randomly generated

initial values, and the performance of our methods appears to be competitive.
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6. Numerical studies

6.1 Simulations

We compare our slicing-free approaches with state-of-the-art high-dimensional extensions
of SIR estimators. We consider both univariate and multivariate response settings.
Specifically, for the univariate response simulations, we include Rifle-SIR (Tan et al.;
2018a) and Lasso-SIR (Lin et al.; 2019) as the two main competitors; for the multivariate
response simulations, we mainly compare our method with the projective resampling
approach to SIR (PR-SIR, Li et al.; 2008), which is a computationally expensive
method that repeatedly projects the multivariate response to one-dimensional subspaces.
For Rifle-SIR, we adopt the Rifle algorithm to estimate the leading eigenvector of
the sample matrix cov{E(X | Y)} based on slicing. In addition, we include the
oracle-SIR as a benchmark method, where we perform a SIR on the subset of truly
relevant variables (hence, a low-dimensional estimation problem). For all these SIR-
based methods, we include two different slicing schemes by setting the number of
slices to be 3 and 10, where 3 is the minimal number of slices required to obtain
our two-dimensional central subspace, and 10 is a typical choice in the literature.
To evaluate the performance of these SDR methods, we use the subspace estimation
error, defined as D(,@, B) = HP[A;—P,@HF/\/W, where 3, 8 € RP*K are the estimated
and the true basis matrices, respectively, of the central subspace, and PB’ Pg c RP*P

are the corresponding projection matrices. This subspace estimation error is always
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between zero and one, and a small value indicates a good estimation.
First, we consider the following six models for a univariate response regression:
M; and M are single-index models (i.e., K = 1); M3—M;5 are multiple-index

models (i.e., K =2); and Mg is an isotropic PFC model with K = 1. Specifically,

MY = (BX) +sin(B7X) +¢, Msy:Y =2arctan(B8] X) + 0.1(87 X)? +
B X

Ms: Y =
’ 0.5+ (1.5 + BIX)2

+0.26, My:Y =8[X+(B]X)-(8;X) + 0.3,

M; Y = sign(B7X) - log(|B; X + 5[) +0.2¢, M : X =28, exp(Y)/3 + 0.5¢,

where X ~ N,(0,¥x) and € ~ N(0,1) for M;-M;, and Y ~ N(0,1) and € ~
N,(0,1,) for the isotropic PFC model (Mg). The sparse directions in the central
subspace 3, 3, € R? are orthogonal, because we let the first s = 6 elements in 3, and
elements 6 - 12 in B, be 1/1/6 (all other elements are zero). For M~ M35, we consider
both the independent predictor setting with ¥x = I, and the correlated predictor
setting with an auto-regressive correlation that ¥ x (i, j) = 0.5/91 fori,j =1,2,...,p.
For each model setting, we vary the sample size n € {200, 500,800} and predictor
dimension p € {200, 500, 800, 1200, 2000}, and simulate 1000 independent data sets.
For our method, we apply the generalized eigen-decomposition algorithm (Algorithm 2)
in all six models (even when the covariance of X is the identity matrix). In the single-
index models M; and M, we use a random initialization (B(O) is generated randomly
from p-dimensional standard normal) for our algorithm and Rifle-SIR to demonstrate

their robustness to initialization. The step size in the algorithm is simply fixed as
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n = 1. For the more challenging multiple-index models, M3 — Mg, we consider
the best-case scenarios for each method. Therefore, the true parameter 3 is used as
the initial value, and an optimal n € {0.1,0.2,...,1.0} is selected from a separate
training sample with 400 observations. The results based on 1000 replications for
n = 200 and p = 800 are summarized in Table 1; the remaining results can be found
in the Supplementary Material. Overall, the slicing-free MDDM approach is much
more accurate than existing SIR-based methods. It is almost as accurate as the
oracle-SIR. Moreover, it is clear that SIR-type methods are rather sensitive to the
choice of the number of slices.

Next, we consider three multivariate response models, where the response dimension
is ¢ = 4. These three models are a multivariate linear model, a single-index heteroschedastic
error model, and an isotropic PFC model. The predictors satisfy X ~ N,(0,1,) in
the following two forward regression models. Therefore, we apply Algorithm 1 for
our method under models M7, and Mg. For the isotropic PFC model Mgy, where
X |Y ~ N,(Bf(Y),1,), we still apply Algorithm 2, to be consistent with the
univariate case. For the projective resampling methods, PR-SIR and PR-Oracle-
SIR, we generate a sufficiently large number of nlog(n) random projections so that

the PR methods reach their fullest potential.

M, Y] = ,BITX + €1, Yy = [32TX+ €, Y3 = €3, and Y, = ¢4. The errors
(€1,...,€4) are independent standard normal, except for cov(ep,es) = —0.5.

For this model, the central subspace is spanned by 3, = (1,0,0,0,...,0)T and
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¥x MDDM  Oracle-SIR(3) Oracle-SIR(10) Rifle-SIR(3) Rifle-SIR(10) LassoSIR(3) LassoSIR(10)

Error SE Error SE Error SE Error SE  Error SE  Error SE  Error SE

M; 101 0.1 125 0.1 10.3 0.1 252 1.0 | b3.7 1.4 379 04 | 599 0.7
My 103 0.1 ] 13.1 0.1 10.6 0.1 26.1 1.0 | 54.7 1.4 40.1 04 | 61.5 0.7
I, Mj; 177 02| 408 0.2 27.7 0.2 713 0.0 | 71.2 0.0 76.5 0.2 | 8.0 0.2
My 230 02| 4538 0.3 36.4 0.3 719 0.0 | 716 0.0 852 0.2 | 915 0.2

Ms 308 0.6 2838 0.2 22.1 0.1 716 0.0 | 71.2 0.0 712 03 | 81.3 0.3

My 187 03] 21.0 0.2 17.6 0.2 347 08 | 398 1.1 353 03 | 355 0.3
My 142 02| 20.7 0.2 14.8 0.2 33.1 0.7 | 33.6 1.1 346 03 | 30.5 0.3

My 252 0.3 44.6 0.2 34.1 0.2 715 0.0 | 713 0.0 54.8 0.2 | 471 0.3
AR

My 591 0. 75.1 0.2 69.9 0.3 81.0 0.2 | 787 0.2 89.7 0.2 | 921 0.2

ot

Ms 462 06| 464 0.2 35.5 0.2 73.8 0.1 | 724 0.0 66.5 02 | 614 0.3

PFC Mg 346 0.6| 489 0.5 33.4 0.5 40.1 0.7 | 308 0.6 70.7 0.0 | 70.7 0.0

Table 1: Averaged subspace estimation errors and the corresponding standard errors

(after multiplied by 100) for univariate response models (n = 200, p = 800).

B, =(0,2,1,0,...,0)T.

Mg @ Y] =exp(e) and Y; = ¢, for i = 2,3,4, where (ey,...,€) are independent
standard normal, except for cov (e, €5) = sin(BX). For this model, the central
subspace is 8 = (0.8,0.6,0,0,...,0)T. Note that, marginally, each response is

independent of X.

My : X = B(isin(Y7) + Zexp(Ya) + Y3) + €, where 8 = (1/v6 - 16,0,_6), and

€ ~ N(0,I,). Hence, Sy;x = span(3).
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Again, we consider various sample sizes and predictor dimension setups, each with
1000 replicates. We summarize the subspace estimation errors in Table 2. For
p = 800 and 1200, the results are gathered in Section S1 in the Supplementary
Material. It is clear that the proposed MDDM approach is much better than PR-
SIR, and also improves much faster than PR-SIR does when we increase the sample
size. Note too that the MDDM method perform better in inverse regression models,
such as the isotropic PFC model, than it does in forward regression models, such as
the linear model and index models. This finding is more apparent in the multivariate
response simulations than in the univariate response simulations. This is expected,
because the MDDM directly targets the inverse regression subspace, which is more

directly driven by the response in the isotropic PFC models.

6.2 Real-Data Illustration

In this section, we use our method to analyze the NCI-60 data set (Shoemaker; 2006)
that contains microRNA expression profiles and cancer drug activity measurements
on the NCI-60 cell lines. The multivariate response is the cancer drug activities of
g = 15 drugs; the predictor is p = 365 different microRNA; the sample size is n = 60.

First, we examine the predictive performance of our method on 500 random
training—testing sample splits; each time, we randomly pick five observations to
form the test set. We consider K = 5 for all methods. For the MDDM, we include

both the eigen-decomposition (Algorithm 1) and the generalized eigen-decomposition
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n =100 n = 200 n = 400

p =100 p =200 p =400 =100 p =200 p =400 p =100 p =200 p =400
Error SE Error SE Error SE | Error SE Error SE Error SE | Error SE  Error SE  Error SE
MDDM 371 05 398 05 425 05| 240 04 253 04 269 04| 161 03 173 03 186 0.3
PR-Oracle-SIR(3) 126 0.2 122 02 120 02| 88 01 85 01 87 01| 59 01 58 01 58 0.1
PR-Oracle-SIR(10) 162 0.3 157 03 156 03| 96 02 94 02 952 02| 60 01 60 01 6.0 0.1
M PR-SIR(3) 79 01 8.2 01 935 00| 679 01 793 01 878 0.0 546 01 676 01 79.0 0.0
PR-SIR(10) 835 01 906 01 949 00| 701 01 816 01 901 0.1 553 01 682 01 80.2 0.1
MDDM 79.4 09 8.8 08 900 07559 12 610 1.2 684 12| 271 09 303 10 310 1.0
PR-Oracle-SIR(3) 409 0.9 413 09 414 09| 260 07 249 07 250 0.6 149 04 149 04 150 04
PR-Oracle-SIR(10) 44.1 09 438 0.9 435 09| 251 0.6 237 06 241 06| 131 03 130 03 132 03
M PR-SIR(3) 99.3 0.0 99.7 0.0 99.8 00| 992 00 99.7 00 998 0.0| 988 0.0 996 0.0 99.8 0.0
PR-SIR(10) 99.3 0.0 99.7 00 999 00| 991 00 996 00 998 0.0 984 0.1 99.6 0.0 99.8 0.0
MDDM 153 03 154 03 157 03] 99 01 101 01 100 01| 71 01 72 01 71 0.1
PR-Oracle-SIR(3) 152 0.2 152 02 149 02| 105 01 106 01 105 01| 75 01 76 01 74 0.1
PR-Oracle-SIR(10) 138 0.2 139 0.2 136 02| 94 01 97 01 96 01| 68 01 68 01 67 01
Ao PR-SIR(3) 585 02 723 02 84.0 02| 446 01 582 01 714 01| 331 01 446 0.1 579 0.1
PR-SIR(10) 548 0.2 685 02 806 02| 411 02 543 02 677 02 302 01 41.0 01 542 0.1

Table 2: Averaged subspace estimation errors and the corresponding standard errors

(after multiplying by 100) for multivariate response models.

(Algorithm 2). To distinguish between the two versions of the MDDM, we have
“MDDM-ID” for the eigen-decomposition approach, because it implicitly assumes
that the covariance of X or the conditional covariance of X | Y is a constant times
the identity matrix. We use random initial values, and choose the sparsity level to
be s = 25 in the way described in Section S2 in the Supplementary Material. Then,

the five reduced predictors 3} X, for k = 1,...,5, are fed into a generalized additive
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Figure 1: Quantile-quantile plots for prediction error comparisons between MDDM
and Lasso-SIR (left panel), and between MDDM-ID and Lasso-SIR (right panel).
Each point corresponds to the prediction mean squared errors for one of the ¢ = 15

response variables, where different shapes represents different quantiles.

model for each drug. Finally, we evaluate the mean squared prediction error based
on the test sample. The Rifle-SIR can only estimate a one-dimensional subspace,
which did not yield an accurate prediction in this data set. Hence, for comparison,
we compute five leading directions from the Lasso-SIR. The 25th, 50th, and 75th
percentiles of the squared prediction errors for each of the 15 responses for all three
models are obtained, and we construct quantile-quantile plots in Figure 1. The red
line is the y = x line, and the black dashed line is a simple linear regression fit for the
results indicated by the y-axis label against that indicated by the x-axis. Clearly, for

all the quantiles and for all the response variables, the MDDM results (MDDM or
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Figure 2: The averaged prediction error over 500 training-testing sample splits and

over ¢ = 15 response variables.

MDDM-ID) are better than those of Lasso-SIR in terms of prediction. In addition,
we construct side-by-side box plots of the prediction error averaged over all response
variables in Figure 2 to evaluate the overall improvement. Interestingly, the MDDM-
ID is slightly better than the MDDM approach. This is likely because of the small
sample size. With a training sample of size 55, the sample covariance of p = 365
variables is difficult to estimate accurately. We include additional real-data analysis

results in Section S2 in the Supplementary Material.
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7. Discussion

We have proposed a slicing-free high-dimensional SDR method based on a penalized
eigen-decomposition of a sample MDDM. Our proposal is motivated by the usefulness
of the MDDM for dimension reduction, and yields a relatively straightforward implementation
of the recently developed RIFLE algorithm (Tan et al.; 2018a) by simply replacing the
slicing-based estimator with the sample MDDM. Our methodology and implementation
involve no slicing, and treats univariate and multivariate responses in a unified
fashion. Theoretical support and finite-sample investigations provide convincing
evidence that the MDDM is a very competitive alternative to SIR, and may be
used as a surrogate for an SIR-based estimator in many related SDR problems.

As with most SDR methods, our proposal requires the linearity condition, the
violation of which can make SDR very challenging. Existing works that relax the
linearity condition are often practically difficult, owing to excessive computational
costs, and cannot be easily extended to high dimensions (Cook and Nachtsheim; 1994;
Ma and Zhu; 2012). One potentially useful approach is to transform data before SDR
to alleviate obvious violations of the linearity assumption (Mai and Zou; 2015). In
addition, we observe from our simulation studies that the RIFLE algorithm requires
choosing several tuning parameters, such as the step size and the initial value, and
that the optimization error could depend on these tuning parameters in a nontrivial
way. Further investigation on the optimization error and data-driven choices for

these tuning parameters are desirable, and are left for future research.
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As pointed out by a referee, many SDR methods beyond SIR involve slicing. It
will be interesting to study how to perform them in a slicing-free fashion as well.
For example, Cook and Weisberg (1991) attempt to perform dimension reduction
by estimating the conditional covariance of X, while Yin and Cook (2003) consider
the conditional third moment. These methods slice the response to estimate the
conditional moments. In the future, one can develop slicing-free methods to estimate

these higher-order moments and conduct SDR.

Supplementary Material

The online Supplementary Material provides additional simulation results and proofs.
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