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Abstract

Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular 

resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial 

footprints of neurons and extract their temporal activity traces while decontaminating them from 

background, noise and overlapping neurons is highly desirable to analyze calcium imaging data. In 

this paper, we demonstrate DeepCaImX, an end-to-end deep learning method based on an iterative 

shrinkage-thresholding algorithm and a long-short-term-memory neural network to achieve the 

above goals altogether at a very high speed and without any manually tuned hyper-parameter. 

DeepCaImX is a multi-task, multi-class and multi-label segmentation method composed of a 

compressed-sensing-inspired neural network with a recurrent layer and fully connected layers. It 

represents the first neural network that can simultaneously generate accurate neuronal footprints 

and extract clean neuronal activity traces from calcium imaging data. We trained the neural 

network with simulated datasets and benchmarked it against existing state-of-the-art methods 

with in vivo experimental data. DeepCaImX outperforms existing methods in the quality of 

segmentation and temporal trace extraction as well as processing speed. DeepCaImX is highly 

scalable and will benefit the analysis of mesoscale calcium imaging.

Two-photon calcium imaging can record neuronal activity at high resolution in deep brain 

tissue, and has been a workhorse in neuroscience to investigate neural circuits over the 

last two decades1–5. Recent advance in high-throughput two-photon microscopy enables the 

simultaneous high-speed recording of hundreds of thousands of neurons6–14, underscoring 

the needs for an automated method to efficiently identify neuronal regions of interest 

(ROIs) and extract their fluorescence activities with high fidelity. The four critical tasks 
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in processing calcium imaging data are motion correction, denoising, segmentation, and 

temporal signal extraction. While motion correction has seen significant advancements with 

several effective algorithms15–18, the methods for the other tasks19–29 often fall short by 

being slow, requiring manual tuning, or having a limited fidelity in the output. Currently, 

there has not been a fully automated method that can perform denoising, segmentation and 

signal extraction with high speed and high quality.

Existing methods to process calcium imaging data can be categorized into model-based 

iterative optimization19–21,23,24 and neural-network-based learning26–29 algorithms. The 

former, such as principal component analysis and independent component analysis 

(PCA/ICA)19, Suite2p20, and CNMF21 (constrained non-negative matrix factorization) or 

CaImAn24, uses matrix factorization to model the imaging data with features of neuronal 

shapes and temporal dynamics. These methods generate the spatial footprint of the ROIs and 

demix their temporal traces simultaneously. They typically require lengthy processing and 

manual hyper-parameter tuning for satisfactory outcomes. Neural-network-based algorithms, 

such as STNeuroNet26, SUNS27, CITE-On28, and DeepWonder29, were developed to 

segment the calcium imaging data by learning from training dataset. Once trained, they are 

generally fast to operate. However, they require additional, model-based learning algorithms 

to extract and demix the neural activity traces. Self-supervised deep learning such as 

DeepCAD30,31 and DeepInterpolation32 were developed to denoise two-photon calcium 

imaging data, but they require other methods for the spatiotemporal analysis. So far, there 

has not been a single approach to simultaneously denoise and output both the spatial 

footprints and temporal activity traces.

We developed DeepCaImX, a fast, accurate, user-friendly and fully-automated end-to-end 

method to segment the neuronal cell bodies and extract, decontaminate and denoise their 

temporal activity traces for two-photon calcium imaging data. This supervised learning 

model employs a physics-aware, explainable and multi-task neural network. It is highly 

scalable to data size, and does not require any pre-processing such as spatial or temporal 

filtering, nor post-processing such as fine tuning or merging the ROIs, nor any hyper-

parameter tuning. Our method begins with ISTA-Net33, a compressed-sensing-inspired 

network, to denoise the video, remove the neuropil background and generate a spatially 

sparse representation of the neurons. The denoised and background-suppressed video is then 

recurrently processed by a long-short-term memory34 (LSTM) layer in temporal domain, 

which learns the autoregressive model, and generates a time-series attention map for traces 

extraction in the subsequent 1D fully connected layers. These individual components, 

though distinct, work in concert and trained as a whole in an iterative (instead of sequential) 

manner. Such a model promotes a holistic optimization and outputs the segmentations and 

activity traces together, where signals from overlapping ROIs can be well demixed.

We evaluated DeepCaImX against top calcium imaging processing algorithms such as 

CaImAn24, Suite2p20, FISSA23, SUNS27, STNeuroNet26, CITE-On28, DeepWonder29 and 

DeepCAD30-assisted CaImAn, in both simulation and in vivo experimental datasets. 

DeepCaImX outperforms these counterparts in the quality of segmentation and neural 

activity traces, while operating at a high speed. Its high speed, robustness and scalability 
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make it a powerful tool for analyzing large-scale calcium imaging data from mesoscale to 

3D microscopes, enabling advanced studies of large-scale neuronal circuits.

Results

Principle of the end-to-end DeepCaImX model

Our model aims to predict the spatial footprint of neurons and extract their clean activity 

traces simultaneously, and address the challenges of neuropil background removal and signal 

demixing among overlapping neurons. A multi-task framework35 could be effective and 

efficient for these goals, as the tasks of background and noise removal, ROIs segmentation, 

and traces extraction are coupled together through the sparse spatiotemporal dynamics of 

neuronal activity. We designed a single model to learn a generalized sparse representation of 

the data and branched it into spatial and temporal analyses. We trained the entire network 

on realistic calcium recording data simulated by the well-established NAOMi36 method 

(Methods).

Our network is comprised of three highly explainable modules (Fig. 1, Extended Data Fig. 

1). In the first module, we use an ISTA-Net33 to suppress the neuropil background and noise 

frame-by-frame. The neuropil background generally has a smooth and spatially extended 

profile, whereas neuronal cell bodies have well defined spatial boundaries. ISTA-Net, 

a compressed-sensing-inspired neural network based on Iterative Shrinkage-Thresholding 

Algorithm (ISTA)37, operates through multiple phases. In each phase, it converts the video 

from the spatial domain to a sparse representation, apply a soft threshold, and then revert 

back to the spatial domain (Methods). In the sparse representation, the neuropil has a 

diminished strength, and is gradually suppressed by the shrinkage threshold in each phase 

whereas the neurons with well-defined boundaries are preserved (Supplementary Fig. 1-2; 

Supplementary Note 1). Compared to other empirically defined sparse representations, the 

sparse representations learnt in ISTA-Net can encode the neuronal signal more efficiently 

(Supplementary Fig. 3). Besides the smooth neuropil background, ISTA-Net can also learn 

to suppress features that are spatially discrete and confined in small volumes, such as 

punctate cross sections of axons or dendrites (Supplementary Fig. 2, 4; Supplementary 

Note 1). ISTA-Net processes each frame independently and does not rely on the temporal 

information. The convolutions in ISTA-Net are effectively 2D. Yet, it achieves a similar 

performance as other state-of-the-art background suppression networks such as the RB-Net 

in DeepWonder29, which requires an additional convolution dimension in the time domain 

(Supplementary Fig. 4). This reiterates the effectiveness of using the sparse representation.

Besides background suppression, ISTA-Net effectively removes Poisson and Gaussian 

noise through its convolutional layers by minimizing the mean square error between the 

output data and the noiseless background-free ground truth data (Supplementary Fig. 2). 

Its denoising performance is superior to that of DeepCAD, a state-of-the-art denoising 

algorithm for two-photon calcium imaging (Supplementary Fig. 5). ISTA-Net produces 

a multi-channel, denoised and background-suppressed video in the sparse representation 

domain (Extended Data Fig. 2c, 3c, and Supplementary Videos 1-2), with each channel 

containing the neuronal cell body features. This serves as the basis for the subsequent 

ConvLSTM2D module to segment individual neurons. Additionally, ISTA-Net outputs a 
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denoised and background-suppressed video in the spatial domain (Extended Data Fig. 2b, 

3b, and Supplementary Videos 1-2) which will be fed to the 1D convolutional layer module 

for temporal trace extraction.

The second module, a 2D convolutional LSTM (ConvLSTM2D)38 network, processes the 

ISTA-Net’s output video in sparse representation to segment the neurons and generates 

frame-by-frame attention maps (Extended Data Fig. 2d, 3d, and Supplementary Videos 1-2) 

which highlight the active region of each neuron per frame. LSTM is a type of Recurrent 

Neural Network (RNN)39 and is commonly implemented to solve the 1D temporal problem 

of natural language processing40. To solve the spatiotemporal sequence prediction problem 

in calcium recording, we take locality into consideration by using ConvLSTM2D which 

contains 2D convolutional structures in both the input-to-latent-state and latent-state-to-

latent-state transitions41. The 2D convolutional layers create latent states from the input 

of the sparse representation of the recordings, and recurrently process the latent states 

between neighboring time-steps to learn the autoregressive model of the calcium transient. 

The sequential prediction of ConvLSTM2D model is further processed by a Cascade Feature 

Fusion (CFF) layer42 (Methods), which outputs the segmentation results and the time-series 

attention maps of individual ROIs. There are two noteworthy features of this module. Firstly, 

it utilizes a multi-channel sparse representation of the data as input, which contains the 

pre-processed spatial features of the neurons. This facilitates the ConvLSTM2D to extract 

the attention maps. This approach significantly improves the segmentation performance 

over the case where the input to ConvLSTM2D is the same denoised and background-

suppressed video but in the spatial domain (single channel) (Supplementary Fig. 6), or 

where the ISTA-Net is replaced with other non-CS networks such as U-Net43 and densely-

connected Network (DCSRN)44,45 with the same number of output channels as ISTA-Net 

(Supplementary Fig. 7). Secondly, the recurrent process provides a powerful mechanism 

to learn the temporal dynamics of the ROIs and thus the attention maps of each frame, 

which is the basis for segmentation as well as the subsequent temporal traces extraction. 

Indeed, compared with conventional 3D CNNs layers, DeepCaImX with ConvLSTM2D has 

a superior performance in segmentation and traces extraction (Supplementary Fig. 8).

The last module extracts and demixes the neural activity traces of each ROI. This module 

first performs an overlap integral between the denoised and background-suppressed spatial 

domain video from ISTA-Net with the time-series attention maps of individual ROIs from 

ConvLSTM2D to extract their activity traces. As the attention maps report the probability of 

each pixel being active in each frame, they facilitate signal demixing between the spatially 

overlapping neurons (Supplementary Fig. 9). Activity traces of all neurons are then fed 

to a multi-layer 1D CNN, which performs convolution in the temporal domain to further 

demix the signals, remove residual background and noise, and ensure temporal continuity 

(Extended Data Fig. 2e, 3e, Supplementary Fig. 9, and Supplementary Videos 1-2). These 

convolutional layers function similarly to non-negative matrix factorization (NMF) but 

surpass traditional NMF in demixing overlapping neuronal signals through learning and 

offering a >10x processing speed, with its advantage growing as the number of neurons 

within the FOV increases (Supplementary Fig. 10).
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Our end-to-end framework significantly streamlines the process, allowing for a fast and 

efficient neuronal ROI segmentation and activity trace extraction without the need for pre-

processing (e.g. spatial and temporal filtering) or post-processing (e.g. merging spatially-

adjacent and temporally-correlated ROIs), which may introduce biases. While each module 

in DeepCaImX has a distinct functionality and is seemingly independent, we train them 

concurrently as a whole rather than independently or sequentially. This is because some 

outputs of these modules, such as the sparse representation from ISTA-Net, do not have 

an accessible ground truth. The loss function is calculated for the denoised and background-

suppressed spatial domain video from ISTA-Net, the segmentation from ConvLSTM2D, and 

the temporal traces from 1D convolutional layers all together against the ground truths in the 

simulation data. Such a holistic training of the network promotes an overall optimized result.

Segmentation and demixing of neurons with spatial overlaps

We first evaluated DeepCaImX’s capability to segment neurons across various sizes and 

in situations with spatial overlap among neurons or nearby dendrites. Our training data 

primarily features neurons with diameters set to be 10 to 20 pixels. For experiments with 

pixel sizes outside our training range, the imaging data can be rescaled to fit these bounds. 

Our method can reliably and accurately detect neurons within this diameter range (Extended 

Data Fig. 4). For neurons with a diameter below 10 pixels, the method tends to slightly 

overestimate the size. The method starts to fail when the neuron diameter approaches below 

8 pixels. When the neuron diameter is over 20 pixels, our method underestimates the ROI 

size and thus only detects the ROIs partially.

We further explored how well our method can demix two neurons with spatial overlap and 

temporal correlation (Extended Data Fig. 5). Our method accurately distinguishes neurons 

with weak temporal correlation (Pearson correlation <0.05) and a spatial intersection over 

union (IoU) up to ~0.346. As the temporal correlation of the two neurons increases, 

separating neurons becomes more challenging. Yet our model can effectively segment 

neurons with strong temporal correlation (Pearson correlation 0.6) and substantial spatial 

overlap (IoU~0.172), achieving a high correlation (~0.94) between the extracted traces 

and the ground truth. Neurons with identical activities are considered a single unit unless 

spatially distinct.

In a similar manner, we investigated if our method could segment neurons and 

decontaminate their activity traces when there are axons or dendrites crossing the neurons in 

plane or axially (Extended Data Fig. 6). Our algorithm can segment these neurons well and 

output the activity traces with a high Pearson correlation with the ground truth. This Pearson 

correlation drops as the contamination increases i.e., when the peak activity intensity ratio 

between the axons/dendrites and the neurons increases. Nonetheless, even if this ratio is 

100%, the neurons can be successfully segmented and the resulting trace extraction has a 

high correlation with the ground truth (~0.89), demonstrating the strong demixing capability 

of our algorithms.

As a data driven approach, our methods can be adapted to applications where the ROI size is 

small or there is a high chance of signal crosstalk between neurons and axons/dendrites. In 
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those cases, we could specifically tailor the training data so that the model performs well for 

a given parameter space.

Neuronal segmentation and activity extraction: simulated data

We benchmarked DeepCaImX’s segmentation results and the trace extraction 

performance against existing state-of-the-art methods (STNeuroNet26, SUNS27, CITE-On28, 

DeepWonder29, CaImAn24, Suite2p20, and methods combining DeepCAD30, CaImAn24, 

and FISSA23). All the trainings for the supervised learning methods use the same simulated 

dataset. We set the intensity of the neuropil such that the data had a similar signal-to-

background ratio as that of experimental recordings from a tissue depth of 275 μm (Allen 

Brain Observatory (ABO) dataset46). We tiled each video into smaller sub-videos for 

processing, and merged the extracted ROIs and traces from all individual sub-videos post-

analysis (Extended Data Fig. 7; Methods).

DeepCaImX outperformed other methods in neuron segmentation and activity trace 

extraction on new simulated testing datasets. Qualitatively, the results closely match the 

ground truth (Fig. 2a-b). Quantitatively, our method achieves a high precision 0.900 ± 0.015, 

recall 0.890 ± 0.02 and F1 score 0.892 ± 0.017 (mean±std, n = 18 videos) in the segmentation, 

which are significantly higher than all others (Fig. 2c1–3) [p<0.05, one-way Analysis of 

Variance (ANOVA)]. In other words, our method finds the highest number of accurate 

ROIs, and among all the ROIs that are found our method has the highest accuracy. Our 

method also achieves a high Pearson correlation between extracted activity traces and 

ground truth traces (0.951 ± 0.009) and outperforms others significantly (Fig. 2d) [p<0.05, 

one-way ANOVA], effectively demixing signals even among neurons with large spatial 

overlap (Fig. 2b). Compared with deep neural networks such as STNeuroNet26 and SUNS27 

that are specifically designed for segmenting calcium imaging data, DeepCaImX not only 

has an increased F1 score in ROI segmentation, but also denoises and demixes activity traces 

within the same network (Fig. 2c3, 2d). While model-based methods such as CaImAn24 and 

Suite2p20 generate comprehensive results in both ROI segmentation and trace extraction, our 

data-driven method outperforms them in neuropil suppression and ROI segmentation, even 

when CaImAn is combined with a pre-processing denoising module DeepCAD30. Besides 

its outstanding performance in segmentation and trace extraction (Fig. 2e), DeepCaImX 

processes the data at 247±8 frames per second, significantly faster than the model-based 

learning approaches, and competitive with other deep learning segmentation techniques such 

as SUNS27.

We investigated why DeepCaImX outperforms other deep neural networks in segmentation, 

particularly against strong backgrounds. This is not because of hyper-parameter tuning 

as there are no hyper-parameters in DeepCaImX to tune, unlike other methods such as 

SUNS27. Rather, DeepCaImX could better suppress the background, making the neuronal 

ROIs more discernible. Successful segmentation requires distinguishing neuronal footprints 

from the background. Existing deep neural networks, such as SUNS27 and DeepWonder29, 

attempt background suppression through spatial filtering or a separate network, before the 

actual segmentation. These background suppression procedures operate in spatial domain, 

making it challenging to distinguish weak neuronal signals from a strong background. 
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DeepCaImX, however, suppresses the background in the sparse representation, enabling 

more effective separation of the neuronal signals from background. This is critical to set our 

method apart from other methods in performance (Supplementary Fig. 11).

Neuronal segmentation and activity extraction: experimental data

We further benchmarked DeepCaImX against others using experimentally recorded calcium 

imaging datasets from the Allen Brain Observatory (ABO)46, spanning a wide range of 

imaging depths from 175 μm to 625 μm (Methods). Ground truth ROIs were manually 

segmented, and activity traces identified through filtering serve as reference/proxy ground 

truths (Extended Data Fig. 8; Methods). All supervised learning models, including ours, 

were trained on the simulated dataset with a wide range of signal-to-background ratios. We 

then evaluated the performance of each method on the experimental dataset.

Consistent with the simulated dataset results, DeepCaImX outperforms others in the 

neuronal segmentation and trace extraction on experimental dataset (Fig. 3). It achieves 

significantly higher precision (0.852 ± 0.031, mean ± std, n = 10videos), recall (0.841 ± 0.045), 

and F1 score (0.847 ± 0.037) for segmentation, and Pearson correlation (0.938 ± 0.019) 

between the extracted traces and ground truth traces [p<0.05, ANOVA]. As the experimental 

dataset covers a wider imaging depth range and substantially stronger noise and neuropil 

background occurs at deeper imaging layers (Supplementary Fig. 12), the F1 score and 

Pearson correlation show more variance and a drop compared with the simulation test 

results (Fig. 2) for all methods. Nevertheless, for each sample depth and thus each signal-to-

background level, our method outperforms the others (Supplementary Fig. 13).

Leveraging its high-speed operation, we evaluated DeepCaImX on a mesoscopic dataset 

sample with an FOV of 3×3 mm2 with 2048×2048 pixels (Extended Data Fig. 9), which is 

part of a larger 3×5 mm2 FOV recording from Diesel2p9. By segmenting the dataset into 

43×43 tiles (with 16 pixels overlap between tiles) and processing each with DeepCaImX, 

we identified 5175 neurons, at a processing speed of 2.8 frames/sec. This demonstrates our 

method’s scalability and efficiency.

Performance of DeepCaImX in data with different SBRs and SNRs

We investigated how DeepCaImX’s performance is influenced by the signal-to-background 

ratios (SBRs) and signal-to-noise ratios (SNRs) of the dataset (Methods). In the previous 

section and Fig. 3, we trained a single general model on simulated datasets covering a 

wide range of SBRs and SNRs. As the SBR or SNR increases in the test dataset, the 

performance of this general model increases (Fig. 4). We further developed SBR-specific 

and SNR-specific models of DeepCaImX by separately training different models for specific 

SBRs or SNRs. We tested these models individually on both simulated test datasets and 

experimental datasets with correspondingly similar SBRs or SNRs. These specialized 

models outperformed the general model in both segmentation and trace extraction, 

particularly for dataset with low SBR or SNR (Fig. 4). Essentially, they could find more 

ROIs whose SBR or SNR is low (Extended Data Fig. 10), demonstrating the advantage of 

the data-driven approach.
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We further compared the SBR-specific DeepCaImX against other neural-network-based 

supervised learning methods tailored to the same SBR (Supplementary Fig. 14). The 

comparison shows that DeepCaImX excelled in both segmentation and trace extraction, 

reaffirming its superior performance over other neural-network-based methods.

Discussion

We developed DeepCaImX, a multi-task end-to-end model, to segment neuronal ROIs 

and extract activity traces simultaneously in calcium imaging videos. In comparisons 

with other state-of-the-art calcium imaging processing algorithms, DeepCaImX excels in 

performance in both spatial segmentation and temporal activity demixing across simulated 

and experimental datasets. It also outperforms all but one algorithm in running speed. 

The superior performance of DeepCaImX makes it an outstanding tool for comprehensive 

calcium imaging analysis.

DeepCaImX stands out from existing deep learning methods in image and video processing 

with its multi-task, multi-class and multi-label capabilities. At its core, the ConvLSTM2D 

module analyzes the spatial correlation between pixels and learns their temporal signal 

patterns through the recurrent connections. The attention maps it generates could then 

be processed to obtain segmentation results and extract temporal activity traces (multi-

task) of multiple ROIs (multi-class). An individual pixel can appear in the attention 

maps for different ROIs (multi-label), enabling the segmentation of spatially overlapping 

neurons. Existing deep learning techniques designed for calcium imaging processing, such 

as DeepWonder29, STNeuroNet26, SUNS27 and CITE-On28 are single-input single-output 

models to focus solely on segmentation, and primarily excel at ROI detection. The temporal 

trace extraction and demixing are processed after the neural network. Conversely, matrix 

factorization approaches such as CaImAn24 and Suite2p20 simultaneously segment ROIs 

and demix temporal traces, offering high-quality trace extraction and demixing for those 

accurately segmented neurons. However, they suffer from higher rates of false positives and 

negatives in segmentation. DeepCaImX, as a single-input multi-output model, combines the 

advantages of segmentation neural networks and matrix factorization approaches to achieve 

superior performance in both segmentation and trace extraction.

Another feature of our method is its robust neuropil suppression capability through a CS-

inspired ISTA-Net. In the spatial domain, neuropil appears as a smooth background that 

mixes with the useful signal. CS leverages sparsity to recover signals from fewer samples 

than the Nyquist–Shannon sampling theorem requires. Instead of its original application for 

signal recovery from under-sampled measurements, we employ ISTA-Net to find a sparse 

representation in which the true signal from neuronal cell bodies is strong and the neuropil is 

weak. This facilitates an effective separation and suppression of neuropil.

Our approach in segmentation is distinct from existing neural networks. Segmentation 

in DeepCaImX contains two steps: ISTA-Net to synthesize multiple feature channels of 

neuronal cell bodies in sparse representation, and ConvLSTM2D to recurrently process these 

features and generate the temporal dynamic attention maps for each neuron and the static 

segmentation result. In contrast, other networks typically process the entire video or their 
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spatiotemporal projections using 2D or 3D convolutional layers26–29 to identify the neuronal 

footprints. While generally effective, they may lack efficiency and clarity in parsing the 

neuronal footprint apart from the background. Conversely, DeepCaImX is tailored to the 

physical aspects and constraints of calcium imaging, and utilizes a sparse representation 

of the recordings to analyze the spatiotemporal features of the neurons. By doing so, it 

can effectively set neurons apart from neuropil background (Supplementary Fig. 11) and 

improve the subsequent segmentation and temporal activity extraction.

Existing neural networks designed for ROI segmentation extract the temporal activity traces 

after the segmentation network, using either pixel averaging within neuronal footprints 

as in STNeuroNet26 and SUNS27, or NMF as in CITE-On28 and DeepWonder29. The 

former could not demix signals in spatially overlapping neurons, and the latter has a 

slow processing speed. Our pipeline uses the frame-by-frame attention maps and the 1D 

convolutional layers for efficient demixing, outperforming NMF (Supplementary Fig. 10) 

and thus other segmentation-focused networks in both speed and effectiveness.

The DeepCaImX is well adapted to datasets with different SBRs and SNRs (Fig. 4). Models 

that are trained on specific SBRs and SNRs yield better results for data with similar SBRs 

and SNRs. Ideally, training different models across a range of SBRs or SNRs allows for 

selecting the most suitable one for a given dataset. However, DeepCaImX’s general model, 

trained on datasets with various SBRs or SNRs, also excels and surpasses other methods 

(Fig. 3). For datasets with significant SBR variations within a single FOV, the general model 

may be preferred. Further improving the performance could involve developing a fusion 

network which synthesizes output from various SBR- or SNR-specific models.

DeepCaImX is user-friendly without any requirements to tune hyper-parameters in the 

pre-processing or post-processing stages. This method can be adapted to different datasets 

or applications by adjusting the weights of the loss function of each task (Methods). While 

its current implementation focuses on segmenting neuronal cell bodies in the mouse cortex, 

this data-driven algorithm can potentially be extended to other brain regions, species, and 

subcellular structures. Though developed for two-photon calcium imaging, DeepCaImX 

is also promising for one-photon calcium imaging where it can distinctly separate the 

stronger neuropil background from signals in sparse representations. Future research could 

investigate its efficacy in scenarios like population optogenetics or epileptic states, where 

neurons and neuropil exhibit highly synchronized activity.

Methods

Simulated datasets of two-photon calcium imaging.

We used NAOMi36 to synthesize simulated datasets of two-photon calcium imaging. Each 

dataset (488×488 pixels, 1000 frames) contains 150~350 randomly positioned neurons with 

diameters of 10~20 pixels in general. This reflects the typical experimental conditions 

with 0.8~1.5 μm/pixel and 10~15 μm diameters of neuronal cell bodies in mice. Neuronal 

activities were represented by temporal spikes generated by a Poisson process. The calcium 

transient kernel of each spike was modeled as exponential functions23,36 using the rise 

and decay time of a selected calcium indicator (GCaMP6s or 6f47, or jGCaMP7b, 7c, 
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7s or 7f48). For each calcium indicator, we also varied the rise and decay time based 

on their experimental characterization47,48. The noise-free fluorescence traces were then 

generated by convoluting the spikes with a given calcium transient kernel. We then 

summed all the pixel-wise multiplication results between the neuronal footprints and their 

corresponding temporal activity traces into a single FOV. The neuropil background was 

modeled as the summation of dendrite/axon components and an additional 3~5 different 

background components, each of which is an element-wise product between a Gaussian 

kernel (100~120-pixel standard deviation with the centroid randomly assigned) and a unique 

Wiener process. Next, we used a point-spread-function (0.6 excitation numerical aperture) 

to scan the spatiotemporal data frame-by-frame, and added Gaussian and Poisson noise so 

the SNR ranged from 3~10. A total of 108 samples with the 6 different types of calcium 

indicators were used in the training.

Allen Brain Observatory (ABO) experimental dataset and ground truth.

We used the ABO46 calcium imaging datasets to test the algorithms. The dataset includes 10 

videos recorded at 30 Hz from 175 μm, 275 μm, 375 μm, 550 μm and 625 μm deep in the 

primary visual cortex of 10 mice transfected with the GCaMP6f calcium indicator (sample 

IDs: 501271265, 501704220, 524691284, 531006860, 603516552, 604145810, 607040613, 

669233895, 671162628 and 679353932). Each frame was cropped to 488 × 488 pixels. 

We selected 5000 consecutive frames for testing. Two human experts manually segmented 

each recording to create a consensus segmentation ground truth. The manual labeling was 

performed by inspecting the standard deviation projection of the recordings and then the 

calcium transients (sharp rise and slow decay) of each ROI found in this projection. We 

detected additional ROIs by inspecting the recording in small tiles and voted to determine 

whether each of these new ROIs could be classified as a cell body. To approximate each 

neuron’s ground truth activity trace, we first removed Gaussian and Poisson noise through 

a bilateral filter frame by frame in the spatial domain; we then estimated each neuron’s 

background component by applying a lowpass filter on the intensity traces of individual 

pixels within each neuronal footprint and subtracted this background; finally, we calculated 

the average intensity of all the pixels within the neuronal footprints to obtain the temporal 

trace for each neuron. For the neurons with spatial overlap with others, we only included the 

non-overlapped regions in the calculation and proportionally increased its temporal intensity 

according to the ratio of the overlapping region to the entire region of the individual neuron. 

We validated this process by comparing the results with ground truth traces in simulated 

dataset (Extended Data Fig. 8).

Structure of DeepCaImX.

The model consists of 3D CNNs, 2D CNNs, 1D CNNs, nonlinear units, a CFF layer and 

an Average Pool (Extended Data Fig. 1). The video stack (64×64 pixels, 400 frames) first 

goes through a 9-phase ISTA-Net in a frame-by-frame manner, where P = 9 ISTA-blocks 

(or phases) with the same architecture are cascaded sequentially, to generate an output 

where the background and noise are suppressed. In each ISTA-block, each image frame 

is transformed to a sparse representation domain, where a soft threshold is employed, 

before being transformed back to the spatial domain. The sparse representation (N channels) 

resulting from a sparse transformation ℱ and soft threshold softλ, and the spatial domain 
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output (one channel), both from the last phase in the ISTA-Net, serve respectively as the 

inputs of ConvLSTM2D and a three-layer 1D CNN. While such a process is in 2D, we used 

a 3D version of ISTA-Net in the actual implementation as it is more convenient to perform 

end-to-end training. This 3D network processes the video frame-by-frame in the same way 

as a 2D network with a kernel size of 1×3×3, where the degree in the temporal dimension 

is 1. In ConvLSTM2D, we use 2D convolutional layers to replace the fully connected 

layers typically used together with LSTM to reduce redundant connections and guide the 

optimization to capture the local information in the spatiotemporal data. This dramatically 

reduces the learnable parameters and simplifies the training. We use “tanh” and “sigmoid” 

activations for nonlinearity. Depending on the density of the neurons, we could set up N 

channels to host N individual neurons in the model. Here, we set N=15, accommodating 

most imaging settings with up to 15 neurons in a 64×64 pixel image. ConvLSTM2D 

generates features for attention maps of individual neurons at the corresponding channels in 

each frame. The features of each channel are then sent to a Cascade Feature Fusion (CFF) 

layer42, which is a scene parsing network using a pyramid pooling module and spatially 

dilated convolution. Here, the CFF layer predicts an attention map for each time frame and 

perceptually processes the time-series attention maps into a multi-channel ROI projection, 

with each channel containing the segmentation result of an ROI. The CFF layer further 

utilizes a morphological operation, called opening49, to remove the small discrete area 

that are separated from the main ROI, and to obtain the final segmentation results. Using 

the time-series attention maps, and the multi-channel ROI projections, we could generate 

the time-series attention maps for each ROI channel. If the number of neurons found is 

smaller than the total channel number, the remaining channels are left empty. The overlap 

integral between the time-series attention maps for each ROI and the spatial domain video 

from ISTA-Net produces the activity traces for individual neurons. Finally, we use a 1D 

three-layer CNN, with “relu” activations after each of the first two layers, to demix neuronal 

activity traces from residual contamination in the FOV. The convolution is conducted in the 

time domain.

To accommodate videos with different pixel resolutions and counts, we first scale the 

video so its spatial resolution falls in 0.8~1.5 μm/pixel, and thus most neurons have a cell 

body of 10~20 pixels in diameter. We then tile the entire video into different sub-stacks 

in both the spatial and temporal directions, each being 64×64 pixels and 400 frames. 

Zero padding will be applied if the sub-stacks have fewer than 64×64 pixels and 400 

frames. Spatial overlap occurs between neighboring sub-stacks. Each sub-stack is processed 

by DeepCaImX, yielding ROI segmentation and activity traces. The results from all 3D 

sub-stacks are then merged together. During merging, neurons in the overlapping regions 

of neighboring sub-stacks are matched if their activity traces have a Pearson correlation 

above 0.95. Each matched neuron pair is merged into a single neuron, with combined spatial 

footprints and weighted sum of temporal activity traces, where the weight is based on the 

area of individual segmentations and the union. Neurons detected in different time slots with 

an IoU above 0.9 for their spatial footprints are considered the same neuron, with combined 

footprints and concatenated activity traces. If a neuron is not detected in a time slot for the 

entire 400 frames, its activity trace is set to 0 for that particular time slot. The results of the 

entire video can be obtained after this spatial merging and temporal concatenation process.
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In the training dataset, we separated each original 488(pixel)×488(pixel)×400(frame) video 

into 81 64×64×400 3D sub-stacks with 11 pixels overlap in each spatial dimension. We 

trained DeepCaImX for 20 hours with a batch size of 2 and a learning rate of 1 × 10−4.

In the simulated dataset used for testing, each video has a size of 488 (pixel) × 488 (pixel) × 

1,000 (frame). We temporally tiled the video into three time slots, each having 400 frames. 

The temporal overlap is 0 frames, and the last 200 frames of the last time slot are set to be 

0. For each time slot, we performed spatial tiling with the same tiling setting as those in the 

training dataset.

In the ABO experimental dataset used for testing, each video has a size of 488(pixel)

×488(pixel)×5000(frame). We temporally tiled the video into 13 timeslots, each having 400 

frames, and kept the spatial tiling setting the same as those in the training dataset. In total, 

1053 sub-videos were created for each dataset.

In the Diesel2p mesoscopic recordings used for testing, the sample has a FOV of 3×3 mm2 

and a size of 2048(pixel)×2048(pixel)×1500 (frame), which is a subset of a 3×5 mm2 FOV 

data. We spatially tiled the dataset into 43×43 tiles (with 16 pixels overlap between tiles). 

Temporally, we tiled the video into 4 timeslots, each having 400 frames. In total, 7396 

sub-videos were created.

Loss function of DeepCaImX.

The loss function of DeepCaImX is the weighted sum of three parts: (1) the loss function 

of ISTA-Net, (2) the dice coefficient50 of ROI prediction, and (3) the Pearson correlation 

between the extraction results of all traces and the ground truth. Mathematically, the loss 

function is written as:

Loss1 = x P − x 2

2
+ γ ∑k = 1

P
ℱ−1 k

ℱ k
x − x

2

2

(1)

Loss2 = 1 −
2 segPred ∩ segGT

segPred + segGT

(2)

Loss3 = 1 −
∑i tracei

Pred
tracei

GT − ∑i tracei
Pred∑i tracei

GT

∑i (tracei
Pred)

2
− ∑i tracei

Pred 2
∑i (tracei

GT)
2

− ∑i tracei
GT 2

(3)

Loss = Loss1 + λ1Loss2 + λ2Loss3
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where x P  represents the reconstructed spatiotemporal recording after the P tℎ phase of the 

ISTA-Net, x represents the background-free and noise-free ground truth, ℱ is the learnable 

sparse transformation supported by ISTA-blocks, ℱ−1 is the learnable backward transform 

from sparse representation to the original spatial domain, k is the phase index of the 

ISTA-block, P  is the number of the ISTA-block phase, and γ is a weight of 0.1 in the loss 

function of ISTA-Net. segPred and segGT represent the predicted segmentation result and 

the corresponding ground truth, respectively. tracePred and traceGT represent the predicted 

activity trace and the corresponding ground truth, respectively i in Loss3 means the i-th 

entry of the traces. λ1 and λ2 are the relative weights of the loss function (2) and (3) versus 

(1). λ1 and λ2 are both set to be 10 (see further discussion in “Training, setting and modifying 

DeepCaImX”).

Evaluation metrics of ROI segmentation and temporal activity trace extraction.

We evaluated all segmentation methods by comparing their results with ground truth labels. 

The metrics of evaluation are recall, precision and F1 score, which are defined as follows:

Precision =
NTP

Ndetected

,

Recall =
NTP

NGT

,

F1 =
2

Precision−1 + Recall
−1

,

where NTP is the number of true positive (TP) predictions, NGT is the number of ground truth 

(GT) ROIs, and Ndetected is the number of neurons detected by the method. To determine if a 

predicted neuron belongs to the ground truth, we use the IoU metric:

IoU GT , Prediction =
segGT ∩ segPred

segGT ∪ segPred
.

If the IoU value is greater than 0.5, we regard the prediction of the neuron to be accurate. 

If there is more than one neuron whose IoU is greater than 0.5 for a specific ground truth 

neuron, we will select the one with higher IoU and count that as the true positive.

The evaluation of extracted traces is based on Pearson correlation:

r tracePred, traceGT =
∑i tracei

Pred
tracei

GT − ∑i tracei
Pred∑i tracei

GT

∑i (tracei
Pred)

2
− ∑i tracei

Pred 2
∑i (tracei

GT)
2

− ∑i tracei
GT 2

,

where i is the i-th trace entry.
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Training, setting and modifying DeepCaImX.

Training DeepCaImX involves two steps: dataset tiling and neural network training. Each 

raw calcium imaging recording is first tiled into sub-videos both spatially and temporally 

based on the video size that DeepCaImX is designed for while considering the spatial and 

temporal overlap for each sub-video. In this paper, the input video size for DeepCaImX 

is 64×64×400, smaller than the simulated raw video (488×488×400). With 11-pixel spatial 

overlap along each dimension, 81 tiles with 64×64 pixels are generated. The total epochs 

and batch size for training DeepCaImX can be adjusted based on available resources.

Hyper-parameters in the loss function could extensively influence the performance of 

DeepCaImX. The weights λ1 and λ2 control the contribution of ROI detection and trace 

extraction respectively to the overall loss function. We make the values of each of 

these losses match the loss of ISTA-Net when the optimization is stable, ensuring equal 

contribution to the multi-task optimization (Supplementary Fig. 15). In this paper, both λ1

and λ2 are set to be 10, as the loss of ISTA-Net converges to a range of 7~13. For different 

types of datasets, the settings of λ1 and λ2 may be different. For datasets with high noise, we 

can increase the relative contribution of the denoising module (i.e. ISTA-Net) by decreasing 

λ1 and λ2 accordingly. For applications requiring very precise ROI predictions, we could 

increase the weight of the ROI detection loss (i.e. λ1).

Besides the weights, users can add constraints to the loss function to customize DeepCaImX 

for specific applications. For example, an ROI area constraint can be added to Loss2 when 

the requirements of ROI area is critical. Additionally, L1-norm regularization can be used to 

enforce sparsity of extracted traces.

General, SBR-specific or SNR-specific DeepCaImX models.

Calcium imaging data varies in SBR and SNR. The signal relates to the brightness and 

expression level of calcium indicators, and the change in fluorescence due to action 

potentials. The background relates to the neuropil intensity, influenced by the fluorescence 

labeling density, imaging depth and animal preparation procedures. The noise can include 

shot noise (Poisson noise), amplification noise and read noise, and can be modeled as a 

mixture of Poisson and Gaussian noise. From the raw recordings, we defined the signal 

as the peak value of each temporal trace, the background as the average neuropil intensity 

(obtained by lowpass filtering the raw experimental recordings temporally), and the noise 

as the standard deviation of the difference between the raw signal and the noise-free ground-

truth (obtained by applying a 2D bilateral filter to the raw experimental recordings spatially). 

For each data sample, the SBRs and SNRs for individual neuron are first calculated, and 

their values are then averaged to represent the SBR and SNR of the entire dataset.

By adjusting neuropil background or noise level, we can create simulated datasets with 

different SBRs and SNRs. DeepCaImX models specific to SBR or SNR are trained using 

corresponding datasets. The general model is trained using datasets across a broad SBR and 

SNR range.
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To choose the appropriate DeepCaImX model, users could first estimate the SBRs or SNRs 

of neurons in the FOV, generate a histogram and determine the average SBRs and SNRs. 

The suitable model can be chosen based on these values. As a reference for SBR-specific 

models, users can compare the SBR histogram with models in Supplementary Fig. 12, and 

select the most similar one. If the SBR variations are large, the general model may be 

preferred.

Hardware and processing speed calculation.

The processing for all methods in this paper was done on a workstation with an Inter(R) 

Xeon(R) E5-2667 v3 @ 3.20GHz CPU and a NVIDIA Quadro RTX 8000 48 GB GPU. 

We included only the runtime calculation of the algorithm without data loading and writing 

when creating the processing speed profile for each method.

Methods used for comparison against DeepCaImX.

Nine methods are used to benchmark the performance of DeepCaImX: DeepWonder29, 

STNeuroNet26, SUNS27, CITE-On28, CaImAn24, Suite2p20, and three methods combining 

DeepCAD30, FISSA23 and CaImAn24. All training-required methods were trained for 20 

hours with 488×488 pixel FOVs. Hyper-parameters of each method were tuned to fit each 

dataset’s properties, including pixel size, frame rate, and calcium indicator type. Below, we 

describe each method’s mechanisms and parameters.

DeepWonder29 cascades two independently trained 3D CNNs, RB-Net and NS-Net, to 

perform noise and background subtraction and segmentation respectively. We used the code 

found at https://github.com/yuanlong-o/Deep_widefield_cal_inferece. The input and ground 

truth for RB-Net are the raw recordings and the denoised, background-removed videos, 

respectively. The input and ground truth for NS-Net are the output of RB-Net and the ROI 

segmentation targets, respectively. Other parameters were set according to the properties of 

our training and testing datasets (i.e. pixel size, frame rate, calcium indicator).

STNeuroNet26 applies a 3D CNN with preprocessing and postprocessing to segment 

the calcium imaging data. We used the code found at https://github.com/soltanianzadeh/

STNeuroNet. In the preprocessing stage, we set the size of the gaussian kernel filter to be 20 

pixels, and the rise and decay time of the neuronal activity based on the calcium indicator. 

In the postprocessing stage, we set the minimum area of ROIs of 100 pixels and probability 

threshold of 0.9. The block size for training is 488×488×100.

SUNS27 operates fast by using a shallow U-Net but requires hyper-parameter tuning in pre- 

and post-processing. We used the code found at https://github.com/YijunBao/Shallow-UNet-

Neuron-Segmentation_SUNS. We set the SNR threshold to be 3, the minimum ROI area to 

be 100 pixels, probability threshold to be 0.7 and threshold for maximum center of mass 

(COM) distance to be 4 μm. The bandwidth of the low pass filter in the preprocessing stage 

was tuned independently to remove the noise and background for every video.

CITE-On28 supports very fast and accurate segmentation based on 2D projections of calcium 

imaging recordings. We used the code at https://gitlab.iit.it/fellin-public/cite-on. We set the 
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upscaling factor to be 2, tiles per side as 10 with an overlap between tiles of 20%, and a 

batch size of 16 in the extractor. The other settings followed the properties of our dataset.

CaImAn24 applies a constrained non-negative matrix factorization (CNMF) algorithm21 

to detect ROIs and extract their temporal activity traces. In CNMF21, the recording is 

factorized into the product of two matrices which are related to the spatial footprints and 

temporal traces of each neuronal ROI and the background components. Regularization is 

used to promote sparsity of the two matrices. The weights of the regularization term control 

the degree of sparsity and edge sharpness of each ROI’s spatial contour. A CNN classifier 

filters out ROIs that are less likely to be neurons. We used the CaImAn batch method from 

the code found at https://github.com/flatironinstitute/CaImAn. Each patch has 64×64 pixels 

with 11 pixels of overlap between patches. We set the number of components per patch to 

20, the spatial correlation threshold to ~0.8, the minimum SNR to ~4, and the upper and 

lower threshold for the CNN classifier to 0.8~0.9 and 0.1~0.3 respectively, which varied 

between test samples. Other settings were tuned to fit the properties of our dataset similarly 

to previous methods. An optional preprocessing step to subtract the global background of 

the data before CaImAn may enhance its overall performance. A post-processing step may 

be required when the predicted traces exhibit an unexpectedly prolonged decay time in 

the calcium transient, which was related to the unsatisfactory background estimate and/or 

the imbalance between the spatial matrix and temporal matrix in the matrix factorization 

process. To address this, we normalized the individual predicted traces on a timestep-by-

timestep basis by a ratio between the average value of the predicted spatial matrix and 

the average value of the denoised and background-suppressed raw recordings within the 

matching ROIs.

Suite2p20 is based on a matrix factorization algorithm with fewer constraints than CNMF21. 

We used the code found at https://github.com/MouseLand/suite2p. We binarized the real-

valued mask output with a threshold set to 0.3 times the maximum value of the mask to 

obtain the ROI contours. We then used the default classifier (with the diameter of neurons 

set to be 12.5 pixels) before temporal signal extraction. The same pre-processing step and 

post-processing step as the CaImAn described above may be used to enhance its overall 

performance.

DeepCAD30 and FISSA23 are two assistive tools for spatial denoising and temporal 

demixing with denoising, respectively. DeepCAD uses a self-supervised learning scheme 

to perform spatial denoising. FISSA uses NMF to decontaminate the neuropil background 

and extract the temporal signals from ROIs with known spatial contours. We combined 

these tools with CaImAn to enhance its performance. We used the code found at https://

github.com/cabooster/DeepCAD for DeepCAD, and the code found at https://github.com/

rochefort-lab/fissa for FISSA. In DeepCAD-CaImAn-assisted FISSA, DeepCAD first 

denoises the raw data, CaImAn then segments the ROIs, and FISSA extracts each ROI’s 

temporal signals. In DeepCAD-assisted CaImAn, DeepCAD first denoises the raw data, 

and CaImAn then segments the ROIs and extracts their temporal signals. In CaImAn-based 

FISSA, CaImAn first segments the ROIs, and FISSA extracts each ROI’s temporal signals. 

The settings in CaImAn were tuned as described previously.
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Extended Data

Extended Data Fig. 1 |. Model architecture of DeepCaImX.

DeepCaImX is composed of three networks: a 3D ISTA-Net, a ConvLSTM2D (2D 

convolutional LSTM) network, and a 1D convolutional layers. The 3D ISTA-Net is used 

to suppress the background and suppress the noise of the video stack. This 3D network 

processes the video frame-by-frame in a way of a 2D network, as the kernel size is 

1 × 3 × 3, where the degree of the temporal dimension is 1. It outputs the denoised 

and background-suppressed video in both sparsity domain (with 15 channels) and spatial 

domain. The former is fed to the ConvLSTM2D, which outputs the segmentation results 

through a cascade feature fusion (CFF) layer, and the attention maps. The latter, together 

with the attention maps, were fed to the 1D convolutional layers, which further demix the 

temporal signals of the segmented ROIs. The 3D convolutional layers contain a 3x3x1 kernel 

with stride of 1x1x1. The 2D convolutional layers contain a 2x2 kernel with the same 

stride. The 1D convolutional layers contain a kernel of 3 and the stride of 1. In ISTA-Net, 

there is a total of P phases/blocks, with k being the phase/block index. ℱ k  means the 

trainable transformation from the original domain to sparse representation domain, and 

ℱ−1 k
 represents the inverse transformation. softλ is the soft threshold, with λ being the 

threshold set to be 0.01.
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Extended Data Fig. 2 |. Raw recordings, denoised and background-suppressed video, sparse 
representation, attention maps and extracted activity traces of represented neurons of a 
simulated sample.

a1-4, Raw recordings at the frame 136, 172, 186, and 295. Inset shows the exemplary 

segmented neurons. b1-4, Denoised and background-suppressed results at the frame 136, 

172, 186, and 295. c1-4, Sparse representation results created by ISTA-Net at the frame 136, 

172, 186, and 295; d1-4, Attention map results created by ConvLSTM2D (2D convolutional 

LSTM) at the frame 136, 172, 186, and 295. e1-4, Extracted traces for the exemplary 

segmented neurons with cursors at the frame 136, 172, 186, and 295. For an individual 
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neuron, we used the same color to outline the boundary of its footprint in the different 

frames and extracted traces. This simulated dataset is the same as that in Fig. 2 in the main 

manuscript.

Extended Data Fig. 3 |. Raw recordings, denoised and background-suppressed video, sparse 
representation, attention maps, and extracted activity traces of represented neurons of the 
experimental sample (ABO 524691284).

a1-4, Raw recordings at the frame 535, 913, 1646 and 1739. Inset shows the exemplary 

segmented neurons. b1-4, Denoised and background-suppressed results at the frame 535, 
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913, 1646 and 1739. c1-4, Sparse representation results created by ISTA-Net at the frame 

535, 913, 1646 and 1739; d1-4, Attention map results created by ConvLSTM2D (2D 

convolutional LSTM) at the frame 535, 913, 1646 and 1739. e1-4, Extracted traces for 

the exemplary segmented neurons with cursors at the frame 535, 913, 1646 and 1739. For 

an individual neuron, we used the same color to outline the boundary of its footprint in the 

different frames and extracted traces. This simulated dataset is the same as that in Fig. 3 in 

the main manuscript.

Extended Data Fig. 4 |. Performance of DeepCaImX in detecting neuronal body with different 
sizes.

When DeepCaImX is trained with a dataset where most of the neuronal body has diameters 

of 10-20 pixels, it could reliably and accurately detect neurons with a diameter of 8~20 

pixels. The predicted segmentation tends to have a larger or smaller boundary than the 

ground truth when the neuron diameter is <10 pixels or > 20 pixels respectively. a-d shows 

the segmentation results (red line) versus the ground truth (gray line) for neurons with 8 

different diameters with 7, 8, 10, 12, 16, 20, 24, and 28 pixels with the same activity trace 

but in different locations within a field of view.
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Extended Data Fig. 5 |. Performance of DeepCaImX in demixing neurons with spatial overlaps 
and temporal correlations.

We varied the centroid separation of two neurons and studied how well DeepCaImX could 

distinguish the neurons and demix their activity traces. In a1-a6, the centroid separation of 

the two neurons is 4, 8, 12, 16, 20, and 24 pixels, and each neuron has a diameter of 20 

pixels with the same neural activity. The prediction results and ground truth are in red lines 

and gray lines respectively. In b1-b6, c1-c6, d1-d6, e1-e6, and f1-f6, all the settings are the 

same except that the temporal correlation between the activity of the two neurons is 0.8, 0.6, 
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0.4, 0.2, and 0.05 respectively. g1. The maximum Intersection over Union (IoU) of the two 

spatially overlapping neurons that DeepCaImX can segment, versus the Pearson correlation 

between the ground truth activity traces of the two neurons. g2. The Pearson correlation of 

the extracted activity traces of the two spatially overlapping neurons against their ground 

truth traces, versus the Pearson correlation between the ground truth activity traces of the 

two neurons. Data are presented as mean values +/− standard deviation (error bar). IoU is 

defined as the ratio between the ratio of the intersection area of two neurons to the union 

region area of two neurons. For g1-g2, we created 50 pairs of neuronal footprints by the 

NAOMi algorithm instead of simply using round-shaped simulated neurons for the study. 

When the two neurons have high spatial overlap, DeepCaImX may still be able to predict 

two separated neurons, though their IoU with the corresponding ground truth could be less 

than 0.5, and thus not considered to be a correct segmentation.
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Extended Data Fig. 6 |. Segmentation and demixing the soma activities from nearby axons/
dendrites.

a1-a6, ROI (soma) detection and temporal traces demixing performance of the neuronal 

soma from the axons/dendrites, for different peak activity intensity ratio (20%, 40%, 

60%, 80%, 100% and 120%) between the axons/dendrites and neuronal soma. The axons/

dendrites cross the soma in plane. b1-b6, Same as a1-a6, but with the axons/dendrites cross 

the soma axially. Here, the cross-section of the axons/dendrites locate inside the neuronal 

soma to be segmented. c, Pearson correlation between the extracted temporal traces of 

the soma versus the ground truth trace, for different peak activity intensity ratio between 

the axons/dendrites and the neurons based on 20 simulated samples. Box plot: center bars 

Zhang et al. Page 23

Nat Mach Intell. Author manuscript.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



(red), medians; box edges, first and third quartiles, respectively; whiskers, minimum and 

maximum.

Extended Data Fig. 7 |. Data processing pipeline.

The calcium recording is first tiled into sub-stack of videos with smaller size in space (x, 

y) and time (t). Each sub-stack of videos is fed to DeepCaImX for spatial segmentation 

and temporal trace extraction. The results are then stitched together in spatial and 

temporal dimensions. In our example, the size of experimental raw calcium recording is 

488x488x5000 in 3D (x, y, t). This is tiled into 9x9x13 sub-stacks where each sub-stack is 

in a size of 64x64x400 with an overlapping of 11 pixels in each lateral dimension of the 

stack, and no overlapping in temporal dimension. In the merging process, for every pair 

of spatially neighboring sub-stacks in the same time slot, we first match the neurons that 

are found in both sub-stacks in their overlapping regions if the Pearson correlation of their 

activity traces is larger than a threshold set at 0.95. We then merge each matched neuron 

pair into a single neuron whose spatial footprint is set to be the union of the segmentation 

results from each sub-stack. We generate their temporal activity traces as the weighted sum 

of the individual traces extracted in each sub-stack, where the weight is based on the area of 

segmentation results and the union. For any two neurons detected from different time slots, 

if the intersection over union (IoU) of their spatial footprints is larger than 0.9, we consider 

that they are the same neuron, and we set the footprint of this neuron to be the union of 

the segmentation results from each time slot. We then concatenate the activity traces of this 

neuron in these sub-stacks. Otherwise, we consider they are different neurons. If a neuron is 

not detected in a specific time slot for the entire 400 frames, we set its activity trace to be 0 

for that particular time slot as the neuron is inactive in that time slot. The results of the entire 

video can be obtained after this spatial merging and temporal concatenation process.
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Extended Data Fig. 8 |. Validation of the ground truth temporal traces generation.

We use the process described in Methods to generate the temporal activity traces as proxies 

of ground truth in the experiment dataset. Here we validated this process in simulation 

datasets. a, The correlation image of a simulated sample. The correlation image is the 

averaged temporal correlation between pixels and their four immediate neighbors. The 

boundary of each ROI is annotated with gray contour lines. b, Zoom-in region of the red 

box region in a and comparison between the simulated ground truth temporal traces (gray) 

and the extracted proxies (red). The Pearson correlation between the simulated ground truth 

temporal traces and the extracted proxies is 0.973±0.018 (mean±std, n = 18 videos).
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Extended Data Fig. 9 |. ROIs detection and activity traces extraction of Diesel2p mesoscopic 
two-photon imaging recordings.

a, maximum intensity projection of a recording with a dimension of 3x3 mm2 and a total 

pixel count of 2048x2048, which is a subset of the imaging data of a 3x5 mm2 field of 

view recorded from Diesel2p, combining the sample of 3a_Ch01 and 3a_Ch02 [Ref. 9, Yu, 

CH., Stirman, J.N., Yu, Y. et al. Diesel2p mesoscope with dual independent scan engines 

for flexible capture of dynamics in distributed neural circuitry. Nat Communications 12, 

6639 (2021).]. b1, The maximum intensity projection of the 1st zoom-in view in (a), with 
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predicted ROIs overlaid. c1, The maximum intensity projection of the 2nd zoom-in view in 

(a), with predicted ROIs overlaid. b2, Extracted temporal activity traces from 10 randomly 

selected ROIs in the 1st zoom-in view in (a). c2, Extracted temporal activity traces from 10 

randomly selected ROIs in the 2nd zoom-in view in (a).

Extended Data Fig. 10 |. Pearson-correlation performance of 10 ABO experimental samples via 
general model vs. SBR-specific models of DeepCaImX.

a-e, correspond to samples recorded in depths of 175 μm, 275 μm, 375 μm, 550 μm, and 

625 μm respectively. For each individual segmented neuron in each model, we calculated 

the Pearson-correlation between the extracted temporal activity traces versus the reference 

ground truth traces. Each individual segmented neuron is plotted as a point in each plot, 

with the color indicating the signal-to-background ratio (SBR). The neurons found by the 

SBR-specific models but not the general model are assigned a Pearson correlation value of 

0 for the general model. The neurons found by the general model but not the SBR-specific 

models are assigned a Pearson correlation value of 0 for the SBR-specific models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The ABO dataset (experimental dataset) can be found in

https://github.com/AllenInstitute/AllenSDK/wiki/Use-the-Allen-Brain-Observatory-

%E2%80%93-Visual-Coding-on-AWS.

The dataset used in the simulation and training could be found in https://zenodo.org/records/

1265042051.
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Fig. 1 |. Architecture of DeepCaImX.

DeepCaImX is composed of three modules: ISTA-net, ConvLSTM2D and 1D Convolutional 

Layers. The raw calcium imaging recording (i) is fed to ISTA-Net, which denoises and 

removes the background of the recording and transforms it from the spatial domain to a 

sparse representation. Using the recording in the sparse representation (ii), ConvLSTM2D 

analyzes the calcium dynamics, and generates an attention probability map for each ROI 

at each frame as well as the overall ROI segmentation results (iv). The 1D Convolutional 

Layers then use the attention maps to extract the activity traces of each ROI (v) in the 

denoised and background-suppressed recording in the spatial domain (iii) output from ISTA-

Net.
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Fig. 2 |. DeepCaImX outperforms other existing methods in neuronal segmentation and trace 
demixing on simulated data.

a, Segmentations of a simulated sample for DeepCaImX, DeepWonder, SUNS, 

STNeuroNet, CITE-On, DeepCAD-CaImAn-assisted FISSA, DeepCAD-assisted CaImAn, 

CaImAn-assisted FISSA, CaImAn, and Suite2p, overlaid on top of the time-series maximum 

intensity projection of the video. The gray outlines denote the ground truth boundaries 

of neurons. The color outlines denote the segmentation results of the used method. The 

yellow and green arrows indicate the false positive and false negative segmented neurons 
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respectively. b, Spatial footprints and temporal activity traces of exemplary neurons from the 

boxed regions in a. c1-c3, Recall, precision, and F1 scores of DeepCaImX, DeepWonder, 

SUNS, STNeuroNet, CITE-On, DeepCAD-CaImAn-assisted FISSA, DeepCAD-assisted 

CaImAn, CaImAn-assisted FISSA, CaImAn, and Suite2p, for 18 simulated samples, 

covering all 6 types of calcium indicators (GCaMP6s, 6f and jGCaMP7b, 7c, 7s, 7f). Each 

sample has a size of 488 (pixels) × 488 (pixels) × 1000 (frames). d, Pearson-correlation 

of extracted activity traces with ground truth traces of common ROIs detected by all 

methods, for 18 simulated samples. e, F1 scores vs Pearson-correlation between extracted 

activity traces and ground truth traces of common ROIs detected by all the methods, for 

18 simulated samples. f, Processing speed of different methods. Each frame has 488x488 

pixels. Box plot: center bars (red), medians; box edges, first and third quartiles, respectively; 

whiskers, minimum and maximum; +mark, outliner. *, p<0.05; **, p<0.01; ***, p<0.001; 

****, p<0.0001, in one-way, two-sided Analysis of Variance (ANOVA), followed by 

Tukey’s Honestly Significant Difference (HSD) test as a post-hoc multiple comparison test.
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Fig. 3 |. DeepCaImX outperforms existing methods in neuron segmentation and trace extraction 
on experimental data.

a, Segmentations from an exemplary experimental dataset (ABO 524691284) for 

DeepCaImX, DeepWonder, SUNS, STNeuroNet, CITE-On, DeepCAD-CaImAn-assisted 

FISSA, DeepCAD-assisted CaImAn, CaImAn-assisted FISSA, CaImAn, and Suite2p, 

overlaid on top of the time-series maximum intensity projection of the video. The gray 

outlines denote the ground truth boundaries of neurons. The color outlines denote the 

segmentation results of the used method. The yellow and green arrows indicate the 
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false positive and false negative segmented neurons respectively. b, Spatial footprints and 

temporal activity traces of exemplary neurons from the boxed regions in a. c1-c3, Recall, 

precision, and F1 scores of DeepCaImX, DeepWonder, SUNS, STNeuroNet, CITE-On, 

DeepCAD-CaImAn-assisted FISSA, DeepCAD-assisted CaImAn, CaImAn-assisted FISSA, 

CaImAn, and Suite2p, for 10 samples over the imaging depth of 175 μm, 275 μm, 375 μm, 

550 μm and 625 μm. Each sample has a size of 488 (pixels) × 488 (pixels) × 5000 (frames). 

d, Pearson-correlation of extracted activity traces with ground truth traces of common 

ROIs detected by all the methods, for 10 samples. e, F1 scores vs Pearson-correlation 

between extracted activity traces and ground truth traces of common ROIs detected by all 

the methods, for 10 samples. f, Processing speed of different methods. Each frame has 

488x488 pixels. Box plot: center bars (red), medians; box edges, first and third quartiles, 

respectively; whiskers, minimum and maximum; +mark, outliner. *, p<0.05; **, p<0.01; 

***, p<0.001; ****, p<0.0001, in one-way, two-sided Analysis of Variance (ANOVA), 

followed by Tukey’s Honestly Significant Difference (HSD) test as a post-hoc multiple 

comparison test.

Zhang et al. Page 35

Nat Mach Intell. Author manuscript.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4 |. Performance of DeepCaImX on ROI detection and activity trace extraction across 
different SBRs and SNRs.

a1-a2, F1 score (a1) of the segmentation results in simulated and experimental datasets 

with different levels of SBR. Pearson correlation (a2) between extracted activity traces 

and ground truth traces of ROIs detected in simulated and experimental datasets with 

different levels of SBR. b1-b2, F1 score (b1) of the segmentation results in simulated 

and experimental datasets with different levels of SNR. Pearson correlation (b2) between 

extracted activity traces and ground truth traces of ROIs detected in simulated and 

experimental datasets with different levels of SNR. For ABO dataset at image depths of 

175 μm, 275 μm, 375 μm, 550 μm and 625 μm, the SBRs are respectively 2.82, 2.54, 2.23, 

1.94 and 1.61, and the SNRs are respectively 11.82, 10.09, 9.08, 7.54 and 4.77.
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