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ABSTRACT
Modeling the joint probability mass of multiple categorical variables as a function of predictors is a
fundamental task in categorical data analysis.When the number of response variables, number of categories
per response, and/or the number of predictors is large, existing likelihood-basedmethods cannot be applied
or performpoorly. In this article,wepropose anovel approachwhich assumes a variationof thenormal linear
discriminant analysis model. In order to estimate unknown parameters in way that exploits dependence
amongst the response variables, we propose a new penalized likelihood method based on discrete kernel
regression. We propose two estimators, each of which can lead to interpretable and parsimonious fitted
models. Theoretically, we establish statistical properties of ourmethod and demonstrate a tradeoff between
the statistical error andapproximationerror. Through simulation studies andanapplication togenomicdata,
we demonstrate that our method yields better classification accuracy and more interpretable fitted models
than existing methods. Software implementing our method, as well as code for reproducing the results in
this article, are available for download at https://github.com/yjin07/kernelizedDA. Supplementary materials
for this article are available online.
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1. Introduction

Consider a regression model where X ∈ R
p is the predic-

tor and the response consists of M distinct categorical vari-
ables, each with two ormore response categories. Specifically, let
Y1, . . . ,YM be the random responses where Ym has numerically
coded categorical support {1, . . . , cm} =: [cm] (cm ≥ 2) for
m ∈ {1, . . . ,M} =: [M] (M ≥ 2). This regression model
characterizes the joint conditional probability mass function of
interest, namely,

Pr(Y1 = v1, . . . ,YM = vM | X = x), (v1, . . . , vM) ∈ C, (1)

where C := [c1] × [c2] × · · · × [cM]. Throughout this article,
we will use both (v1, . . . , vM) and v to denote arbitrary elements
of C.

To estimate the probability mass function (1), a simple
approach is to fit a separate model for each (Ym | X),
for example, using logistic regression or linear discriminant
analysis. Then, estimates of (1) are obtained through the product
of M estimated marginal probabilities

∏M
m=1 P̂r(Ym = vm |

X = x). We refer to this approach, which implicitly assumes
responses are independent given X, as “separate modeling”. In
machine learning, many adopt a less restrictive version of the
separate modeling approach based on the notion of a “classifier
chain” (Read et al. 2009; Zhang and Zhou 2013; Read et al.
2021). A classifier chain is constructed by fitting a particular
sequence of conditional models. For example, one would first
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model (Y1 | X = x), then (Y2 | X = x,Y1 = y1), and so
on. The classification rule for a new observation with predictor
xnew would thus be the argument (v1, . . . , vm) ∈ C maximizing
the product of the successive conditional probabilities. This
sequential approach is more flexible than separate modeling,
but requires many ad-hoc choices that may have a significant
impact on performance (e.g., in what order to fit the chain or
whether to condition on predicted or observed response) and
yields fitted models whose parameters are difficult to interpret
in terms of (1), the mass function of interest.

Beyond separate or sequential approaches, there are many
methods for fitting (1) in the classical categorical data analysis
literature. In particular, many have proposed link functions with
parameters that can be interpreted in terms of their effects on
marginal probabilities and higher-order associations (Glonek
and McCullagh 1995; Glonek 1996; Lang 1996; Molenberghs
and Lesaffre 1999; Ekholm, McDonald, and Smith 2000; Lup-
parelli and Roverato 2017). While these models are often more
flexible than separate models, generally speaking, they are not
applicable when p is large, and/or are difficult to compute when
M ≥ 3.

To see why flexibly modeling (1) with large M is challeng-
ing, consider representing (Y1, . . . ,YM) as a synthetic (uni-
variate) categorical response variable Y ′ with c� = ∏M

m=1 cm
many categories, and modeling (Y ′ | X) directly. That is, for
each (v1, . . . , vM) ∈ C, we define Pr{Y ′ = f (v1, . . . , vM) |
X = x} = Pr(Y1 = v1, . . . ,YM = vM | X = x) for
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bijection f : C → [c�], and model (Y ′ | X) using standard
methods for univariate categorical response regression. We call
this approach “aggregate modeling”. Aggregate modeling is the
regression analog of modeling counts in an M-way contin-
gency table as a multinomial random variable (Agresti 2012).
In contrast to separate modeling, aggregate modeling allows for
arbitrary conditional dependence between components of the
response. However, this additional flexibility comes at the cost
of model complexity, with the number of parameters growing
exponentially in M. To make matters worse, if the sample size
is small relative to c�, it is probable that one will not observe
a response from at least one of the c� many categories of Y ′.
In such a scenario, one cannot use maximum likelihood in a
straightforwardway. Amore efficientmodeling approach should
exploit the fact that Y ′ is constructed fromM distinct response
variables.

Recently, significant efforts have been made to accommo-
date large p. Molstad and Rothman (2023) proposed to fit the
multinomial logistic regression aggregatemodel using penalized
maximum likelihood. Their penalty allowed predictors to be
interpreted as being either irrelevant, affecting only marginal
probabilities, or affecting all higher-order associations. When
M ≥ 3, however, the method from Molstad and Rothman
(2023) becomes too computationally burdensome to be useful
in practice. Along different lines, Molstad and Zhang (2022)
proposed tomodel (1) using amixture of regressionsmodel that
assumes that the tensor-valued function defined by probabilities
Pr(Y1 = v1, . . . ,YM = vM | X = x) has a low rank
decomposition for all x ∈ R

p and performs variable selection
under this paradigm. However, their method is not capable of
handling arbitrary dependence among all the responses, and is
inefficient when the true probability mass function is not low-
rank. In the supplementary materials, based on a similar low-
rank assumption, we describe a method for estimating the joint
probability mass of the responses (Y1, . . . ,YM) unconditional
on the predictor.

In this article, we propose a new model-based method for
fitting (1) under the normal linear discriminant analysis model.
Specifically, our method allows one to model complex condi-
tional dependencies between the response variables indirectly
by fitting both the inverse regression of X on (Y1, . . . ,YM)

and the joint distribution of (Y1, . . . ,YM), then applying Bayes’
theorem. For fitting X | (Y1, . . . ,YM), we use a discrete kernel
regression technique to straightforwardly handle the case where
many combinations of response categories are not observed in
the training data. More importantly, our method has parame-
ters which are easily interpretable, and can handle large M, p,
and cm.

We demonstrate these features of our method with an appli-
cation where we use a patient’s p-dimensional gene expression
profile (taken from a colon tissue sample) to classify the patient
in terms of (Y1) whether they have ulcerative colitis or not,
(Y2) whether the colon tissue was inflamed or not, and (Y3) the
location fromwhich the tissue sample was taken (sigmoid colon,
terminal ileum, descending colon, or ascending colon).

2. Kernelized Discriminant Analysis

2.1. Multivariate Linear Discriminant Analysis Model

Our method assumes a variation of the normal linear discrimi-
nant analysismodel. LettingSp+ denote the set of p×p symmetric
positive definite matrices, we assume

X | Y1 = v1, . . . ,YM = vM ∼ Np
(
μ∗v1,...,vM ,�∗

)
,

(v1, . . . , vM) ∈ C, (2)

where �−1∗ =: �∗ ∈ S
p
+ is the unknown precision (inverse

covariance) matrix and μ∗v1,...,vM ∈ R
p is the unknown

mean vector corresponding to the response category M-tuple
(v1, . . . , vM). That is, we assume that given the M-dimensional
categorical response (Y1, . . . ,YM) the predictor X follows a
p-dimensional multivariate normal distribution whose mean
vector depends on the combination of response categories, but
whose covariance is identical across category combinations.
Note that (2) is exactly the linear discriminant analysis model
under the aggregate model described in the previous section.
While this generality provides the flexibility of the aggregate
model, we estimate parameters from (2) in a way that exploits
the multivariate nature of the response. Recently, Deng, Zhang,
and Molstad (2024) proposed a tensor-based approach to
parameter estimation undermodel (2). However, their approach
is designed for the classification of a bivariate response, and is
not practically applicable with M ≥ 3. In contrast, our method
naturally handles anyM ≥ 2.

Under (2), Bayes’ classification rule for a new predictor
xnew ∈ R

p is given by the M-tuple (v1, . . . , vM) maxi-
mizing Pr(Y1 = v1, . . . ,Ym = vM | X = xnew) ∝
f∗v1,...,vM (xnew)Pr(Y1 = v1, . . . ,YM = vM)where f∗v1,...,vM (xnew)

is the density of Np
(
μ∗v1,...,vM ,�∗

)
evaluated at xnew and

Pr(Y1 = v1, . . . ,YM = vM) = π∗v1,...,vM is the marginal
probability that (Y1, . . . ,YM) = (v1, . . . , vM). Naturally, π∗v ≥
0 for all v ∈ C and

∑c1
v1=1 · · ·∑cM

vM=1 π∗v1,...,vM = 1. For our
regression problem to make sense, however, we require the π∗v
satisfy Pr(Ym = vm) > 0 for all vm ∈ [cm] and m ∈ [M]. Thus
restated, Bayes’ classification rule is

argmax
v∈C

{
μ	∗v�∗(2xnew − μ∗v) + 2 logπ∗v

}
. (3)

In practice, one would replace unknown parameters π∗v,μ∗v,
and �∗ appearing in (3) with estimates thereof. Classification
with respect to a single response component, say Y1, also
requires estimation of π∗v,μ∗v, and �∗, as Bayes’ classification
rule for Y1 under (2) is the v1 ∈ [c1] maximizing Pr(Y1 = v1 |
X = xnew), that is,

argmax
v1∈[c1]

c2∑
v2=1

· · ·
cM∑

vM=1

[
π∗v1,...,vM

× exp
{(
xnew − μ∗v1,...,vM

2
)	

�∗μ∗v1,...,vM
}]

. (4)

Based on (4), one can see that it is possible for the v1 maximizing
the marginal probability to disagree with the v′

1 from the M-
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tuple (v′
1, . . . , v′

M)maximizing Pr(Y1 = v′
1, . . . ,Ym = v′

M | X =
xnew). Equation (4) suggests that marginally, the appropriate
model for Y1 | X is the mixture discriminant analysis model
(Hastie and Tibshirani 1996). If one or more responses from (2)
were unobservable, then (2) generates the mixture discriminant
analysis model with the same number of mixtures for every
class. Later, we show that mixture discriminant analysis model
fit to each response separately performs poorly in comparison to
methods estimating all parameter from (2) directly.

In subsequent sections, we will propose new ways to (i) esti-
mate the μ∗v and the precision matrix �∗, and (ii) estimate the
discriminant vectors β∗v = �∗μ∗v directly. These discriminant
vectors span the same subspace as the classical Fisher-Rao’s
discriminant vectors, which (without the normality assumption)
sequentially maximize the ratio of between-class variance and
within-class variance. Therefore, our methodology can be used
for off-the-shelf dimension reduction, visualization, and plug-in
estimation for Fisher-Rao-type discriminant analysis, which has
been used for “multi-label” classification in the literature (Park
and Lee 2008; Wang, Ding, and Huang 2010).

As mentioned, a major deficiency of the separate model-
ing approach is that it implicitly assumes that responses are
conditionally independent. In Section S.1 of the supplemen-
tary materials, by analyzing the odds ratio, we characterize the
manner in which the linear discriminant analysis model (2)
induces conditional dependence in (Y1, . . . ,YM) | X. Perhaps
surprisingly, under certain restrictions on the precision �∗, the
mean vectors μ∗v, and their products, the model (2) can imply
conditional independence.

2.2. Considerations forMaximum Likelihood Estimation

In standard applications of the linear discriminant analysis
model—when there is only a single (univariate) categorical
response—one can expect to observe realizations of X condi-
tional on each response category. As such, one can straightfor-
wardly use standard maximum likelihood estimators for the
unknown mean vectors and covariance. Similarly, marginal
probabilities for the response categories can be estimated in a
straightforward way. For the setting where p > n, in which case
the maximum likelihood estimator of �∗ does not exist, there
are many methods for regularized estimation of the parameters
from (2) (Rothman et al. 2008; Witten and Tibshirani 2009;
Xu et al. 2015; Price, Geyer, and Rothman 2015; Molstad and
Rothman 2018), and the discriminant vectors (Cai and Liu 2011;
Mai, Zou, and Yuan 2012; Mai, Yang, and Zou 2019).

In the multivariate categorical response context, however,
estimation of the parameter from (2) becomesmore challenging.
For example, in order to estimate the mean vectors from (2)
accurately, one must observe sufficiently large sample of X from
each of the

∏M
m=1 cm response categories. Moreover, estimating

the marginal probabilities π∗v is challenging: when n is small
relative to

∏M
m=1 cm, this is essentially the problem of estimating

probabilities from a sparse contingency table (Agresti 1992).
One approach for handling this problem is to simply treat

response category combinations not appearing in the sample
data as occurring with probability zero. That is, for every v ∈ C
not observed in our training data, we would assume π∗v =

0, which makes estimating μ∗v unnecessary for the task of
classification. Of course, if we know certain category combina-
tions occur with nonzero probability, this may be inappropriate.
Moreover, the ability to interpret the parameters of (2) is one of
the primary reasons for employing the model (2).

Instead, we propose a new approach for estimating all param-
eters from (2) for the purpose of classification. Loosely speaking,
our method exploits the assumption that that if (v1, . . . , vM) is
similar to (v′

1, . . . , v′
M) (e.g., many vm = v′

m), then μ∗v1,...,vM
will be similar to μ∗v′1,...,v′M . In the case that p is large, we will
also consider two (distinct) assumptions which will reduce the
number of parameters to be estimated. The first is that many
components of the mean vectors μ∗v ∈ R

p do not vary across
the response category combinations. The second, which is not
necessarily implied by the first, is that many of the p variables
are irrelevant for classification.

2.3. Discrete Kernelized Regression of X on (Y1, . . . ,YM)

For the remainder of this section, let g∗ : C → R
p denote the

function g∗(v) := μv for each v ∈ C. Accordingly, (2) can be
equivalently characterized (X | Y1 = v1, . . . ,YM = vM) ∼
Np{g∗(v1, . . . , vM),�∗} for each (v1, . . . , vM) ∈ C. That is, g∗ is
a function whose domain is C and codomain is Rp. Define the
components of g∗ at v as g∗(v) = (g∗1(v), . . . , g∗p(v))	 ∈ R

p

where g∗� : C → R for � ∈ [p].
To exploit the notion that similar combinations of response

categories correspond to similarmean vectors, we use a variation
of kernelized regression. We assume there exists a transforma-
tionφ : C → R

d (d ≥ 1) such that ‖φ(v)−φ(v′)‖2 small implies
‖g∗(v) − g∗(v′)‖2 is small, loosely speaking. This requires the
existence of some transformation from the space of the response,
C, toRd such that if two response combinations v and v′ are close
in the transformed space, their corresponding mean vectors are
close inR

p. Such transformations φ are called “feature maps” in
nonparametric regression (Schölkopf and Smola 2002).

At a high level, we first apply the transformation φ to the
collection of observed responses, then quantify the similar-
ity between two any response category combinations via the
Euclidean inner product in R

d. Specifically, let k : C × C → R

be a symmetric positive-semidefinite kernel function such that
for any collection of n responses Y = {yi}ni=1, where yi =
(yi1, . . . , yiM) ∈ C, the n×nmatrix with (i, j)th entry k(yi, yj) =
〈φ(yi),φ(yj)〉 is positive semidefinite. Loosely, k(yi, yj) will be
large if yi and yj are similar, and vice versa.

Formally, we propose to approximate the �th component of
the mean function, g∗�, with a function g� belonging to the
hypothesis space of functions

g�(·) = η� + g̃�(·), η� ∈ R,
g̃�(·) ∈ span

{
k(·, yi) : i ∈ [n]} , � ∈ [p]. (5)

That is, g�(·) is the set of functions that can be decomposed
into a constant plus a function depending on the input ele-
ment of C. To see how such a function g� satisfies our heuris-
tic, notice that by definition of the hypothesis space, every
g�(·) = η� + ∑n

i=1 a(�)ik(·, yi) for some a(�) ∈ R
n. Therefore,

|g�(v) − g�(v′)| = |∑n
i=1 a(�)i{k(v, yi) − k(v′, yi)}| ≤ ‖φ(v) −

φ(v′)‖2
∥∥∑n

i=1 a(�)iφ(yi)
∥∥
2 so that for a given a(�), ‖φ(v) −

φ(v′)‖2 small roughly implies |g�(v) − g�(v′)| is small.
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We can also justify our hypothesis space of functions (5)
more formally. Given positive semidefinite kernel function k
with domain C × C, we may define a reproducing kernel Hilbert
space of functions,H, where for all v ∈ C, (i) k(·, v) ∈ H and (ii)
for all f ∈ H, 〈f , k(·, v)〉H = f (v) (Wainwright 2019, chap. 12–
13). Suppose, momentarily, �∗ were known. It is then natural
to consider the (nonparametric) maximum likelihood estimator
of g∗ given by argminh∈H

∑n
i=1{xi − h(yi)}	�∗{xi − h(yi)}.

By arguments similar to the generalized representer theorem
(Schölkopf, Herbrich, and Smola 2001, Theorem 1; see discus-
sion of relaxing strict monotonicity of regularizing function),
we can show that one minimizer with respect to h is given by
a function of the form ĥ�(·) = ∑n

i=1 a(�)ik(·, yi) for some a(�) ∈
R
n for each � ∈ [p]. Thus, it is natural to focus our attention

to the space of functions (5), the set of all functions having
the same linear representation as ĥ, a maximum likelihood
estimator.

For discrete kernel regression, there are many transfor-
mations φ : C → R

d, and corresponding kernel func-
tions k, that could be employed. These include the weighted
Hamming distance kernel, the weighted pair-agreement ker-
nel, and the weighted triple-agreement kernel, to name a
few. The weighted Hamming distance kernel is given by
kH(yi, yj) = ∑M

m=1 wm1(yim = yjm), where wm ≥ 0
are user specified weights (e.g., wm = √cm). This kernel
computes the (weighted) number of agreements between its
two inputs. The weighted pair-agreement kernel is defined
as kPA(yi, yj) = ∑∑

m�=m′ wm,m′1{(yim, yim′) = (yjm, yjm′)},
which counts the number of agreements between pairs of
response components. Here, wm,m′ is a user-specified weight.
Similarly, the triple-agreement kernel is given by kTA(yi, yj) =∑∑∑

m�=m′ �=m′′ wm,m′,m′′1{(yim, yim′ , yim′′) = (yjm, yjm′ , yjm′′)},
which counts the number of agreements between triplets of
response components. We can also define a combined kernel
as a weighted sum of the above kernels, allowing for a more
flexible similarity measure that captures both individual and
higher-order agreements among response components. More
flexible versions of these kernels, where weights are category-
dependent, are provided in the supplementary material. We
compare different choices of kernels numerically in Section S.3.2
in the supplementary materials. In practice, we suggest selecting
the kernel via cross-validation.

Before we formally describe how we will estimate g∗, we note
that the span of {k(·, yi), i ∈ [n]}, the space from which we
will estimate g̃, is determined by the set of unique responses
yi. For example, if yn = yn−1, then span

{
k(·, yi) : i ∈ [n]} =

span
{
k(·, yi) : i ∈ [n − 1]} . Consequently, we define Ỹ =

{̃yi}̃ni=1 as the set of distinct response category combinations
observed in Y = {yi}ni=1 (i.e., ñ ≤ n and Ỹ ⊆ Y) where
ỹi �= ỹj for all i �= j. We then define kỸ(·) : C → R

ñ as
kỸ(·) = (k(·, ỹ1), . . . , k(·, ỹñ))	, define KỸ ∈ R

n×ñ as the
matrix with (i, j)th entry k(yi, ỹj), and define K†

Ỹ ∈ R
ñ×ñ as

the matrix with (i, j)th entry k(̃yi, ỹj). It is easy to see that
span{k(·, ỹi) : i ∈ [̃n]} = span{k(·, yi) : i ∈ [n]}. The
implication of this fact is that any g̃(·) = (̃g1(·), . . . , g̃p(·))	 can
be represented as α	kỸ(·) where α ∈ R

ñ×p. Thus, in contrast
to applications of the representer theorem with predictors

drawn from a continuous distribution (wherein the coefficient
dimension is n), we need only estimate ñ coefficients per
component of g̃. It is this reduction in the number of coefficients
that makes our method particularly scalable to large M, since
in general, we expect ñ � n � ∏M

m=1 cm for large M. In
the supplementary materials Section S.7.3, we explain that this
feature of our method can be understood as exploiting an exact
version of the Nyström approximation (Williams and Seeger
2000). Thus, for a given set of n independent observations
{(y1, x1), . . . , {(yn, xn)}, we approximate the function g∗(·) with
a function of the form η +α	kỸ(·). To fit the model (2), η ∈ R

p

and α ∈ R
ñ×p will be estimated using penalized maximum

likelihood.
To establish some of the results in this article, we will often

require an assumption about the user-chosen kernel function k.
Let ϕmin(A) be the smallest singular value of a matrix A.

Assumption 1. The kernel function k is chosen so that for any Ỹ ,
there exists a constant c0 > 0 such that ϕmin(K†

Ỹ) ≥ c0 > 0.

Assumption 1 would be satisfied by a kernel function k′ for
any sample Y , if, for example, we defined k′(yi, yj) = k(yi, yj) +
c0 1(yi = yj) with k being any of the three example kernels.
This amounts to upweighting an exact match between the two
arguments of the kernel function by positive constant c0.

3. Estimation

3.1. Regularized Estimation of g∗
In order to estimate the coefficients (η,α) and the precision
matrix �∗, we propose to minimize the negative log-likelihood
with g∗(·) approximated by η + α	kỸ(·), which is given by

1
n

n∑
i=1

{xi − η − α	kỸ(yi)}	�{xi − η − α	kỸ(yi)}

− log det(�), (6)

where we have ignored some constants and det is the determi-
nant of a matrix. In low-dimensional settings, minimizing (6)
with respect to α, η, and � may work well. Specifically, we have
the following result.

Proposition 1. Define gMLE(·) = ηMLE + α	
MLEkỸ(·) where

ηMLE and αMLE are minimizers of (6) with respect to η and
α. Let x̄ = n−1∑n

i=1 xi. For each {̃yi}̃ni=1, define x̃yi =∑n
k=1 1{yk = ỹi}xk/

∑n
�=1 1{y� = ỹi} as the sample mean for

the observed response category combination ỹi ∈ C, and
define x0ỹi = ∑n

k=1 1{yk = ỹi}(xk − x̄)/
∑n

�=1 1{y� = ỹi}. If
Assumption 1 holds, then

gMLE(v) =
{

xv : if yi = v for any i ∈ [n]∑ñ
i=1 wi(v)x0ỹi + x̄ : otherwise ,

where w(v) = (w1(v), . . . ,wñ(v))	 = K0†
Ỹ

−1kỸ(v)and K0†
Ỹ ∈

R
ñ×ñ is amatrixwith (i, j)th entry k(̃yi, ỹj)−n−1∑n

i′=1 k(yi′ , ỹj).
The minimizer with respect to �, if it exists, is (n−1∑n

i=1{xi −
gMLE(yi)}{xi − gMLE(yi)}	)−1.
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Proposition 1 establishes that when we minimize (6) with
respect to η and α, our estimate of g∗, gMLE, is equivalent to the
conditional samplemean for all response category combinations
v ∈ C that are observed in the training data. For category
combinations that are not observed, gMLE is a weighted sum
of the overall sample mean and the conditional sample means
for observed response category combinations. The weights are
determined by the choice of kernel function k and the collection
of observed responses {yi}ni=1. Thus, if p and c� were fixed, and
the π∗v are bounded away from zero, as n → ∞, our method
will perform identically to standard maximum likelihood.

However, in finite samples when p and c� are large relative to
n, this may be problematic. First, the xv may be computed from
a small number of observations, and moreover, it is well known
that with p diverging quickly relative to n, linear discriminant
analysis will eventually perform no better than random guessing
due to noise accumulation in the mean estimates (Fan and Fan
2008; Elman et al. 2020). Second, when p ≥ n, the maximum
likelihood estimator of � will not exist because n−1∑n

i=1{xi −
gMLE(yi)}{xi−gMLE(yi)}	 will not be invertible. Even when p <

n, this matrix will be singular when c� is large relative to n.
As mentioned, in this article we consider two schemes for

shrinkage estimation of parameters in (6) which exploit differ-
ent assumptions about the model (2). The first assumption we
consider is that many components of μ∗v do not vary across all
v ∈ C. That is, there are many components j such that [μ∗v]j =
ηj ∈ R for all v ∈ C where [a]j denotes the jth component of a
vector a. To encourage fitted models with this property, we need
a way in which to estimate g such that many of the g̃� = 0 for all
inputs.

Notice that for anyfixedα,n−1∑n
i=1 xi−n−1∑n

i=1 α	kỸ(yi)
minimizes the negative log-likelihood with respect to η. Thus,
we need only focus on minimizing

L(α,�) = 1
n
tr
{
(X0−K0

Ỹα)�(X0−K0
Ỹα)	

}− log det(�), (7)

whereX0 = (x1−n−1∑n
i=1 xi, . . . , xn−n−1∑n

i=1 xi)	 ∈ R
n×p

and K0
Ỹ ∈ R

n×ñ is a matrix with (j, k)th entry k(yj, ỹk) −
n−1∑n

i=1 k(yi, ỹk).
If, for example, the jth column of α is entirely zero, then we

are ensured [α	kỸ(v)]j = 0 for all v ∈ C, which would imply
that [̂g(v)]j is constant. Thus, to encourage estimates of g such
that g̃�(v) = 0 for all v, we apply a group lasso penalty on the
columns ofα. Specifically, we propose to estimate the pair (α,�)

with (̂α, �̂), defined as

argmin
α∈Rñ×p,�∈Sp+

{
L(α,�) + λ‖α‖1,2 + γ

2
‖�‖2F

}
, (8)

where ‖α‖1,2 := ∑p
j=1(

∑ñ
i=1 α2

i,j)
1/2, ‖�‖F := {tr(�	�)}1/2,

and (λ, γ ) ∈ (0,∞) × (0,∞) are user-specified tuning parame-
ters. The ridge penalty on� serves to shrink the sum of squared
elements of � and ensures that with α fixed, a minimizer with
respect to � exists. Though the optimization problem in (8)
is nonconvex, it is biconvex. That is, with α held fixed, the
optimization is convex with respect to � and vice versa.

Our choice of ridge penalty on � is primarily for compu-
tational convenience. With α fixed, the minimizer of (8) with
respect to � has a closed form. One could instead penalize

the sum of the absolute values of the off-diagonals of � if it is
reasonable to assume that �∗ is sparse (Rothman et al. 2008).
This approach, however, would in general require an iterative
algorithm to minimize (8) with respect to �.

With (̂α, �̂) (and consequently, η̂) in hand, we classify a
subject with predictors xnew into response category set given
by argmaxv∈C[{η̂ + α̂	kỸ(v)

}	
�̂
{
2xnew − η̂ − α̂	kỸ(v)

} +
2 log π̂v], where π̂v is an estimate of π∗v, which we discuss in the
supplementary materials.

In the supplementary materials, we perform numerical stud-
ies also including the penalty term tr(α	K†

Ỹα) in (8), as is often
seen in kernel-based nonparametric regression. We also discuss
briefly why, in our context, we think penalizing α’s (1, 2)-norm
alone is preferable.

3.2. Convexifying Reparameterization for Direct Variable
Selection

The estimator in (8) is motivated by the assumption that many
elements of the mean vectors μ∗v do not differ across all v ∈ C.
While this affords interpretability in terms of how the parame-
ters from (2) depend on v, this does not lead to variable selection
(i.e., removal of irrelevant variables) without additional con-
straints on �∗. Recall that β∗v := �∗μ∗v is the discriminant
vector for category combination v ∈ C. As mentioned in
Remark 2 of the supplementary material, for the jth variable
to be irrelevant for distinguishing between all combinations of
response categories, it must be that [β∗v]j = νj ∈ R for all
v ∈ C. Intuitively, it is insufficient that [μ∗v]j = [μ∗v′ ]j for all
v, v′ because if the jth variable is conditionally correlated with a
variable whose means are unequal, the jth variable will affect the
decision rule (Xu et al. 2015).

When we approximate g∗(·) with η + α	kỸ(·), we approxi-
mate β∗v = �∗g∗(v) with �∗{η + α	kỸ(v)} for some η ∈ R

p

and α ∈ R
ñ×p. Therefore, if we want to estimate �∗ and (η,α)

so that our fitted model can be interpreted directly in terms
of which variables are irrelevant for discriminating between
response categories, we need to encourage fitted models such
that many elements of �̂α̂	kỸ(v) will be zero for all v ∈ C
for estimates (�̂, α̂). If the jth row of �̂α̂	 were entirely zero,
then [�̂̂g(v)]j = [�̂η̂]j = c ∈ R for all v, that is, the jth
predictor has no effect the estimated decision rule. Therefore, if
we let � := α�, imposing sparsity on the columns of � would
correspond to componentwise equality cross the discriminant
vectors. Under this parameterization, we can write the negative
log-likelihood

Lc(�,�) = 1
n
tr
{
(X0� − K0

Ỹ�)�−1(X0� − K0
Ỹ�)	

}
− log det(�), (9)

where the subscript c denotes that this is the negative log-
likelihood under the parameterization � = α�. Analogous to
(8), our estimator for direct variable selection is

argmin
�∈Rñ×p,�=�	

{
Lc(�,�) + λ‖�‖1,2 + η

2
‖�‖2F

}
subject to � � εIp, (10)

where ε > 0 is a lower bound on the smallest eigenvalue of �∗.
Remarkably, the optimization problem in (10) is jointly convex
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in (�,�) (Zhu 2020, Theorem 1). This implies that (10) is also
biconvex as both � �→ Lc(�,�) and � �→ Lc(�,�) are
convex. Though this convexifying reparameterization has been
studied in regression (Yu and Bien 2019; Zhu 2020), to the best
of our knowledge, it has not been used for variable selection in
the linear discriminant analysis model.

In practice, we impose a lower bound on the smallest eigen-
value of �, ε, making the feasible set closed (as opposed to S

p
+,

which is open). Though ε is a tuning parameter, we find that
simply setting ε equal to some reasonably small constant (e.g.,
ε = 10−4) seems to work well across a variety of settings.

With a solution to (10) in hand, say (�̈, �̈), we use classifica-
tion rule

argmax
v∈C

[{
η̈	�̈ + kŸ(v)	�̈

}
{
2xnew − η̈ + �̈−1�̈	kŸ(v)

}+ 2 log π̂v
]
, (11)

where η̈ = n−1∑n
i=1 xi − n−1∑n

i=1 kŸ(yi)�̈�̈−1. Examining
(11), it is immediate to see that if the jth column of �̈ is entirely
zero, then the jth component of xnew has no effect on the decision
rule (since η̈	�̈xnew is constant with respect to v).

4. Computation

To exploit the biconvexity of the objective function from (8),
we use a blockwise coordinate descent algorithm. That is, we
iteratively update α with � held fixed and vice versa. With α

fixed at its (t)th iterate, α(t), obtaining the (t)th iterate for �

requires solving a ridge penalized normal precision matrix esti-
mation problem,�(t) = argmin

�∈Sp+[tr{S(α)�}− log det(�)+
η
2‖�‖2F], with S(α) = n−1(X0 − K0

Ỹα)	(X0 − K0
Ỹα). It can

be shown that �(t+1) = 1
2ηV{−D + (D2 + 4ηIp)1/2}V	

where S(α) = VDV	 is the eigendecomposition of S(α) where
V ∈ R

p×p is orthogonal and D ∈ R
p×p diagonal (Witten and

Tibshirani 2009; Price, Geyer, and Rothman 2015).
With � fixed at �(t), the (t + 1)th iterate for α is α(t+1) ∈

argminα∈Rñ×p
{
L(α,�) + γ ‖α‖1,2

}
. We use a variation of the

proximal gradient descent algorithm to compute α(t+1) (Beck
and Teboulle 2009; Polson, Scott, and Willard 2015). For this
subalgorithm, we will use r as an iteration counter. Specifically,
given step size s > 0 sufficiently small and (r)th iterate of
α, α(r), the (r + 1)th iterate of the proximal gradient descent
subalgorithm is defined as

α(r+1) = argmin
α∈Rñ×p

{
1
2
‖α − α(r) + s∇αL(α(r),�)‖2F + sγ ‖α‖1,2

}
(12)

where∇αL(α,�) = − 2
n {K0

Ỹ
	X0�−K0

Ỹ
	K0

Ỹα�}. One can use
subgradient calculus to show that (12) can be solved column-by-
column in closed form. Namely,

α
(r+1)
·,j = max

⎛⎝1 − sγ
‖α(r)

·,j − s[∇αL(α(r),�)]·,j‖2
, 0

⎞⎠
×
(
α

(r)
·,j − s[∇αL(α(r),�)]·,j

)
(13)

where α
(r)
·,j is the jth column of α(r) and [∇αL(α(r),�)]·,j is the

jth column of ∇αL(α(r),�) (Yuan and Lin 2006; Simon et al.
2013). We repeat (13) for r = 1, 2, 3, . . . in sequence until the
objective function value converges.

In our implementation, we use an accelerated variation of
this algorithm (Parikh and Boyd 2014, Chapter 4.3). Briefly, the
accelerated version replaces search point α(r) − s∇αL(α(r),�)

with α(r,r−1) − s∇αL(α(r,r−1),�) where α(r,r−1) = α(r) +
r−1
r+2 (α

(r) − α(r−1)). It is well known that if s is fixed and chosen
sufficiently small—or if s is chosen by backtracking line search—
the objective function value converges at a quadratic rate (Beck
and Teboulle 2009; Parikh and Boyd 2014). We provide an
outline of the algorithm to solve (8), AlgorithmS.1 in the supple-
mentary material. To solve (10), we use a blockwise coordinate
descent scheme similar to that described in the previous section.
The complete algorithm we use for computing (10) can be
found in the supplementary material Algorithm S.2. Different
from the nonconvex case, with � fixed at (t)th iterate �(t), the
update for � does not have a closed form solution and we use
a projected gradient descent algorithm (Algorithm S.3) to solve
the optimization.

We recommend selecting all tuning parameters using cross-
validation.

5. Theoretical Properties

In this section, we study the finite sample properties of our
estimator of g∗ based on kernelized regression in (8). Let Y =
{yi}ni=1 be the observed responses, and let Ỹ = {̃yi}̃ni=1 be the
set of distinct response category combinations. The following
results will apply conditional on the set of observed responses
Y . In our context, themean vectors and discriminant vectors are
of primary interest. The precision matrix �∗ plays a crucial role
in estimation and classification, but mainly serves to bridge the
mean vectors and the discriminant vectors. As such, we assume
�∗ is known in order to focus our attention specifically on
recovery of g∗.Without loss of generality, we also assume that the
predictors are centralized in the sense that their componentwise
marginal expectation is zero. In this setting, if for a particular � ∈
[p], g∗� is constant across all response category combinations,
then g∗�(v) = 0 for all v ∈ C. Hence, we consider estimating
g∗(v) = E{X | (Y1, . . . ,YM) = v} with ĝ(v) = ∑ñ

j=1 α̂jk(v, ỹj)
where we define α̂ as

argmin
α∈Rñ×p

[
1
n

n∑
i=1

{xi − α	kỸ(yi)}	�∗{xi − α	kỸ(yi)}

+λ‖α‖1,2
]
. (14)

Notice that we can write the random predictor (conditional on
yi) as Xi = �

−1/2∗ Zi + g∗(yi), where entries of Zi ∈ R
p are

independent standard normals for i ∈ [n]. LetM∗ ∈ R
n×p have

ith row g∗(yi). Because many rows ofM∗ will be duplicated if we
observed yi = yj for many i �= j, it is convenient to defineM†∗ ∈
R
ñ×p as thematrix that contains onemean vector corresponding

to each element of Ỹ and define Q ∈ R
n×ñ as a matrix with

(i, j)th entry Qi,j = 1(yi = ỹj), so thatM∗ = QM†∗.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 7

Now, let us define α∗ ∈ argminα∈Rñ×p ‖M∗ − KỸα‖2F . If
Assumption 1 holds, then α∗ is unique and given by α∗ =
(K	̃

Y KỸ)−1K	̃
Y M∗. Moreover, it can be easily verified that under

Assumption 1, minimumα∈Rñ×p ‖M∗ − KỸα‖2F = ‖M∗ −
KỸα∗‖2F = 0. For completeness, we provide a proof of this fact
in the supplementarymaterial. The equality ‖M∗−KỸα∗‖2F = 0
implies the existence of an α such that KỸα∗ perfectly recovers
M∗. This suggests that we may treat α∗ as an estimand, and α̂ as
our estimator thereof.

Next, let us state our second assumption.

Assumption 2. There exists a constant c1 such that 0 < c1 ≤
ϕmin(�∗) ≤ ϕmax(�∗) ≤ 1/c1 < ∞, where ϕmax and ϕmin
denote the largest and smallest eigenvalue of their argument,
respectively.

Recall from Section 2.3 that we assume few components of g∗
differ as a function of its argument. In terms of M∗, this would
imply that M∗·,j = 0 for many j ∈ [p], where M∗·,j is the jth
column of M∗. If M∗·,j = 0, this implies that α∗·,j = 0 (since
M∗ is the rightmost term in the product defining α∗). Hence,
define S = {j : α∗·,j �= 0}, define Sc = [p] \ S , and let s
be the cardinality of the set S . Recall that K†

Ỹ ∈ R
ñ×ñ is the

matrix with (i, j)th entry k(̃yi, ỹj) (i.e., KỸ = QK†
Ỹ ). Define

κS = inf�∈C(S),‖�‖F=1 ‖K†
Ỹ��

1/2∗ ‖2F /̃n where C(S) = {ν ∈
R
ñ×p : ‖ν·Sc‖1,2 ≤ 3‖ν·S‖1,2}. Under Assumptions 1 and 2,

κS ≥ c20c1/̃n > 0, but for S with small cardinality, κS may be
larger. Notice that κS is effectively a restricted eigenvalue of the
matrix ñ−1(�∗ ⊗K†

ỸK
†
Ỹ) (Wainwright 2019, chap. 7.3.1), hence,

the stated lower bound.
We are now prepared to present our first result. For the

remainder of the article, let ‖ · ‖ denote the spectral norm of
matrix.

Theorem 1 (Average in-sample mean estimation error). Sup-
pose Assumptions 1 and 2 hold. Let c2 > 1 be a fixed con-
stant and let ω∗ = maxj∈[p] ‖�1/2

∗j,· ‖2. If λ = 4ω∗(‖KỸ‖F +
‖KỸ‖√2c2 log p)/n, then with probability at least 1 − p1−c2 ,

1
ñ

ñ∑
i=1

‖g∗(̃yi) − ĝ (̃yi)‖22 ≤ 36ω2∗s
ϕmin(�∗)κS

(
ñmax

ñ2min

)

×
{‖K†

Ỹ‖F
ñ

+ ‖K†
Ỹ‖
ñ

√
2c2 log p

}2

,

where ñmax := maxj∈[̃n]
∑n

i=1 1(yi = ỹj) and ñmin :=
minj∈[̃n]

∑n
i=1 1(yi = ỹj).

Theorem 1 demonstrates how well we can recover the mean
vectors, on average, corresponding to the response category
combinations observed in the training data. If ñmin is small
relative to ñmax, the bound would be worse than, say, in the
best-case scenario when ñmin = ñmax. Note that our result in
Theorem 1 is distinct from standard results for kernel regression
estimators. Our proof technique, which focuses on estimation
error for the “optimal” coefficients α∗, allows us to account for
sparsity in M∗ in a direct way using the proof strategy from
Negahban et al. (2012).

Next, we illustrate how judicious choice of kernel can improve
estimation of means for all category combinations—including
those not observed in the training data.

Lemma 1 (Statistical versus approximation error). For any v ∈
C, we have ‖̂g(v) − g∗(v)‖2 ≤ infw∈Rñ{hg∗w (v) + hφ

w(v)} +
‖(̂α −α∗)	kỸ(v)‖2, where hg∗w (v) := ‖g∗(v)−∑ñ

i=1 wig∗(̃yi)‖2
and hφ

w(v) := ‖α	∗ {∑ñ
i=1 wikỸ (̃yi) − kỸ(v)}‖2. If v ∈ Ỹ , then

infw∈Rñ{hg∗w (v) + hφ
w(v)} = 0.

The generic error bound from Lemma 1 can be decomposed
into two parts: approximation error, infw∈Rñ{hg∗w (·) + hφ

w(·)},
and statistical error, ‖(̂α − α∗)	kỸ(·)‖F . The approximation
error can be further decomposed into two pieces, represented
by hg∗w and hφ

w. The magnitude of hg∗w (v) quantifies how well
we can approximate g∗(v) with any linear combination of the
{g∗(̃yi)}̃ni=1. If we observe a sufficiently large number of response
category combinations in our training data, we could expect
there to existw such that this term is small. However, hg∗w cannot
be disentangled from hφ

w. The term hφ
w reflects the quality of our

choice of kernel function k. In particular, we can write hφ
w(v) =

‖∑ñ
�=1 α∗

�,·〈
∑ñ

i=1 wiφ(̃yi)−φ(v),φ(̃y�)〉‖2, which will be small
if
∑ñ

i=1 wiφ(̃yi)−φ(v) is small. Ideally, we could select a kernel
k (and consequently, φ) for which there exists a w such that
‖∑ñ

i=1 wiφ(̃yi)−φ(v)‖2 and ‖∑ñ
i=1 wig∗(̃yi)−g∗(v)‖2 are both

small. The optimal choice of kernel, then, is one in which both∑ñ
i=1 wiφ(̃yi) = φ(v) and

∑ñ
i=1 wig∗(̃yi) = g∗(v) for a single

vector w for all v ∈ C.
Finally, we apply Lemma 1 to establish the following.

Theorem2 (Out-of-samplemean estimation). SupposeAssump-
tion 1 and 2 hold. If λ = 4ω∗(‖KỸ‖F+‖KỸ‖√2c2 log p)/n, then
for any v ∈ C, with probability at least 1 − p1−c2

‖̂g(v) − g∗(v)‖2 ≤ ‖g∗(v) − M†∗
	K†

Ỹ
−1kỸ(v)‖2

+
[
6‖kỸ(v)‖2ω∗

√
s

κS

(√
ñmax
ñmin

)

×
{‖K†

Ỹ‖F
ñ

+
(‖K†

Ỹ‖
ñ

)√
2c2 log p

}]
.

The result of Theorem 2 follows from the fact that under
Assumption 1, there always exists a w such that hφ

w(v) = 0.
Proofs can be found in the supplementary material.

6. Simulation Studies

6.1. Data GeneratingModels and CompetingMethod

In this section, we illustrate the performance of our method
through simulation studies. We compare our estimators to
competitors under a variety of data generating models. For
100 independent replications under each setting, we first
generate n = 200 independent responses (Y1, . . . ,YM). To
do so, we generate a c�-variate vector which has independent
Uniform(0,1) components, say u ∈ (0, 1) × · · · × (0, 1), then
divide by its sum so that π∗ = u/

∑c�
j=1 uj belongs to the

(c� − 1)-dimensional probability simplex. Then, we generate
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realizations of (Y1, . . . ,YM), denoted y, from the categorical
distribution with probabilities π∗. Thus, the components
of the response are marginally dependent with arbitrary
dependencies.

Given y, we then generate x from the p-dimensional multi-
variate normal distribution (2). In each scenario, we set �−1∗s,t =
0.7|s−t| for all (s, t) ∈ [p] × [p]. We consider two different
models (Models A and B) for the mean vectors determined by
g∗. Specifically, the two models differ in terms of how the mean
vectors from (2) depend on the response categories. For both
models, we vary p and a parameter controlling the difficulty of
classification.

• Model A.We randomly select 10 distinct elements of [p], say
{k1, . . . , k10} and set, for k ∈ [p], g∗k(y) = b	

� y if k = k� for
some � ∈ {1, . . . , 10} and 0 otherwise. where b� ∈ {0, 2}M
with the collection {b�}10�=1 having 10M/2 components
equal to two and 10M/2 equal to zero in randomly chosen
positions.

Note that here (and in Model B), we use the numeric form
y ∈ [c1] × · · · [cM] so that b	

� y ∈ R.
Model A is ideal for the nonconvex estimator: only ten ele-

ments of the μ∗v differ as a function of v, which the nonconvex
estimator is designed to exploit. The convex estimator, on the
other hand, exploits sparsity in the collection of discriminant
vectors �∗(μ∗v − μ∗v′) for v �= v′. Under Model A, �∗(μ∗v −
μ∗v′) can have as many as 30 nonzero elements because �∗
is tridiagonal. Model B, in contrast, imposes sparsity on the
discriminant vectors directly.

• Model B.We randomly select 10 distinct elements of [p], say
{k1, . . . , k10} and set, for k ∈ [p], [β∗y]k = b	

� y/ν if k = k�

for some � ∈ {1, . . . , 10} and 0 otherwise, where b� ∈ {0, 2}M
with the collection {b�}10�=1 having 10M/2 components equal
to two and 10M/2 equal to zero in randomly chosen posi-
tions. Then, we set g∗(v) = �−1∗ β∗v so that β∗v − β∗v′ =
�∗(μ∗v − μ∗v′).

Under Model B, all components of g∗ can differ as a function
of the response categories. However, only ten variables are rele-
vant for classification. Model B is thus ideal for (10).

We consider two versions of each model. In Model A-4 and
Model B-4, we set M = 4 and c1 = · · · = c4 = 3; in Model
A-6 and Model B-6, we set M = 6 and c1 = · · · = c6 = 2.
Throughout our simulations, we will consider p ∈ {50, 100, 150}
and ν ∈ {0.8, 1.0, 1.2, 1.4}. Under both models, ν controls the
difficulty of the classification problem. If ν is small, differences
between category combination means are large, so the problem
is easier.

We compare our two estimators: (8) (KLDA-M) and (10)
(KLDA-D)—both using Hamming distance kernel—to com-
petitors that either fit separate models for each response, or
formulate a synthetic (univariate) categorical response and fit a
singular model (i.e., the aggregate model). The first competitor
is the separate multinomial logistic regression estimator (S-
Logistic), which fits a separate group-lasso penalized multi-
nomial logistic regression model for each response. We also

consider an aggregate version,A-Logistic, which fits a single
group-lasso penalized multinomial logistic regression model to
the synthetic c� = ∏M

�=1 cm-category response. Note that if
a category combination is not observed in the training data,
this method sets its conditional probability to zero. In addition,
we consider separate multiclass sparse discriminant analysis
models (Mai, Yang, and Zou 2019, S-MSDA), and an aggregate
multiclass sparse discriminant analysis model A-MSDA. The
latter correctly specifies the LDAmodel fromwhich we generate
data. Finally, we also compared to oracle, which uses the true
parameters from (2) plugged into Bayes’ classification rule. This
serves as an upper bound for the performance of any method,
but is not available in practice.

The first performance metric we considered is the mean
estimation error. Since none of the competitors are capa-
ble of estimating the means corresponding different cate-
gories, we compare the mean estimation error of the sample
mean (i.e., the MLE) with the mean estimates obtained
using our methods. Specifically we display mean estimation
error, defined as 1

ñ
∑ñ

i=1 ‖g∗(̃yi) − x̄̃yi‖22 for the MLE, and
1
ñ
∑ñ

i=1 ‖g∗(̃yi) − ĝ (̃yi)‖22 for the KLDA variants, where x̄̃yi =
1∑n

i=1 1(yi=̃yi)
∑n

i=1 xi1(yi = ỹi) is the sample mean correspond-
ing to ỹi. The other two performance metrics we considered
are prediction accuracy and Hamming distance, which are
defined as 1

n
∑n

i=1 1(yi = ŷi), and 1
nM
∑n

i=1
∑M

�=1 1(yi� = ŷi�),
respectively.

6.2. Results

In Table 1, we present the average mean estimation error results
with varying parameters p, ν and different models. Notably,
our proposed estimators result in considerably smaller errors in
mean estimation compared to the sample mean estimates across
all considered scenarios. The nonconvex estimator KLDA-M,
which directly estimates the mean vectors, does not invari-
ably outperform the convex estimator KLDA-D, which approx-
imates the discriminant vectors directly. Under Model A, the
mean vectors are sparse, and KLDA-M is able to exploit this,
whereas KLDA-D is not. Conversely, under Model B, it is the
discriminant vectors that are sparse, whereas the mean vec-
tors are nonsparse. Naturally, this favors KLDA-D in the mean
estimation.

In Figures 1 and 2, we display the prediction accuracy on test-
ing set across various models. These figures clearly demonstrate
our proposed estimators, KLDA-M and KLDA-D, have supe-
rior prediction accuracy relative to the competitors, particularly
noticeable with a larger number of responses as in Model A-6
and Model B-6.

ForModel A-4, KLDA-M and KLDA-D have comparable per-
formance when p is 50 or 100. However, when p is increased to
150, KLDA-M clearly outperforms KLDA-D. This coheres with
expectations, given that KLDA-M leverages the sparsity of the
mean vectors. In contrast, the discriminant vectors, onto which
KLDA-D imposes sparsity, are nonsparse in this this scenario,
so the regularization scheme of KLDA-Dmay impose unhelpful
bias. Consequently, S-MSDA mirrors the performance of
KLDA-D under these conditions. Under Model B, KLDA-D
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Table 1. Average mean estimation errors for the MLE versus KLDA averaged over 100 independent replications under Model A and Model B.

p ν
Model A-4 Model A-6 Model B-4 Model B-6

MLE KLDA-M KDLA-D MLE KLDA-M KLDA-D MLE KLDA-M KDLA-D MLE KLDA-M KLDA-D

50

0.8 24.475 1.149 2.176 21.072 1.022 1.747 24.475 2.945 2.174 21.072 2.636 1.864
1.0 24.346 0.945 2.262 20.737 0.787 1.703 24.346 2.815 2.044 20.737 2.153 1.759
1.2 24.361 0.854 2.314 20.950 0.716 1.731 24.361 2.833 2.130 20.950 2.161 1.920
1.4 24.364 0.813 2.359 20.970 0.657 1.741 24.364 2.626 2.131 20.970 2.192 1.851

100

0.8 48.267 1.435 4.301 41.685 1.299 3.247 48.267 5.228 3.646 41.685 4.607 3.456
1.0 48.955 1.255 4.460 42.290 1.028 3.252 48.955 4.944 3.541 42.290 4.259 3.358
1.2 48.551 1.179 4.557 42.178 0.993 3.282 48.551 5.073 3.486 42.178 4.101 3.379
1.4 48.670 1.088 4.498 41.878 0.983 3.156 48.670 4.828 3.316 41.878 4.299 3.165

150

0.8 72.536 1.657 6.310 62.511 1.519 4.637 72.536 7.714 5.119 62.511 6.011 4.777
1.0 72.256 1.537 6.575 62.976 1.378 4.616 72.256 6.811 4.855 62.976 5.726 4.465
1.2 72.193 1.465 6.498 63.267 1.309 4.547 72.193 6.726 4.639 63.267 5.658 4.302
1.4 72.222 1.425 6.266 63.715 1.226 4.330 72.222 6.974 4.563 63.715 5.707 4.057

Figure 1. Prediction accuracy over 100 independent replications underModel A-4 andModel A-6with (p, ν) ∈ {50, 100, 150} × {0.8, 1.0, 1.2, 1.4}..

consistently outperforms KLDA-M. This can be attributed to
the fact that the mean vectors, which KLDA-M regularizes,
are nonsparse. As expected, KLDA-D outperforms the other
competitors as it exploits the sparsity of the discriminant
vectors.

In the supplementary materials, we also include Hamming
distance and variable selection results under all simulation set-
tings. To summarize briefly, in terms of Hamming distance, we
observe similar general trends as in Figures 1 and 2, except
that S-MSDA can, at times, outperform our proposed methods.
This can be understood from the fact that Hamming distance
is inherently measuring quality of estimation of marginal prob-

abilities, whereas our proposal is focused on estimation of the
joint probability mass of (Y1, . . . ,YM | X).

6.3. Additional Simulation Study Results

In the supplementary material, we include many additional
numerical studies. In Section S.3.2, we compare various choices
of kernel functions, and include results under simulation set-
tings more amendable to the pair-agreement kernel. In Sec-
tion S.3.3, we study the effect of including a squared Hilbert-
norm regularization term to the objective function for MLDA-
M. In Section S.3.4, we compare our method to fitting mixture
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Figure 2. Prediction accuracy over 100 independent replications underModel B-4 andModel B-6with (p, ν) ∈ {50, 100, 150} × {0.8, 1.0, 1.2, 1.4}.

discriminant analysis models to each response (Hastie and Tib-
shirani 1996).

7. Classification of Colon Tissue Samples

In this section, we demonstrate the application of ourmethod on
a dataset consisting of gene expression profiles from colon biop-
sies (Noble et al. 2008). This dataset, which can be downloaded
from the Gene Expression Omnibus (GDS3268), contains
44,290 gene expression levels from 202 tissue samples. There
are three labels for each sample: patient state (normal/ulcerative
colitis), tissue state (inflamed/uninflamed) and anatomical loca-
tions (sigmoid colon/terminal ileum/descending colon/ascending
colon).

Following our simulation studies, we analyze the data
using the proposed KLDA-M and KLDA-D—with Hamming
distance kernel—in conjunction with S-Logistic, S-
MSDA, A-Logistic and A-MDSA. Results for our method
with alternative kernels are provided in Section S.6 of the
supplementary material. We partitioned the data by randomly
selecting n samples for the training set, allocating 50 samples
for the validation set, and designating the remaining 152 −
n samples for the testing set. To mitigate computational
demands, we undertook a screening process on the genes.
This involved ranking gene expression levels based on their
median absolute deviation and subsequently selecting the
top p genes. To avoid issues of collinearity, genes exhibiting
high correlation were pruned. For our analysis, we consider
p ∈ {100, 200, 300, 400, 500} and n ∈ {50, 100}.

The results based on 100 replicates are listed in Table 2. It
can be seen that our proposed methods achieve the highest
accuracy under most choices of n and p, and KLDA-M outper-
forms KLDA-D in all but two settings. This underscores the
potential advantage of regularizing mean vectors as opposed to
discriminant vectors for this particular problem.

Next, we turn our attention to the mean estimation using
KLDA-M. For this analysis, we set p = 200, allocate 152 samples
for training, and select tuning parameters with the remaining
50 samples. The results are shown in Figure 3, where we only
include 30 genes to save space. Our fitted model estimated
111 genes’ means varied as a function of the response category
combinations. The three-digit numbers along the rows denote
distinct combinations of response labels. The first digit repre-
sents the patient state: 0 for normal and 1 for ulcerative colitis.
The second digit represents the tissue’s state, with 0 indicating
inflamed and 1 denoting uninflamed. The final digit repre-
sents anatomical locations: 0 for the ascending colon, 1 for the
descending colon, 2 for the sigmoid colon, and 3 for the terminal
ileum. It is important to note that both the estimated and sample
mean vectors have been centralized; we’ve subtracted the global
mean from each. Note that the combinations of response cat-
egories 000 (normal patient, inflamed tissue, ascending colon)
and 003 (normal patient, inflamed tissue, terminal ileum) are
not observed in the dataset, so we don’t have corresponding
sample mean estimates.

Our estimates reveal a more distinct pattern of gene expres-
sion levels across various response category combinations com-
pared to the sample mean estimates. Notably, genes such as
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Table 2. Prediction accuracy on GDS3268 dataset over 100 independent replications with p ∈ {100, 200, 300, 400, 500} and n ∈ {50, 100}.
n p KLDA-M KLDA-D S-Logistic S-MSDA A-Logistic A-MSDA

50

100 0.404 0.397 0.389 0.392 0.321 0.322
200 0.425 0.422 0.408 0.405 0.348 0.335
300 0.431 0.429 0.394 0.397 0.333 0.332
400 0.434 0.438 0.400 0.408 0.323 0.324
500 0.446 0.450 0.390 0.397 0.332 0.322

100

100 0.446 0.436 0.479 0.472 0.388 0.387
200 0.503 0.491 0.505 0.486 0.445 0.404
300 0.543 0.529 0.488 0.491 0.424 0.408
400 0.535 0.525 0.487 0.505 0.403 0.410
500 0.547 0.537 0.488 0.479 0.412 0.406

NOTE: When n = 50, standard errors were never larger than 0.007; when n = 100 standard errors were never larger than 0.009. Bolded values indicate the highest average
prediction accuracy within a row.

Figure 3. Mean estimates (minus the columnwise global average) usingKLDA-M and theMLEwith p = 200. Each column corresponds to a gene andwe include 30 genes.
Each row corresponds to a combination of response categories.

HOXB13, HOXA13, and CKB exhibit lower expression levels
in ascending colon and terminal ileum and heightened levels
in descending colon and sigmoid colon. Conversely, genes like
SLC51A, ETNK1, andUGT2A3 demonstrate an inverse pattern.
Regarding HOXB13, normal patients have a higher expression
level relative to those with ulcerative colitis.

8. Discussion

Due to space limitations, there are many aspects of our method
that we could not discuss in this manuscript. In the supplemen-
tary materials Section S.7.1, we contrast our method to using
a multiway ANOVA model to estimate the mean function g∗.
In brief, though this approach can provide flexible and inter-
pretable estimates of g∗, there are numerous practical issues
that our method avoids. We also argue that our method is
more scalable with largeM and cm. In Section S.7.2, we discuss
how our work relates to methods proposed for “dynamic linear
discriminant analysis” (Jiang, Chen, and Leng 2020; Jiang et al.
2021). In particular, the method of Jiang et al. (2021), though
motivated from a different perspective from our own, essentially
estimates g∗ and �∗ using kernel smoothing. The discriminant
vectors β∗v are then estimated in a second step by solving
penalized quadratic programs.

Supplementary Materials

The supplementarymaterials contains extended discussions, computational
details, proofs, additional results from the colon tissue data analysis, and
extended simulation study results. Also included in the Supplementary
Material is code to reproduce many of the results from this article.
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