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THE TUCKER LOW-RANK CLASSIFICATION
MODEL FOR TENSOR DATA

Junge Li, Qing Mai, and Xin Zhang

Florida State University

Abstract: With the rapid advances of modern technology, tensor data (i.e., multi-
way array) have been collected in various scientific research and engineering ap-
plications. The classification of tensor data is of great interest, where predictive
models and algorithms are proposed for predicting a categorical class label for
each tensor-valued sample. Aiming to improve interpretability of tensor clas-
sification methods, we consider an intuitive and efficient discriminant analysis
approach, referred to as the Tucker Low-rank Classification (TLC) model. The
TLC model assumes that the between-class mean differences have a low-rank
Tucker decomposition, while the covariance matrix is separable. As such, the
TLC model greatly reduces the number of parameters by exploiting the tensor
structure. We construct a penalized estimator for the TLC model to achieve a
sparse Tucker decomposition on the key discriminant analysis parameters and
to further improve the parsimony in the final classifier. We establish estima-
tion, variable selection, and prediction consistency for the penalized estimator to
confirm that the proposed estimator achieves efficiency gain compared to stan-

dard methods. We demonstrate the superior performance of TLC in extensive
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simulation studies and real data examples.

Key words and phrases: Classification; Dimension reduction; Discriminant anal-

ysis; Tucker tensor decomposition.

1. Introduction

Tensor data, also known as multi-way arrays, are often collected in modern
scientific studies and engineering applications. For example, in gene ex-
pression analysis, observations are sometimes in the form of matrices (i.e.,
two-way tensors) with rows characterizing genes and columns representing
experimental conditions, tissues, or time points. Neuroimaging studies work
on analyzing electroencephalography (EEG, i.e., two-way tensors), anatom-
ical magnetic resonance imaging (MRI, i.e., three-way tensors), functional
magnetic resonance imaging (fMRI, i.e., four-way tensors), and so on.

The increasing popularity of tensor data has posed many challenges
to statistical analysis. One such challenge is that tensor data are usually
high-dimensional, which results in a large number of parameters and ex-
pensive computation. A more distinctive challenge is that multi-way data
usually have information embedded in the tensor structure, which is not
easy to exploit using classical vector methods. For example, if we vector-

ize our tensor data, we could apply vector methods afterwards. To tackle
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the high dimensionality, we can apply penalized vector methods to enforce
sparsity (Tibshirani, 1996, e.g.). However, such brute-force solutions are
susceptible to loss of information and may make interpretation difficult,
because directly vectorizing tensor data ignores their intrinsic structure.
For instance, in Section 7 we study the Gene Time Course Data, where
predictors are matrices, with gene expression levels arranged along columns
and time points along rows. It is difficult to recover such information on
the vectorized data. Therefore, it is highly desirable to model tensors in
their original form. To this end, efficient algorithms and theoretical results
have been established on tensor decomposition (De Lathauwer et al., 2000;
Zhang and Xia, 2018, e.g.). Meanwhile, statistical models and methods for
tensor data are also a fast developing area of research. See Bi et al. (2021)
for a recent overview.

For tensor classification problems, we propose an interpretable model
that accounts for the tensor structures and the high dimensionality of the
data. Thanks to the simplicity and convenience of normal distributions,
the linear discriminant analysis (LDA) model has been extended to matrix
and tensor data in recent years (Molstad and Rothman, 2019; Pan et al.,
2019). Assuming tensor normal distribution within class, the tensor dis-

criminant analysis (TDA) model offers a probabilistic framework for tensor
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classification and has direct interpretation and analogy to the LDA model.
Moreover, the tensor normal distribution implies a separable covariance
that drastically reduces the number of parameters. The resulting classi-
fiers are shown to work well in extensive numerical studies. However, the
tensor structure is not exploited when existing methods primarily model
the within-class means. Hence, they are likely to suffer loss of efficiency,
especially if the means have some parsimony structure.

To improve the parsimony of the TDA model, we propose a Tucker
low-rank classification (TLC) model. The TLC model is a refinement of
the TDA model, but in addition leverages the Tucker tensor decomposition
on the mean differences. As a result, the tensor coefficient in the optimal
classifier enjoys a reduce-and-predict interpretation. To further improve the
interpretability, we impose the sparsity assumption on the tensor coefficient
and construct a penalized estimator accordingly. Our estimator is shown
to achieve estimation, variable selection, and prediction consistency and
demonstrates competitive performance in numerical studies.

It is worth mentioning that the proposed method is related to, but
different from, three threads of existing classification methods. First, on
vector data there exist a large number of high-dimensional linear discrimi-

nant analysis methods (Cai and Liu, 2011; Fan et al., 2012, e.g.) But these
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methods are not designed for tensor data. The second family of methods
extend Fisher’s discriminant analysis (Fisher, 1936) to tensor data (e.g.,
Li and Schonfeld 2014; Zhong and Suslick 2015). These methods attempt
to maximize the between-class variation. In contrast, our method is based
on a probabilistic model and is guaranteed to obtain the optimal classifier.
Thirdly, researchers have developed logistic regression on tensor-variate pre-
dictors (Wimalawarne et al., 2016; Zhou et al., 2013; Li et al., 2018, e.g.).
But the covariance structure of tensor predictors is practically ignored in
these regression models. By explicitly and jointly modeling the mean and
covariance of tensors, our discriminant analysis approach is easy to inter-
pret and efficient in computation. Moreover, many existing methods are
designed to work on binary classification problems, while our method pro-

vides a unified solution to binary and multi-class problems.

2. Notation and Preliminaries

The following notations will be used repeatedly throughout this article. A
multi-dimensional array A € RP1**PM ig referred to as an M-way tensor.
The vectorization of A, denoted as vec(A), is a vector of length (H%Zl DPm)
with element A;, ;,, mapped to the j-th element of vec(A) where j =

T+ "M (i — D) T, paw]. The mode-k matricization of A, denoted as
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A (1), reshapes A as a (py ¥ Hm;ﬁk Pm) Matrix with A;, _;, being the (i), 1+
> k(i — 1) Tlcpr o p1)-th element of A). The mode-k product of A
with a matrix D € R"*P¢_denoted by A x;D, is of dimension p; X- - - X pp_1 X
T X D1 X - X par With (A X D)jy iy jigsying = ?::1 Qiyigerin djip - The
Tucker decomposition of tensor A is defined as A = C x1D; x5+ Xy Dy,
or equivalently written as A = [C; Dy, ..., D], where C € R > x" [y <
Pm, is called the core tensor and D,, € RP»*™ m = 1,..., M, are called
factor matrices. Usually factor matrices are assumed to be orthogonal, i.e.
D,, € Qp»*" where QP> is the set containing all p,, X r,,, matrices with
orthonormal columns. If A can be decomposed in this way, it is said to have
a Tucker low-rank structure with the rank being r = (rq,...,7ar). A useful
fact is that vec([C; Dy, ..., Dy]) = (&} _,;D,n)vec(C) where ® represents
the Kronecker product. The inner product of two tensors, A, B € RP1*PM
is defined to be (A, B) = >_ A B

iy oring Qining Bigeving For more details on tensor

algebra, we refer to Kolda and Bader (2009).

The tensor normal distribution is an extension of the matrix normal
distribution (Gupta and Nagar 1999, Hoff 2011). For a random tensor vari-
able X € RPr**Pm it follows a tensor normal distribution with mean p €
RP1>*xPM and separable covariance matrices 3, € RP»*P» m = 1,..., M,

along each mode if X = p + [Z; 2}/2, e 211\42]] where Z € RPY**PM hag
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(univariate) standard normal entries. We denote the tensor normal dis-
tribution using X ~ TN(p,3q,...,35). Note that ¥4,..., X, are iden-
tifiable up to (M — 1) rescaling constants. For example, given any pos-
itive constant ¢, the distribution TN(u, X, ¢ 13y, ..., X)) is the same
as TN(u, 21,3, ..., 38y). Since vec(X) = vec(u) + X2vec(Z) where
¥ = ®},_ 1 2m, the vectorization of a tensor normal variable is multivariate

normal: vec(X) ~ N(vec(p), ), but ¥ has a Kronecker product structure.

3. The Model

3.1 The Tucker Low-rank Classification Model

For a random pair (Y, X) where Y € {1,..., K}, K > 2, is a categorical
response and X € RP*PM N > 27 is an M-way tensor predictor, we

assume that (Y, X) follows the tensor discriminant analysis (TDA) model
PI‘(Y:k‘) = Tk, X | (Y:k) NTN(“’kaElw'wEM)v (31)

where 0 < 7w, < 1,2sz1 e = 1, pp € RPP*XPM g the mean of X in
class k, k=1,..., K, and ¥, € RP»*Pm m =1, ..., M, are positive definite
matrices that determine the dependence structure of X along each mode.

For identifiability issues, we assume 0,11 = 1 for m < M. Moreover, we
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assume that the adjusted mean of each class admits a Tucker decomposition,
[,l,k—ﬁ: [[gk;Al,...,AM]], k’Zl,...,K, (32)

where @t = Zszl Tk, Gr € R %™ jg the core tensor for class k with
Zle Gk = 0, and A,,, € OP»*" ig the factor matrix along mode m.
We refer to the model in (3.1) & (3.2) as the Tucker low-rank classifica-
tion (TLC) model. The TLC model leverages the tensor structure to achieve
parsimony and facilitate estimation. Recall that a brute-force approach to
analyze tensor data is to first vectorize X and then use existing models
for vectors. The TLC model is drastically different from this vectorization
approach. Note that the TLC model is a discriminant analysis model. If

we vectorize X, we need to consider the linear discriminant analysis model
Pr(Y =k)=m, vee(X) | (Y =k) ~ N(¢y,X), (3.3)

where ¢ € RITn-1Pm and 3 € RITm=1pm)x [Ty pm) Hence, even when
Pm’s are only moderately large, both ¢, and X could be high-dimensional,
which brings challenges to the estimation. In contrast, by taking advantage
of the tensor structure, TLC reduces the number of parameters in means
and covariances. In what follows, we discuss these reductions respectively.

We refer to the reduction in the mean parameter as the first-order reduction,
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and the reduction in the covariance as the second-order reduction.

The first-order reduction is achieved by assuming the Tucker low-rank
decomposition for mean differences in (3.2). It reduces the number of free
parameters in means from O([TY_, pm) to O(TTX_, rm + N 7 (D
Tm)). This reduction is significant, especially when r,, is small compared to
Pm- The low-rank assumption is sufficiently flexible for many applications,
as tensors can often be approximated by low-rank decompositions. For
example, we demonstrate how the low-rankness helps recover a 2D signal
in coefficients in Section S2.3 of Supplementary Materials.

Although the first-order reduction is considerable, in discriminant anal-
ysis model we have the potentially more intimidating parameter, the covari-
ance matrix. The second-order reduction aims to solve this issue. Instead
of allowing all the correlations to vary freely as in the vectorized model
(3.3), we model X with the tensor normal distribution, in which the depen-
dence structure is determined by the relatively small covariance matrices
3... Each covariance matrix 32,, can be viewed as the dependence structure
of X along the m-th mode. By doing so, we reduce the number of parame-

ters in the covariance from O(H%z1 p2) to O(Z%zl p2,). We also note that

2
the separable covariance structure in (3.1) has been applied in many other

tensor data analysis problems, such as regression (Li and Zhang, 2017),
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graphical models (Leng and Tang, 2012; Yin and Li, 2012; Zhou, 2014;
Zhu and Li, 2018; Lyu et al., 2019; Min et al., 2022, e.g) and clustering
(Tait and McNicholas, 2019; Mai et al., 2021). As suggested by the asso-
ciate editor, we examine this assumption in our real data analysis using the
nonparametric bootstrap test proposed by Aston et al. (2017).

As pointed out by a referee, there are some popular assumptions in the
literature that could further decrease the number of parameters. For ex-
ample, we could assume that X, can be well approximated by a low-rank
decomposition, as in the spiked covariance model (Johnstone, 2001). The
low-rank structure allows us to specify 3, with fewer parameters. It is
interesting to explore whether such an assumption can further improve the
estimation accuracy. We note though that there will be some practical con-
siderations for us to assume the spiked covariance model. For one thing, we
will further need to know how many eigenvectors are sufficient to approxi-
mate the full covariance. For the other, as will be seen in Section 3.2, the
covariance matrices are nuisance parameters for classification, while the key
parameters are the discriminant coefficients. Hence, in discriminant analy-
sis we usually refrain from making too many assumptions on the covariance
matrix to maintain the flexibility of the classifier.

On their own, both the first-order and the second-order reductions are
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reasonably popular in tensor data analysis, but our TLC model has major
differences from the existing methods. For the first-order reduction, many
existing methods (Zhou et al. 2013; Li et al. 2018; Wimalawarne et al. 2016;
Chen et al. 2019) in tensor regression and classification exploit a low-rank
structure in the tensor coefficient. The second-order reduction has been
utilized in classification, graphical models, and clustering (Pan et al. 2019;
Lyu et al. 2019; Min et al. 2022; Mai et al. 2021). However, the TLC model
is the first that couples the two reductions in the discriminant analysis
model. Compared to the tensor generalized models in the literature, our
disciminant analysis model is more interpretable, with each parameter hav-
ing clear meanings. Moreover, as will be seen in Section 3.2, both the mean
difference and the covariance matrices are nuisance parameters for classifi-
cation. But with the two reductions, we are able to achieve a parsimonious
classifier that it is otherwise difficult.

Finally, we note that there are other efforts on tensor discriminant
analysis. For example, the model in (3.1) has been considered by Pan et al.
(2019) and Mai et al. (2021) for tensor classification and clustering. How-
ever, these works only consider the second-order reduction but not the first-
order reduction. Consequently, they still require estimating the excessively

large mean tensors and could be inefficient in estimation and computation.
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Very recently, Wang et al. (2023) and Deng and Zhang (2022) consider the
envelope approach to (3.1), where the separable covariances are further de-
composed by reducing subspaces known as tensor envelopes. On the other
hand, Li and Schonfeld (2014) and Zhong and Suslick (2015) consider the
Fisher’s discriminant analysis approach that seeks multiway projection of
X to maximize the between-class variability. However, these works do not
have a probabilistic model. As a result, it is difficult to verify whether the
resulting classifier gives us the best accuracy possible. In contrast, our TLC
model yields an optimal classifier on the population level, which serves as
the target in our estimation. We discuss this optimal classifier in the next
section. Also, as pointed out by a referee, our TLC model has a similar
form to the tensor factor analysis model that has attracted considerable
attention in the literature. We discuss this connection in Section S4 in the

Supplementary Materials.

3.2 The Bayes Rule and Sparsity

The optimal classifier is commonly known as the Bayes rule. Given X, the

Bayes rule can be derived as (e.g., Hastie et al. 2009),

Y = argmax Pr(Y = k | X) = arg max 7, fx(X) (3.4)

k=1,..,K k=1,...K
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where fi(X) is the probability density function of X conditional on Y = k.

Under the TLC model, we have the following result.

Lemma 1. The Bayes rule of the TLC model (3.1)€(3.2) is

V = argmax {log(m/m) = (B (s + p)/2) + (B X)}, - (35)

where

Bk = Hq)k;Dl,...,DM]], k:2,...,K, (36)
with ®, = G, —G, e R =2 . K, andD,, = X 1A,, € RPm*rm,

Sometimes researchers assume that the factor matrices are orthogonal
in the Tucker decomposition. But in Lemma 1 we do not require D,,, to be
orthogonal. The explicit expression of D,, will help us construct estimates
in Section 4. Note that, although By is of dimension p; X --- X pyy, it is
determined by a much smaller number of parameters. In total, ®; and D,
have O((K — 1) [T, 7 + M 700 (P — 7)) parameters. Again, this is
a result of the simultaneous first- and second-order reduction in the TLC
model. Suppose that we only consider the model in (3.1) but not (3.2), then
the discriminant direction By, would be [uy, — p1; 277, ..., 2,7]. Because
i — 1 has H%zl pm free parameters without the low-rank assumption, By
has the same number of parameters. In this sense, it is indeed essential to

consider both (3.1) and (3.2) to maximize the parsimony in classification.



3. THE MODEL

The Bayes rule can also be interpreted as a reduce-and-predict ap-
proach. Straightforward calculation shows that (X, Bj) = (5{, ®,;.), where
X = [X;DT,... . DT]. Hence, the Bayes rule first projects X to be a
smaller tensor with the assistance of the low-dimensional matrices D,,,, and
then calculates the discriminant score based on this small tensor. This
is partly made possible by (3.2), where the core tensor is different across
classes, but the loading matrices A,, are constant across k. The constant
loading matrices ensure the existence of a common multi-way reduction
subspace that preserves all the information relevant to classification.

Aside from low-rankness, sparsity is another popular approach to tackle
the challenge of high-dimensionality. On one hand, estimating all parame-
ters accurately can be challenging. Even for models with low-rank structure,
the total number of free parameters may still exceed the sample size. On the
other hand, usually we are not only interested in prediction results, but also
in which features have an effect on classification. To this end, we introduce

sparsity in By’s based on the Tucker low-rank structure as follows,
Pm
Sm = ||DmH0 = Z 1{Dm[i,:]7é0}7 m = 17 ST M. (37)
i=1

When s,, < p.., we have strong sparsity. In the extreme case where s,, =

Pm, there is no sparsity constraint along mode-m. We denote the level of
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sparsity of the tensor discriminant coefficients by s = (s1, ..., Syr).

Different from element-wise sparsity (Pan et al., 2019), we assume row-
wise sparse factor matrices to induce the sparsity in By’s. Such a structure
enables us to select variables contributing to classification along each mode
and hence provide more interpretability for the model. Due to the common
factor matrix assumption in (3.2), Bygn)[im,:] = 0, Vk € {2,..., K}, when
D,.[im, ] = 0, which implies that the i,,-th variable along mode-m does not
contribute to separate any pair of classes. This introduces group sparsity
among classes when K > 2.

Overall, TLC contains low-rank structures for both adjusted means and
discriminant coefficients, and the two sets of low-rankness are connected
with each other via the separable covariance structure. Corresponding ex-

pressions are summarized in Table S1 in Supplementary Materials.

4. Estimation Procedure

Assume that observations {(Y;, X;)}"; are i.i.d., we discuss the estimation
of the Bayes rule (3.5) in this section. As suggested by Lemma 1, compo-
nents to construct the Bayes rule include {m, ux} ; and {By}£_, where
the discriminant coefficients admit Tucker low-rank structures as in (3.6).

The estimation of {X,,}_, is considered as well, since covariances reflect
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the dependence structure in data and also work as intermediate parameters
when estimating {By}X_,. We introduce both the penalized estimator and
the maximum likelihood estimator (MLE) for {B}4_, and demonstrate the

estimation procedure as follows.

4.1 Estimation of {m, u;}*, and {3, }M_,

To estimate @ and {my, pi 1< |, we use the following method of moment

(MOM) estimators under the TLC model (3.1) & (3.2),

N n ~ 1< N 1<
Th= u—g;Xi, uk—n—k;m@—k)xi, (4.8)
where n, = S 1(Y; = k), k=1,..., K. Accordingly, fiy — 1 is the MOM
estimator of p;, — 1.

Next, we proceed to the estimation of {2, }},/_;,. Denote p_,, = [[ .., -
The sample covariance along mode-m is defined as S,, = (n—K)p_,) ' > i (Xi—
Iy, ) (m) (X5 — ﬁy)(Tm) We rely on the following result to obtain estimators

for {3,,}2_,. Similar results have been presented in recent studies (Pan

et al. 2019; Mai et al. 2021).

Proposition 1. Under the TDA in (3.1),

E(S,) = ]ﬁ (H mzl)) S m—1, . M (4.9)
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Proposition 1 implies that the estimator of X,, can be obtained by
using the method of moment (MOM). As mentioned in Section 3.1, covari-
ances {3, }M_, are identifiable up to (M — 1) scaling constants. To avoid
the identifiability issue, we require o,,11 = 1 for m < M and hence have
oma1 = Var(Xi, 1Y = k). Combining the identifiability constraint with

Proposition 1, we propose to use the following estimators,

S Ls et 1 Sy LY =)

s M
il [IZ: 511

Sur, (4.10)

where \//a\r(Xl,._l\Y =k)= (nflK) Zle > v,—(Xin1—fig1..1)? is the pooled
sample estimate.

It is worth mentioning that {3,,}*_, can be estimated by the max-
imum likelihood estimator (Manceur and Dutilleul, 2013, e.g.). However,
the MLE is more computationally expensive. Nevertheless, we derive the
MLE for {3,,}}_, under the TDA model. Details about the estimation
algorithm and computational cost of such methods are included in Section
52.2 in Supplementary Materials. The MLE does not have significant im-
provements over our estimates in (4.10), but is considerably slower. Hence,
we use the explicit form estimate in (4.10) to facilitate the estimation and

improve computation efficiency.
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4.2 The Penalized Estimator of {B;}X,

Harnessed by the low-rank structure in (3.6), to obtain estimators for
discriminant coefficients {B;}1,, we only need to estimate core tensors
{®,}5, and factor matrices {D,,}*_,. We present the estimation proce-
dure assuming that the rank of By is known. In practice, the rank is usually
unknown and need to be selected via cross validation or other criteria. We
propose to use the BIC defined in Section S1.4 of Supplementary Materials.

We start from the estimate of {®;}X . Recall that &, = G, — G,
with G being the core tensor of puy — . Furthermore, the factor matrices,
{A,}M_  areshared across classes. As such, the tensor p € RP1xpPaxK-1
which stacks (pr — 1), k = 2, ..., K, along mode-(M + 1) allows for a rank-

(r1,...,7ar, K — 1) Tucker decomposistion,
o = H(I);Ahm;AM;IK—l]]; (411)

where ® € R xE=1 with @[ ... : k—1] = @, k =2,..., K. Thus,
we obtain {‘/I;k}f:2 by decomposing g, which can be formulated as the

optimization problem as follows,

(®,Ay,...,Ay) = arg min IG—[®; Ay, ..., Aur, T ]2, (4.12)
QGRTIX“‘XTJWX(K*D
A, cQPmXrm m=1 . M

and solved by the Higher-Order Orthogonal Iteration (HOOI) algorithm
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(De Lathauwer et al., 2000). HOOI is an iterative alternating least squares
(ALS) method which cyclically updates the estimate of each factor matrix
with a refined SVD and iterates until convergence. A detailed review of the
algorithm is given in Section S6 of Supplementary Materials.

Next, we estimate factor matrices {Dm}%zl. Recall that D,,, = X 1A,

m =1, ..., M. This enables us to reformulate D,, as the solution to

1
min  tr (iDTEmD - AﬁD) : (4.13)

DeRPm Xrm

Naturally, we can obatain the estimate for D,, by solving (4.13) with )
and A,, being plugged in. To enforce the row-wise sparsity in ﬁm, we
further add a group Lasso penalty (Yuan and Lin, 2006) term to (4.13) and

obtain convex objective functions as follows,

. 1 A\ . Pm Tm
min tr (§DTEmD - A£D> + A Z Z D ¢, (4.14)
=1 \ j=1

DeRPm Xrm

where X\ > 0 is a tuning parameter. Although we could use different tuning
parameters \,, along each mode, the tuning is faster if we use the same A
for all modes. The objective functions in (4.14) can be solved by using a
blockwise coordinate descent algorithm similar to that in Mai et al. (2019).
See Algorithm S2 in Supplementary Materials for details.

As suggested by (4.14), the objective functions along different modes
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have no interplay with each other and hence allow us to estimate factor
matrices independently by solving multiple matrix optimization problems.
Compared with methods (Li et al., 2018; Pan et al., 2019, e.g.) which
directly optimize over tensor coefficients, TLC requires less memory and
computes faster. Consequently, the proposed method could resolve data
of extremely high dimensions without extra downsizing, which prevents
potential information loss in preprocessing. Together, TLC is able to work
on a wide range of data and achieve excellent performance even when the
sample size is limited. The algorithm is summarized in Algorithm S1 in

Supplementary Materials.

4.3 The Maximum Likelihood Estimator of {B;}X

As suggested by a referee, we further consider the maximum likelihood
estimator (MLE) for {B;}X,. To obtain the MLE of {B;}£_,, we rely on

the following result. Without loss of generality, we assume @ = 0.

Lemma 2. Under the TLC model (3.1)€(3.2), MLEs for {A,,, X}

m=1>

~ ~ —1
and { Gy}, are given by X, = =370 (Xi = fy;) () <®m’7ﬁm2m’> (X = B3, () -

ngq

A,, = argmax tr (ﬁlmAm>—%tr (ﬁzmAﬁfl;nlAm> , ék = i Z}Q:k[[Xi; 31, ...,jM]],

ATA,,=1,,,

~ ~ o~ ~ -1 - ~ ~ ~ ~ ~
whereJ,, = (ALSIAL ) ALSL Hu = X0 Grimy (@epm AL S0 ) X, 55

m<~im i(m)“~'m >

7 n - AT -—1A 5T n
Hy,, = Zizl Gy, (m) <®m’¢mAgﬂzm}Am’> gYi(m)’ N = Zizl Ly,=k-
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Lemma 2 indicates that we can estimate the model parameters by an
iterative algorithm, where we only update one parameter and fix others in
each step. Details about this iterative algorithm are summarized in Section
S1.3 in Supplementary Materials. Due to the invariance property of MLE,
we can further construct the MLE of B, by plugging fi, ék, Am, and ZN]m

into (3.6). Note that there is no sparsity imposed on B,.

5. Theory

In this section, we discuss the statistical properties of the TLC model and
the TLC estimators. Theorem 1 gives the asymptotic property for the max-
imum likelihood estimator (MLE) of TLC and compares the asymptotic
covariance with that of MLEs under LDA and TDA models. Although our
TLC estimator is not the MLE, Theorem 1 demonstrates the benefits of
our assumptions in terms of estimation efficiency gains. For the penalized
estimator, Theorem 2 establishes the estimation error bound and variable
selection consistency for ﬁk, and Theorem 3 establishes the prediction con-
sistency in binary classification.

Denote By = vec(By),k = 2,..., K. The three discriminant coefficient

-~

MLEs are represented by 8P4 A,EDA, and B,;FLC. To present all parameters
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in these models, we define parameter vectors as follows,

{vec(®r) Hiy
{Bk}§:2 {/816}5:2

h= L = o = {vec(D,,) %:1 )
vech(X) {vech(X%,,)}M

m=1

{vech(X%,,)}M

m=1

(5.15)
where ¥ € RIIn-1PnxILi1Pm ig the covariance matrix of vec(X) and the
operator vech(-) : R%*9 — Ra(a+1)/2 gtacks unique entries of a symmetric
matrix to form a column vector.

The vector h contains all the parameters in the vectorized LDA model.
According to (3.1) and (3.6), we can see that h is an estimable function of
11 and )y, i.e., there exists functions h; and hy such that h = hy(¢,) =
hy(1)). Plugging in 151, and 122, we use ELDA, ETDA = hl({b\l) and lAlTLC =
hs(1,) to denote the estimators obtained under the vectorized LDA, TDA,
and TLC models, respectively. The three estimators have reductions of
different orders. The estimate ﬁLDA is obtained by using the brute-force
approach and hence has no reduction. The estimate ETDA uses only the
second-order reduction that comes from the separable covariance structure,
while HTLC leverages the first-order reduction as well due to the additional
low-rank structure. The asymptotic property of the three estimators is

stated in the following theorem.
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Theorem 1. Assume that {(Y;, X;)}", are i.i.d. observations under the
TLC model (3.1) and (3.2). Denote the true parameters ash* = ((83)7, ..., (B4,) T, vech(Z*) 1) L.
Then, /n(hyps — h*) = N(0,Wg), vn(hgps — h*) — N(0,Ug), and
Vi(hre—h*) = N(0,Vg), with Vg < Ug < Wg. Euplicit forms of W,

Upg, and Vg are given in Section S5 in Supplementary Materials.

Theorem 1 reveals the /n-consistency of the maximum likelihood es-
timators when the tensor-variate predictor is normally distributed. In par-
ticular, ﬁTLC obtains the smallest asymptotic covariance among the three
estimators. Meanwhile, the relationship among the three asymptotic covari-
ances suggests that the asymptotic efficiency comes from the information
in structures related to reduction. When assumptions (3.1) & (3.2) hold,
the more reduction an estimator employs, the more information it can use
and hence the more asymptotically efficient it will be. Naturally, the TLC
model achieves the most asymptotic efficiency among the three models.

To develop theoretical properties of the penalized estimator, we con-
sider the diverging p,, scenario. For simplicity, we consider the special
case of M = 3, but our results easily extend to other M. We also as-
sume that p; < ps < p3, 81 <X s9 X s3,77 X 19 < r3 throughout the
rest of this section. We further introduce the following notations. Denote

Nm = Or,,, ((my) as the 7,,-th singular value of pu(,,). Let n = min{n, 72,3},
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b = min{plap%p?)}? o= min{rl7r27r3}7 and s = min{81782783}' Define
S, = {j : the j-th row of D,, is not all zero} and its estimate S,, = {j :
the j-th row of D,, is not all zero}. Further define t,, € R**(K=1 a5 the

subgradient of the group lasso penalty at true D,, and

O = max{|| By, s¢5, loo: 1 B05,.5,, oo} A = max{[| A1, Dol 1}

Dm,min = _min |Dm,kj|7 Dm,max = max ’Dm,kjL

132,56 8 B I = -

We consider the following conditions:

1/2

(C1) maxjese {2217 (B jsn Zmisnsn tmis,) ) = fm < 1;

(C2) There exist constants c;, Cy such that & < 7, < % fork=1,..., K,

2 1
Dm,max/Dm,min < C(1 and Dm,min Z S mPrm 108 prm

nn? )

(03) X, is positive definite, and C5® < Apin(Zim)

IN

/\max(zm) S Ogj

where Csy > 0 is a fixed constant;
(C4) nn? > Caapp™?, 1 < Copl? where Ciap; Co > 0 are fixed constants;
(C5) ||p||lr < C" where C" > 0 is some constant.

Condition (C1) is a technical condition to guarantee the selection con-

sistency. A similar one has been used to study the group lasso penalized
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regression model (Bach, 2008). Condition (C2) ensures that the classes
are reasonably balanced. Condition (C3) requires the eigenvalues of the
covariance matrices to be bounded, which implies that X,, remains well-
conditioned as p,, grows. Such a condition is commonly adopted to facil-
itate the analysis of high-dimensional tensor data (Pan et al., 2019; Lyu
et al., 2019; Min et al., 2022). Condition (C4) is a signal strength condition
to ensure an effective low-rank decomposition. Condition (C5) is a mild

assumption that comes from the low-dimensional structure of G, — Gj.

Theorem 2. Under the TLC model (3.1)€9(3.2), denote the combined dis-

criminant coefficient as B where By

k-1] = Bg, k = 2,..., K. Under

Doyt

conditions (C1) - (C5), we have

(a) If X < ﬂ/rplogp the penalized estimator of B satisfies

srplogp

B-B|,<
I | r e

(5.16)
with probability at least 1 — O (p™').

(b) If there exist constants 1y, 1y such that 1y 4/ pmlo% <A< mln{ T o (1—

Km)}, we have that Sy =38, with probability at least 1 — O(p;f).

Theorem 2(a) gives an upper bound for the discriminant coefficient

estimate given a properly chosen A. If S2%P _5 (. B is consistent as
nn ?
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n,p — 00. Theorem 2(b) suggests that we could identify important features

accurately using the penalized estimator if A is chosen properly. If we

further assume that \/p’"}f% < \/%;;Qgp S min{Dg;:i“,wQ(l — Km)},
then when we choose A < W%’ the two parts of Theorem 2 gives the
estimation and variable selection consistency for the discriminant coefficient
estimator and supports the application of our model.

Next, we consider the prediction consistency of the penalized estimator

in binary classification, i.e, K = 2. Multiclass problems can be worked out

similarly. Define the oracle and empirical misclassification risk as follows,
Rop(8) = Po(label(X) # Cop(X)),  Ro(C) = Po(label(X) # C(X)),
where C,,;(X) is the prediction of the Bayes rule and C (X) is that of TLC.

Theorem 3. Under the TLC model (3.1) & (3.2), if Conditions (C1) -

(C5) are satisfied, with \ =< 1/%, we have

y 3 1
inf P (Rg(C) R0 < Y VZZZ) ng) >1-0(p™Y).  (5.17)

Theorem 3 suggests that the penalized estimator further achieves pre-
diction consistency when n,p — oo as long as (53%7:% — 0. Therefore,
the penalized estimator is asymptotically equivalent to the Bayes rule in

terms of classification accuracy.
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In our Theorems 2 & 3, the TLC model has a stronger assumption on the

dimensionality than TDA. It has been shown in the literature that the TDA
M M
(Tl $m) Qs 108 )

n

(Min and Mai, 2022). But we need Srfll% — 0 for the penalized estimator

model can be consistently estimated when — 0
to be consistent, which is a stronger assumption on the dimensionality.
However, our dimensionality assumption still allows the tensor to have a
high dimension. Recall that p = min{p;, p2,p3}. When S”:LITOQ” — 0, it is

still possible to have Hf’n:l Pm to be much larger than n.

6. Simulation Studies

In this section, we examine the empirical performance of TLC when the
model assumptions are all satisfied. Performance comparison when the
model is mis-specified is included in Section S2.5 in Supplementary Materi-
als. We consider three versions of TLC: TLC-Oracle (sparse), TLC-Oracle
(MLE) and TLC-BIC (sparse). The oracle methods use the true ranks to fit
the models, either with the penalized procedure or MLE. TLC-BIC (sparse)
uses the proposed BIC to select ranks, and then fit the sparse estimates.
Apparently, only TLC-BIC (sparse) is applicable in practice where we do
not have information on true ranks, while the oracle methods are bench-

marks. We compare TLC with popular competitors including diagonal LDA
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(DLDA; Dudoit et al. 2002), l;-penalized general linear regression ({1-GLM;
Friedman et al. 2010), [;-penalized Fisher’s discriminant analysis (I;-FDA,;
Witten and Tibshirani 2011), Tucker tensor regression (TuckerReg; Li et al.
2018), elementwise sparse tensor discriminant analysis (CATCH; Pan et al.
2019), constrained multi-linear discriminant analysis (CMDA) and directly
generalized tensor discriminant analysis (DGTDA; Li and Schonfeld 2014).

For all simulation models, we have 100 independent data replicates.
Within each replicate, the training set and the validation set both have 600
observations. Parameters of TLC and competing methods are tuned on the
validation set. The reported classification error rates are evaluated on the
test set which is of size 3000. When constructing simulation models, we
consider covariance structures including the autoregressive structure (X =
AR(0), where 0;; = ol"=9l) and the compound symmetry structure (¥ =
CS(0), where 0;; = 0 when i # j and o;; = 1 for all 7).

First, we consider the case where predictors are matrices. In particular,
We set B, as an image with a cross in the center and responses being
binary labels, i.e., K =2 in Model M1. (Due to the space limit, results of
models where B;’s are randomly generated are provided in Section S2.3 of
Supplementary Materials.) The image of B, is downloaded from the website

of TensorReg (https://hua-zhou.github.io/TensorReg/) and rescaled
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so that the Bayes error rate is controlled to be around 5-10%. The coefficient
B, with such an image signal has the sparse low-rank structure. Set n; =
ny = 300. We generate X according to (3.1) with ps = $[Ba; 3y, o], p1 =
— 2. Specifications of Model M1 are summarized in Table 1.

Next, we consider cases where predictors are 3-way tensors in Models
M2 - M4. Specifically, we consider binary classification with equal rank
along each mode in M2, multiclass classification with unequal mode ranks
in M3, and the case where predictors are higher-dimensional with higher
rank in M4. Moreover, for each model, we consider three different scenarios:
(a) all entries are independent; (b) all entries are correlated; (c) data are
imbalanced. According to (3.6), we construct {By,}X_, with randomly gen-
erated core tensors G, and factor matrices D,,. Entries of G,k =2, ..., K,
are normally distributed and G, = (31—, m:Gx)/m1. To obtain row-wise
sparse D,,, we generate a random matrix f)m € O, «r,, and an index set
2, which is randomly sampled from {1, ..., p,,} with the cardinality being
Sm. The matrix D,, is set to be D,,[i,:] = ﬁm[j, | if i € Q,, where i is the
j-th element of Q,, and D,,[i,:] =0 if i & Q,,.

Then, we construct By and p with By =[Gy —G1; D1, Dy, D3], k=
2., K pp = [Gr; XDy, 3D9, 33D3]], k = 1,..., K, and generate pre-

dictors based on (3.1). Other specifications are summarized in Table 1.
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M1 M2 M3 M4
(a (b)) |(&) (b) () |(@) (b) () |(@ (b (c)
2 2 3 3
p | (64,64) (30, 30, 30) (30, 30, 30) (50, 50, 50)
r (2, 2) (3,3, 3) (2, 3, 4) (5,5, 5)
s (23, 22) (8, 8, 8) (8, 8, 8) (12, 12, 12)

3 | Iea T4 I30 AR(0.7) AR
o [Igs AR(0.7)|Isp AR(0.7) AR

0.7) | Iso AR(0.7) AR(0.7)|Iso AR(0.7) AR(0.7)
0.7) | Is0 AR(0.7) AR(0.7)|Iso AR(0.7) AR(0.7)

= =

ss| - - |13 ©S(0.3) CS(0.3) |[I30 CS(0.3) CS(0.3) |Iso CS(0.3) CS(0.3)
m (12 172 |12 1/2 1/4 |1/3  1/3 1/5 |1/3  1/3 1/5
m[1/2  1/2 [1/2  1/2 3/4 [1/3  1/3 3/10 |1/3  1/3 3/10
w3 | - - - - - |13 1y3 /2 |1/3 1/3 1/2

Table 1: Simulation settings for M1-M4. In particular, entries of By are either 0 or 0.2
in M1(a) and are either 0 or 0.1 in M1(b).

Classification results of various methods are reported in Table 2. (Due
to the space limit, we report variable selection results in Section S2.1 in
Supplementary Materials.) The optimal Bayes error (i.e, the error of the
Bayes rule) is reported as a baseline of the classification error rate. We
can see that TLC significantly outperforms competing methods under all
settings. This supports the application of TLC across various numbers
of classes, prior probabilities, dimensions, ranks, sparsity, and covariance
structures. In particular, the margin of error rates between TLC and alter-
native methods increases from M1 to M4, which implies the importance of
honoring the tensor structure, especially the combination of the low-rank
structure and the separable covariance structure. Besides, the performance

of TLC-BIC (sparse) is close to that of TLC-Oracle (sparse) on matrix data,



7. REAL DATA ANALYSIS

and there are no significant differences between error rates of the two meth-
ods when data are three-way tensors. This supports the application of the
proposed BIC. Rank selection results are reported in Section S2.4 of Supple-
mentary Materials. Compared with the penalized estimator, TLC-Oracle
(MLE) may have less satisfying performance under most settings, which

implies the necessity of honoring the sparsity structure in high-dimensional

context.
M1 M2 M3 M4

Error(%) @ O] @ ® © @ 0 O] @ 0 @
Bayes 711 6.65|6.34 590 6.41 |6.54 6.72 7.14 | 7.79 5.23 5.15 (0.05)
TLC-Oracle (Sparse) 8.47 7.93|7.41 9.67 13.07|7.31 9.14 9.06 |11.21 13.59 10.08 (0.23)
TLC-Orale (MLE) 9.99 9.28 | 9.64 10.40 20.37|7.76 8.13 8.16 | 20.27 16.36 7.30 (1.58)
TLC-BIC (Sparse) 9.05 9.03 |7.42 9.54 12.34|7.32 9.16 9.30 {11.23 13.24 9.93 [(0.17)
CATCH 17.78 9.06 |16.58 13.49 15.20 [17.18 13.59 14.70| 43.97 20.85 19.82 (0.17)
CMDA 14.15 13.33|18.21 19.06 23.75 [22.27 18.95 17.19]| 36.13 24.97 18.96 (0.23)
DGTDA 50.16 50.04|50.09 48.31 35.78 [66.53 64.16 57.56| 66.53 65.55 59.44 (0.18)
TuckerReg 24.40 22.17|27.97 25.43 23.42| - - - - - - 1(0.49)
DLDA 23.60 10.29]36.68 30.36 27.25 [48.56 32.74 27.61| 57.52 36.78 26.97 (0.12)
1,-GLM 23.59 11.12[19.15 16.58 17.34 [20.55 16.29 14.94| 47.26 23.31 18.84 (0.15)
11-FDA 18.59 8.12 (25.09 25.68 24.56 |31.21 29.43 25.61| 56.52 36.78 26.97 (0.15)

Table 2: Prediction comparison. Mean and standard error of classification error rates
in M1-M4.

7. Real Data Analysis

In this section, we apply the TLC model on the Gene Time Course (GTC)
data. Analysis on another three datasets where TLC demonstrates promis-

ing performance is reported in Section S3 of Supplementary Materials.
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Recombinant Human Interferon beta (rIFNfS) is a regular treatment
used to control exacerbations in multiple sclerosis (MS) patients, but is
only reported to be successful on some patients. To explore the relationship
between gene expressions and responses to rIFNJ, Baranzini et al. (2004)
collected the GTC data which contains 76 gene expressions at 7 time points
(0, 3, 6, 9, 12, 18, 24 months after the treatment) from 53 patients. In total,
we have 53 observations with each observation being a 7 x 76 matrix. At
the end of the 24 month period, the patients were categorized into 2 classes:
33 good responders and 20 poor responders.

Our model assumptions (3.1) & (3.2) can be interpreted on this dataset
as follows. Under (3.1), the covariance matrix among the 76 genes at the
J-th time point is oy ;;3,. Hence, we are assuming that, at any given
time point, the genes interact in a similar way. Some pairs have stronger
assumptions than others at any time points. Meanwhile, for any given
gene, the temporal dependence is also assumed to have a similar pattern.
This assumption can be verified by the visualization of correlation estimates
presented in Figure 2b and the hypothesis testing (Aston et al., 2017) result
presented in Section S3.1 of Supplementary Materials. We can see that there
exist similar strong positive correlations among genes NFkB-50 to [FNaR1

at different time points. And for genes like Caspase 6 and NFkB-60, their
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negative relationship with others remain stable across time. And these
patterns are all captured by the mode-2 correlation estimate under (3.1).

On the other hand, the low-rank assumption indicates that the variation
in the full data can be captured by a few linear combinations. As shown in
Figure 1, the first singular value of fio — i1 is significantly larger than the
remaining ones. Moreover, Figure 2a suggests that the rank-1 truncated
SVD recovery of pio — 17 preserves most of the information in the sample
mean contrast. Hence, it is reasonable to believe that there exists low-
rank structure on the population level. Also, the low-rank assumption
is sometimes used to characterize the smoothness structure in the data
(Zhou et al., 2013). In the GTC data, it makes sense to believe that the
gene expression levels change smoothly over time, which is another possible
reason for the low-rank assumption. Therefore, we consider applying TLC
to this dataset and gain more insight into the relationship between gene
expression profiles and patients’ responses to rIFNS.

We randomly split the data into a training set of size 47 and a test set
of size 5 and compare the classification performance of TLC with CATCH,
CMDA, DGTDA, DLDA, [;-GLM, [;-FDA, and random forest. TuckerReg
is not applicable due to the small sample size (n = 53). For TLC, we use

7 = (1,1) suggested by Figure 1. Tuning parameters of the methods are
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selected based on 10-fold cross-validation on the training set. Average test
errors over 100 replicates are reported in Table 3. It is clear that TLC has
outperformed other methods with the smallest error rate. Meanwhile, the
classification accuracy suggests that there may exist an association between

gene expressions and responses to rIFNS.

Models TLC CATCH CMDA  DGTDA DLDA ;-GLM  ;-FDA  Random Forest
Error (%) |12.40 (1.39) 16.00 (1.58) 13.20 (1.51) 51.00 (2.19) 28.40 (2.13) 23.60 (1.87) 28.60 (2.13) 28.80 (1.96)

Table 3: Means and standard errors of mis-classification error rates on GTC data.

Singular values of [l —{i

Figure 1: Singular values of fis — Ji; where jiy is the sample estimate.

8. Discussion

In this paper, we develop the TLC model that aggressively takes the tensor
structure to reduce the number of parameters in both the mean and the

covariance. This model naturally leads to a sparse and low-rank classifier
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(b) Gene correlation matrix estimates. The left and the middle panels present
the correlation estimate at time points 1 and 3. The right panel presents the
mode-2 correlation estimate under (3.1).

Figure 2: Low-rank structure of the mean difference and the separable covariance
structure.
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for tensor data, which conducts dimension reduction and prediction simul-
taneously. The theoretical study and numerical results demonstrate the
superior performance of the proposed TLC method. We acknowledge that,
although we provide a working solution, the rank selection consistency is a
challenging problem that remains to be rigorously studied under the TLC
model. Some related works may benefit future search along this direction
(Yang et al., 2016; Zhang and Han, 2019).

The TLC model assumes a certain level of homogeneity in the dataset.
For one thing, the mean differences are assumed to have common factor
matrices in the Tucker decomposition. For the other, the covariance matri-
ces are constant across classes. These assumptions add to the parsimony of
the TLC model that promotes estimation efficiency. However, when data
are apparently heterogeneous, one may wish to generalize the TLC model
by removing either or both of the above assumptions.

For example, if 3,, are different across classes, we may want to gener-
alize TLC to quadratic discriminant analysis (QDA). Although there have
been works on sparse QDA for vector data (Fan et al., 2015; Li and Shao,
2015; Jiang et al., 2018; Pan and Mai, 2020), QDA on tensor data is ex-
pected to be much more challenging, as it involves modeling precision ma-

trices across classes. There are some related works (Zhu and Li, 2018;
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Wang et al., 2022), but the full extension of TLC to heterogeneous data
still requires considerable work, and is beyond the scope of this paper.
Similarly, as future work, we can assume heterogeneous loadings in the
low-rank structure. Such an assumption is more flexible than the TLC
model, but it will also decrease the interpretability. Recall that the Bayes
rule for the TLC model can be interpreted as a reduce-and-predict approach
(c.f Section 3.2). This interpretation is a consequence of common loadings.
If the loadings are heterogeneous, we do not have such a natural common
dimension reduction space. Nevertheless, it is worth investigating how the

heterogeneous loading assumption would affect classification accuracy.

Supplementary Materials

Detailed proofs of the theoretical results are provided in the Supplementary

Materials. Additional numerical study results are also included.
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