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Abstract

In many modern regression“applieations, the response consists of multiple categorical random
variables whose probability'mass is a function of a common set of predictors. In this article,
we propose a new méthod.for modeling such a probability mass function in settings where
the number of response,variables, the number of categories per response, and the dimension
of the predictor are large. Our method relies on a functional probability tensor decomposition:
a decompositiomef a tensor-valued function such that its range is a restricted set of low-rank
probability tefisors. This decomposition is motivated by the connection between the
conditional independence of responses, or lack thereof, and their probability tensor rank. We
show that the model implied by such a low-rank functional probability tensor decomposition
can be interpreted in terms of a mixture of regressions and can thus be fit using maximum
likelihood. We derive an efficient and scalable penalized expectation maximization algorithm
to fit this model and examine its statistical properties. We demonstrate the encouraging
performance of our method through both simulation studies and an application to modeling
the functional classes of genes.
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1 Introduction

We consider the problem of modeling the conditional distribution of multiple categorical
response variables as a function of a p-dimensional vector of predictors, i.e., a multivariate
categorical response regression analysis. Joint modeling of multiple, dependent categorical
responses is crucial in applications such as characterizing the genetic basis of disease
subtypes (Dahl and Zaitlen, 2020), which are often defined as a cross-classification of many
distinct categorical variables. For example, breast cancer tumors can be characterized by the
presence estrogen receptor, human epidermal growth factor receptor 2, and progestoerone
receptor proteins (i.e., 2° total subtypes). To make matters concrete, for an integer M > 2, let
Y =(Y,...,Y,,) be the multivariate categorical response, where each component Y has

¢,, =2 many categories with numerically coded support ¥ e[c,]1={L...,c,} forall
me[M]={l,...,M} . The regression models and methods developed in this article allow the

predictor X € R” to be either continuous or discrete (or mixed), and allow:the predictors

x € R” to be either random or fixed. The regression problem is essentially.the study of the
conditional distribution Y| X whose joint probability mass function ¢onsists of

P (x)=Pr(Y =j,...Y, =), X=x)20, j, €lc,], me[M]. 1)

From (1), we can define the Mth order tensor P(x) € R ** whose (j,..., j,,) th element is
P, (x). This conditional probability tensor P(x) fullycharacterizes the conditional

distribution of Y| X =x and is thus the quantity.ofinterest in our study.

To fit (1), there are numerous approaches/one'could consider. At one extreme, each response
could be modeled separately using, saysamultinomial logistic regression. This approach is
scalable to a large number of responses‘and high-dimensional predictors (Zhu and Hastie,
2004; Simon et al., 2013; Vincent and Hansen, 2014), but entirely ignores the dependence
between response variables. On the other extreme, one could define a univariate categorical
response variable based on.the set.of all possible category combinations and methods
designed for a univariate \categorical response could be applied. This is the regression analog
of modeling counts in'a M-way contigency table as a multinomial random variable (Agresti,
1992, Section 1.2)«For example, in applications with only binary responses, this would
require treating M binary response variables as a univariate categorical variable with 2"
categories. In Section 6, we consider a genomic application with M =14 binary response
variables, so this approach would lead to an unwieldy 2" =16384 categories. This approach
allows for arbitrary dependence among responses, but in so doing, treats P(x) as a vector

and thus fails to exploit its special tensor structure. Moreover, this approach would require an
enormous amount of data for model fitting. If even a single category combination is not
observed in the training data, this approach cannot be applied directly. Finally, when the
number of categorical responses is even moderately large, model interpretation will be
difficult because the number of parameters grows exponentially with the number of
responses.



For the problem of modeling the conditional probability tensor function P, we refer to these
two approaches as separate modeling (of each response) and vectorized modeling (of the
combined-category response), respectively. The objective of this article is to propose an
alternative to these two approaches; a method which can model complex dependencies
among response variables like vectorized modeling, yet provides fitted models which can be
computed and interpreted with the ease and scalability of separate modeling. Our approach

exploits the connection between the conditional independence of Y,...,Y,,, or lack thereof,

and the rank of the conditional probability tensor P(x). Later, we prove that separate
modeling implicitly assumes P(x) is rank one, whereas vectorized modeling assumes no
explicit upper bound on the rank of P(x). We may thus characterize models for which P(x)

is low rank as intermediate to these two extremes. Neatly, we later show that both the
separate model and vectorized model can be characterized as “edge-cases” of a rank-
constrained P(x) when the rank is fixed at one or the rank is allowed to be as large as

M
Hcm /max, ., ¢, , respectively. Section 2.3 contains comparisons of these approaches.

m=1

Motivated by this observation, in this article we propose a new method fopmultivariate
categorical response which assumes the low-rankness of P(x) for all x. We show that

pursuing a low-rank decomposition of the conditional probability tensorP(x) provides a
natural, intuitive, and scalable way to model the complex dependencies‘among responses.
However, because P(x) consists of the probabilities from (1),thete are intrinsic constraints
(nonnegativity and “sum-to-one”) not often encountered in Standard tensor decomposition
problems. To handle these difficulties, we assume that the conditional probability tensor
function P can be decomposed into the weighted sum of'rank one probability tensor
functions. This assumption naturally allows P.to be characterized as a mixture of regressions
model, and implies the low-rankness of P(x) forall"x e R”. Moreover, by exploiting a latent
variable interpretation of the probability tensor function, we can fit our model using penalized
maximum likelihood, which can accommodatelarge p, large M, and large ¢, .

Before formally describing our proposed.method and model, we first situate our work among
existing methods for fitting (1)s

In the statistical literature‘on categorical data analysis, existing methods for multivariate
categorical response regression are primarily focused on developing parametric links between
predictors and multiple categorical responses that allow for model interpretation in terms of
marginal probabilities.and higher-order associations (Molenberghs and Lesaffre, 1999;
Glonek, 1996; Ekholm et al., 2000; McCullagh and Nelder, 1989). For example, one set of
link functions correspond to log-linear models, and another to multivariate logistic models
(Glonek and McCullagh, 1995). Other approaches propose nonparametric regression
functions and allow for some response-specific predictors (Gao et al., 2001). In general, these
works adopt the vectorized modeling approach and are often not feasible when M >3 and p
is large, where associations among response variables are difficult to parameterize.

More recently, in the high-dimensional regime, Molstad and Rothman (2023) proposed a
novel penalty to enforce linear restrictions on the regression coefficient tensor under the
vectorized model with multinomial link. Their penalty can lead to fitted models that can be
interpreted in terms of which predictors affect only the marginal distributions of responses,



the log odds ratios, or neither. However, their method does not easily generalize to more than
two response variables. Theoretically, the estimation error bound for their method scales

M M
exponentially with M (more specifically, scales in H c, ) rather than linearly (such as Z c,)
m=1 m=1

as does our method.

Of course, others have recognized the need for models and methods specifically designed for
multivariate categorical response. One class of methods, based on the notion of binary
relevance, comes from the literature on multi-label classification (Tsoumakas and Katakis,
2007) in machine learning. Many binary relevance methods fit separate univariate models,
and thus fail to account for dependence in the multivariate response (Dembczynski et al.,
2012; Montaiies et al., 2014; Zhang et al., 2018). One binary relevance approach that
accounts for dependence uses classifier chains (Read et al., 2011; Senge et al., 2013). This

approach fits univariate categorical response regressions for Y,,7,,...,Y,, successively. For

each univariate fit, the responses from previous fits are used as predictors in subsequent fits.
For example, one would fit Y| X, then Y,| X, Y, and so on. The fitted models ate thus

typically interpreted in terms of specific (univariate) conditional distributions for each
response, rather than the joint distribution of interest. There is also an exténsive literature on
unsupervised modeling for multivariate categorical data (Fienberg, 2000; Dunson and Xing,
2009; Bhattacharya and Dunson, 2012), but this is not applicable to regression. Finally, we
note that the problem of modeling P is not related to recent work on'eategorical data analysis
focused on handling high-dimensional categorical predictors(e.g.,'Stokell et al., 2021).

Our model and method is related to—although fundamentally distinct from—existing
research on tensor decompositions and regression. We give a very brief and selective survey
in the following and refer the interested readetsito Kolda and Bader (2009) and Bi et al.
(2020). First, the idea of jointly modeling multiple responses using a (regularized) tensor
decomposition is conceptually similar to that in tensor response regression (e.g., Li and
Zhang, 2017), where the response is typically'a continuous-valued tensor. However, our
study is fundamentally different due tosthe'discrete nature of the response. For example,
continuous-valued tensor decompositions (e.g., Sun et al., 2017) are not applicable since they
may not result in a valid probabilitystensor. Secondly, our regression problem is also distinct
from recent studies focused on binary or categorical tensor decompositions (e.g., Wang and
Li, 2020). Extensions of these unsupervised learning methods to our context is nontrivial,
especially in settings wherethe predictor is high-dimensional. Notably, Yang and Dunson
(2016) also used the term “‘¢onditional probability tensor”, though their focus was on
estimating conditionaliprobabilities of a categorical ¥ on multivariate categorical predictor X
, which is fundamentally different from (1).

This paper has multiple contributions. First, we propose a general method for modeling P
which allows practitioners to consider alternatives to the separate and vectorized modeling
approaches. Crucially, unlike existing approaches which do not assume conditional
independence, our method is scalable to large p, large M, and large c,,’s, without sacrificing

flexibility or interpretability. The scalability allows for a broad range of potential
applications, and the interpretability—in terms of both predictors selected and the estimated
rank of the conditional probability tensor— allows practitioners to gain novel scientific
insights.



Second, we introduce the notion of a functional tensor rank decomposition: a type of
decomposition applicable to tensor-valued functions. Loosely, this type of decomposition
assumes that the range of a tensor-valued function is a restricted set of low-rank tensors.
Though we focus on its application to conditional probability tensor functions, this approach
could also be applied in more general tensor response regression problems.

Third, in order to accommodate different scenarios, we propose new penalties to achieve
highly interpretable global and local variable selection in mixture of regression models. We
devise an efficient algorithm which we prove to produce a sequence of iterates that
monotonically increase the penalized observed data log-likelihood. Statistical properties are
also established to illustrate how, in an idealized setting, our method scales with respect to
the number of responses, the number of categories per response, and the number of
predictors.

2 Model

2.1 Decomposition of the conditional probability tensor function

For a positive integer M, an M-way tensor (also known as an Mth order tensor) is an array
object A e R”*™" for positive integers p,,..., p,,. For example, a veetor is a one-way

tensor, and a matrix is a two-way tensor. The tensor rank decomposition, also known as the
CANDECOMP/PARAFAC decomposition, is a generalizatiomof the/singular value
decomposition for matrices (Hitchcock, 1927; Carroll and Chang;,1970). A rank-one tensor

A e R?“™Pu can be written as the outer product of M yectors:*A =a®°...2a™’ which is

defined element-wise as A, , =a’---a"’ for all\iye[py] and m €[M]. In general, a

Ry

rank-R tensor ( R > 2) can be written as the sum 0f.R tank-one tensors, each formed as the

R
outer product of vectors 2, r €[R],me[M]: A= Zaf,”o- --2a™) A tensor is said to be

r=1
rank-R if it can be decomposed into R.rank=one tensors but not into » rank-one tensors for any
r<R.

The goal of this paper is to providea statistical modeling framework for the M-th order tensor
P(x) e R whose (ji;", i) th element is the conditional probability function

P, . (x) defined in (1) To that end, we first provide some characterizations of P(x) and its

rank-R decomposition,which motivate our modeling approach in Section 2.2.

First, given Xwitheresis no distinction between a conditional probability tensor P(x) and an

unconditional‘probability tensor (i.e., a probability tensor which is not a function of
predictors). Thus, many of the results in this section apply to unconditional probability
tensors. We will explain shortly how these results motivate our model for the function P .

Let P,

way tensors satisfying non-negativity and sum-to-one constraints. We define the probability
tensor rank based on the tensor rank decomposition restricted to the set 7,

- < R denote the set of M-way valid probability tensors, i.e., the set of M-

»Cy

SCyr t

Definition 1.



The probability tensor rank of A€P, . is the minimal number R such that A can be

Cym

R
expressed as the weighted sum of R rank-one probability tensors, A = Zé;Ar for some

r=1

50 and A €., re(R) where B

RV

. denotes the set of M-way rank-one

i

probability tensors. Note that 25,. =1 is guaranteed because A and A, , r €[R], are
probability tensors.

In Definition 1, a rank-one probability tensor is defined in the usual sense, i.e., it can be
formed as the outer product of vectors. However, the probability tensor rank R is based on a
more restrictive decomposition, in which the weights are positive and the tensors A = are

elements of Rf” ., - These restrictions prompt meaningful statistical and probabilistic

interpretation on the probability tensor decomposition, as we discuss later. Henceforth, we
say a probability tensor is rank-R if its probability tensor rank is R.

Remark 1.

Because of the additional restrictions, a rank-R probability tensor decomposition in
Definition 1 is also a valid rank-R CP decomposition. The probability'tensorvank is always
no less than the usual tensor CP rank, similar to the fact that the nonnegative rank of a
nonnegative matrix (Cohen and Rothblum, 1993) is no less thantits usual matrix rank. The
uniqueness of a rank-R decomposition requires additional conditions, e.g., the sum of ranks
of the M matricizations of the tensor is no less than 2R+ M =1 is a sufficient condition for
the uniqueness up to permutation and. scaling (Sidiropoulos.and Bro, 2000). Generalizing
such results to probability tensors remains an open question. In this work, we focus on the
existence of the decomposition and later tackle the non-uniqueness from the model
identifiability perspective.

The following two propositions establish upper.bounds on the probability tensor rank.

Proposition 1.

M
For any given x, P(X) has prebability tensor rank R < Hcm /max, ¢ -

m=1

M
Proposition 1 implies that'the CP rank is also less than or equals to Hcm /max, ¢, - This
m=1
implication alse extends Theorem 1 and Corollary 1 of Dunson and Xing (2009) by
establishing the upper bound on the rank R while Dunson and Xing (2009) showed the
existence of the rank. When M =2, Proposition 1 implies that the singular value

decomposition of P(x), as a ¢, x ¢, matrix, holds for rank R <min(c,,c,) for any given x.
This well-known fact for the singular value decomposition of a matrix is thus extended to our

decomposition with nonnegativity and sum-to-one constraints. The result of Proposition 1
formalizes the arguments outlined in equation (6) of Johndrow et al. (2017).



The upper bound in Proposition 1 assumes nothing about the dependence among the M

M
responses. Indeed, if P(x) has rank R = Hcm /max, , ¢, , the responses can be arbitrarily
m=1
dependent. Parsimonious dependence structures, in contrast, can imply a tighter upper bound
on the rank of P(x). We present one such example in the following proposition.

Proposition 2 .

For a given X, if the responses form L mutually independent groups—indexed by sets
G,,...,G, where U, G, =[M] and G, "G, =D for k # k' —then P(x) has probability rank

L
R SH(H ¢, /max; ; ¢,).

I=1  meG,

Proposition 2 suggests that the rank of P(x) is related to the complexity of the dependence
among Y,,...,Y,, given X =x. To demonstrate this point, consider the applicationin Section
6 where ¢, =---=c,, =2, M =14 . The generic upper bound from Proposition 1 is

2" =8192 . Instead, suppose that at a given x, eight of the responses were independent of all
others, and the other six formed two groups of three responses which.are mutually
independent, i.e., |G, |=3,| G, |=3,| G, |=---= G,, |=1. In this case, Proposition 2 shows

R <2%=16. In our application, we actually find that R ~5 yields.the best results in terms of
test set log-likelihood. Johndrow et al. (2017) also provide upper,bounds on the probability
tensor rank as a function of the sparsity in the log-linear.model characterizing the joint

distribution of the responses (in an unconditional setting),further reinforcing that
parsimonious dependence structures imply probabilityitensor rank restrictions.

Considering the most extreme case of Proposition2, where L =M and G, =c,, we have the

following well-known result about rank-ofie probability tensors as an direct consequence of
Proposition 2 and Theorem 1.

Corollary 1.

For a given x, P(x) is rank one if and only if the responses are independent.

Of course, a probabilitytensor P(x) must have at least rank-one because rank-zero, which
corresponds to the.tensor of zeros, would not yield a valid probability tensor.

Up to this pointy outtesults have applied to P(x) for a given x. In full generality, P(x) may
could have a distinct decomposition for each x, where R also varies with x, but allowing this
degree of flexibility would make regression modeling impracticable. Instead, to achieve
parsimony, it is reasonable to assume that P(x) will have the same (low) probability tensor
rank for every x, and moreover, the components of their decomposition will have the same
functional form. To see how one could put this assumption to use, we consider the rank-one
decomposition of P(x). Specifically, the following result establishes the connection between
the rank-one conditional probability tensor and the conditional independence of the responses
given the predictor.



Theorem 1.

For any given x, if P(x)e R, . s rank-one, it can be decomposed uniquely as

P(x) =p,(x)°-°p,, (%), (2)

for p,(x)={Pr(Y, =1l X=x),....,Pr(Y, =c,| X=x)}', me[M]. Furthermore, if P(x) is

rank-one for all x, then Y,,...,Y,, are conditionally independent given X, and vice versa.

By definition, rank-one probability tensor means (2) holds for some p, (x) e R, me[M].

While such a decomposition is not unique, as we show in Theorem 1, a rank-one probability
tensor can always be decomposed uniquely into marginal probability vectors without loss of
generality. This theorem thus gives a constructive and identifiable formulation of rank'one
probability tensor decomposition. As shown in Corollary 1, rank-one probability tenser fora
given X is equivalent to independence of responses conditional on the event X =X. As
shown in Theorem 1, rank-one probability tensor for all x is equivalent to conditional
independence of responses given the random variable X . The result of Theerem 1 suggests
that if, for example, we assumed the responses were conditionally independent given X, then
we are equivalently assuming that P(-) =p,(-)°---°p,, () for functions pg...,p,, such that

p, :R? - A" where A ={ueR™ :uTlcm =Lu, >0 for alLk €[e,1}. Under this
assumption, we could thus model each p, using standard regressionmodels for ¥ on X

separately. On the other hand, the low-rankness of P(x)_for aispecific value x would not
reduce the population model complexity.

Thus, motivated by model parsimony, we introduce.the functional rank of the probability

tensor function P:R” - P defining'the conditional probability mass (1).

»Cyr

Definition 2 .
The functional rank of the probability tensor function P(-) is the minimal number R such that

R
P() 225,.Pr(') for 6. >0 and P, :R” —)’Pcl(}) rel[R].

cnCpp
r=l1

From the above definition, P.(-) has functional rank one and P (x) € 72](1) ., 1s arank-one

probability tensor for all x. We now consider generalizing the rank-one structure to an
arbitrary rank=R. Metivated by Theorem 1 and Definition 2, the next theorem considers the
decomposition of P(-) into a sum of R rank-one probability tensor functions (see Figure 1).

Theorem 2.

If the functional rank of P:R” —> P, is R>1, then it can be written as

-Cyr

P()=2 5P.()=2.5p,()° Py, (), 3)



R
where 6. >0, 25, =l and p,, :R” = A" for (m,r) e[M]x[R]. Moreover, if the

r=1
decomposition of the function P in (3) holds, then there exists a categorical random variable
Z independent of X such that Pr(Z =r)=0, and
p,, (X)={Pr(Y, =1l X=x,Z=7r),....,Pr(Y, =c, | X=xX,Z=r)}' for r €[R]. Consequently,
(3) is equivalent to the conditional independence of Y,,...,Y,, given (X,Z).

Theorem 2 shows that a conditional probability tensor with functional rank-R can always be
decomposed with additional constraints that Z 5, =1and p,, :R” — A", without loss of

generality. Recall that A" represents the sets of valid probability mass functions of ¢, -
categorical random variable. Then the rank-R decomposition can be interpreted as the product
of marginal probabilities Pr(Z =r) =0, and conditional probability tensors P (x), whieh is
defined as the probability function of Y| (X =x,Z =r). When (3) holds, such«a categorical
variable Z always exists by this construction. The rank-one probability tensor ® (x) can then
be decomposed into the product of

p,, (X)={Pr(Y, =1l X=x,Z=7),....,Pr(Y, =c,| X=x,Z =r)}" similar to.the
decomposition in Theorem 1. The rank-R decomposition in (3) is the'key modeling

assumption of our approach. The result of Theorem 2 suggests a.natural‘population-level
decomposition of P(-) as illustrated in Figure 1 for R =3. The functional rank-R

decomposition is not always unique. Nevertheless, the rank and the existence of the
decomposition is well-defined and guaranteed based on/Definition 2 and Theorem 2, which
motivates us to introduce a finite mixture of regressions model in the sequel.

2.2 Finite mixture of regressions model

Recall that for a P with rank-R functional probability tensor decomposition (3), there exists
latent categorical variable Z e[R]={1,...; R} independent of X such that Y,,...,Y,, are
conditionally independent given X and.Z. Specifically, we have

0. =Pr(Z=r| X=x)=Pr(Z =r)yandp,, (x)=Pr(¥Y, = j | X=X,Z =r) such that (3) is
satisfied in Theorem 2. It follows that

LAY =ZR:{PT(Z = V)IM[PT(Y,,, =Jnl X=%2=1)}. (4)

This connection between (3) and (4) naturally leads to a finite mixture of regression model,
which implies the population level tensor decomposition (3) for all values of x by assuming
a parametric link for the conditional probability function Pr(Y, =j | X=x,Z =r) for

(m,r) e[M]x[R]. With this latent categorical variable Z [R], our proposed model is thus

Pr(Z=r)=0,, f(YI X=x,Z=r,0)=lM_[fr(Ym| X=x,8 ), (5

m=1



where fand /. denote generic probability mass functions and £ (to be specified later) is
the model parameter for the regression of ¥ on X given Z =r. The parameters in this

model are denoted 0 =10,,0,}, 4, =10, B,,>---» By}
probability mass function of interest as a mixture of regressions without Z as

re|

() - Of course, we can write the joint

FYIX=x0)=35 £ (VIX=x0)=Y 6 ][ /¥, X=x.5,)}. ©)

m=1

The model (5) has an intuitive interpretation: there are R latent states indexed by Z, and
conditional on the latent state and X, the response variables are independent. For each value
of the latent variable Z, we have a distinct sub-model with conditionally independent
responses (i.e., separate models). Each category of Z corresponds to a rank-one probability
tensor (e.g., the gray rank-one tensor from Figure 1). The vectors p, (x) in (3) naturally
consist of probabilities Pr(Y, =1| Z =r,X=x),...,Pr(Y, =c,| Z=r,X=Xx). Notably,
maximum likelihood estimates of @, and consequently, of P, can be obtained-even when all
category combinations are not observed in the training data. This is because each set of
parameters @, corresponds to marginal conditional probabilities for each response.

For the remainder, we assume a multinomial logistic regression model for'each
Y | (X=x,Z =r). The regression coefficients f, <R thus characterize the ¢, possible

outcomes of a multinomial random variable Y (based on a'single trial), whose mass function
7.(Y | X=x,p, ) consists of the probabilities

. exp(ﬂ;’;»X) .
Pr(Ym = Jl X= Xaﬂmr) = Cm—ja J € [Cm], (7)
> exp(f,,,X)
k=1
where f,, € R” is the jth columnof g, € R”" .
Remark 2.

Under our model assumptions (6) and (7), the identifiability of the model parameters O, ’s
and B s implies_that the rank decomposition of function P in (3) is unique. However, the
identifiability problem is non-trivial and analogous to the identifiability in the finite mixture
of regression models and the latent class models, which are fundamental problems still not
yet completely understood (Ouyang and Xu, 2022; Do et al., 2025). Even within each mixture
component (Z=r), the B, are not identifiable without imposing an identifiability

constraint, e.g., a “‘sum-to-zero” constraint z B..;
Jj=1

our proposed penalties, the sum-to-zero constraint is enforced automatically. For formal

definitions of the parameter space and identifiability under the finite mixture of regressions

model, see Khalili and Chen (2007, Definitions 1 and 2). Similar to Khalili and Chen (2007),

we remark that the identifiability depends on many factors and simply assume that the model

under consideration in this paper is identifiable.

=0. Later, we explain that when using



Our functional probability tensor decomposition is related to the latent class model, which
has been extensively studied and applied in psychological and epidemiological research. In
latent class models, multiple binary or categorical variables (Y ) are measured as surrogates
for estimation and inference on the unobservable definitive categorical outcome (Z), which
characterizes underlying population heterogeneity and the subjects’ class memberships. In
particular, Bandeen-Roche et al. (1997), Huang and Bandeen-Roche (2004), and Ouyang and
Xu (2022)—among others—consider the regression extension of latent class models by
including covariates (e.g., X ) and modeling Z given X, and Y given Z (or more generally,
Y given Z,X) with generalized linear models. Based on this connection, our work provides
a new perspective on latent class models with covariates, and a means for application thereof
with high-dimensional predictors (Section 3).

Mathematically, our model can be transformed into the regression-based latent class model of
Huang and Bandeen-Roche (2004) by replacing 6. =Pr(Z =r) with

0.(x) =Pr(Z =r| X=x). We do not purse this direction for multiple reasons. First;'therc'is a
philosophical difference between the latent class model and the multivariate categotical
response regression model. Allowing Z (instead of, or in addition to, Y ) to be dependent on
X is crucial in latent class models because Z is the definitive outcome and Y is\a surrogate
thereof. For example, Bandeen-Roche et al. (1997) assume Y is independent of X given the
latent variable Z. However, this is unnecessary in our context where thesoutcome of interest is
Y and Z is only used to introduce dependence among the Y . The fundamentally different

applications lead to different model assumptions.

Secondly, assuming Z to be independent of X simplifies the model interpretation. As seen in
Figure 2, our latent variable model can be viewed as a mixture of generalized linear

regressions, where 0. = Pr(Z =r)=Pr(Z =r| X),, r €[R], are non-stochastic weights of the

R mixtures. The assumption of non-stochastic weights'is widely adopted in the study of the
finite mixture of regression (FMR) model. Additionally, our assumptions of independence
between Z and X helps parameter identifiability, a fundamental issue in latent class models
(Ouyang and Xu, 2022).

Finally, we note that it is relatively straightforward to generalize our method by modeling
0,(x) as a multinomial logistic regression of Z| X. This extension is almost identical to the

extension from the FMR model to,the mixture of experts model (Jacobs et al., 1991).
However, because (6)dsralready very flexible due to the large number of regression
parameters, the extension from o, to o.(x) sometimes offers little improvement in predicting

Y . We conducted a simulation example to illustrate this point: see our discussion thereof in
Section 5.

2.3 Comparison with alternative approaches

In this section, we compare our model assumptions (6) and (7) to the two other approaches
for fitting M categorical responses Y =(Y,,...,Y,,) on the predictor X € R”. For the sake of
comparison, we use multinomial logistic links for all approaches.

The first, and most naive, direct approach is separate modeling. This model assumes that



exp(n x
Pr(Y, = jI X=x) =P p ) melM], (8)

1

D exp(i,,X)
k=1

where 5,; € R” for je[c,] and m e[M]. This model is equivalent to our model with R=1.
If (8) is true, then our model with R >1 becomes over-parameterized but can still provide
consistent estimates of #,,’s (with some asymptotic efficiency loss). If (6) and (7) are true
for R >1, then separate fitting based on (8) will not only lose the interrelationship between
responses, but will be incorrect for the marginal probabilities Pr(Y | X=x), m €[M]. This
may be somewhat surprising, but can be seen from the latent variable representation

. u €X ' x

r=1 r=1 Z exp(ﬂ;rk X)
k=1

which can not be rewritten as proportional to exp(y, x). Intuitively, the latent watiable Z

mj

introduces heterogeneity, and hence nonlinearity, in the conditional probability function
Pr(Y, = jl X=x). As aresult, separate model fitting is insufficient:even.when there is only

one response variable. This is analogous to fitting a linear model to a mixture of regressions
with heterogeneous sub-populations.

The second direct approach is vectorized modeling: ‘As‘'mentioned, this approach transforms
M

Y into a univariate categorical response ¥, withue, = Hcm categories. The corresponding
m=1

multinomial logistic regression model assumes

Pr(t. = jl X=x) =PI o)

%

D exp(p, x)
k=1

where y, € R” for je[c.]¢For example, Molstad and Rothman (2023) assume (9) and
impose linear restrictions on the matrix of y,’s. Similar to the separate fitting approach, if (6)

and (7) are true for R> 1, then this joint fitting based on (9) will also be incorrect even for
marginal probabilities Pr(Y | X=x), m e[M]. On the other hand, if (9) is correct, then the

rank R in our model may be as large as c.. That is, we have ¢, rank-one tensors that each
consists of one element of the probability tensor P(x). The number of free parameters is

M
plc.—1)= p(H ¢, —1) for (9)and (R-1)+ pRZ(cm —1) for our latent variable model (6)

and (7). For example, consider the scenario where ¢ =¢, =---=c,,. Then the number of free

parameters becomes p(c" —1) for the vectorized model (9) and (R—1)+ pR(c—1)M for the
rank R version of our model. As the number of responses M increases, the complexity of (9)
increases exponentially the order of O(pc*) while our model’s complexity increases linearly



in the order of O(pcMR). As the number of categories for each response c increases, our
model’s complexity still increases linearly in ¢ but the complexity of (9) increases more
rapidly as ¢ as M >2. To gain further intuition, when ¢ =M =4 and p =100 (as in our
simulation studies), the joint model has 25500 free parameters and our model has 2401 when
R =2 or 3602 when R =3. Finally, note that the primary benefit of the mixture of
regressions model is a reduction in the number of parameters related to the response
dimension. In a subsequent section, we introduce new regularization schemes to address
high-dimesionality of the predictor.

3 Penalized maximum likelihood estimation

Let the observed data be {(Y,,x,)}, where Y, =(Y,,...,Y,,) for i e[n]={l,...,n}. Recall
that 6 denotes all of the unknown parameters {(5,,B,,,---» By, )} .z € D* where

R
D=(0,1)x R x---x RP*™ with Zér =1. The conditional log-likelihood of 'Y ['X

r=l1

evaluated at 6 is

ilog{z(z{nf(y BY —x,,ﬂm,)}} (10

In this section, we first describe the standard EM algorithm‘for maximizing (10) over D .
The standard EM algorithm, which iterates between the€xpectation (E) step and the
maximization (M) step, is only applicable in the classicallow-dimensional setting. To address
settings with high-dimensional predictors, we later discuss how to maximize a penalized
version of (10). In particular, we devise a computational algorithm that replaces the penalized
M-step with an approximation guaranteed to monotenically increase the objective function.

3.1 The EM algorithm and its parallel M-step

The standard EM algorithm will deal with the complete-data log-likelihood; that is, the log-
likelihood of (Y,Z)| X, treating Z'as 1f it were observable. Let Z,_ =1(Z, =r). Recalling that

Z is independent of X with Pr(Z=r| X)=Pr(Z =r)=4,, the log-likelihood of (Y,Z)| X
evaluated at @ is thus

L£(0) = ZZZ log{/, (Y| X, =x,,0,)} ZZZ,_log(ér), (11)

i=l r=l i=l r=l1

mr

M
where /(Y| X, =x,,0)= H /(Y1 X, =x,,8, ) by definition. Each iteration of the EM
algorithm, indexed by #=0,1,2,..., consists of two steps. In the E-step, we compute the O -
function at rth iterate 8, Q(0] ) = E[[,(H)I (Y, xl.)}le,ﬂ(”] . To do so, we first compute

the conditional estimate of 7, = E(Z, ), the probability the Z, =, given the observed data
and 0,



® _ 5r(t)f;(Yi| X, :Xi’ar(l))
ir = R

zé‘“(l)fY(Yll X, = Xiaar([))

s=1

. (12)

Then we can express the Q -function as

Q010") = Zn:ﬁ:{ﬂg)ilog{ﬁ(&il X, =x.8,)}+7, 10g(5r)} (13)

i=l r=1

In the M-step, we compute §“*", which we define as the maximizer of (13) with respect to

. One can verify that 5 =n"' Zﬂ',.(,.’ ), so the main challenge is maximizing the Q -function

i=1

with respect to the regression coefficients f, € R” for (m,r) e[M]x[R].

From the first term in the Q -function, one can see that the maximization with‘respect to the
p., 1s separable across each (m,r) combination. Therefore, for (m,r) e [M]x[R] in an
embarassingly parallel fashion, we need only compute

(t+1) _ (1)
ﬂm: =argmax Emr (ﬂmrl 0 )’

pxep
Bk

., (14)
gmr(ﬂmrl o(t)) = Zﬂi(rt) log{f;’(ymll Xi = Xi’ﬂmr)}'
i=1

The solution to the above optimization problem is.obtained by fitting a weighted multinomial
logistic regression model of ¥ on X. This could'be done using a modified version of the

standard computational approaches, e.g., a'quasi-Newton algorithm. This special structure
naturally lends itself to settings with large M and large R.

The update (14) reinforces the generality-0f our latent variable model. We could replace the
assumption of multinomial logistie link in (7) with a different assumption on
.Y, X =x,p,). The onlymnecessary modification of the estimation procedure is in (14).

mi

3.2 Penalties on the regression coefficient tensor

To addressithe p> n_case, we propose to maximize a penalized version of (10). Imposing
penalties on each '~ separately is possible, but may lead to fitted models which are difficult
to interpret. Moreover, by imposing penalties across both mixture and response components,
efficiency can be greatly improved. To achieve this, first organize all f, € R”“" into a

mr

M
tensor parameter B € R, where C = ¢, and define the rth mode-2 slice of B as

m=1

B..,=,.B,)eR’ ““ for r e[R]. We propose to estimate the parameters 6 using

argmax {F(6)—P,(B)}, (15)

0eDR



where F is the observed data conditional log-likelihood in (10) and P, is a sparsity-

inducing penalty by the tuning parameter A > 0. To compute (15), we need only modify the
M-step of the EM algorithm from Section 3.1 to be replaced with the following joint
optimization problem

argmax M, (Bl ), M,(Bl 6)= Zzﬁm, (B,,| 6)—P,(B), (16)

BeR”®C m=1 r=l1

where ¢, (1 0") is defined in (14) and P, is a sparsity-inducing penalty with tuning
parameter A >0.If 4 =0, (16) would reduce to (14). However, when A >0, the penalized
objective function M, (Bl ') may not be separable across responses and mixture
components depending on the choice of penalty 7, : we propose two such penalties which
correspond to distinct types of variable selection.

First, we consider global variable selection. We say that the jth predictor is irrelevantif a
change in the jth component of x does not change P(x) for all x € R”. Under,our model
assumption on P, for the jth Variable to be irrelevant it must be that

= (a’/11 lcT,a’/12 1:, d/MR e ) e RY for constants d . eR,(mgr) E[M]x[R].
Recall that we have over-parameterized B in the sense that each f# ,eR”*" has only
(c,, —1) identifiable columns (see the “sum-to-zero” constraintunder equation (7)). This
means that we may replace the d,, ’s with 0 without loss.of generality and ensure parameter

identifiability. This equivalence between predictorftrelevance and sparsity in B is discussed
more in the theoretical analysis (Section 4). For such glebal variable selection, we propose
the following penalty term as P, in (16),

G,(B) = lill B, I, = zzp: \/ZZH[,BW]‘,,: Ik, (17)

j=1 Y r=l m=1

where 4 >0 is a user-specified tuning parameter and [, ], . is the jth row of g, . The
penalty G, is nondifferentiable when for some je[p]=1l,...,p}, [B,,],, =0 forall
k elc,] and (m,r) e[M]x|R]. This penalty thus links the f  across both latent states and

response variables=For large values of A, this penalty will encourage estimates of P such
that many predictors are estimated to be irrelevant by encouraging zeros across the same rows
of all RM coefficient matrices.

Although G, ¢an achieve a highly interpretable global form of variable selection, an
alternative penalty, H, , allows for variable selection specific to each latent state (i.e., local
variable selection). Specifically, we also propose the penalty

Ma

H,(B) = ZZZIIB”] ) /”tzp:ZR:

Jj=1 r=l Jj=1 r=l

LB, 1, 1k (18)

3
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In contrast to G, , the penalty 7, assumes that for a particular value of the latent variable Z, a

possibly unique set of predictors are important. This penalty allows practitioners to
characterize the categories of latent variable Z in terms of the predictors selected as relevant
or not.

Figure 2 provides a visualization of the global and local variable selection in terms of the
sparsity of B . The global penalty acts on entire mode-1 slices of the tensor parameter B . As

shown in the plot, the mode-1 matricization B, € R” “*¢ transforms each mode-1 slice into a
() - On the other

hand, the local penalty is targeting on a more refined sparsity pattern that is shown as mode-3

row vector. The penalty G, (B) is thus the group lasso penalty on rows of B

fibers of B . Analogously, the mode-3 matricization B, € R“?* aligns the fibers across

r €[R]. The penalty 'H, (B) is thus the group lasso penalty on columns of B, .

For concreteness, we focus on computing (15) using the penalty G, ; only trivial

modifications of our algorithm are needed to accommodate 7, .

3.3 Penalized EM algorithm

In order to compute our estimator efficiently, we do not solve (16) exactly at each iteration.
Rather, we approximate the solution to (16) by maximizing aminorizing quadratic

approximation to M, (Bl #) (Lange, 2016). Our minorizihg quadratic approximation is

t t t 1< L
M (Bl 0) = M,(B1 0) =, (B)~—— Iy, <Bif, I
) (19)
+Z tr{VB[/‘,:.z] M(B(’)I 0" ) (B[./,:.:] N Bft') ;:])} ’

VE
J=1

for which, with a sufficiently small step.size 7 >0, we have the following result.

Proposition 3 .

Let X=(x,,...,x, ) @R"™ If t>0 is chosen so that RM || X||; max, \/aér"l <00,
then M; (Bl 0)=Myu(B1 0) for all B e R”™ . Thus, if we define

B = *argmaxBeRpxRxC M, (BI 0(”), then we are guaranteed that

M, (B 09> M, (B”| 0") by the minorize-maximize principle (Lange, 2016). In

addition, when P, =G, the maximizer of M,(} 8") has the closed form

+ Az o
BEI})] = max Ll_ ” U(t) ” ’OJ U.(/')’ JE [p] (20)
J

where U =B{"). | +7V B“;’:]/\/10(BE;.),:’:]I 0"). When P, ="H,, the maximizer of M, (1 8) has

the closed form
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where vi' =B  +1Vy  M(B, 1 07).

Jr

The theoretical range for 7 is not used in our implementation. Instead, we select 7 using an
Armijo-type backtracking line search which allows us to consider larger step sizes 7 while
maintaining the ascent property described in Proposition 3. It is important to emphasize that

by defining B“"" as in Proposition 3, B“*" is not, in general, the argument maximizing
M, (1 6”) . However, we found this approximation scheme to be more computationally

efficient than solving the M-step exactly at each iteration, and we can easily verify that it
ensures ascent.

Remark 3 .

As long as each t is chosen according to Proposition 3 (or by backtracking dine search), the
objective function from (15) evaluated at """ is guaranteed to be no less'than the objective
function from (15) evaluated at . That is, the sequence of iterates 0¥, .generated by

Algorithm S1 (Supplementary Material) monotonically increase the value of the objective
function from (15).

Remark 3 relies on the fact that our algorithm is an instance of the'expectation conditional-
maximization algorithm (Meng and Rubin, 1993). We summarize the entire algorithm in
Algorithm S1 of the Supplementary Material.

We provide details about our implementation (e.g., initialization scheme, algorithm, and
convergence criteria) in Supplementary Material Section S7. Regarding the choice of R, we
found that cross-validation may not be necessary. In both our simulation studies and real data
example, we found that overspecifyingR often led to no worse performance than did
selecting R by cross-validation. This ‘can be partly explained by the fact that when using our
penalties, the penalized EM algorithm automatically forces some o, estimates to be close to
zero (e.g., less than 10™) when A is sufficiently large. Consequently, computing the solution

path for our estimator explores. both varying levels of sparsity in the regression coefficients
and implicitly, various-walues.of R. See Section 5.3 for further details.

4 Statistical analysis of exact penalized M-step

To better understand the performance of our method, we study the statistical error involved in
the penalized M-step of Algorithm S1. In the finite-sample analysis of the maximizer of

M, (Bl 6), it is very challenging to establish uniform concentration inequalities about the
stochastic objective function M, (Bl 8) and its gradient V.M, (B| ), which depend on
the estimates @ . For example, a theoretical study of the EM algorithm may require sample
splitting; given a total of n samples and T iterations, the sample-splitting EM algorithm would
use T subsets of size n/T to break the dependence of B"*" =*argmax, M, (Bl 8)) on 6.

See Balakrishnan et al. (2017) and Zhang et al. (2020) for examples. Because of this
challenge, we leave the finite-sample statistical analysis of our penalized EM algorithm as



future research. Instead, we study an idealized estimator BT from a modified version of

M, (Bl 8") which replaces the 7" with the “oracle” data Z, . That is, by analyzing the
maximizer of the penalized conditional log-likelihood of (Y,Z)| X in (11), we derive bounds
that are meant to illustrate how p,c,,...,c,, , and the sparsity of the g affect estimation of
the regression parameter B in an idealized scenario.

Throughout this section, let | 4| denote the cardinality of a set .4 . Similarly, let
1Al ,= ZIIA v |, be the norm which sums the Euclidean norms of the rows of its matrix-
k

valued argument. To simplify matters, we treat X =(x,,---x,)’ € R"™” as nonrandom and

. < 2 . . . .
standardized such that 2—1: X;,=n for je[p]. We focus on the penalized estimator using the
global variable selection penalty G, (B). In the Supplementary Material Section S6,we
discuss how similar results could be obtained under the penalty 7. To avoid cumbersome

PXRC

tensor notation and operators, we redefine B=B, € R as the matrix parameterin this

section.

;
The estimator we study, B , is defined formally as

Sargmin, . {—%ii{zirflog{ﬁ,(ymi| X, = xf,/f,n,)}}gi(B)} (22)

i=l r=1

where Z, =1(Z, =r) for (i,r) e[n]x[R]. The above estimator hence does not depend on 9

. We will treat R as a fixed and allow M, ¢...,c,, , p, and n to tend to infinity. Our objective

. . f ; . . -
is to establish an error bound on B —B' ‘where'we define B' = argmin G, (B) with z

Ben

denoting the set of all B which lead to.the true probabilities P(x) for all x € R”. In the
Supplementary Material, we sHowathat' B is uniquely defined, does not depend on A, and
that for each irrelevant predietor, the corresponding row B_T/’: e R*® is zero. Thus, define
S={j:B}.#0,je[plhand 8 ={j:B’, =0, €[p]} as the set of relevant and irrelevant

predictors, respectively.

Before we 'deseriberthe needed conditions and assumptions, a few comments are in order.
First, the estimator in (22) is distinct from the estimator which estimates each £ or even

(B,,---» B, ) separately across » €[R]. The penalty we use, G, , necessarily ties the
estimators together so that even in the case that the Z; are known, all components are
estimated jointly. Second, the Z,’s are random so our statistical analysis must consider the
Joint distribution of the Z; and the responses. Finally, we mention that the estimator in (22) is

also relevant to the emerging literature on regression with heterogeneous sub-populations. In
that context, Z; is the indicator that a subject belongs to a particular sub-population (hence

observable), and then our estimator from (22) is adjusting for Z in order to harmonize the data



(Fortin et al., 2017) while our penalty G, can identify homogeneous structures across sub-
population (Tang and Song, 2016).

Our first assumption is a new version of the restricted strong convexity condition that applies
to data generated from a mixture of regressions model. This assumption will depend on

n
Mo = D00, 5 z Z,. , the minimum number of samples observed across the R latent states.

i=1

Let A=(A,,.... A, Ay .., A ) € RPFC with A e R” for (r,m) e[R]x[M], and let

mr mi

{Z ¥ (x,)®x,x, } be the Hessian of f£.(Y,.| X, =x,, 8! ) with respect to the vectorization
i=1

of its argument at B’ . The exact form of the positive semidefinite matrix ¥' (x,) e R™*" is
given in the Supplementary Material. In addition, let N'(n_, )={N,,...,N,} denote the set

of R-element partitions of /n] where min, | N, [Zn, .

Al. (Restricted strong convexity) There exists a constant k >0 such that

T T T A
0<k<x(S,n, )= inf >
r=1

(AA)EC(S PN (1) et

b

2
nll Allz

M
pxRZc'

where C(S)={AeR = :A=0[lA [1,<3] A,

Loosely speaking, one could expect the restricted strong convexity condition to hold if (i)
n_,. 1s not too small relative to n, (ii) thatthe probabilities Pr(Y = | Z=r,X=x) for

min

i, €lc, ] are bounded away from zero and onefor all (m,r) e[M]x[R] and all x e R”, and

(ii1) the relevant predictors (indexed by .S ) are neither too correlated with one another, nor
with unimportant predictors.

Explicitly, the quantity x(S,n

‘min

) is a function of n_. and S . The minimum sample size
n_.. determines the space over which the infimum is taken with respect to A as it defines
N(n

finding the worst possible — in the sense of minimizing &(S,n

‘min

). If A were fixed; taking the infimum with respect to .4 would correspond to

) — partition of the subjects

into the R latent states with each state having at least n_, subjects. The set S, in contrast,

defines the set C(S). Implicitly, x(S,n

min

n

) is a function of R, M, and the ¢.’s. In fact, to use
this quantity in our proofs, we need the following additional assumption.

A2. (0. bounds) There exists a constant v (0,1/2) such that v<¢ <1-v for r €[R].

Lastly, we also make an assumption about the data generating process.



A3. (Data generating process) The data {(Z,,Y,)},, are independent with Pr(Z, =r)=5,,

M
and f(Y|X,=x,,Z =r,0)=]] /(Y| X, =x,,8],) where [, is as defined in (7) for
m=1

r €[R].
We are ready to state our main result, which will depend on a sample size condition, C1.

Theorem 3.

Let k, >2 and k, >?2 be fixed constants. Suppose AI-A3 hold. If

M
A= {Z c, | n}'"? +{4Mk,log p/ n}'"*, then for n sufficiently large such that condition C1

m=1

holds,
>
[S12.¢.
”BT—BT”FS 3kl m=l1 +\/k2|S|Mlng
K(S’ nmin) 4}'1 n

R
with probability at least 1— p'™”* =" exp[-2n{5, — (n,;, =17 A} T:

r=1

The condition on the sample size (C1) needed for theiresult.of Theorem 3 is as follows.

C1. (Sample size) Let ¢, =max,_,, ||, |, kA58 ST/ {2K(S,n
prescribed in Theorem 3. The sample size# 1s sufficiently large with respect to
DsCpse-sCoy» M,k k,, and | S| such that e’ +# ¢, —1—¢ / k, > 0.

)} where A is as

min

Our error bound illustrates how ouriidealized M-step scales with respect to the number of
response variables and number of ¢ategories per response. It is especially instructive to
compare the error bound in“Fheorem 3 to that from Molstad and Rothman (2023). Recall that
Molstad and Rothman (2023) propose an estimator of the regression coefficient tensor under

M M
the vectorized model: Unsurprisingly, their error bound scales in H ¢, rather than z c,.

m=l1 m=l

This can be'explained by the fact that the regression coefficient tensor of interest under the
M

vectorized model has pH ¢, elements whereas under our model assumptions, there are only

m=1

M
sz ¢, unknown regression coefficients.

m=1



5 Simulation studies

5.1 Data generating models and competing methods

In this section, we compare our method for estimating conditional probability tensors to
numerous alternative approaches. To distinguish between model parameters and tuning

parameters, in this section, we use R~ to denote the functional rank of the true probability
tensor function, and use R to denote the rank used for model fitting. We consider data

generating models with R", the training sample size, the mixture probabilities, and the
magnitude of entries in the £ ’s varying. For a given R", we generate n independent

realizations of the predictor X ~ N, (0,%) where X, =0.5"™" for (j,k) e[p]x[p] and

generate Y,...,Y, from

R 4
Pr(Y, = ji,....Y, = I X=x)=) A [Pr(Y, = j,| X=x,Z =r)}

r=l1 m=1

4
where Pr(Y, = j, | X=x,Z =r)=exp(x' B, )/{D exp(x'B,,)} for'me[4], ), €[4], and
k=1

re[R]. Weset M =4 and ¢, =---=c, =4 throughout. When R_ =2 we set 5, =1-5,,
whereas when R" =5, we set (5,,...,5) =(5,,(1-3,)/4,.. (1-8,)/4). In both cases, we
consider various values of ;. In each setting we consider, we tandomly select five predictors

to affect the conditional probability tensor. Each of'the five corresponding rows of the £ s

has entries which are drawn independently from. N(0, 0'2). To select tuning parameters, we

generate a validation set of size 200 from the same'data generating model. To quantify
performance of the various estimators, we'alse generate a testing set of size 1000.

We consider multiple versions of our méthod with candidate R [4] (denoted Mix-1
through Mix-4) and P, taken to be,G,. We compare these variations of our method to two
methods which implicitly assume independence: fitting separate multinomial logistic
regression models to eachitesponse with (a) group-lasso penalty on the rows of each of the
regression coefficient matrices (Sep-Group) and (b) the L, -norm penalty applied the

regression coefficient matrices (Sep—-L1). Sep—Group is equivalent to our method with

M 14
R =1 and G;(B) replaced with Z/Im Z”[ﬂm 1;. Il - We omit the method of Molstad and
m=1 Jj=1
Rothman (2023) from our comparisons in this section because their software cannot be
applied with M > 3. Moreover, their method is meant to identify which predictors are
irrelevant, only affect the response marginal distributions, or affect high-order associations.

For all considered methods, tuning parameters are chosen to minimize the negative log-
likelihood evaluated on the validation set. For the methods which fit separate models, tuning
parameters are chosen for each response separately. We evaluate the performance by
calculating the square-root average Kullback-Leibler divergence on the testing set.



Many additional simulation studies can be found in Section S9 of the Supplementary
Materials. There, we consider larger p and larger M, and we compare our method to various
“vectorized” modeling approaches. We also perform studies comparing the two proposed
penalties H, and G, , and compared our method to that of Molstad and Rothman (2023) in a

setting where M =2.

5.2 Results

In Figure 3, we display the square-root average Kullback-Leibler divergences on the testing
set for each of the six methods with R” =2 . Focusing first on the top row, where coefficients
tend to have smaller magnitude, we see that when n =75, there is only minor differences
between methods. When n =150 or n =300, however, we notice that Mix-2, Mix-3, and
Mix-4 all tend to outperform the other competitors. This is not surprising given that‘each of
these methods contains the model with the true number of components as a special case.
Another interesting aspect of these results is that as 6, approaches 0.5, the differences in

performance become more apparent. This too is not surprising because when 6, =0.1, Mix-

1 could serve as a reasonable approximation to P . Results are effectively/the same when
o, =2, except that differences between the methods are more pronounced,even in the case

that n=75 or n=150.

We display analogous results for the data generating model with. R*= 5 in Figure 4. Overall,
we see results similar to those when R™ =2. Specifically,when n'=300 and coefficient

magnitudes are (relatively) small, there is little distinction/between the methods. As n =450,
we see a more clear seperation between the versions of ourmethod with different numbers of

mixture components. Notably, we see that as J; inereases, Mix—-2 performs more similarly to
Mix-5 and Mix-7. This makes sense as When 6, =0.67, four of the five components make

relatively small contributions to P. Just a$ in the case with R = 2, the magnitude of the
regression coefficients f, ~appears to'have an effect as well. Specifically, when o, =2, the

difference between estimators is much'greater than under similar settings with o, =1.

In Section S3 of the Supplementary Material, we present results for the same set of
competitors under identical«data generating models, but using Hellinger distance as a
performance metric. In brief;relative performances are very similar to those based on KL
divergence.

In the Supplementary Material Section S2 and S3, we include results for numerous additional
simulation stidies. These include simulation studies with R" € {6,7,8,9} , and simulation

studies under two types of model misspecification (including when Z depends on X). In
brief, our method appears reasonably robust against misspecification.

5.3 Effect of overspecifying R

In the simulation results displayed in Figures 3 and 4, we see that overspecifying the number
of mixture components seems to have little effect on estimation. In Figure 4, we see that
when n =450, Mix-7 even tended to perform slightly better than Mix—5, which has the



correctly specified number of components. To explore whether more extreme
overspecification has a similar effect, we repeated the simulations displayed in the bottom
panel of Figure 4 and added three additional versions of our method with R €{5,10,15},
which we call Mix-5, Mix-10, and Mix-15, respectively. We display results in Figure S6
of the Supplementary Material. Based on the results, it seems that extreme overspecification
of R may even improve estimation accuracy when 7 is small: Mix-15 seemed to perform as
well or better than all other methods in each scenario. However, it is important to note that
for the particular tuning parameters chosen for, say, Mix-15, there were often only two
nonzero estimates of the o ’s. This is one particularly appealing feature of the solution path

for fitting (15): for large values of A, even when R is large, the solution will have one 6, =1
and 6, =0 for r #r. As A decreases, eventually a second 5, becomes nonzero so that the

fitted model effectively has R = 2. This continues with each additional 6, becoming nonzero

as A — 0. We illustrate this phenomenon in Figure 5 of Section 6, and discuss this featare of
our method in more depth in Supplementary Materials Section S4.

6 Modeling functional classes of genes

In this section, we apply our method to the problem of modeling a gen€’s functional classes
based on both the gene’s expression and phylogenetic profile. The dataset we analyzed,
which was collected on yeast, was originally studied in Elisseeff.and Weston (2001) and can
be downloaded from https://www.uco.es/kdis/mllresources/. The predictors consist of

p =103 components, which are the collection of both the gene’s expression and phylogenetic
profile. In these data, there are M =14 functional classes (including metabolism, energy,
protein synthesis, etc.). Each of the n=2417 genes can be characterized as belonging to
multiple functional classes. For example, a gene'may affect both metabolism and protein
synthesis. Thus, it is natural to treat each functional class assignment as a binary response so
that we have ¢, =...=¢, =2.

Because of the relatively large numbeér of response variables, we used the version of our
method with the penalty H, describediin/(18). This penalty allows different components of

the predictor to be relevant for different values of the latent variable Z. In the case that R =1,
this is equivalent to the penalty G, but differs for R >1.

To compare our method’sgperformance across different choices of R, for 500 independent
replications we split the.data into training, validation, and testing sets of size 1500, 500, and
417, respectively..For' R € {1,2,3,4,5,7,10,15} separately, we fit the model to the training set

and selected the tuning parameter 4 by minimizing the negative log-likelihood evaluated on
the validation set. Then, we compute the deviance and misclassification accuracy on the
testing set for the selected model. In Table 1 of Section S8, we display the average joint error
rate and the average testing set deviance for our method with the various number of
components. Evidently, R =10 performed best in terms of deviance, and was only slight
worse (and not significantly different from) R =15 in terms of classification error. The most
remarkable result is that with R > 4| there is relatively little difference in terms of
performance.



We display the test set deviances in the top left panel of Figure 5. Note that the version of our
method assuming independent responses ( R =1) performs much worse than the versions with
R >1; adding even the second mixture component (R =2) decreased testing set deviance by

nearly 10%. In the two rightmost panels, we display the estimated 6, and the number of

predictors selected in the corresponding £, ’s with R =7. We see that in general, when

R =7, the selected model effectively has 4 or fewer gr nonzero. We also notice that the
mixture component with the highest probability often had 75 or more predictors included in
the model, whereas those mixture components with smaller probabilities tended to have
fewer. Examining the results with R =10 in the bottom leftmost panel, we again see often

only four or fewer 5: are estimated to be nonzero. Additional results can be found in Section
S8 of the Supplementary Material.

7 Discussion

In this article, we propose a general modeling strategy for the regression of a multivariate
categorical response on a high-dimensional predictor based on the population-level tensor
rank decomposition of the conditional probability tensor function. Numerically, our method
is shown to perform well with a large number of response variables and'largesnumber of
categories per response—a setting where many existing competitoss fail or cannot be applied.
Our results also suggest that our method is insensitive to over-specification of the number of
mixtures R.

Based on our theoretical analysis of an idealized and simplified estimator, we conjecture that
the convergence rate of the penalized EM algorithm, under suitable assumptions (see, for

example, Balakrishnan et al., 2017; Cai et al., 2019), is \/| S| Mlog p/n when treating R and

¢, ’s as constants. We leave this as a future theoretical study. Promising future research

directions also include (i) initialization ofithe‘algorithm and (ii) alternative convex penalties
on the tensor B . Regarding (1), methods such as Sedghi et al. (2016) are applicable to our
setting and could potentially improve over'the random initialization that we are currently
using. For (i1), recent advances on tensornuclear norm penalties (e.g., Raskutti et al., 2019)
neatly fit in our optimization ffamework and can take advantage of the tensor construction of
B.
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Figure 1: Diagram of the decomposition of the probability tensor P(x) (white cube) into the

sum of R =3 rank-one tensors. The gray rank-one tensor represents, for example,
op,,(x)°---°p,,,(x) from the decomposition in (3).
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Figure 2: Visualizing the global and local/variable selections and the corresponding sparsity
patterns in the tensor regression-parameter B . The two plots in middle respectively show the
mode-1 slices and the mode-3fibers to be selected. Our blockwise proximal gradient descent
algorithm updates one row of B, at a time for the penalty G,, and updates one column of

B ;, at a time for the penalty”H, .
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