
Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: www.tandfonline.com/journals/uasa20

Conditional probability tensor decompositions for
multivariate categorical response regression

Aaron J. Molstad & Xin Zhang

To cite this article: Aaron J. Molstad & Xin Zhang (02 Oct 2025): Conditional probability tensor
decompositions for multivariate categorical response regression, Journal of the American
Statistical Association, DOI: 10.1080/01621459.2025.2567045

To link to this article:  https://doi.org/10.1080/01621459.2025.2567045

View supplementary material 

Accepted author version posted online: 02
Oct 2025.

Submit your article to this journal 

Article views: 186

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

https://www.tandfonline.com/journals/uasa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2025.2567045
https://doi.org/10.1080/01621459.2025.2567045
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2025.2567045
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2025.2567045
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2025.2567045?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2025.2567045?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2025.2567045&domain=pdf&date_stamp=02%20Oct%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2025.2567045&domain=pdf&date_stamp=02%20Oct%202025
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20


 

Conditional probability tensor decompositions for 
multivariate categorical response regression 
 

Aaron J. Molstad1,*,# and Xin Zhang2,* 

 

1School of Statistics, University of Minnesota 

2Department of Statistics, Florida State University 

 

*The authors contributed equally to this work and are listed in alphabetical order. 

Research for this paper was supported in part by grants DMS-2053697 (XZ), DMS-2113590 
(XZ) and DMS-2113589 (AJM) from the U.S. National Science Foundation. 

#Corresponding author: Aaron J. Molstad (amolstad@umn.edu). 

 

 

 

Abstract 
In many modern regression applications, the response consists of multiple categorical random 
variables whose probability mass is a function of a common set of predictors. In this article, 
we propose a new method for modeling such a probability mass function in settings where 
the number of response variables, the number of categories per response, and the dimension 
of the predictor are large. Our method relies on a functional probability tensor decomposition: 
a decomposition of a tensor-valued function such that its range is a restricted set of low-rank 
probability tensors. This decomposition is motivated by the connection between the 
conditional independence of responses, or lack thereof, and their probability tensor rank. We 
show that the model implied by such a low-rank functional probability tensor decomposition 
can be interpreted in terms of a mixture of regressions and can thus be fit using maximum 
likelihood. We derive an efficient and scalable penalized expectation maximization algorithm 
to fit this model and examine its statistical properties. We demonstrate the encouraging 
performance of our method through both simulation studies and an application to modeling 
the functional classes of genes.  
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1 Introduction 

We consider the problem of modeling the conditional distribution of multiple categorical 
response variables as a function of a p-dimensional vector of predictors, i.e., a multivariate 
categorical response regression analysis. Joint modeling of multiple, dependent categorical 
responses is crucial in applications such as characterizing the genetic basis of disease 
subtypes (Dahl and Zaitlen, 2020), which are often defined as a cross-classification of many 
distinct categorical variables. For example, breast cancer tumors can be characterized by the 
presence estrogen receptor, human epidermal growth factor receptor 2, and progestoerone 
receptor proteins (i.e., 32  total subtypes). To make matters concrete, for an integer 2M  , let 

1( , , )MY Y Y  be the multivariate categorical response, where each component mY  has 
2mc   many categories with numerically coded support [ ] {1, , }m m mY c c    for all 

[ ] {1, , }m M M   . The regression models and methods developed in this article allow the 
predictor pX  to be either continuous or discrete (or mixed), and allow the predictors 

px  to be either random or fixed. The regression problem is essentially the study of the 
conditional distribution Y X∣  whose joint probability mass function consists of 

1 1 1( ) Pr( , , ) 0, [ ],  [ ].
Mj j M M m mP Y j Y j j c m M        x X x∣  (1) 

From (1), we can define the Mth order tensor 1( ) Mc c P x  whose 1( , , )Mj j th element is 

1
( )

Mj jP  x . This conditional probability tensor ( )P x  fully characterizes the conditional 
distribution of Y X x∣  and is thus the quantity of interest in our study. 

To fit (1), there are numerous approaches one could consider. At one extreme, each response 
could be modeled separately using, say, multinomial logistic regression. This approach is 
scalable to a large number of responses and high-dimensional predictors (Zhu and Hastie, 
2004; Simon et al., 2013; Vincent and Hansen, 2014), but entirely ignores the dependence 
between response variables. On the other extreme, one could define a univariate categorical 
response variable based on the set of all possible category combinations and methods 
designed for a univariate categorical response could be applied. This is the regression analog 
of modeling counts in a M-way contigency table as a multinomial random variable (Agresti, 
1992, Section 1.2). For example, in applications with only binary responses, this would 
require treating M binary response variables as a univariate categorical variable with 2M  
categories. In Section 6, we consider a genomic application with 14M   binary response 
variables, so this approach would lead to an unwieldy 2 16384M   categories. This approach 
allows for arbitrary dependence among responses, but in so doing, treats ( )P x  as a vector 
and thus fails to exploit its special tensor structure. Moreover, this approach would require an 
enormous amount of data for model fitting. If even a single category combination is not 
observed in the training data, this approach cannot be applied directly. Finally, when the 
number of categorical responses is even moderately large, model interpretation will be 
difficult because the number of parameters grows exponentially with the number of 
responses. 
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For the problem of modeling the conditional probability tensor function P , we refer to these 
two approaches as separate modeling (of each response) and vectorized modeling (of the 
combined-category response), respectively. The objective of this article is to propose an 
alternative to these two approaches; a method which can model complex dependencies 
among response variables like vectorized modeling, yet provides fitted models which can be 
computed and interpreted with the ease and scalability of separate modeling. Our approach 
exploits the connection between the conditional independence of 1, , MY Y , or lack thereof, 
and the rank of the conditional probability tensor ( ).P x  Later, we prove that separate 
modeling implicitly assumes ( )P x  is rank one, whereas vectorized modeling assumes no 
explicit upper bound on the rank of ( )P x . We may thus characterize models for which ( )P x  
is low rank as intermediate to these two extremes. Neatly, we later show that both the 
separate model and vectorized model can be characterized as “edge-cases” of a rank-
constrained ( )P x  when the rank is fixed at one or the rank is allowed to be as large as 

[ ]
1

/ max
M

m k M k
m

c c



 , respectively. Section 2.3 contains comparisons of these approaches. 

Motivated by this observation, in this article we propose a new method for multivariate 
categorical response which assumes the low-rankness of ( )P x  for all .x  We show that 
pursuing a low-rank decomposition of the conditional probability tensor ( )P x  provides a 
natural, intuitive, and scalable way to model the complex dependencies among responses. 
However, because ( )P x  consists of the probabilities from (1), there are intrinsic constraints 
(nonnegativity and “sum-to-one”) not often encountered in standard tensor decomposition 
problems. To handle these difficulties, we assume that the conditional probability tensor 
function P  can be decomposed into the weighted sum of rank one probability tensor 
functions. This assumption naturally allows P  to be characterized as a mixture of regressions 
model, and implies the low-rankness of ( )P x  for all .px  Moreover, by exploiting a latent 
variable interpretation of the probability tensor function, we can fit our model using penalized 
maximum likelihood, which can accommodate large p, large M, and large mc . 

Before formally describing our proposed method and model, we first situate our work among 
existing methods for fitting (1). 

In the statistical literature on categorical data analysis, existing methods for multivariate 
categorical response regression are primarily focused on developing parametric links between 
predictors and multiple categorical responses that allow for model interpretation in terms of 
marginal probabilities and higher-order associations (Molenberghs and Lesaffre, 1999; 
Glonek, 1996; Ekholm et al., 2000; McCullagh and Nelder, 1989). For example, one set of 
link functions correspond to log-linear models, and another to multivariate logistic models 
(Glonek and McCullagh, 1995). Other approaches propose nonparametric regression 
functions and allow for some response-specific predictors (Gao et al., 2001). In general, these 
works adopt the vectorized modeling approach and are often not feasible when 3M   and p 
is large, where associations among response variables are difficult to parameterize. 

More recently, in the high-dimensional regime, Molstad and Rothman (2023) proposed a 
novel penalty to enforce linear restrictions on the regression coefficient tensor under the 
vectorized model with multinomial link. Their penalty can lead to fitted models that can be 
interpreted in terms of which predictors affect only the marginal distributions of responses, 
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the log odds ratios, or neither. However, their method does not easily generalize to more than 
two response variables. Theoretically, the estimation error bound for their method scales 

exponentially with M (more specifically, scales in 
1

M

m
m

c


 ) rather than linearly (such as 
1

M

m
m

c


 ) 

as does our method. 

Of course, others have recognized the need for models and methods specifically designed for 
multivariate categorical response. One class of methods, based on the notion of binary 
relevance, comes from the literature on multi-label classification (Tsoumakas and Katakis, 
2007) in machine learning. Many binary relevance methods fit separate univariate models, 
and thus fail to account for dependence in the multivariate response (Dembczyński et al., 
2012; Montañes et al., 2014; Zhang et al., 2018). One binary relevance approach that 
accounts for dependence uses classifier chains (Read et al., 2011; Senge et al., 2013). This 
approach fits univariate categorical response regressions for 1 2, , , MY Y Y  successively. For 
each univariate fit, the responses from previous fits are used as predictors in subsequent fits. 
For example, one would fit 1Y X∣ , then 2 1,Y YX∣ , and so on. The fitted models are thus 
typically interpreted in terms of specific (univariate) conditional distributions for each 
response, rather than the joint distribution of interest. There is also an extensive literature on 
unsupervised modeling for multivariate categorical data (Fienberg, 2000; Dunson and Xing, 
2009; Bhattacharya and Dunson, 2012), but this is not applicable to regression. Finally, we 
note that the problem of modeling P  is not related to recent work on categorical data analysis 
focused on handling high-dimensional categorical predictors (e.g., Stokell et al., 2021). 

Our model and method is related to—although fundamentally distinct from—existing 
research on tensor decompositions and regression. We give a very brief and selective survey 
in the following and refer the interested readers to Kolda and Bader (2009) and Bi et al. 
(2020). First, the idea of jointly modeling multiple responses using a (regularized) tensor 
decomposition is conceptually similar to that in tensor response regression (e.g., Li and 
Zhang, 2017), where the response is typically a continuous-valued tensor. However, our 
study is fundamentally different due to the discrete nature of the response. For example, 
continuous-valued tensor decompositions (e.g., Sun et al., 2017) are not applicable since they 
may not result in a valid probability tensor. Secondly, our regression problem is also distinct 
from recent studies focused on binary or categorical tensor decompositions (e.g., Wang and 
Li, 2020). Extensions of these unsupervised learning methods to our context is nontrivial, 
especially in settings where the predictor is high-dimensional. Notably, Yang and Dunson 
(2016) also used the term “conditional probability tensor”, though their focus was on 
estimating conditional probabilities of a categorical Y on multivariate categorical predictor X
, which is fundamentally different from (1). 

This paper has multiple contributions. First, we propose a general method for modeling P  
which allows practitioners to consider alternatives to the separate and vectorized modeling 
approaches. Crucially, unlike existing approaches which do not assume conditional 
independence, our method is scalable to large p, large M, and large mc ’s, without sacrificing 
flexibility or interpretability. The scalability allows for a broad range of potential 
applications, and the interpretability—in terms of both predictors selected and the estimated 
rank of the conditional probability tensor— allows practitioners to gain novel scientific 
insights. 
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Second, we introduce the notion of a functional tensor rank decomposition: a type of 
decomposition applicable to tensor-valued functions. Loosely, this type of decomposition 
assumes that the range of a tensor-valued function is a restricted set of low-rank tensors. 
Though we focus on its application to conditional probability tensor functions, this approach 
could also be applied in more general tensor response regression problems. 

Third, in order to accommodate different scenarios, we propose new penalties to achieve 
highly interpretable global and local variable selection in mixture of regression models. We 
devise an efficient algorithm which we prove to produce a sequence of iterates that 
monotonically increase the penalized observed data log-likelihood. Statistical properties are 
also established to illustrate how, in an idealized setting, our method scales with respect to 
the number of responses, the number of categories per response, and the number of 
predictors. 

2 Model 

2.1 Decomposition of the conditional probability tensor function 

For a positive integer M, an M-way tensor (also known as an Mth order tensor) is an array 
object 1 Mp p A  for positive integers 1, , Mp p . For example, a vector is a one-way 
tensor, and a matrix is a two-way tensor. The tensor rank decomposition, also known as the 
CANDECOMP/PARAFAC decomposition, is a generalization of the singular value 
decomposition for matrices (Hitchcock, 1927; Carroll and Chang, 1970). A rank-one tensor 

1 Mp p A  can be written as the outer product of M vectors: (1) ( )M  A a a , which is 
defined element-wise as 

1 1

(1) ( )
, , M M

M
i i i i A a a  for all [ ]m mi p  and [ ]m M . In general, a 

rank-R tensor ( 2R  ) can be written as the sum of R rank-one tensors, each formed as the 

outer product of vectors ( ) , [ ], [ ]m
r r R m M a : (1) ( )

1

R
M

r r
r

  A a a . A tensor is said to be 

rank-R if it can be decomposed into R rank-one tensors but not into r rank-one tensors for any 
r R . 

The goal of this paper is to provide a statistical modeling framework for the M-th order tensor 
1( ) Mc c P x , whose 1( , , )Mj j th element is the conditional probability function 

1
( )

Mj jP  x  defined in (1). To that end, we first provide some characterizations of ( )P x  and its 
rank-R decomposition which motivate our modeling approach in Section 2.2. 

First, given x , there is no distinction between a conditional probability tensor ( )P x  and an 
unconditional probability tensor (i.e., a probability tensor which is not a function of 
predictors). Thus, many of the results in this section apply to unconditional probability 
tensors. We will explain shortly how these results motivate our model for the function P . 

Let 1

1 , ,
M

M

c c
c c

 

   denote the set of M-way valid probability tensors, i.e., the set of M-
way tensors satisfying non-negativity and sum-to-one constraints. We define the probability 
tensor rank based on the tensor rank decomposition restricted to the set 

1 , , Mc c . 

Definition 1 . 
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The probability tensor rank of 
1 , , Mc cA  is the minimal number R such that A  can be 

expressed as the weighted sum of R rank-one probability tensors, 
1

R

r r
r




A A  for some 

0r   and 
1

(1)
, , Mr c cA , [ ]r R , where 

1

(1)
, , Mc c  denotes the set of M-way rank-one 

probability tensors. Note that 1r   is guaranteed because A  and rA , [ ]r R , are 
probability tensors.  

In Definition 1, a rank-one probability tensor is defined in the usual sense, i.e., it can be 
formed as the outer product of vectors. However, the probability tensor rank R is based on a 
more restrictive decomposition, in which the weights are positive and the tensors rA  are 
elements of 

1

(1)
, , Mc c . These restrictions prompt meaningful statistical and probabilistic 

interpretation on the probability tensor decomposition, as we discuss later. Henceforth, we 
say a probability tensor is rank-R if its probability tensor rank is R. 

Remark 1 . 

 Because of the additional restrictions, a rank-R probability tensor decomposition in 
Definition 1 is also a valid rank-R CP decomposition. The probability tensor rank is always 
no less than the usual tensor CP rank, similar to the fact that the nonnegative rank of a 
nonnegative matrix (Cohen and Rothblum, 1993) is no less than its usual matrix rank. The 
uniqueness of a rank-R decomposition requires additional conditions, e.g., the sum of ranks 
of the M matricizations of the tensor is no less than 2 1R M   is a sufficient condition for 
the uniqueness up to permutation and. scaling (Sidiropoulos and Bro, 2000). Generalizing 
such results to probability tensors remains an open question. In this work, we focus on the 
existence of the decomposition and later tackle the non-uniqueness from the model 
identifiability perspective.  

The following two propositions establish upper bounds on the probability tensor rank.  

Proposition 1 . 

For any given x , ( )P x  has probability tensor rank [ ]
1

/ max
M

m k M k
m

R c c



 .  

Proposition 1 implies that the CP rank is also less than or equals to [ ]
1

/ max
M

m k M k
m

c c



 . This 

implication also extends Theorem 1 and Corollary 1 of Dunson and Xing (2009) by 
establishing the upper bound on the rank R while Dunson and Xing (2009) showed the 
existence of the rank. When 2M  , Proposition 1 implies that the singular value 
decomposition of ( )P x , as a 1 2c c  matrix, holds for rank 1 2min( , )R c c  for any given x . 
This well-known fact for the singular value decomposition of a matrix is thus extended to our 
decomposition with nonnegativity and sum-to-one constraints. The result of Proposition 1 
formalizes the arguments outlined in equation (6) of Johndrow et al. (2017). 
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The upper bound in Proposition 1 assumes nothing about the dependence among the M 

responses. Indeed, if ( )P x  has rank [ ]
1

/ max
M

m k M k
m

R c c



 , the responses can be arbitrarily 

dependent. Parsimonious dependence structures, in contrast, can imply a tighter upper bound 
on the rank of ( )P x . We present one such example in the following proposition. 

Proposition 2 . 

For a given x , if the responses form L mutually independent groups—indexed by sets 
1, , LG G  where 1 [ ]L

l lG M   and k kG G   for k k  —then ( )P x  has probability rank 

1

( / max )
l

l

L

m k G k
l m G

R c c

 

  .  

Proposition 2 suggests that the rank of ( )P x  is related to the complexity of the dependence 
among 1, , MY Y  given X x . To demonstrate this point, consider the application in Section 
6 where 1 2Mc c   , 14M  . The generic upper bound from Proposition 1 is 

132 8192 . Instead, suppose that at a given x , eight of the responses were independent of all 
others, and the other six formed two groups of three responses which are mutually 
independent, i.e., 1 2 4 10| | 3,| | 3,| | | | 1G G G G     . In this case, Proposition 2 shows 

42 16R   . In our application, we actually find that 5R   yields the best results in terms of 
test set log-likelihood. Johndrow et al. (2017) also provide upper bounds on the probability 
tensor rank as a function of the sparsity in the log-linear model characterizing the joint 
distribution of the responses (in an unconditional setting), further reinforcing that 
parsimonious dependence structures imply probability tensor rank restrictions. 

Considering the most extreme case of Proposition 2, where L M  and l lG c , we have the 
following well-known result about rank-one probability tensors as an direct consequence of 
Proposition 2 and Theorem 1. 

Corollary 1 . 

For a given x , ( )P x  is rank one if and only if the responses are independent.  

Of course, a probability tensor ( )P x  must have at least rank-one because rank-zero, which 
corresponds to the tensor of zeros, would not yield a valid probability tensor. 

Up to this point, our results have applied to ( )P x  for a given x . In full generality, ( )P x  may 
could have a distinct decomposition for each x , where R also varies with x , but allowing this 
degree of flexibility would make regression modeling impracticable. Instead, to achieve 
parsimony, it is reasonable to assume that ( )P x  will have the same (low) probability tensor 
rank for every x , and moreover, the components of their decomposition will have the same 
functional form. To see how one could put this assumption to use, we consider the rank-one 
decomposition of ( )P x . Specifically, the following result establishes the connection between 
the rank-one conditional probability tensor and the conditional independence of the responses 
given the predictor. 
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Theorem 1 . 

For any given x , if 
1 , ,( )

Mc cP x  is rank-one, it can be decomposed uniquely as  

1( ) ( ) ( ),M  P x p x p x  (2) 

for ( ) {Pr( 1 ), ,Pr( )}m m m mY Y c     p x X x X x∣ ∣ , [ ]m M . Furthermore, if ( )P x  is 
rank-one for all x , then 1, , MY Y  are conditionally independent given X , and vice versa.  

By definition, rank-one probability tensor means (2) holds for some ( ) mc
m p x , [ ]m M . 

While such a decomposition is not unique, as we show in Theorem 1, a rank-one probability 
tensor can always be decomposed uniquely into marginal probability vectors without loss of 
generality. This theorem thus gives a constructive and identifiable formulation of rank one 
probability tensor decomposition. As shown in Corollary 1, rank-one probability tensor for a 
given x  is equivalent to independence of responses conditional on the event X x . As 
shown in Theorem 1, rank-one probability tensor for all x  is equivalent to conditional 
independence of responses given the random variable X . The result of Theorem 1 suggests 
that if, for example, we assumed the responses were conditionally independent given X , then 
we are equivalently assuming that 1(·) (·) (·)M  P p p  for functions 1, , Mp p  such that 

1: mcp
m


p  where 1 { : 1, 0 for all [ ]}m m

m

c c
c k mk c

     u u 1 u . Under this 
assumption, we could thus model each mp  using standard regression models for mY  on X  
separately. On the other hand, the low-rankness of ( )P x  for a specific value x  would not 
reduce the population model complexity. 

Thus, motivated by model parsimony, we introduce the functional rank of the probability 
tensor function 

1 , ,:
M

p
c cP  defining the conditional probability mass (1). 

Definition 2 . 

The functional rank of the probability tensor function (·)P  is the minimal number R such that 

1
(·) (·)

R

r r
r




P P  for 0r   and 
1

(1)
, ,:

M

p
r c cP , [ ]r R .  

From the above definition, (·)rP  has functional rank one and 
1

(1)
, ,( )

Mr c cP x  is a rank-one 
probability tensor for all x . We now consider generalizing the rank-one structure to an 
arbitrary rank-R. Motivated by Theorem 1 and Definition 2, the next theorem considers the 
decomposition of (·)P  into a sum of R rank-one probability tensor functions (see Figure 1). 

Theorem 2 . 

If the functional rank of 
1 , ,:

M

p
c cP  is 1R  , then it can be written as  

1
1 1

(·) (·) (·) (·),
R R

r r r r Mr
r r
 

 

    P P p p  (3) 
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where 0r  , 
1

1
R

r
r




  and 1: mcp
mr


p  for ( , ) [ ] [ ]m r M R  . Moreover, if the 

decomposition of the function P  in (3) holds, then there exists a categorical random variable 
Z independent of X  such that Pr( ) rZ r    and 

( ) {Pr( 1 , ), ,Pr( , )}mr m m mY Z r Y c Z r       p x X x X x∣ ∣  for [ ].r R  Consequently, 
(3) is equivalent to the conditional independence of 1, , MY Y  given ( , )ZX .  

Theorem 2 shows that a conditional probability tensor with functional rank-R can always be 
decomposed with additional constraints that 1r

r
   and 1: mcp

mr


p , without loss of 

generality. Recall that 1mc 
  represents the sets of valid probability mass functions of mc -

categorical random variable. Then the rank-R decomposition can be interpreted as the product 
of marginal probabilities Pr( ) rZ r    and conditional probability tensors ( )rP x , which is 
defined as the probability function of ( , )Z r Y X x∣ . When (3) holds, such a categorical 
variable Z always exists by this construction. The rank-one probability tensor ( )rP x  can then 
be decomposed into the product of 

( ) {Pr( 1 , ), ,Pr( , )}mr m m mY Z r Y c Z r       p x X x X x∣ ∣  similar to the 
decomposition in Theorem 1. The rank-R decomposition in (3) is the key modeling 
assumption of our approach. The result of Theorem 2 suggests a natural population-level 
decomposition of (·)P  as illustrated in Figure 1 for 3R  . The functional rank-R 
decomposition is not always unique. Nevertheless, the rank and the existence of the 
decomposition is well-defined and guaranteed based on Definition 2 and Theorem 2, which 
motivates us to introduce a finite mixture of regressions model in the sequel. 

2.2 Finite mixture of regressions model 

Recall that for a P  with rank-R functional probability tensor decomposition (3), there exists 
latent categorical variable [ ] {1, , }Z R R    independent of X  such that 1, , MY Y  are 
conditionally independent given X  and Z. Specifically, we have 

Pr( ) Pr( )r Z r Z r     X x∣  and ( ) Pr( , )mr m mY j Z r   p x X x∣  such that (3) is 
satisfied in Theorem 2. It follows that 

1
1 1

( ) {Pr( ) Pr( , )}.
M

MR

j j m m
r m

P Z r Y j Z r

 

     x X x∣  (4) 

This connection between (3) and (4) naturally leads to a finite mixture of regression model, 
which implies the population level tensor decomposition (3) for all values of x  by assuming 
a parametric link for the conditional probability function Pr( , )m mY j Z r  X x∣  for 
( , ) [ ] [ ]m r M R  . With this latent categorical variable [ ]Z R , our proposed model is thus 

1

Pr( ) , ( , , ) ( , ),
M

r r m mr
m

Z r f Z r f Y


     Y X x X xθ β∣ ∣  (5) 
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where f and rf  denote generic probability mass functions and mrβ  (to be specified later) is 
the model parameter for the regression of mY  on X  given Z r . The parameters in this 
model are denoted [ ] 1 [ ]{ , } { , , , }r r r R r r Mr r R    θ θ β β . Of course, we can write the joint 
probability mass function of interest as a mixture of regressions without Z as 

1 1 1

( , ) ( , ) { ( , )}.
MR R

r r r r r m mr
r r m

f f f Y 
  

      Y X x Y X x X xθ θ β∣ ∣ ∣  (6) 

The model (5) has an intuitive interpretation: there are R latent states indexed by Z, and 
conditional on the latent state and X , the response variables are independent. For each value 
of the latent variable Z, we have a distinct sub-model with conditionally independent 
responses (i.e., separate models). Each category of Z corresponds to a rank-one probability 
tensor (e.g., the gray rank-one tensor from Figure 1). The vectors ( )mrp x  in (3) naturally 
consist of probabilities Pr( 1 , ), ,Pr( , )m m mY Z r Y c Z r      X x X x∣ ∣ . Notably, 
maximum likelihood estimates of θ , and consequently, of P , can be obtained even when all 
category combinations are not observed in the training data. This is because each set of 
parameters rθ  corresponds to marginal conditional probabilities for each response. 

For the remainder, we assume a multinomial logistic regression model for each 
( , )mY Z r X x∣ . The regression coefficients mp c

mr


β  thus characterize the mc  possible 
outcomes of a multinomial random variable mY  (based on a single trial), whose mass function 

( , )r m mrf Y X x β∣  consists of the probabilities 

1

exp( )
Pr( , ) ,    [ ],

exp( )
m

mrj
m mr mc

mrk
k

Y j j c



   



x
X x

x

β
β

β
∣  (7) 

where p
mrj β  is the jth column of mp c

mr


β . 

Remark 2 . 

Under our model assumptions (6) and (7), the identifiability of the model parameters r ’s 
and mrβ ’s implies that the rank decomposition of function P  in (3) is unique. However, the 
identifiability problem is non-trivial and analogous to the identifiability in the finite mixture 
of regression models and the latent class models, which are fundamental problems still not 
yet completely understood (Ouyang and Xu, 2022; Do et al., 2025). Even within each mixture 
component ( Z r ), the mrβ  are not identifiable without imposing an identifiability 

constraint, e.g., a “sum-to-zero” constraint 
1

0
mc

mrj
j

 β . Later, we explain that when using 

our proposed penalties, the sum-to-zero constraint is enforced automatically. For formal 
definitions of the parameter space and identifiability under the finite mixture of regressions 
model, see Khalili and Chen (2007, Definitions 1 and 2). Similar to Khalili and Chen (2007), 
we remark that the identifiability depends on many factors and simply assume that the model 
under consideration in this paper is identifiable.  
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Our functional probability tensor decomposition is related to the latent class model, which 
has been extensively studied and applied in psychological and epidemiological research. In 
latent class models, multiple binary or categorical variables ( Y ) are measured as surrogates 
for estimation and inference on the unobservable definitive categorical outcome (Z), which 
characterizes underlying population heterogeneity and the subjects’ class memberships. In 
particular, Bandeen-Roche et al. (1997), Huang and Bandeen-Roche (2004), and Ouyang and 
Xu (2022)—among others—consider the regression extension of latent class models by 
including covariates (e.g., X ) and modeling Z given X , and Y  given Z (or more generally, 
Y  given ,Z X ) with generalized linear models. Based on this connection, our work provides 
a new perspective on latent class models with covariates, and a means for application thereof 
with high-dimensional predictors (Section 3). 

Mathematically, our model can be transformed into the regression-based latent class model of 
Huang and Bandeen-Roche (2004) by replacing Pr( )r Z r    with 

( ) Pr( )r Z r   x X x∣ . We do not purse this direction for multiple reasons. First, there is a 
philosophical difference between the latent class model and the multivariate categorical 
response regression model. Allowing Z (instead of, or in addition to, Y ) to be dependent on 
X  is crucial in latent class models because Z is the definitive outcome and Y  is a surrogate 
thereof. For example, Bandeen-Roche et al. (1997) assume Y  is independent of X  given the 
latent variable Z. However, this is unnecessary in our context where the outcome of interest is 
Y  and Z is only used to introduce dependence among the mY . The fundamentally different 
applications lead to different model assumptions. 

Secondly, assuming Z to be independent of X  simplifies the model interpretation. As seen in 
Figure 2, our latent variable model can be viewed as a mixture of generalized linear 
regressions, where Pr( ) Pr( )r Z r Z r     X∣ , [ ]r R , are non-stochastic weights of the 
R mixtures. The assumption of non-stochastic weights is widely adopted in the study of the 
finite mixture of regression (FMR) model. Additionally, our assumptions of independence 
between Z and X  helps parameter identifiability, a fundamental issue in latent class models 
(Ouyang and Xu, 2022). 

Finally, we note that it is relatively straightforward to generalize our method by modeling 
( )r x  as a multinomial logistic regression of Z X∣ . This extension is almost identical to the 

extension from the FMR model to the mixture of experts model (Jacobs et al., 1991). 
However, because (6) is already very flexible due to the large number of regression 
parameters, the extension from r  to ( )r x  sometimes offers little improvement in predicting 
Y . We conducted a simulation example to illustrate this point: see our discussion thereof in 
Section 5. 

2.3 Comparison with alternative approaches 

In this section, we compare our model assumptions (6) and (7) to the two other approaches 
for fitting M categorical responses 1( , , )MY Y Y  on the predictor pX . For the sake of 
comparison, we use multinomial logistic links for all approaches. 

The first, and most naive, direct approach is separate modeling. This model assumes that 
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1

exp( )
Pr( ) , [ ], [ ],

exp( )
m

mj
m mc

mk
k

Y j j c m M



    



x
X x

x

η

η
∣  (8) 

where p
mj η  for [ ]mj c  and [ ]m M . This model is equivalent to our model with 1R  . 

If (8) is true, then our model with 1R   becomes over-parameterized but can still provide 
consistent estimates of mjη ’s (with some asymptotic efficiency loss). If (6) and (7) are true 
for 1R  , then separate fitting based on (8) will not only lose the interrelationship between 
responses, but will be incorrect for the marginal probabilities Pr( )mY X x∣ , [ ]m M . This 
may be somewhat surprising, but can be seen from the latent variable representation 

1 1

1

exp( )
Pr( ) Pr( , ) ,

exp( )
m

R R
mrj

m r m r c
r r

mrk
k

Y j Y j Z r 
 



       


x
X x X x

x

β

β
∣ ∣  

which can not be rewritten as proportional to exp( )mjxη . Intuitively, the latent variable Z 
introduces heterogeneity, and hence nonlinearity, in the conditional probability function 
Pr( )mY j X x∣ . As a result, separate model fitting is insufficient even when there is only 
one response variable. This is analogous to fitting a linear model to a mixture of regressions 
with heterogeneous sub-populations. 

The second direct approach is vectorized modeling. As mentioned, this approach transforms 

Y  into a univariate categorical response *Y  with *
1

M

m
m

c c


  categories. The corresponding 

multinomial logistic regression model assumes 

** *

1

exp( )
Pr( ) , [ ],

exp( )

j
c

k
k

j j c



   



x
X x

x

γ
Y

γ
∣  (9) 

where p
j γ  for *[ ]j c . For example, Molstad and Rothman (2023) assume (9) and 

impose linear restrictions on the matrix of jγ ’s. Similar to the separate fitting approach, if (6) 
and (7) are true for 1R  , then this joint fitting based on (9) will also be incorrect even for 
marginal probabilities Pr( )mY X x∣ , [ ]m M . On the other hand, if (9) is correct, then the 
rank R in our model may be as large as *c . That is, we have *c  rank-one tensors that each 
consists of one element of the probability tensor ( )P x . The number of free parameters is 

*( 1) ( 1)
M

m
m

p c p c    for (9) and ( 1) ( 1)m
m

R pR c    for our latent variable model (6) 

and (7). For example, consider the scenario where 1 Mc c c   . Then the number of free 
parameters becomes ( 1)Mp c   for the vectorized model (9) and ( 1) ( 1)R pR c M    for the 
rank R version of our model. As the number of responses M increases, the complexity of (9) 
increases exponentially the order of ( )MO pc  while our model’s complexity increases linearly 
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in the order of ( )O pcMR . As the number of categories for each response c increases, our 
model’s complexity still increases linearly in c but the complexity of (9) increases more 
rapidly as Mc  as 2M  . To gain further intuition, when 4c M   and 100p   (as in our 
simulation studies), the joint model has 25500 free parameters and our model has 2401 when 

2R   or 3602 when 3R  . Finally, note that the primary benefit of the mixture of 
regressions model is a reduction in the number of parameters related to the response 
dimension. In a subsequent section, we introduce new regularization schemes to address 
high-dimesionality of the predictor. 

3 Penalized maximum likelihood estimation 

Let the observed data be 1{( , )}n
i i iY x  where 1( , , )i i MiY Y Y  for [ ] {1, , }i n n   . Recall 

that θ  denotes all of the unknown parameters 1 [ ]{( , , , )} R
r r Mr r R  β β  where 

1(0,1) Mp c p c 
     with 

1
1.

R

r
r




  The conditional log-likelihood of Y X∣  

evaluated at θ  is 

1 1 1

log { ( , )} .
Mn R

r r mi i i mr
i r m

f Y
  

 
 

 
   X x β∣  (10) 

In this section, we first describe the standard EM algorithm for maximizing (10) over R . 
The standard EM algorithm, which iterates between the expectation (E) step and the 
maximization (M) step, is only applicable in the classical low-dimensional setting. To address 
settings with high-dimensional predictors, we later discuss how to maximize a penalized 
version of (10). In particular, we devise a computational algorithm that replaces the penalized 
M-step with an approximation guaranteed to monotonically increase the objective function. 

3.1 The EM algorithm and its parallel M-step 

The standard EM algorithm will deal with the complete-data log-likelihood; that is, the log-
likelihood of ( , )ZY X∣ , treating Z as if it were observable. Let ( )ir iZ Z r 1 . Recalling that 
Z is independent of X  with Pr( ) Pr( ) rZ r Z r    X∣ , the log-likelihood of ( , )ZY X∣  
evaluated at θ  is thus 

 
1 1 1 1

( ) log ( , ) log( ),
n R n R

ir r i i i r ir r
i r i r

Z f Z 
   

   Y X xθ θ∣  (11) 

where 
1

( , ) ( , )
M

r i i i r r mi i i mr
m

f f Y


  Y X x X xθ β∣ ∣  by definition. Each iteration of the EM 

algorithm, indexed by 0,1,2,t  , consists of two steps. In the E-step, we compute the -
function at tth iterate ( )tθ , ( ) ( )

1( ) E ( ) {( , )} ,t n t
i i i   Y xθ θ θ θ∣ ∣ . To do so, we first compute 

the conditional estimate of E( )ir irZ  , the probability the iZ r , given the observed data 
and ( )tθ , 
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( ) ( )
( )

( ) ( )

1

( , ) .
( , )

t t
t r r i i i r

ir R
t t

s s i i i r
s

f

f












Y X x

Y X x

θ

θ

∣

∣

 (12) 

Then we can express the -function as 

( ) ( ) ( )

1 1 1
( ) log{ ( , )} log( ) .

n R M
t t t

ir r mi i i mr ir r
i r m

f Y  
  

 
   

 
  X xθ θ β∣ ∣  (13) 

In the M-step, we compute ( 1)tθ , which we define as the maximizer of (13) with respect to θ

. One can verify that ( 1) 1 ( )

1

n
t t

r ir
i

n  



  , so the main challenge is maximizing the -function 

with respect to the regression coefficients mp c
mr


β  for ( , ) [ ] [ ]m r M R  . 

From the first term in the -function, one can see that the maximization with respect to the 
mrβ  is separable across each ( , )m r  combination. Therefore, for ( , ) [ ] [ ]m r M R   in an 

embarassingly parallel fashion, we need only compute 

( 1) ( )

( ) ( )

1

argmax ( ),

( ) log{ ( , )}.

p cm
mr

t t
mr mr mr

n
t t

mr mr ir r mi i i mr
i

f Y











  X x

β
β β θ

β θ β

∣

∣ ∣
 (14) 

The solution to the above optimization problem is obtained by fitting a weighted multinomial 
logistic regression model of mY  on X . This could be done using a modified version of the 
standard computational approaches, e.g., a quasi-Newton algorithm. This special structure 
naturally lends itself to settings with large M and large R. 

The update (14) reinforces the generality of our latent variable model. We could replace the 
assumption of multinomial logistic link in (7) with a different assumption on 

( , )r mi i i mrf Y X x β∣ . The only necessary modification of the estimation procedure is in (14). 

3.2 Penalties on the regression coefficient tensor 

To address the p n  case, we propose to maximize a penalized version of (10). Imposing 
penalties on each mrβ  separately is possible, but may lead to fitted models which are difficult 
to interpret. Moreover, by imposing penalties across both mixture and response components, 
efficiency can be greatly improved. To achieve this, first organize all mp c

mr


β  into a 

tensor parameter p R C B , where 
1

M

m
m

C c


  and define the rth mode-2 slice of B  as 

[:, ,:] 1( , , ) p C
r r Mr

  B β β  for [ ]r R . We propose to estimate the parameters θ  using 

 argmax ( ) ( ) ,
R





 B
θ

θ  (15) 

Acc
ep

ted
 M

an
us

cri
pt



where  is the observed data conditional log-likelihood in (10) and   is a sparsity-
inducing penalty by the tuning parameter 0  . To compute (15), we need only modify the 
M-step of the EM algorithm from Section 3.1 to be replaced with the following joint 
optimization problem 

( ) ( ) ( )

1 1
argmax ( ),   ( ) ( ) ( ),

p R C

M R
t t t

mr mr
m r

  
   

 
B

B B Bθ θ β θ∣ ∣ ∣  (16) 

where ( )(· )t
mr θ∣  is defined in (14) and   is a sparsity-inducing penalty with tuning 

parameter 0  . If 0  , (16) would reduce to (14). However, when 0  , the penalized 
objective function ( )( )t

 B θ∣  may not be separable across responses and mixture 
components depending on the choice of penalty  : we propose two such penalties which 
correspond to distinct types of variable selection. 

First, we consider global variable selection. We say that the jth predictor is irrelevant if a 
change in the jth component of x  does not change ( )P x  for all px . Under our model 
assumption on P , for the jth variable to be irrelevant it must be that 

1 1[ ,:,:] 11 12( · , · , , · )
M

MC
j j c j c jMR cd d d  B 1 1 1  for constants jmrd  , ( , ) [ ] [ ]m r M R  . 

Recall that we have over-parameterized B  in the sense that each mp c
mr


β  has only 

( 1)mc   identifiable columns (see the “sum-to-zero” constraint under equation (7)). This 
means that we may replace the jmrd ’s with 0 without loss of generality and ensure parameter 
identifiability. This equivalence between predictor irrelevance and sparsity in B  is discussed 
more in the theoretical analysis (Section 4). For such global variable selection, we propose 
the following penalty term as   in (16), 

2
[ ,:,:] ,: 2

1 1 1 1
( ) [ ] ,

p p R M

j F mr j
j j r m

  
   

   B B β‖ ‖  (17) 

where 0   is a user-specified tuning parameter and ,:[ ]mr jβ  is the jth row of mrβ . The 
penalty   is nondifferentiable when for some [ ] {1, , }j p p   , ,[ ] 0mr j k β  for all 

[ ]mk c  and ( , ) [ ] [ ]m r M R  . This penalty thus links the mrβ  across both latent states and 
response variables. For large values of  , this penalty will encourage estimates of P  such 
that many predictors are estimated to be irrelevant by encouraging zeros across the same rows 
of all RM coefficient matrices. 

Although   can achieve a highly interpretable global form of variable selection, an 
alternative penalty,  , allows for variable selection specific to each latent state (i.e., local 
variable selection). Specifically, we also propose the penalty 

2
[ , ,:] 2 ,: 2

1 1 1 1 1
( ) [ ] .

p pR R M

j r mr j
j r j r m

  
    

   B B β‖ ‖  (18) 
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In contrast to  , the penalty   assumes that for a particular value of the latent variable Z, a 
possibly unique set of predictors are important. This penalty allows practitioners to 
characterize the categories of latent variable Z in terms of the predictors selected as relevant 
or not. 

Figure 2 provides a visualization of the global and local variable selection in terms of the 
sparsity of B . The global penalty acts on entire mode-1 slices of the tensor parameter B . As 
shown in the plot, the mode-1 matricization (1)

p RCB  transforms each mode-1 slice into a 
row vector. The penalty ( ) B  is thus the group lasso penalty on rows of (1)B . On the other 
hand, the local penalty is targeting on a more refined sparsity pattern that is shown as mode-3 
fibers of B . Analogously, the mode-3 matricization (3)

C pRB  aligns the fibers across 
[ ]r R . The penalty ( ) B  is thus the group lasso penalty on columns of (3)B . 

For concreteness, we focus on computing (15) using the penalty  ; only trivial 
modifications of our algorithm are needed to accommodate  . 

3.3 Penalized EM algorithm 

In order to compute our estimator efficiently, we do not solve (16) exactly at each iteration. 
Rather, we approximate the solution to (16) by maximizing a minorizing quadratic 
approximation to ( )( )t

 B θ∣  (Lange, 2016). Our minorizing quadratic approximation is 

[ ,:,:]

( ) ( ) ( ) ( ) 2
0 [ ,:,:] [ ,:,:]

1

( ) ( ) ( )
[ ,:,:] [ ,:,:]

1

1( ) ( ) ( )
2

          tr{ ( ) ( )},
j

p
t t t t

j j F
j

p
t t t

j j
j

 
 



   

  



 B

B B B B B

B B B

θ θ

θ

∣ ∣

∣

 (19) 

for which, with a sufficiently small step size 0  , we have the following result. 

Proposition 3 . 

Let 1( , , ) n p
n

  X x x . If 0   is chosen so that 2 1
[ ]max ,F k M kRM c  

  X  

then ( ) ( ) ( )( ) ( )t t t
 B Bθ θ∣ ∣  for all p R C B . Thus, if we define 

( 1) ( )* ( ),p R C
t targmax  






B
B B θ∣  then we are guaranteed that 

( 1) ( ) ( ) ( )( ) ( )t t t t
 

 B Bθ θ∣ ∣  by the minorize-maximize principle (Lange, 2016). In 

addition, when    the maximizer of ( )(· )t
 θ∣  has the closed form  

( 1) ( )
[ ,:,:] ( )max 1 ,0 ,  [ ]t t

j jt
j F

j p
 

   
 
 

B U
U

 (20) 

where 
[ ,:,:]

( ) ( ) ( ) ( )
[ ,:,:] 0 [ ,:,:]( ).

j

t t t t
j j j  BU B B θ∣  When   , the maximizer of ( )(· )t

 θ∣  has 
the closed form  
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( 1) ( )
[ , ,:] ( )

2

max 1 ,0 ,    [ ], [ ],t t
j r jrt

jr

j p r R
 

    
 
 

B v
v

 (21) 

where 
[ , ,:]

( ) ( ) ( ) ( )
[ , ,:] 0 [ , ,:]( ).

j r

t t t t
jr j r j r  Bv B B θ∣   

The theoretical range for   is not used in our implementation. Instead, we select   using an 
Armijo-type backtracking line search which allows us to consider larger step sizes   while 
maintaining the ascent property described in Proposition 3. It is important to emphasize that 
by defining ( 1)tB  as in Proposition 3, ( 1)tB  is not, in general, the argument maximizing 

( )(· )t
 θ∣ . However, we found this approximation scheme to be more computationally 

efficient than solving the M-step exactly at each iteration, and we can easily verify that it 
ensures ascent. 

Remark 3 . 

As long as each   is chosen according to Proposition 3 (or by backtracking line search), the 
objective function from (15) evaluated at ( 1)tθ  is guaranteed to be no less than the objective 
function from (15) evaluated at ( )tθ . That is, the sequence of iterates ( )

1{ }t
t


θ  generated by 
Algorithm S1 (Supplementary Material) monotonically increase the value of the objective 
function from (15).  

Remark 3 relies on the fact that our algorithm is an instance of the expectation conditional-
maximization algorithm (Meng and Rubin, 1993). We summarize the entire algorithm in 
Algorithm S1 of the Supplementary Material. 

We provide details about our implementation (e.g., initialization scheme, algorithm, and 
convergence criteria) in Supplementary Material Section S7. Regarding the choice of R, we 
found that cross-validation may not be necessary. In both our simulation studies and real data 
example, we found that overspecifying R often led to no worse performance than did 
selecting R by cross-validation. This can be partly explained by the fact that when using our 
penalties, the penalized EM algorithm automatically forces some r  estimates to be close to 
zero (e.g., less than 810 ) when   is sufficiently large. Consequently, computing the solution 
path for our estimator explores both varying levels of sparsity in the regression coefficients 
and implicitly, various values of R. See Section 5.3 for further details.  

4 Statistical analysis of exact penalized M-step 

To better understand the performance of our method, we study the statistical error involved in 
the penalized M-step of Algorithm S1. In the finite-sample analysis of the maximizer of 

( )( )t
 B θ∣ , it is very challenging to establish uniform concentration inequalities about the 

stochastic objective function ( )( )t
 B θ∣  and its gradient ( )( )t

 B θ∣ , which depend on 
the estimates ( )tθ . For example, a theoretical study of the EM algorithm may require sample 
splitting; given a total of n samples and T iterations, the sample-splitting EM algorithm would 
use T subsets of size /n T  to break the dependence of ( 1) ( )* ( )t targmax 

  BB B θ∣  on ( )tθ . 
See Balakrishnan et al. (2017) and Zhang et al. (2020) for examples. Because of this 
challenge, we leave the finite-sample statistical analysis of our penalized EM algorithm as 
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future research. Instead, we study an idealized estimator 
†

B  from a modified version of 
( )( )t

 B θ∣  which replaces the ( )t
ir  with the “oracle” data irZ . That is, by analyzing the 

maximizer of the penalized conditional log-likelihood of ( , )ZY X∣  in (11), we derive bounds 
that are meant to illustrate how 1, , , Mp c c , and the sparsity of the mrβ  affect estimation of 
the regression parameter B  in an idealized scenario. 

Throughout this section, let | |  denote the cardinality of a set . Similarly, let 

1,2 ,: 2k
k

A A  be the norm which sums the Euclidean norms of the rows of its matrix-

valued argument. To simplify matters, we treat 1( , ) n p
n

 x xX  as nonrandom and 

standardized such that 2
,

1

n

i j
i

n


 X  for [ ]j p . We focus on the penalized estimator using the 

global variable selection penalty ( ) B . In the Supplementary Material Section S6, we 
discuss how similar results could be obtained under the penalty .  To avoid cumbersome 
tensor notation and operators, we redefine (1)

p RC B B  as the matrix parameter in this 
section. 

The estimator we study, 
†

B , is defined formally as 

 
1 1 1

1* log ( , ) ( ) .p RC

n R M

ir r mi i i mr
i r m

argmin Z f Y
n 

  

  
    

  
 B

X x Bβ∣  (22) 

where ( )ir iZ Z r 1  for ( , ) [ ] [ ]i r n R  . The above estimator hence does not depend on ( )tθ
. We will treat R as a fixed and allow M, 1, , mc c , p, and n to tend to infinity. Our objective 

is to establish an error bound on 
† †B B  where we define 

*

† argmin ( )



B

B B
π

 with *π  

denoting the set of all B  which lead to the true probabilities ( )P x  for all px . In the 
Supplementary Material, we show that †B  is uniquely defined, does not depend on  , and 
that for each irrelevant predictor, the corresponding row †

,:
RC

j B  is zero. Thus, define 
†

,:{ : 0, [ ]}jj j p  B  and †
,:: { : 0, [ ]}c

jj j p  B  as the set of relevant and irrelevant 
predictors, respectively. 

Before we describe the needed conditions and assumptions, a few comments are in order. 
First, the estimator in (22) is distinct from the estimator which estimates each mrβ  or even 

1( , , )r Mrβ β  separately across [ ]r R . The penalty we use,  , necessarily ties the 
estimators together so that even in the case that the iZ  are known, all components are 
estimated jointly. Second, the iZ ’s are random so our statistical analysis must consider the 
joint distribution of the iZ  and the responses. Finally, we mention that the estimator in (22) is 
also relevant to the emerging literature on regression with heterogeneous sub-populations. In 
that context, iZ  is the indicator that a subject belongs to a particular sub-population (hence 
observable), and then our estimator from (22) is adjusting for Z in order to harmonize the data 
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(Fortin et al., 2017) while our penalty   can identify homogeneous structures across sub-
population (Tang and Song, 2016). 

Our first assumption is a new version of the restricted strong convexity condition that applies 
to data generated from a mixture of regressions model. This assumption will depend on 

min [ ]
1

min
n

r R ir
i

n Z



  , the minimum number of samples observed across the R latent states. 

Let 11 1 12( , , , , , ) p RC
M MR

          with mp c
mr


   for ( , ) [ ] [ ]r m R M  , and let 

†

1
{ ( ) }

n

mr i i i
i
  x x x  be the Hessian of †( , )r mi i i mrf Y X x β∣  with respect to the vectorization 

of its argument at †
mrβ . The exact form of the positive semidefinite matrix † ( ) m mc c

mr i


 x  is 
given in the Supplementary Material. In addition, let min 1( ) { , , }Rn    denote the set 
of R-element partitions of [n] where [ ] minmin | |r R r n  . 

A1. (Restricted strong convexity) There exists a constant 0k   such that  

min

†

min 2( , ) ( ) ( ) 1 1

{ ( ) }
0 ( , ) inf ,r

mr mr i i i mrM R
i

n m r F

k n
n




  
 

 
    

 
  






x x x
 

where 1
1,2 ,: 1,2,:

( ) { : 0, 3 }.

M

m
m

c

p R c


 
         

Loosely speaking, one could expect the restricted strong convexity condition to hold if (i) 
minn  is not too small relative to n, (ii) that the probabilities Pr( , )m mY j Z r  X x∣  for 

[ ]m mj c  are bounded away from zero and one for all ( , ) [ ] [ ]m r M R   and all px , and 
(iii) the relevant predictors (indexed by ) are neither too correlated with one another, nor 
with unimportant predictors. 

Explicitly, the quantity min( , )n  is a function of minn  and . The minimum sample size 

minn  determines the space over which the infimum is taken with respect to  as it defines 

min( )n . If   were fixed, taking the infimum with respect to  would correspond to 
finding the worst possible – in the sense of minimizing min( ,n ) – partition of the subjects 
into the R latent states with each state having at least minn  subjects. The set , in contrast, 
defines the set ( ).  Implicitly, min( , )n  is a function of R, M, and the r ’s. In fact, to use 
this quantity in our proofs, we need the following additional assumption. 

A2. ( r  bounds) There exists a constant (0,1/ 2)v  such that 1rv v    for [ ].r R   

Lastly, we also make an assumption about the data generating process. 
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A3. (Data generating process) The data 1{( , )}n
i i iZ Y  are independent with Pr( ) ,i rZ r    

and †

1

( , , ) ( , )
M

i i i i r mi i i mr
m

f Z r f Y


   Y X x X xθ β∣ ∣  where rf  is as defined in (7) for 

[ ].r R   

We are ready to state our main result, which will depend on a sample size condition, C1. 

Theorem 3 . 

Let 1 2k   and 2 2k   be fixed constants. Suppose A1–A3 hold. If 

1/2 1/2
2

1
{ / } {4 log / }

M

m
m

c n Mk p n


  , then for n sufficiently large such that condition C1 

holds,  

† † 11 2

min

| |
3 | | log

( , ) 4

M

m
m

F

c
k k M p
n n n



 
 
   
 
 
 


B B  

with probability at least 21 /2 2
min

1
1 exp[ 2 { ( 1) / } ]

R
k

r
r

p n n n



     .  

The condition on the sample size (C1) needed for the result of Theorem 3 is as follows. 

C1. (Sample size) Let [ ] 2 1 minmax 54 | | /{2 ( , )}n i n i k n   x  where   is as 
prescribed in Theorem 3. The sample size n is sufficiently large with respect to 

1 1 2, , , , , , ,Mp c c M k k  and | |  such that 2
11 / 0.n

n ne k  
      

Our error bound illustrates how our idealized M-step scales with respect to the number of 
response variables and number of categories per response. It is especially instructive to 
compare the error bound in Theorem 3 to that from Molstad and Rothman (2023). Recall that 
Molstad and Rothman (2023) propose an estimator of the regression coefficient tensor under 

the vectorized model. Unsurprisingly, their error bound scales in 
1

M

m
m

c


  rather than 
1

.
M

m
m

c


  

This can be explained by the fact that the regression coefficient tensor of interest under the 

vectorized model has 
1

M

m
m

p c


  elements whereas under our model assumptions, there are only 

1

M

m
m

Rp c


  unknown regression coefficients.  
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5 Simulation studies 

5.1 Data generating models and competing methods 

In this section, we compare our method for estimating conditional probability tensors to 
numerous alternative approaches. To distinguish between model parameters and tuning 
parameters, in this section, we use *R  to denote the functional rank of the true probability 
tensor function, and use R to denote the rank used for model fitting. We consider data 
generating models with *R , the training sample size, the mixture probabilities, and the 
magnitude of entries in the mrβ ’s varying. For a given *R , we generate n independent 
realizations of the predictor 100~ N (0, )X  where | |

, 0.5 j k
j k

   for ( , ) [ ] [ ]j k p p   and 
generate 1 4, ,Y Y  from 

* 4

1 1 4 4
1 1

Pr( , , ) { Pr( , )}
R

r m m
r m

Y j Y j Y j Z r
 

        X x X x∣ ∣  

where 
4

1
Pr( , ) exp( ) /{ exp( )}

mm m mrj mrk
k

Y j Z r


    X x x xβ β∣  for [4], [4],mm j   and 

[ ].r R  We set 4M   and 1 4 4c c    throughout. When * 2R  , we set 2 11   , 
whereas when * 5R  , we set 1 5 1 1 1( , , ) ( ,(1 ) / 4, (1 ) / 4).          In both cases, we 
consider various values of 1 . In each setting we consider, we randomly select five predictors 
to affect the conditional probability tensor. Each of the five corresponding rows of the mrβ ’s 
has entries which are drawn independently from 2N(0, ).  To select tuning parameters, we 
generate a validation set of size 200 from the same data generating model. To quantify 
performance of the various estimators, we also generate a testing set of size 1000. 

We consider multiple versions of our method with candidate [4]R  (denoted Mix-1 
through Mix-4) and   taken to be  . We compare these variations of our method to two 
methods which implicitly assume independence: fitting separate multinomial logistic 
regression models to each response with (a) group-lasso penalty on the rows of each of the 
regression coefficient matrices (Sep-Group) and (b) the 1L -norm penalty applied the 
regression coefficient matrices (Sep-L1). Sep-Group is equivalent to our method with 

1R   and ( ) B  replaced with 1 ,: 2
1 1

[ ]
pM

m m j
m j


 

  β . We omit the method of Molstad and 

Rothman (2023) from our comparisons in this section because their software cannot be 
applied with 3M  . Moreover, their method is meant to identify which predictors are 
irrelevant, only affect the response marginal distributions, or affect high-order associations. 

For all considered methods, tuning parameters are chosen to minimize the negative log-
likelihood evaluated on the validation set. For the methods which fit separate models, tuning 
parameters are chosen for each response separately. We evaluate the performance by 
calculating the square-root average Kullback-Leibler divergence on the testing set. 
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Many additional simulation studies can be found in Section S9 of the Supplementary 
Materials. There, we consider larger p and larger M, and we compare our method to various 
“vectorized” modeling approaches. We also perform studies comparing the two proposed 
penalties   and  , and compared our method to that of Molstad and Rothman (2023) in a 
setting where 2M  . 

5.2 Results 

In Figure 3, we display the square-root average Kullback-Leibler divergences on the testing 
set for each of the six methods with * 2R  . Focusing first on the top row, where coefficients 
tend to have smaller magnitude, we see that when 75,n   there is only minor differences 
between methods. When 150n   or 300n  , however, we notice that Mix-2, Mix-3, and 
Mix-4 all tend to outperform the other competitors. This is not surprising given that each of 
these methods contains the model with the true number of components as a special case. 
Another interesting aspect of these results is that as 1  approaches 0.5, the differences in 
performance become more apparent. This too is not surprising because when 1 0.1  , Mix-
1 could serve as a reasonable approximation to P . Results are effectively the same when 

2  , except that differences between the methods are more pronounced even in the case 
that 75n   or 150.n    

We display analogous results for the data generating model with * 5R   in Figure 4. Overall, 
we see results similar to those when * 2R  . Specifically, when 300n   and coefficient 
magnitudes are (relatively) small, there is little distinction between the methods. As 450n  , 
we see a more clear seperation between the versions of our method with different numbers of 
mixture components. Notably, we see that as 1  increases, Mix-2 performs more similarly to 
Mix-5 and Mix-7. This makes sense as when 1 0.67  , four of the five components make 
relatively small contributions to .P  Just as in the case with * 2R  , the magnitude of the 
regression coefficients mrβ  appears to have an effect as well. Specifically, when 2  , the 
difference between estimators is much greater than under similar settings with 1.    

In Section S3 of the Supplementary Material, we present results for the same set of 
competitors under identical data generating models, but using Hellinger distance as a 
performance metric. In brief, relative performances are very similar to those based on KL 
divergence. 

In the Supplementary Material Section S2 and S3, we include results for numerous additional 
simulation studies. These include simulation studies with * {6,7,8,9}R  , and simulation 
studies under two types of model misspecification (including when Z depends on X ). In 
brief, our method appears reasonably robust against misspecification. 

5.3 Effect of overspecifying R  

In the simulation results displayed in Figures 3 and 4, we see that overspecifying the number 
of mixture components seems to have little effect on estimation. In Figure 4, we see that 
when 450n  , Mix-7 even tended to perform slightly better than Mix-5, which has the 
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correctly specified number of components. To explore whether more extreme 
overspecification has a similar effect, we repeated the simulations displayed in the bottom 
panel of Figure 4 and added three additional versions of our method with {5,10,15}R , 
which we call Mix-5, Mix-10, and Mix-15, respectively. We display results in Figure S6 
of the Supplementary Material. Based on the results, it seems that extreme overspecification 
of R may even improve estimation accuracy when n is small: Mix-15 seemed to perform as 
well or better than all other methods in each scenario. However, it is important to note that 
for the particular tuning parameters chosen for, say, Mix-15, there were often only two 
nonzero estimates of the r ’s. This is one particularly appealing feature of the solution path 
for fitting (15): for large values of ,  even when R is large, the solution will have one 1r   
and 0

r
    for .r r   As   decreases, eventually a second r  becomes nonzero so that the 

fitted model effectively has 2R  . This continues with each additional r  becoming nonzero 
as 0.   We illustrate this phenomenon in Figure 5 of Section 6, and discuss this feature of 
our method in more depth in Supplementary Materials Section S4. 

6 Modeling functional classes of genes 

In this section, we apply our method to the problem of modeling a gene’s functional classes 
based on both the gene’s expression and phylogenetic profile. The dataset we analyzed, 
which was collected on yeast, was originally studied in Elisseeff and Weston (2001) and can 
be downloaded from https://www.uco.es/kdis/mllresources/. The predictors consist of 

103p   components, which are the collection of both the gene’s expression and phylogenetic 
profile. In these data, there are 14M   functional classes (including metabolism, energy, 
protein synthesis, etc.). Each of the 2417n   genes can be characterized as belonging to 
multiple functional classes. For example, a gene may affect both metabolism and protein 
synthesis. Thus, it is natural to treat each functional class assignment as a binary response so 
that we have 1 14 2.c c    

Because of the relatively large number of response variables, we used the version of our 
method with the penalty   described in (18). This penalty allows different components of 
the predictor to be relevant for different values of the latent variable Z. In the case that 1R  , 
this is equivalent to the penalty  , but differs for 1.R    

To compare our method’s performance across different choices of R, for 500 independent 
replications we split the data into training, validation, and testing sets of size 1500, 500, and 
417, respectively. For {1,2,3,4,5,7,10,15}R  separately, we fit the model to the training set 
and selected the tuning parameter   by minimizing the negative log-likelihood evaluated on 
the validation set. Then, we compute the deviance and misclassification accuracy on the 
testing set for the selected model. In Table 1 of Section S8, we display the average joint error 
rate and the average testing set deviance for our method with the various number of 
components. Evidently, 10R   performed best in terms of deviance, and was only slight 
worse (and not significantly different from) 15R   in terms of classification error. The most 
remarkable result is that with 4R  , there is relatively little difference in terms of 
performance. 
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We display the test set deviances in the top left panel of Figure 5. Note that the version of our 
method assuming independent responses ( 1R  ) performs much worse than the versions with 

1R  ; adding even the second mixture component ( 2)R   decreased testing set deviance by 
nearly 10%. In the two rightmost panels, we display the estimated r  and the number of 
predictors selected in the corresponding mrβ ’s with 7R  . We see that in general, when 

7R  , the selected model effectively has 4 or fewer r̂  nonzero. We also notice that the 
mixture component with the highest probability often had 75 or more predictors included in 
the model, whereas those mixture components with smaller probabilities tended to have 
fewer. Examining the results with 10R   in the bottom leftmost panel, we again see often 
only four or fewer r̂  are estimated to be nonzero. Additional results can be found in Section 
S8 of the Supplementary Material. 

7 Discussion 

In this article, we propose a general modeling strategy for the regression of a multivariate 
categorical response on a high-dimensional predictor based on the population-level tensor 
rank decomposition of the conditional probability tensor function. Numerically, our method 
is shown to perform well with a large number of response variables and large number of 
categories per response—a setting where many existing competitors fail or cannot be applied. 
Our results also suggest that our method is insensitive to over-specification of the number of 
mixtures R. 

Based on our theoretical analysis of an idealized and simplified estimator, we conjecture that 
the convergence rate of the penalized EM algorithm, under suitable assumptions (see, for 
example, Balakrishnan et al., 2017; Cai et al., 2019), is | | log /M p n  when treating R and 

mc ’s as constants. We leave this as a future theoretical study. Promising future research 
directions also include (i) initialization of the algorithm and (ii) alternative convex penalties 
on the tensor B . Regarding (i), methods such as Sedghi et al. (2016) are applicable to our 
setting and could potentially improve over the random initialization that we are currently 
using. For (ii), recent advances on tensor nuclear norm penalties (e.g., Raskutti et al., 2019) 
neatly fit in our optimization framework and can take advantage of the tensor construction of 
B . 
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Figure 1: Diagram of the decomposition of the probability tensor ( )P x  (white cube) into the 
sum of 3R   rank-one tensors. The gray rank-one tensor represents, for example, 

1 11 1( ) ( )M  p x p x  from the decomposition in (3). 

 

Figure 2: Visualizing the global and local variable selections and the corresponding sparsity 
patterns in the tensor regression parameter B . The two plots in middle respectively show the 
mode-1 slices and the mode-3 fibers to be selected. Our blockwise proximal gradient descent 
algorithm updates one row of (1)B  at a time for the penalty  , and updates one column of 

(3)B  at a time for the penalty  . 
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Figure 3: The square-root average Kullback-Leibler divergence evaluated on the testing set 
for the six considered methods. Results displayed are from 100 independent replications with 
(top row) *( , ) (1, 2)R   and (bottom row) *( , ) (2,2)R  . 
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Figure 4: The square-root average Kullback-Leibler divergence evaluated on the testing set 
for the six considered methods. Results displayed are from 100 independent replications with 
(top row) *( , ) (1,5)R   and (bottom row) *( , ) (2,5)R  . 
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Figure 5: Results based on 500 replications: (top left) test set deviance for eight versions of 
the mixture model with {1,2,3,4,5,7,10,15},R  (top right, bottom left) ordered estimates of 
the r  for the version of our method with 7R   and 10R  , respectively, and (bottom right) 
the number of predictors selected for each component mixture (in descending order according 
to the r̂ ) with 7R  .  
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