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Abstract

Two-photon calcium imaging provides large-scale recordings of neuronal activities at cellular
resolution. A robust, automated and high-speed pipeline to simultaneously segment the spatial
footprints of neurons and extract their temporal activity traces while decontaminating them from
background, noise and overlapping neurons is highly desirable to analyze calcium imaging data. In
this paper, we demonstrate DeepCalmX, an end-to-end deep learning method based on an iterative
shrinkage-thresholding algorithm and a long-short-term-memory neural network to achieve the
above goals altogether at a very high speed and without any manually tuned hyper-parameter.
DeepCalmX is a multi-task, multi-class and multi-label segmentation method composed of a
compressed-sensing-inspired neural network with a recurrent layer and fully connected layers. It
represents the first neural network that can simultaneously generate accurate neuronal footprints
and extract clean neuronal activity traces from calcium imaging data. We trained the neural
network with simulated datasets and benchmarked it against existing state-of-the-art methods

with in vivo experimental data. DeepCalmX outperforms existing methods in the quality of
segmentation and temporal trace extraction as well as processing speed. DeepCalmX is highly
scalable and will benefit the analysis of mesoscale calcium imaging.

Two-photon calcium imaging can record neuronal activity at high resolution in deep brain
tissue, and has been a workhorse in neuroscience to investigate neural circuits over the

last two decades!=>. Recent advance in high-throughput two-photon microscopy enables the
simultaneous high-speed recording of hundreds of thousands of neurons®14, underscoring
the needs for an automated method to efficiently identify neuronal regions of interest

(ROIs) and extract their fluorescence activities with high fidelity. The four critical tasks
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in processing calcium imaging data are motion correction, denoising, segmentation, and
temporal signal extraction. While motion correction has seen significant advancements with
several effective algorithms!>~18  the methods for the other tasks!92% often fall short by
being slow, requiring manual tuning, or having a limited fidelity in the output. Currently,
there has not been a fully automated method that can perform denoising, segmentation and
signal extraction with high speed and high quality.

Existing methods to process calcium imaging data can be categorized into model-based

26-29 a]gorithms. The

iterative optimization!9-21-23:24 and neural-network-based learning
former, such as principal component analysis and independent component analysis
(PCA/ICA)!?, Suite2p20, and CNMF?! (constrained non-negative matrix factorization) or
CalmAn24, uses matrix factorization to model the imaging data with features of neuronal
shapes and temporal dynamics. These methods generate the spatial footprint of the ROIs and
demix their temporal traces simultaneously. They typically require lengthy processing and
manual hyper-parameter tuning for satisfactory outcomes. Neural-network-based algorithms,
such as STNeuroNet20, SUNS2’, CITE-On?8, and DeepWonder29, were developed to
segment the calcium imaging data by learning from training dataset. Once trained, they are
generally fast to operate. However, they require additional, model-based learning algorithms
to extract and demix the neural activity traces. Self-supervised deep learning such as
DeepCAD3%-31 and Deeplnterpolation? were developed to denoise two-photon calcium
imaging data, but they require other methods for the spatiotemporal analysis. So far, there
has not been a single approach to simultaneously denoise and output both the spatial
footprints and temporal activity traces.

We developed DeepCalmX, a fast, accurate, user-friendly and fully-automated end-to-end
method to segment the neuronal cell bodies and extract, decontaminate and denoise their
temporal activity traces for two-photon calcium imaging data. This supervised learning
model employs a physics-aware, explainable and multi-task neural network. It is highly
scalable to data size, and does not require any pre-processing such as spatial or temporal
filtering, nor post-processing such as fine tuning or merging the ROIs, nor any hyper-
parameter tuning. Our method begins with ISTA-Net33, a compressed-sensing-inspired
network, to denoise the video, remove the neuropil background and generate a spatially
sparse representation of the neurons. The denoised and background-suppressed video is then
recurrently processed by a long-short-term memory>* (LSTM) layer in temporal domain,
which learns the autoregressive model, and generates a time-series attention map for traces
extraction in the subsequent 1D fully connected layers. These individual components,
though distinct, work in concert and trained as a whole in an iterative (instead of sequential)
manner. Such a model promotes a holistic optimization and outputs the segmentations and
activity traces together, where signals from overlapping ROIs can be well demixed.

We evaluated DeepCalmX against top calcium imaging processing algorithms such as
CalmAn?4, Suite2p?, FISSA23, SUNS27, STNeuroNet2®, CITE-On?8, DeepWonder?® and
DeepCAD?3-assisted CalmAn, in both simulation and in vivo experimental datasets.
DeepCalmX outperforms these counterparts in the quality of segmentation and neural
activity traces, while operating at a high speed. Its high speed, robustness and scalability
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make it a powerful tool for analyzing large-scale calcium imaging data from mesoscale to
3D microscopes, enabling advanced studies of large-scale neuronal circuits.

Results

Principle of the end-to-end DeepCalmX model

Our model aims to predict the spatial footprint of neurons and extract their clean activity
traces simultaneously, and address the challenges of neuropil background removal and signal
demixing among overlapping neurons. A multi-task framework3> could be effective and
efficient for these goals, as the tasks of background and noise removal, ROIs segmentation,
and traces extraction are coupled together through the sparse spatiotemporal dynamics of
neuronal activity. We designed a single model to learn a generalized sparse representation of
the data and branched it into spatial and temporal analyses. We trained the entire network

on realistic calcium recording data simulated by the well-established NAOMi3¢ method
(Methods).

Our network is comprised of three highly explainable modules (Fig. 1, Extended Data Fig.
1). In the first module, we use an ISTA-Net33 to suppress the neuropil background and noise
frame-by-frame. The neuropil background generally has a smooth and spatially extended
profile, whereas neuronal cell bodies have well defined spatial boundaries. ISTA-Net,

a compressed-sensing-inspired neural network based on Iterative Shrinkage-Thresholding
Algorithm (ISTA)37, operates through multiple phases. In each phase, it converts the video
from the spatial domain to a sparse representation, apply a soft threshold, and then revert
back to the spatial domain (Methods). In the sparse representation, the neuropil has a
diminished strength, and is gradually suppressed by the shrinkage threshold in each phase
whereas the neurons with well-defined boundaries are preserved (Supplementary Fig. 1-2;
Supplementary Note 1). Compared to other empirically defined sparse representations, the
sparse representations learnt in ISTA-Net can encode the neuronal signal more efficiently
(Supplementary Fig. 3). Besides the smooth neuropil background, ISTA-Net can also learn
to suppress features that are spatially discrete and confined in small volumes, such as
punctate cross sections of axons or dendrites (Supplementary Fig. 2, 4; Supplementary
Note 1). ISTA-Net processes each frame independently and does not rely on the temporal
information. The convolutions in ISTA-Net are effectively 2D. Yet, it achieves a similar
performance as other state-of-the-art background suppression networks such as the RB-Net
in DeepWonder??, which requires an additional convolution dimension in the time domain
(Supplementary Fig. 4). This reiterates the effectiveness of using the sparse representation.

Besides background suppression, ISTA-Net effectively removes Poisson and Gaussian
noise through its convolutional layers by minimizing the mean square error between the
output data and the noiseless background-free ground truth data (Supplementary Fig. 2).
Its denoising performance is superior to that of DeepCAD, a state-of-the-art denoising
algorithm for two-photon calcium imaging (Supplementary Fig. 5). ISTA-Net produces
a multi-channel, denoised and background-suppressed video in the sparse representation
domain (Extended Data Fig. 2c, 3¢, and Supplementary Videos 1-2), with each channel
containing the neuronal cell body features. This serves as the basis for the subsequent
ConvLSTM2D module to segment individual neurons. Additionally, ISTA-Net outputs a
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denoised and background-suppressed video in the spatial domain (Extended Data Fig. 2b,
3b, and Supplementary Videos 1-2) which will be fed to the 1D convolutional layer module
for temporal trace extraction.

The second module, a 2D convolutional LSTM (ConVLSTMZD)38 network, processes the
ISTA-Net’s output video in sparse representation to segment the neurons and generates
frame-by-frame attention maps (Extended Data Fig. 2d, 3d, and Supplementary Videos 1-2)
which highlight the active region of each neuron per frame. LSTM is a type of Recurrent
Neural Network (RNN)3° and is commonly implemented to solve the 1D temporal problem
of natural language processing®?. To solve the spatiotemporal sequence prediction problem
in calcium recording, we take locality into consideration by using ConvLSTM2D which
contains 2D convolutional structures in both the input-to-latent-state and latent-state-to-
latent-state transitions*!. The 2D convolutional layers create latent states from the input

of the sparse representation of the recordings, and recurrently process the latent states
between neighboring time-steps to learn the autoregressive model of the calcium transient.
The sequential prediction of ConvLSTM2D model is further processed by a Cascade Feature
Fusion (CFF) layer42 (Methods), which outputs the segmentation results and the time-series
attention maps of individual ROIs. There are two noteworthy features of this module. Firstly,
it utilizes a multi-channel sparse representation of the data as input, which contains the
pre-processed spatial features of the neurons. This facilitates the ConvLSTM2D to extract
the attention maps. This approach significantly improves the segmentation performance
over the case where the input to ConvLSTM?2D is the same denoised and background-
suppressed video but in the spatial domain (single channel) (Supplementary Fig. 6), or
where the ISTA-Net is replaced with other non-CS networks such as U-Net*3 and densely-
connected Network (DCSRN)#*45 with the same number of output channels as ISTA-Net
(Supplementary Fig. 7). Secondly, the recurrent process provides a powerful mechanism

to learn the temporal dynamics of the ROIs and thus the attention maps of each frame,
which is the basis for segmentation as well as the subsequent temporal traces extraction.
Indeed, compared with conventional 3D CNNs layers, DeepCalmX with ConvLSTM?2D has
a superior performance in segmentation and traces extraction (Supplementary Fig. 8).

The last module extracts and demixes the neural activity traces of each ROI. This module
first performs an overlap integral between the denoised and background-suppressed spatial
domain video from ISTA-Net with the time-series attention maps of individual ROIs from
ConvLSTM2D to extract their activity traces. As the attention maps report the probability of
each pixel being active in each frame, they facilitate signal demixing between the spatially
overlapping neurons (Supplementary Fig. 9). Activity traces of all neurons are then fed

to a multi-layer 1D CNN, which performs convolution in the temporal domain to further
demix the signals, remove residual background and noise, and ensure temporal continuity
(Extended Data Fig. 2e, 3e, Supplementary Fig. 9, and Supplementary Videos 1-2). These
convolutional layers function similarly to non-negative matrix factorization (NMF) but
surpass traditional NMF in demixing overlapping neuronal signals through learning and
offering a >10x processing speed, with its advantage growing as the number of neurons
within the FOV increases (Supplementary Fig. 10).
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Our end-to-end framework significantly streamlines the process, allowing for a fast and
efficient neuronal ROI segmentation and activity trace extraction without the need for pre-
processing (e.g. spatial and temporal filtering) or post-processing (e.g. merging spatially-
adjacent and temporally-correlated ROIs), which may introduce biases. While each module
in DeepCalmX has a distinct functionality and is seemingly independent, we train them
concurrently as a whole rather than independently or sequentially. This is because some
outputs of these modules, such as the sparse representation from ISTA-Net, do not have

an accessible ground truth. The loss function is calculated for the denoised and background-
suppressed spatial domain video from ISTA-Net, the segmentation from ConvLSTM2D, and
the temporal traces from 1D convolutional layers all together against the ground truths in the
simulation data. Such a holistic training of the network promotes an overall optimized result.

Segmentation and demixing of neurons with spatial overlaps

We first evaluated DeepCalmX’s capability to segment neurons across various sizes and

in situations with spatial overlap among neurons or nearby dendrites. Our training data
primarily features neurons with diameters set to be 10 to 20 pixels. For experiments with
pixel sizes outside our training range, the imaging data can be rescaled to fit these bounds.
Our method can reliably and accurately detect neurons within this diameter range (Extended
Data Fig. 4). For neurons with a diameter below 10 pixels, the method tends to slightly
overestimate the size. The method starts to fail when the neuron diameter approaches below
8 pixels. When the neuron diameter is over 20 pixels, our method underestimates the ROI
size and thus only detects the ROIs partially.

We further explored how well our method can demix two neurons with spatial overlap and
temporal correlation (Extended Data Fig. 5). Our method accurately distinguishes neurons
with weak temporal correlation (Pearson correlation <0.05) and a spatial intersection over
union (IoU) up to ~0.346. As the temporal correlation of the two neurons increases,
separating neurons becomes more challenging. Yet our model can effectively segment
neurons with strong temporal correlation (Pearson correlation 0.6) and substantial spatial
overlap (IoU~0.172), achieving a high correlation (~0.94) between the extracted traces
and the ground truth. Neurons with identical activities are considered a single unit unless

spatially distinct.

In a similar manner, we investigated if our method could segment neurons and
decontaminate their activity traces when there are axons or dendrites crossing the neurons in
plane or axially (Extended Data Fig. 6). Our algorithm can segment these neurons well and
output the activity traces with a high Pearson correlation with the ground truth. This Pearson
correlation drops as the contamination increases i.e., when the peak activity intensity ratio
between the axons/dendrites and the neurons increases. Nonetheless, even if this ratio is
100%, the neurons can be successfully segmented and the resulting trace extraction has a
high correlation with the ground truth (~0.89), demonstrating the strong demixing capability
of our algorithms.

As a data driven approach, our methods can be adapted to applications where the ROI size is
small or there is a high chance of signal crosstalk between neurons and axons/dendrites. In
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those cases, we could specifically tailor the training data so that the model performs well for
a given parameter space.

Neuronal segmentation and activity extraction: simulated data

We benchmarked DeepCalmX’s segmentation results and the trace extraction

performance against existing state-of-the-art methods (STNeuroNet20, SUNS?7, CITE-On?3,
DeepWonder29, CalmAn24, SuiteszO, and methods combining DeepCADSO, CalmAn24,
and FISSAZ3). All the trainings for the supervised learning methods use the same simulated
dataset. We set the intensity of the neuropil such that the data had a similar signal-to-
background ratio as that of experimental recordings from a tissue depth of 275 um (Allen
Brain Observatory (ABO) dataset46). We tiled each video into smaller sub-videos for
processing, and merged the extracted ROIs and traces from all individual sub-videos post-
analysis (Extended Data Fig. 7; Methods).

DeepCalmX outperformed other methods in neuron segmentation and activity trace
extraction on new simulated testing datasets. Qualitatively, the results closely match the
ground truth (Fig. 2a-b). Quantitatively, our method achieves a high precision 0.900 + 0.015,
recall 0.890 + 0.02 and F1 score 0.892 + 0.017 (meanzstd, » = 18 videos) in the segmentation,
which are significantly higher than all others (Fig. 2c1-3) [p<0.05, one-way Analysis of
Variance (ANOVA)]. In other words, our method finds the highest number of accurate

ROIs, and among all the ROIs that are found our method has the highest accuracy. Our
method also achieves a high Pearson correlation between extracted activity traces and
ground truth traces (0.951 + 0.009) and outperforms others significantly (Fig. 2d) [p<0.05,
one-way ANOVA], effectively demixing signals even among neurons with large spatial
overlap (Fig. 2b). Compared with deep neural networks such as STNeuroNet2¢ and SUNS?’
that are specifically designed for segmenting calcium imaging data, DeepCalmX not only
has an increased F1 score in ROI segmentation, but also denoises and demixes activity traces
within the same network (Fig. 2¢3, 2d). While model-based methods such as CalmAn?* and
Suite2p?? generate comprehensive results in both ROI segmentation and trace extraction, our
data-driven method outperforms them in neuropil suppression and ROI segmentation, even
when CalmAn is combined with a pre-processing denoising module DeepCAD3". Besides
its outstanding performance in segmentation and trace extraction (Fig. 2e), DeepCalmX
processes the data at 247+8 frames per second, significantly faster than the model-based
learning approaches, and competitive with other deep learning segmentation techniques such
as SUNS?7.

We investigated why DeepCalmX outperforms other deep neural networks in segmentation,
particularly against strong backgrounds. This is not because of hyper-parameter tuning

as there are no hyper-parameters in DeepCalmX to tune, unlike other methods such as
SUNS?7, Rather, DeepCalmX could better suppress the background, making the neuronal
ROIs more discernible. Successful segmentation requires distinguishing neuronal footprints
from the background. Existing deep neural networks, such as SUNS27 and DeepWonder??,
attempt background suppression through spatial filtering or a separate network, before the
actual segmentation. These background suppression procedures operate in spatial domain,
making it challenging to distinguish weak neuronal signals from a strong background.

Nat Mach Intell. Author manuscript.
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DeepCalmX, however, suppresses the background in the sparse representation, enabling
more effective separation of the neuronal signals from background. This is critical to set our
method apart from other methods in performance (Supplementary Fig. 11).

Neuronal segmentation and activity extraction: experimental data

We further benchmarked DeepCalmX against others using experimentally recorded calcium
imaging datasets from the Allen Brain Observatory (AB0)*0, spanning a wide range of
imaging depths from 175 pm to 625 pym (Methods). Ground truth ROIs were manually
segmented, and activity traces identified through filtering serve as reference/proxy ground
truths (Extended Data Fig. 8; Methods). All supervised learning models, including ours,
were trained on the simulated dataset with a wide range of signal-to-background ratios. We
then evaluated the performance of each method on the experimental dataset.

Consistent with the simulated dataset results, DeepCalmX outperforms others in the
neuronal segmentation and trace extraction on experimental dataset (Fig. 3). It achieves
significantly higher precision (0.852 + 0.031, mean =+ std, n = 10videos), recall (0.841 + 0.045),
and F1 score (0.847 + 0.037) for segmentation, and Pearson correlation (0.938 + 0.019)
between the extracted traces and ground truth traces [p<0.05, ANOVA]. As the experimental
dataset covers a wider imaging depth range and substantially stronger noise and neuropil
background occurs at deeper imaging layers (Supplementary Fig. 12), the F1 score and
Pearson correlation show more variance and a drop compared with the simulation test
results (Fig. 2) for all methods. Nevertheless, for each sample depth and thus each signal-to-
background level, our method outperforms the others (Supplementary Fig. 13).

Leveraging its high-speed operation, we evaluated DeepCalmX on a mesoscopic dataset
sample with an FOV of 3x3 mm? with 2048x2048 pixels (Extended Data Fig. 9), which is
part of a larger 3x5 mm?2 FOV recording from Diesel2p. By segmenting the dataset into
43x43 tiles (with 16 pixels overlap between tiles) and processing each with DeepCalmX,
we identified 5175 neurons, at a processing speed of 2.8 frames/sec. This demonstrates our
method’s scalability and efficiency.

Performance of DeepCalmX in data with different SBRs and SNRs

We investigated how DeepCalmX’s performance is influenced by the signal-to-background
ratios (SBRs) and signal-to-noise ratios (SNRs) of the dataset (Methods). In the previous
section and Fig. 3, we trained a single general model on simulated datasets covering a
wide range of SBRs and SNRs. As the SBR or SNR increases in the test dataset, the
performance of this general model increases (Fig. 4). We further developed SBR-specific
and SNR-specific models of DeepCalmX by separately training different models for specific
SBRs or SNRs. We tested these models individually on both simulated test datasets and
experimental datasets with correspondingly similar SBRs or SNRs. These specialized
models outperformed the general model in both segmentation and trace extraction,
particularly for dataset with low SBR or SNR (Fig. 4). Essentially, they could find more
ROIs whose SBR or SNR is low (Extended Data Fig. 10), demonstrating the advantage of
the data-driven approach.

Nat Mach Intell. Author manuscript.
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We further compared the SBR-specific DeepCalmX against other neural-network-based
supervised learning methods tailored to the same SBR (Supplementary Fig. 14). The
comparison shows that DeepCalmX excelled in both segmentation and trace extraction,
reaffirming its superior performance over other neural-network-based methods.

Discussion

We developed DeepCalmX, a multi-task end-to-end model, to segment neuronal ROIs

and extract activity traces simultaneously in calcium imaging videos. In comparisons

with other state-of-the-art calcium imaging processing algorithms, DeepCalmX excels in
performance in both spatial segmentation and temporal activity demixing across simulated
and experimental datasets. It also outperforms all but one algorithm in running speed.

The superior performance of DeepCalmX makes it an outstanding tool for comprehensive
calcium imaging analysis.

DeepCalmX stands out from existing deep learning methods in image and video processing
with its multi-task, multi-class and multi-label capabilities. At its core, the ConvLSTM2D
module analyzes the spatial correlation between pixels and learns their temporal signal
patterns through the recurrent connections. The attention maps it generates could then

be processed to obtain segmentation results and extract temporal activity traces (multi-
task) of multiple ROIs (multi-class). An individual pixel can appear in the attention

maps for different ROIs (multi-label), enabling the segmentation of spatially overlapping
neurons. Existing deep learning techniques designed for calcium imaging processing, such
as DeepWonder??, STNeuroNet2°, SUNS27 and CITE-On?® are single-input single-output
models to focus solely on segmentation, and primarily excel at ROI detection. The temporal
trace extraction and demixing are processed after the neural network. Conversely, matrix
factorization approaches such as CaImAn2* and Suite2p?? simultaneously segment ROIs
and demix temporal traces, offering high-quality trace extraction and demixing for those
accurately segmented neurons. However, they suffer from higher rates of false positives and
negatives in segmentation. DeepCalmX, as a single-input multi-output model, combines the
advantages of segmentation neural networks and matrix factorization approaches to achieve
superior performance in both segmentation and trace extraction.

Another feature of our method is its robust neuropil suppression capability through a CS-
inspired ISTA-Net. In the spatial domain, neuropil appears as a smooth background that
mixes with the useful signal. CS leverages sparsity to recover signals from fewer samples
than the Nyquist-Shannon sampling theorem requires. Instead of its original application for
signal recovery from under-sampled measurements, we employ ISTA-Net to find a sparse
representation in which the true signal from neuronal cell bodies is strong and the neuropil is
weak. This facilitates an effective separation and suppression of neuropil.

Our approach in segmentation is distinct from existing neural networks. Segmentation

in DeepCalmX contains two steps: ISTA-Net to synthesize multiple feature channels of
neuronal cell bodies in sparse representation, and ConvLSTM?2D to recurrently process these
features and generate the temporal dynamic attention maps for each neuron and the static
segmentation result. In contrast, other networks typically process the entire video or their
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spatiotemporal projections using 2D or 3D convolutional layers26-2° to identify the neuronal
footprints. While generally effective, they may lack efficiency and clarity in parsing the
neuronal footprint apart from the background. Conversely, DeepCalmX is tailored to the
physical aspects and constraints of calcium imaging, and utilizes a sparse representation

of the recordings to analyze the spatiotemporal features of the neurons. By doing so, it

can effectively set neurons apart from neuropil background (Supplementary Fig. 11) and
improve the subsequent segmentation and temporal activity extraction.

Existing neural networks designed for ROI segmentation extract the temporal activity traces
after the segmentation network, using either pixel averaging within neuronal footprints

as in STNeuroNet26 and SUNS27, or NMF as in CITE-On?® and DeepWonder?®. The
former could not demix signals in spatially overlapping neurons, and the latter has a

slow processing speed. Our pipeline uses the frame-by-frame attention maps and the 1D
convolutional layers for efficient demixing, outperforming NMF (Supplementary Fig. 10)
and thus other segmentation-focused networks in both speed and effectiveness.

The DeepCalmX is well adapted to datasets with different SBRs and SNRs (Fig. 4). Models
that are trained on specific SBRs and SNRs yield better results for data with similar SBRs
and SNRs. Ideally, training different models across a range of SBRs or SNRs allows for
selecting the most suitable one for a given dataset. However, DeepCalmX’s general model,
trained on datasets with various SBRs or SNRs, also excels and surpasses other methods
(Fig. 3). For datasets with significant SBR variations within a single FOV, the general model
may be preferred. Further improving the performance could involve developing a fusion
network which synthesizes output from various SBR- or SNR-specific models.

DeepCalmX is user-friendly without any requirements to tune hyper-parameters in the
pre-processing or post-processing stages. This method can be adapted to different datasets
or applications by adjusting the weights of the loss function of each task (Methods). While
its current implementation focuses on segmenting neuronal cell bodies in the mouse cortex,
this data-driven algorithm can potentially be extended to other brain regions, species, and
subcellular structures. Though developed for two-photon calcium imaging, DeepCalmX

is also promising for one-photon calcium imaging where it can distinctly separate the
stronger neuropil background from signals in sparse representations. Future research could
investigate its efficacy in scenarios like population optogenetics or epileptic states, where
neurons and neuropil exhibit highly synchronized activity.

Simulated datasets of two-photon calcium imaging.

We used NAOMi3 to synthesize simulated datasets of two-photon calcium imaging. Each
dataset (488x488 pixels, 1000 frames) contains 150~350 randomly positioned neurons with
diameters of 10~20 pixels in general. This reflects the typical experimental conditions

with 0.8~1.5 um/pixel and 10~15 um diameters of neuronal cell bodies in mice. Neuronal
activities were represented by temporal spikes generated by a Poisson process. The calcium
transient kernel of each spike was modeled as exponential functions23-3% using the rise

and decay time of a selected calcium indicator (GCaMP6s or 647, or jGCaMP7b, 7c,
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7s or 7f48). For each calcium indicator, we also varied the rise and decay time based

on their experimental characterization”*%. The noise-free fluorescence traces were then
generated by convoluting the spikes with a given calcium transient kernel. We then
summed all the pixel-wise multiplication results between the neuronal footprints and their
corresponding temporal activity traces into a single FOV. The neuropil background was
modeled as the summation of dendrite/axon components and an additional 3~5 different
background components, each of which is an element-wise product between a Gaussian
kernel (100~120-pixel standard deviation with the centroid randomly assigned) and a unique
Wiener process. Next, we used a point-spread-function (0.6 excitation numerical aperture)
to scan the spatiotemporal data frame-by-frame, and added Gaussian and Poisson noise so
the SNR ranged from 3~10. A total of 108 samples with the 6 different types of calcium
indicators were used in the training.

Allen Brain Observatory (ABO) experimental dataset and ground truth.

We used the ABO%0 calcium imaging datasets to test the algorithms. The dataset includes 10
videos recorded at 30 Hz from 175 pm, 275 pum, 375 um, 550 pm and 625 um deep in the
primary visual cortex of 10 mice transfected with the GCaMP6f calcium indicator (sample
IDs: 501271265, 501704220, 524691284, 531006860, 603516552, 604145810, 607040613,
669233895, 671162628 and 679353932). Each frame was cropped to 488 x 488 pixels.

We selected 5000 consecutive frames for testing. Two human experts manually segmented
each recording to create a consensus segmentation ground truth. The manual labeling was
performed by inspecting the standard deviation projection of the recordings and then the
calcium transients (sharp rise and slow decay) of each ROI found in this projection. We
detected additional ROIs by inspecting the recording in small tiles and voted to determine
whether each of these new ROIs could be classified as a cell body. To approximate each
neuron’s ground truth activity trace, we first removed Gaussian and Poisson noise through

a bilateral filter frame by frame in the spatial domain; we then estimated each neuron’s
background component by applying a lowpass filter on the intensity traces of individual
pixels within each neuronal footprint and subtracted this background; finally, we calculated
the average intensity of all the pixels within the neuronal footprints to obtain the temporal
trace for each neuron. For the neurons with spatial overlap with others, we only included the
non-overlapped regions in the calculation and proportionally increased its temporal intensity
according to the ratio of the overlapping region to the entire region of the individual neuron.
We validated this process by comparing the results with ground truth traces in simulated
dataset (Extended Data Fig. 8).

Structure of DeepCalmX.

The model consists of 3D CNNs, 2D CNNs, 1D CNNs, nonlinear units, a CFF layer and

an Average Pool (Extended Data Fig. 1). The video stack (64x64 pixels, 400 frames) first
goes through a 9-phase ISTA-Net in a frame-by-frame manner, where P = 9 ISTA-blocks
(or phases) with the same architecture are cascaded sequentially, to generate an output
where the background and noise are suppressed. In each ISTA-block, each image frame

is transformed to a sparse representation domain, where a soft threshold is employed,

before being transformed back to the spatial domain. The sparse representation (N channels)
resulting from a sparse transformation % and soft threshold sof7,, and the spatial domain
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output (one channel), both from the last phase in the ISTA-Net, serve respectively as the
inputs of ConvLSTM2D and a three-layer 1D CNN. While such a process is in 2D, we used
a 3D version of ISTA-Net in the actual implementation as it is more convenient to perform
end-to-end training. This 3D network processes the video frame-by-frame in the same way
as a 2D network with a kernel size of 1x3x3, where the degree in the temporal dimension
is 1. In ConvLSTM2D, we use 2D convolutional layers to replace the fully connected
layers typically used together with LSTM to reduce redundant connections and guide the
optimization to capture the local information in the spatiotemporal data. This dramatically
reduces the learnable parameters and simplifies the training. We use “tanh” and “sigmoid”
activations for nonlinearity. Depending on the density of the neurons, we could set up N
channels to host N individual neurons in the model. Here, we set N=15, accommodating
most imaging settings with up to 15 neurons in a 64x64 pixel image. ConvLSTM2D
generates features for attention maps of individual neurons at the corresponding channels in
each frame. The features of each channel are then sent to a Cascade Feature Fusion (CFF)
layer*2, which is a scene parsing network using a pyramid pooling module and spatially
dilated convolution. Here, the CFF layer predicts an attention map for each time frame and
perceptually processes the time-series attention maps into a multi-channel ROI projection,
with each channel containing the segmentation result of an ROI. The CFF layer further
utilizes a morphological operation, called opening®?, to remove the small discrete area

that are separated from the main ROI, and to obtain the final segmentation results. Using
the time-series attention maps, and the multi-channel ROI projections, we could generate
the time-series attention maps for each ROI channel. If the number of neurons found is
smaller than the total channel number, the remaining channels are left empty. The overlap
integral between the time-series attention maps for each ROI and the spatial domain video
from ISTA-Net produces the activity traces for individual neurons. Finally, we use a 1D
three-layer CNN, with “relu” activations after each of the first two layers, to demix neuronal
activity traces from residual contamination in the FOV. The convolution is conducted in the

time domain.

To accommodate videos with different pixel resolutions and counts, we first scale the

video so its spatial resolution falls in 0.8~1.5 um/pixel, and thus most neurons have a cell
body of 10~20 pixels in diameter. We then tile the entire video into different sub-stacks

in both the spatial and temporal directions, each being 64x64 pixels and 400 frames.

Zero padding will be applied if the sub-stacks have fewer than 64x64 pixels and 400
frames. Spatial overlap occurs between neighboring sub-stacks. Each sub-stack is processed
by DeepCalmX, yielding ROI segmentation and activity traces. The results from all 3D
sub-stacks are then merged together. During merging, neurons in the overlapping regions

of neighboring sub-stacks are matched if their activity traces have a Pearson correlation
above 0.95. Each matched neuron pair is merged into a single neuron, with combined spatial
footprints and weighted sum of temporal activity traces, where the weight is based on the
area of individual segmentations and the union. Neurons detected in different time slots with
an IoU above 0.9 for their spatial footprints are considered the same neuron, with combined
footprints and concatenated activity traces. If a neuron is not detected in a time slot for the
entire 400 frames, its activity trace is set to O for that particular time slot. The results of the
entire video can be obtained after this spatial merging and temporal concatenation process.
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In the training dataset, we separated each original 488(pixel)x488(pixel)x400(frame) video
into 81 64x64x400 3D sub-stacks with 11 pixels overlap in each spatial dimension. We

trained DeepCalmX for 20 hours with a batch size of 2 and a learning rate of 1 x 1074,

In the simulated dataset used for testing, each video has a size of 488 (pixel) x 488 (pixel) x
1,000 (frame). We temporally tiled the video into three time slots, each having 400 frames.
The temporal overlap is 0 frames, and the last 200 frames of the last time slot are set to be
0. For each time slot, we performed spatial tiling with the same tiling setting as those in the
training dataset.

In the ABO experimental dataset used for testing, each video has a size of 488(pixel)
x488(pixel)x5000(frame). We temporally tiled the video into 13 timeslots, each having 400
frames, and kept the spatial tiling setting the same as those in the training dataset. In total,
1053 sub-videos were created for each dataset.

In the Diesel2p mesoscopic recordings used for testing, the sample has a FOV of 3x3 mm?
and a size of 2048(pixel)x2048(pixel)x1500 (frame), which is a subset of a 3x5 mm? FOV
data. We spatially tiled the dataset into 43x43 tiles (with 16 pixels overlap between tiles).
Temporally, we tiled the video into 4 timeslots, each having 400 frames. In total, 7396
sub-videos were created.

Loss function of DeepCalmX.

The loss function of DeepCalmX is the weighted sum of three parts: (1) the loss function
of ISTA-Net, (2) the dice coefficient’ of ROI prediction, and (3) the Pearson correlation
between the extraction results of all traces and the ground truth. Mathematically, the loss

?)

function is written as:

Lossl = ”x(P) —x||z+7/

zf |71 000 -

(€]

2|SegPred n segGT|

Pred| + |segGT|

Loss2 =1 -
|seg

(@)

P T P T
3 tracel“trace{™ — Y tracel Y tracef

Loss3=1-— 5 5 > 5
\/Zf(tracei”red) — (X trace™) \/Z[(trace,ur) — (X tracel™)

3

Loss = Loss1 + A Loss2 + A,Loss3

Nat Mach Intell. Author manuscript.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Zhang et al. Page 13

where x(P) represents the reconstructed spatiotemporal recording after the ph phase of the
ISTA-Net, x represents the background-free and noise-free ground truth, & is the learnable
sparse transformation supported by ISTA-blocks, F ~1is the learnable backward transform
from sparse representation to the original spatial domain, k is the phase index of the
ISTA-block, P is the number of the ISTA-block phase, and y is a weight of 0.1 in the loss
function of ISTA-Net. seg"®d and segST represent the predicted segmentation result and
the corresponding ground truth, respectively. traceP™d and traceST represent the predicted
activity trace and the corresponding ground truth, respectively i in Loss3 means the i-th
entry of the traces. 4, and 4, are the relative weights of the loss function (2) and (3) versus
(1). 4, and 4, are both set to be 10 (see further discussion in “Training, setting and modifying
DeepCalmX”).

Evaluation metrics of ROl segmentation and temporal activity trace extraction.
We evaluated all segmentation methods by comparing their results with ground truth labels.

The metrics of evaluation are recall, precision and F1 score, which are defined as follows:

NTP

B
detected

Precision =

Nrp
Recall = s
Ner

2

Fl1 = T
Precision=! + Recall™

where Ny, is the number of true positive (TP) predictions, N, is the number of ground truth
(GT) ROIs, and N s 1s the number of neurons detected by the method. To determine if a
predicted neuron belongs to the ground truth, we use the IoU metric:

|segGTn SegPred|

IoU(GT, Prediction) = m~

If the ToU value is greater than 0.5, we regard the prediction of the neuron to be accurate.
If there is more than one neuron whose IoU is greater than 0.5 for a specific ground truth
neuron, we will select the one with higher IoU and count that as the true positive.

The evaluation of extracted traces is based on Pearson correlation:

Pred. GT Pred GT
Pred 17000T Y trace “‘trace;’ — Y trace; "y trace;
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where i is the i-th trace entry.
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Training, setting and modifying DeepCalmX.

Training DeepCalmX involves two steps: dataset tiling and neural network training. Each
raw calcium imaging recording is first tiled into sub-videos both spatially and temporally
based on the video size that DeepCalmX is designed for while considering the spatial and
temporal overlap for each sub-video. In this paper, the input video size for DeepCalmX

is 64x64x400, smaller than the simulated raw video (488x488x400). With 11-pixel spatial
overlap along each dimension, 81 tiles with 64x64 pixels are generated. The total epochs
and batch size for training DeepCalmX can be adjusted based on available resources.

Hyper-parameters in the loss function could extensively influence the performance of
DeepCalmX. The weights 4, and 4, control the contribution of ROI detection and trace
extraction respectively to the overall loss function. We make the values of each of

these losses match the loss of ISTA-Net when the optimization is stable, ensuring equal
contribution to the multi-task optimization (Supplementary Fig. 15). In this paper, both 4,
and 4, are set to be 10, as the loss of ISTA-Net converges to a range of 7~13. For different
types of datasets, the settings of 4, and 4, may be different. For datasets with high noise, we
can increase the relative contribution of the denoising module (i.e. ISTA-Net) by decreasing
4 and 4, accordingly. For applications requiring very precise ROI predictions, we could

increase the weight of the ROI detection loss (i.e. 4,).

Besides the weights, users can add constraints to the loss function to customize DeepCalmX
for specific applications. For example, an ROI area constraint can be added to Loss2 when
the requirements of ROI area is critical. Additionally, L1-norm regularization can be used to

enforce sparsity of extracted traces.

General, SBR-specific or SNR-specific DeepCalmX models.

Calcium imaging data varies in SBR and SNR. The signal relates to the brightness and
expression level of calcium indicators, and the change in fluorescence due to action
potentials. The background relates to the neuropil intensity, influenced by the fluorescence
labeling density, imaging depth and animal preparation procedures. The noise can include
shot noise (Poisson noise), amplification noise and read noise, and can be modeled as a
mixture of Poisson and Gaussian noise. From the raw recordings, we defined the signal

as the peak value of each temporal trace, the background as the average neuropil intensity
(obtained by lowpass filtering the raw experimental recordings temporally), and the noise

as the standard deviation of the difference between the raw signal and the noise-free ground-
truth (obtained by applying a 2D bilateral filter to the raw experimental recordings spatially).
For each data sample, the SBRs and SNRs for individual neuron are first calculated, and
their values are then averaged to represent the SBR and SNR of the entire dataset.

By adjusting neuropil background or noise level, we can create simulated datasets with
different SBRs and SNRs. DeepCalmX models specific to SBR or SNR are trained using
corresponding datasets. The general model is trained using datasets across a broad SBR and
SNR range.
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To choose the appropriate DeepCalmX model, users could first estimate the SBRs or SNRs
of neurons in the FOV, generate a histogram and determine the average SBRs and SNRs.
The suitable model can be chosen based on these values. As a reference for SBR-specific
models, users can compare the SBR histogram with models in Supplementary Fig. 12, and
select the most similar one. If the SBR variations are large, the general model may be
preferred.

Hardware and processing speed calculation.

The processing for all methods in this paper was done on a workstation with an Inter(R)
Xeon(R) E5-2667 v3 @ 3.20GHz CPU and a NVIDIA Quadro RTX 8000 48 GB GPU.
We included only the runtime calculation of the algorithm without data loading and writing
when creating the processing speed profile for each method.

Methods used for comparison against DeepCalmX.

Nine methods are used to benchmark the performance of DeepCalmX: DeepWonder2?,
STNeuroNet20, SUNS?Z7, CITE-On?8, CalmAn?*, Suiteszo, and three methods combining
DeepCAD?0, FISSAZ3 and CalmAn2*. All training-required methods were trained for 20
hours with 488x488 pixel FOVs. Hyper-parameters of each method were tuned to fit each
dataset’s properties, including pixel size, frame rate, and calcium indicator type. Below, we
describe each method’s mechanisms and parameters.

DeepWonder?? cascades two independently trained 3D CNNs, RB-Net and NS-Net, to
perform noise and background subtraction and segmentation respectively. We used the code
found at https://github.com/yuanlong-o/Deep_widefield_cal_inferece. The input and ground
truth for RB-Net are the raw recordings and the denoised, background-removed videos,
respectively. The input and ground truth for NS-Net are the output of RB-Net and the ROI
segmentation targets, respectively. Other parameters were set according to the properties of
our training and testing datasets (i.e. pixel size, frame rate, calcium indicator).

STNeuroNetZ® applies a 3D CNN with preprocessing and postprocessing to segment

the calcium imaging data. We used the code found at https://github.com/soltanianzadeh/
STNeuroNet. In the preprocessing stage, we set the size of the gaussian kernel filter to be 20
pixels, and the rise and decay time of the neuronal activity based on the calcium indicator.
In the postprocessing stage, we set the minimum area of ROIs of 100 pixels and probability
threshold of 0.9. The block size for training is 488x488x100.

SUNS?27 operates fast by using a shallow U-Net but requires hyper-parameter tuning in pre-
and post-processing. We used the code found at https://github.com/YijunBao/Shallow-UNet-
Neuron-Segmentation_SUNS. We set the SNR threshold to be 3, the minimum ROI area to
be 100 pixels, probability threshold to be 0.7 and threshold for maximum center of mass
(COM) distance to be 4 um. The bandwidth of the low pass filter in the preprocessing stage
was tuned independently to remove the noise and background for every video.

CITE-On?® supports very fast and accurate segmentation based on 2D projections of calcium
imaging recordings. We used the code at https://gitlab.iit.it/fellin-public/cite-on. We set the
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upscaling factor to be 2, tiles per side as 10 with an overlap between tiles of 20%, and a
batch size of 16 in the extractor. The other settings followed the properties of our dataset.

CalmAn?* applies a constrained non-negative matrix factorization (CNMF) algorithm?!

to detect ROIs and extract their temporal activity traces. In CNMF?2!, the recording is
factorized into the product of two matrices which are related to the spatial footprints and
temporal traces of each neuronal ROI and the background components. Regularization is
used to promote sparsity of the two matrices. The weights of the regularization term control
the degree of sparsity and edge sharpness of each ROI’s spatial contour. A CNN classifier
filters out ROIs that are less likely to be neurons. We used the CalmAn batch method from
the code found at https://github.com/flatironinstitute/CalmAn. Each patch has 64x64 pixels
with 11 pixels of overlap between patches. We set the number of components per patch to
20, the spatial correlation threshold to ~0.8, the minimum SNR to ~4, and the upper and
lower threshold for the CNN classifier to 0.8~0.9 and 0.1~0.3 respectively, which varied
between test samples. Other settings were tuned to fit the properties of our dataset similarly
to previous methods. An optional preprocessing step to subtract the global background of
the data before CalmAn may enhance its overall performance. A post-processing step may
be required when the predicted traces exhibit an unexpectedly prolonged decay time in

the calcium transient, which was related to the unsatisfactory background estimate and/or
the imbalance between the spatial matrix and temporal matrix in the matrix factorization
process. To address this, we normalized the individual predicted traces on a timestep-by-
timestep basis by a ratio between the average value of the predicted spatial matrix and

the average value of the denoised and background-suppressed raw recordings within the
matching ROIs.

Suite2p?? is based on a matrix factorization algorithm with fewer constraints than CNMF21,
We used the code found at https://github.com/MouseLand/suite2p. We binarized the real-
valued mask output with a threshold set to 0.3 times the maximum value of the mask to
obtain the ROI contours. We then used the default classifier (with the diameter of neurons
set to be 12.5 pixels) before temporal signal extraction. The same pre-processing step and
post-processing step as the CalmAn described above may be used to enhance its overall

performance.

DeepCAD?? and FISSA23 are two assistive tools for spatial denoising and temporal
demixing with denoising, respectively. DeepCAD uses a self-supervised learning scheme
to perform spatial denoising. FISSA uses NMF to decontaminate the neuropil background
and extract the temporal signals from ROIs with known spatial contours. We combined
these tools with CalmAn to enhance its performance. We used the code found at https://
github.com/cabooster/DeepCAD for DeepCAD, and the code found at https://github.com/
rochefort-lab/fissa for FISSA. In DeepCAD-CalmAn-assisted FISSA, DeepCAD first
denoises the raw data, CalmAn then segments the ROIs, and FISSA extracts each ROI’s
temporal signals. In DeepCAD-assisted CalmAn, DeepCAD first denoises the raw data,
and CalmAn then segments the ROIs and extracts their temporal signals. In CalmAn-based
FISSA, CalmAn first segments the ROIs, and FISSA extracts each ROI’s temporal signals.
The settings in CalmAn were tuned as described previously.
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Extended Data
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Extended Data Fig. 1 |. Model architecture of DeepCalmX.
DeepCalmX is composed of three networks: a 3D ISTA-Net, a ConvLSTM2D (2D

convolutional LSTM) network, and a 1D convolutional layers. The 3D ISTA-Net is used
to suppress the background and suppress the noise of the video stack. This 3D network
processes the video frame-by-frame in a way of a 2D network, as the kernel size is

1 x 3 x 3, where the degree of the temporal dimension is 1. It outputs the denoised

and background-suppressed video in both sparsity domain (with 15 channels) and spatial
domain. The former is fed to the ConvLSTM2D, which outputs the segmentation results
through a cascade feature fusion (CFF) layer, and the attention maps. The latter, together
with the attention maps, were fed to the 1D convolutional layers, which further demix the
temporal signals of the segmented ROIs. The 3D convolutional layers contain a 3x3x1 kernel
with stride of 1x1x1. The 2D convolutional layers contain a 2x2 kernel with the same
stride. The 1D convolutional layers contain a kernel of 3 and the stride of 1. In ISTA-Net,

there is a total of P phases/blocks, with k being the phase/block index. & (k) means the
trainable transformation from the original domain to sparse representation domain, and

_1(k) . . . . .
g1 represents the inverse transformation. soft, is the soft threshold, with 4 being the

threshold set to be 0.01.
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Extended Data Fig. 2 |. Raw recordings, denoised and background-suppressed video, sparse
representation, attention maps and extracted activity traces of represented neurons of a
simulated sample.

al-4, Raw recordings at the frame 136, 172, 186, and 295. Inset shows the exemplary
segmented neurons. b1-4, Denoised and background-suppressed results at the frame 136,
172, 186, and 295. c1-4, Sparse representation results created by ISTA-Net at the frame 136,
172, 186, and 295; d1-4, Attention map results created by ConvLSTM2D (2D convolutional
LSTM) at the frame 136, 172, 186, and 295. el-4, Extracted traces for the exemplary
segmented neurons with cursors at the frame 136, 172, 186, and 295. For an individual
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neuron, we used the same color to outline the boundary of its footprint in the different
frames and extracted traces. This simulated dataset is the same as that in Fig. 2 in the main

manuscript.

Frame: 535 a2 Frame: 913 a3 Frame: 1646
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Extended Data Fig. 3 |. Raw recordings, denoised and background-suppressed video, sparse
representation, attention maps, and extracted activity traces of represented neurons of the
experimental sample (ABO 524691284).

al-4, Raw recordings at the frame 535, 913, 1646 and 1739. Inset shows the exemplary
segmented neurons. b1-4, Denoised and background-suppressed results at the frame 535,
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913, 1646 and 1739. c1-4, Sparse representation results created by ISTA-Net at the frame
535,913, 1646 and 1739; d1-4, Attention map results created by ConvLSTM2D (2D
convolutional LSTM) at the frame 535, 913, 1646 and 1739. el-4, Extracted traces for

the exemplary segmented neurons with cursors at the frame 535, 913, 1646 and 1739. For
an individual neuron, we used the same color to outline the boundary of its footprint in the
different frames and extracted traces. This simulated dataset is the same as that in Fig. 3 in

the main manuscript.

Extended Data Fig. 4 |. Performance of DeepCalmX in detecting neuronal body with different
sizes.

When DeepCalmX is trained with a dataset where most of the neuronal body has diameters
of 10-20 pixels, it could reliably and accurately detect neurons with a diameter of 8§~20
pixels. The predicted segmentation tends to have a larger or smaller boundary than the
ground truth when the neuron diameter is <10 pixels or > 20 pixels respectively. a-d shows
the segmentation results (red line) versus the ground truth (gray line) for neurons with 8
different diameters with 7, 8, 10, 12, 16, 20, 24, and 28 pixels with the same activity trace
but in different locations within a field of view.
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Extended Data Fig. 5 |. Performance of DeepCalmX in demixing neurons with spatial overlaps
and temporal correlations.
We varied the centroid separation of two neurons and studied how well DeepCalmX could

distinguish the neurons and demix their activity traces. In al-a6, the centroid separation of
the two neurons is 4, 8, 12, 16, 20, and 24 pixels, and each neuron has a diameter of 20
pixels with the same neural activity. The prediction results and ground truth are in red lines
and gray lines respectively. In b1-b6, c1-c6, d1-d6, el-e6, and f1-f6, all the settings are the
same except that the temporal correlation between the activity of the two neurons is 0.8, 0.6,
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0.4, 0.2, and 0.05 respectively. gl. The maximum Intersection over Union (IoU) of the two
spatially overlapping neurons that DeepCalmX can segment, versus the Pearson correlation
between the ground truth activity traces of the two neurons. g2. The Pearson correlation of
the extracted activity traces of the two spatially overlapping neurons against their ground
truth traces, versus the Pearson correlation between the ground truth activity traces of the
two neurons. Data are presented as mean values +/— standard deviation (error bar). IoU is
defined as the ratio between the ratio of the intersection area of two neurons to the union
region area of two neurons. For g1-g2, we created 50 pairs of neuronal footprints by the
NAOMi algorithm instead of simply using round-shaped simulated neurons for the study.
When the two neurons have high spatial overlap, DeepCalmX may still be able to predict
two separated neurons, though their IoU with the corresponding ground truth could be less
than 0.5, and thus not considered to be a correct segmentation.

Nat Mach Intell. Author manuscript.



1duosnuey Joyiny 1duosnue|y Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Zhang et al. Page 23

OOOanan

— Predlchon = Dendrites

AL T At A Man Jw' k\)&k A , AM lk}\.\)\

bzn n n n n

i ~p 0 SO i AJ)\» N }\Jkk’\/\?\w )\L\AMW AJK}J\U\AM

C 1 T T T T T T
b
0.95F E == .
v o ~ T
=[]
' d ——

c L i T . 4
§ 09
=] . o e
& : .
"t’ i
S ossf —= .
O
[ =
<)
Q =
S  osf i
o

0.75} -

0 L L L 1 ' 1

20% rate 40% rate 60% rate 80% rate 100% rate 120% rate
Peak activity intensity ratio of axons/dendrite to the neuron

Extended Data Fig. 6 |. Segmentation and demixing the soma activities from nearby axons/
dendrites.

al-a6, ROI (soma) detection and temporal traces demixing performance of the neuronal
soma from the axons/dendrites, for different peak activity intensity ratio (20%, 40%,

60%, 80%, 100% and 120%) between the axons/dendrites and neuronal soma. The axons/
dendrites cross the soma in plane. b1-b6, Same as al-a6, but with the axons/dendrites cross
the soma axially. Here, the cross-section of the axons/dendrites locate inside the neuronal
soma to be segmented. ¢, Pearson correlation between the extracted temporal traces of

the soma versus the ground truth trace, for different peak activity intensity ratio between
the axons/dendrites and the neurons based on 20 simulated samples. Box plot: center bars
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(red), medians; box edges, first and third quartiles, respectively; whiskers, minimum and
maximum.

) ROI segmentations
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Extended Data Fig. 7 |. Data processing pipeline.
The calcium recording is first tiled into sub-stack of videos with smaller size in space (X,

y) and time (t). Each sub-stack of videos is fed to DeepCalmX for spatial segmentation

and temporal trace extraction. The results are then stitched together in spatial and

temporal dimensions. In our example, the size of experimental raw calcium recording is
488x488x5000 in 3D (x, y, t). This is tiled into 9x9x13 sub-stacks where each sub-stack is
in a size of 64x64x400 with an overlapping of 11 pixels in each lateral dimension of the
stack, and no overlapping in temporal dimension. In the merging process, for every pair

of spatially neighboring sub-stacks in the same time slot, we first match the neurons that

are found in both sub-stacks in their overlapping regions if the Pearson correlation of their
activity traces is larger than a threshold set at 0.95. We then merge each matched neuron
pair into a single neuron whose spatial footprint is set to be the union of the segmentation
results from each sub-stack. We generate their temporal activity traces as the weighted sum
of the individual traces extracted in each sub-stack, where the weight is based on the area of
segmentation results and the union. For any two neurons detected from different time slots,
if the intersection over union (IoU) of their spatial footprints is larger than 0.9, we consider
that they are the same neuron, and we set the footprint of this neuron to be the union of

the segmentation results from each time slot. We then concatenate the activity traces of this
neuron in these sub-stacks. Otherwise, we consider they are different neurons. If a neuron is
not detected in a specific time slot for the entire 400 frames, we set its activity trace to be 0
for that particular time slot as the neuron is inactive in that time slot. The results of the entire
video can be obtained after this spatial merging and temporal concatenation process.
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—— Preprocessed traces
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Extended Data Fig. 8 |. Validation of the ground truth temporal traces generation.
We use the process described in Methods to generate the temporal activity traces as proxies

of ground truth in the experiment dataset. Here we validated this process in simulation
datasets. a, The correlation image of a simulated sample. The correlation image is the
averaged temporal correlation between pixels and their four immediate neighbors. The
boundary of each ROI is annotated with gray contour lines. b, Zoom-in region of the red
box region in a and comparison between the simulated ground truth temporal traces (gray)
and the extracted proxies (red). The Pearson correlation between the simulated ground truth
temporal traces and the extracted proxies is 0.973+0.018 (meanzstd, n= 18 videos).
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Extended Data Fig. 9 |. ROIs detection and activity traces extraction of Diesel2p mesoscopic
two-photon imaging recordings.
a, maximum intensity projection of a recording with a dimension of 3x3 mm? and a total

pixel count of 2048x2048, which is a subset of the imaging data of a 3x5 mm? field of
view recorded from Diesel2p, combining the sample of 3a_ChO1 and 3a_ChO02 [Ref. 9 Yu,
CH,, Stirman, J.N., Yu, Y. et al. Diesel2p mesoscope with dual independent scan engines
for flexible capture of dynamics in distributed neural circuitry. Nat Communications 12,
6639 (2021).]. b1, The maximum intensity projection of the 15! zoom-in view in (a), with
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predicted ROIs overlaid. c1, The maximum intensity projection of the 2"d zoom-in view in
(a), with predicted ROIs overlaid. b2, Extracted temporal activity traces from 10 randomly
selected ROIs in the 15 zoom-in view in (a). ¢2, Extracted temporal activity traces from 10
randomly selected ROIs in the 21 z00m-in view in (a).
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Extended Data Fig. 10 |. Pearson-correlation performance of 10 ABO experimental samples via
general model vs. SBR-specific models of DeepCalmX.

a-e, correspond to samples recorded in depths of 175 um, 275 pm, 375 um, 550 um, and
625 um respectively. For each individual segmented neuron in each model, we calculated
the Pearson-correlation between the extracted temporal activity traces versus the reference
ground truth traces. Each individual segmented neuron is plotted as a point in each plot,
with the color indicating the signal-to-background ratio (SBR). The neurons found by the
SBR-specific models but not the general model are assigned a Pearson correlation value of
0 for the general model. The neurons found by the general model but not the SBR-specific
models are assigned a Pearson correlation value of 0 for the SBR-specific models.
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Data availability

The ABO dataset (experimental dataset) can be found in

https://github.com/AllenInstitute/ AllenSDK/wiki/Use-the-Allen-Brain-Observatory-
%E2%80%93-Visual-Coding-on-AWS.

The dataset used in the simulation and training could be found in https://zenodo.org/records/
1265042031,
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Fig. 1 |. Architecture of DeepCalmX.
DeepCalmX is composed of three modules: ISTA-net, ConvLSTM2D and 1D Convolutional

Layers. The raw calcium imaging recording (i) is fed to ISTA-Net, which denoises and

(iii)
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removes the background of the recording and transforms it from the spatial domain to a

sparse representation. Using the recording in the sparse representation (ii), ConvLSTM2D

analyzes the calcium dynamics, and generates an attention probability map for each ROI

at each frame as well as the overall ROI segmentation results (iv). The 1D Convolutional

Layers then use the attention maps to extract the activity traces of each ROI (v) in the

denoised and background-suppressed recording in the spatial domain (iii) output from ISTA-

Net.

Nat Mach Intell. Author manuscript.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Zhang et al. Page 32

a DeepCalmX DeepWonder

STNeuroNet CITE-ON

>

4 S

DeepCAD-assisted
CalmAn

a DeepCAD-CalmAn-
assisted FISSA

c1
2
o
&
B R}
B A SRS S
R o o T
o g < PUPC
P g
RGO g
o 0% s
o
1 350
d e QO DecpCalmX X DeepCAD-CalmAn-assisted FISSA f
105} + DepWds & DerCAD swiedCalmin 0
SN CalmArasiscdFISSA 2,
H o e G )
cmEoN  #suaw €20
°
095 3
s / q’%). 200
k] v 09 o
e § il 4 )
8 = 085 ﬁ E ?
< ¥ . 2 10
£ 08 ”1’" 8
& 5 & s
078 fﬁ &
- e 0
d £ & g e 0N sttt
o LT s ™ o8 e
s A s " 8
07 o 08 oss 0 oo 1 R L o

Pearson Correlation

Fig. 2 |. DeepCalmX outperforms other existing methods in neuronal segmentation and trace
demixing on simulated data.

a, Segmentations of a simulated sample for DeepCalmX, DeepWonder, SUNS,
STNeuroNet, CITE-On, DeepCAD-CalmAn-assisted FISSA, DeepCAD-assisted CalmAn,
CalmAn-assisted FISSA, CalmAn, and Suite2p, overlaid on top of the time-series maximum
intensity projection of the video. The gray outlines denote the ground truth boundaries

of neurons. The color outlines denote the segmentation results of the used method. The
yellow and green arrows indicate the false positive and false negative segmented neurons
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respectively. b, Spatial footprints and temporal activity traces of exemplary neurons from the
boxed regions in a. ¢1-¢3, Recall, precision, and F1 scores of DeepCalmX, DeepWonder,
SUNS, STNeuroNet, CITE-On, DeepCAD-CalmAn-assisted FISSA, DeepCAD-assisted
CalmAn, CalmAn-assisted FISSA, CalmAn, and Suite2p, for 18 simulated samples,
covering all 6 types of calcium indicators (GCaMP6s, 6f and jGCaMP7b, 7c, 7s, 7f). Each
sample has a size of 488 (pixels) x 488 (pixels) x 1000 (frames). d, Pearson-correlation

of extracted activity traces with ground truth traces of common ROIs detected by all
methods, for 18 simulated samples. e, F1 scores vs Pearson-correlation between extracted
activity traces and ground truth traces of common ROIs detected by all the methods, for

18 simulated samples. f, Processing speed of different methods. Each frame has 488x488
pixels. Box plot: center bars (red), medians; box edges, first and third quartiles, respectively;
whiskers, minimum and maximum; +mark, outliner. *, p<0.05; **, p<0.01; ***, p<0.001;
#*kx%k p<0.0001, in one-way, two-sided Analysis of Variance (ANOVA), followed by
Tukey’s Honestly Significant Difference (HSD) test as a post-hoc multiple comparison test.
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Fig. 3 |. DeepCalmX outperforms existing methods in neuron segmentation and trace extraction

on experimental data.
a, Segmentations from an exemplary experimental dataset (ABO 524691284) for

DeepCalmX, DeepWonder, SUNS, STNeuroNet, CITE-On, DeepCAD-CalmAn-assisted
FISSA, DeepCAD-assisted CalmAn, CalmAn-assisted FISSA, CalmAn, and Suite2p,
overlaid on top of the time-series maximum intensity projection of the video. The gray
outlines denote the ground truth boundaries of neurons. The color outlines denote the
segmentation results of the used method. The yellow and green arrows indicate the
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false positive and false negative segmented neurons respectively. b, Spatial footprints and
temporal activity traces of exemplary neurons from the boxed regions in a. cl1-¢3, Recall,
precision, and F1 scores of DeepCalmX, DeepWonder, SUNS, STNeuroNet, CITE-On,
DeepCAD-CalmAn-assisted FISSA, DeepCAD-assisted CalmAn, CalmAn-assisted FISSA,
CalmAn, and Suite2p, for 10 samples over the imaging depth of 175 um, 275 pm, 375 pm,
550 um and 625 pm. Each sample has a size of 488 (pixels) x 488 (pixels) x 5000 (frames).
d, Pearson-correlation of extracted activity traces with ground truth traces of common
ROIs detected by all the methods, for 10 samples. e, F1 scores vs Pearson-correlation
between extracted activity traces and ground truth traces of common ROIs detected by all
the methods, for 10 samples. f, Processing speed of different methods. Each frame has
488x488 pixels. Box plot: center bars (red), medians; box edges, first and third quartiles,
respectively; whiskers, minimum and maximum; +mark, outliner. *, p<0.05; **, p<0.01;
*#k% p<0.001; **** p<0.0001, in one-way, two-sided Analysis of Variance (ANOVA),
followed by Tukey’s Honestly Significant Difference (HSD) test as a post-hoc multiple
comparison test.
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Fig. 4 |. Performance of DeepCalmX on ROI detection and activity trace extraction across

different SBRs and SNRs.

al-a2, F1 score (al) of the segmentation results in simulated and experimental datasets

with different levels of SBR. Pearson correlation (a2) between extracted activity traces

and ground truth traces of ROIs detected in simulated and experimental datasets with
different levels of SBR. b1-b2, F1 score (b1) of the segmentation results in simulated
and experimental datasets with different levels of SNR. Pearson correlation (b2) between

extracted activity traces and ground truth traces of ROIs detected in simulated and
experimental datasets with different levels of SNR. For ABO dataset at image depths of
175 pum, 275 pm, 375 pm, 550 pm and 625 pm, the SBRs are respectively 2.82, 2.54, 2.23,
1.94 and 1.61, and the SNRs are respectively 11.82, 10.09, 9.08, 7.54 and 4.77.
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