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Abstract—This paper presents a pixel-level predictive sampling method for image sensing and processing to reduce the

computing overhead for power-limited image sensing systems. The predictive sampling method scans through rows and

columns to identify the location and value of the critical pixels, which are the turning points in the row and column arrays.

The prediction is performed using the value of prior pixels and a pre-defined error threshold. When the prediction is

successful, the pixel is marked as a non-critical pixel and is skipped for recording and processing. Only the critical pixels

are selected for further processing. We proposed reconstruction methods that recover the raw image from the selected

critical pixels using interpolation. The experimental results show that the proposed method can reduce the data throughput

by 72% with an error of 1.6% for sparse images. The convolutional neural network model applied with this method can

achieve a similar detection accuracy in a standard method while only using 27.1% of data size.

Index Terms—Predictive Sampling, Image Sensing, Image Processing, Machine Learning.

I. INTRODUCTION

One of the primary challenges for image sensing and processing

comes from the large size of the raw data from image sensors

[1]. A high-resolution image sensor produces a large amount of

image data, increasing the processing units’ computing overhead.

The high computing overhead is also linked to the high power

consumption of the device. The recent efforts to alleviate this

problem can be categorized into hardware methods and software

methods. The hardware of image sensing and processing contains

pixel circuits, analog-to-digital converters (ADC), and the image

signal processor (ISP). Most of the power in an image sensor is

consumed by the column-parallel ADCs and digital circuits [2].

Various methods have been proposed to reduce the ADC power such

as reducing supply voltage [3], using multi-stage ADCs [4], and

applying data compression [5]. However, reducing supply voltage

may affect the dynamic range of the sensor. Although Multi-stage

ADCs can reduce the power consumption of the image sensor,

they still suffer from large data throughput which requires high

computing overhead. Data compression needs additional circuits

for image compression and reconstruction. On the software side,

specialized embedded machine-learning models have been applied

to reduce model size for limited hardware resources. For example,

[6] proposed a hardware-friendly user-specific machine learning

algorithm for edge devices that leverage transfer learning. Standard

embedded machine learning solutions have been proposed, such as

Tiny Machine Learning (TinyML) [7], [8]. However, these methods

do not solve the high computing overhead problem since the image

sensor still generates much redundant data for the model.

In this paper, we applied a predictive sampling method for image

sensing and processing, which reduces the data throughput and
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computing overhead for low-power applications. The predictive

sampling method was recently proposed for time domain signal

sensing and processing systems [9], [10]. It uses the digital value

of prior samplings to predict values of the incoming data and only

performs digitization when the prediction fails. One advantage of

this method is that it can save power consumption by avoiding

unnecessary comparison in quantization if the prediction is correct

so that the data conversion can be skipped. A more important

advantage is that it greatly reduces the output digital data throughput,

which can save computing overhead and power consumption of the

following digital processing unit. Unlike a more established solution

such as compressed sensing [15], dynamic sampling approaches the

problem in the pre-processing phase to reduce the data throughput.

Compared to other sampling methods such as the adaptive sparse

image sampling [16], our sampling method allows for more effective

real-time implementation on edge devices.

When applying the predictive sampling method in image sensing

and processing, the proposed system scans the entire image and uses

the digital value of the neighboring pixels to predict the current pixel

value. The scan includes both horizontal row pixel scan and vertical

column pixel scan. The goal of these scans is to identify the location

and digital values of the pixels that are turning points in each row

and column. These pixels are the critical pixels in the image while

other pixels may be removed without introducing large distortion of

the original image. By doing so the whole image can be compressed

to save data throughput. Moreover, the critical pixel locations and

values can be directly processed using a low-computing overhead

image processing algorithm to save power and memory. While this

method can be implemented at the pixel level using a similar method

of prediction ADC architecture [2], in this paper, we perform analysis

using an existing full digital image to evaluate the performance of

the proposed method.

II. SYSTEM DESIGN
A. Predictive Sensing in Image Sensing

The one-dimensional dynamic predictive sampling method can be
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Fig. 1: Predictive sampling method identifies turning points in every

row and column. Column 2 and Row 14 are shown as examples. The

turning points are selected using the predicted slope of the row or

column and two predefined thresholds. The selected pixel is marked

in white and the values are recorded. Other pixel values are removed.

implemented in two-dimensional image sensing and processing by

considering each row or column as a one-dimensional signal. The

overall goal is to locate and record the turning points in each row

and column, and then represent each row and column using these

points as piece-wise linear wave. If the image is sparse, most of

the pixel values are not necessary to be sampled or quantized. only

the locations and values of critical pixels need to be recorded. This

saves much digital storage space and signal processing overhead,

depending on the sparsity of the incoming images. The accuracy of

the processing outcome depends on the specific application, which

can be adjusted by the error tolerance threshold. Moreover, since

the sampling points can represent the information of the image, a

low-overhead computing model can use only these sampling points

to perform image processing, such as classification.

For example, a grayscale image can be represented by a three-

dimensional shape with the - and . directions referring to the pixel

locations and the / direction for the amplitude value of the pixel.

The ranges of the - and . directions limit the size of the image

while the range of the / direction represents the amplitude. To

apply the dynamic predictive sampling method in image sensing,

we divide the image into a series of pixel rows and columns. Each

row and column is then a vector of pixel amplitude. After applying

the dynamic predictive sampling method to each vector, the pixels

that represent the amplitude turning points are selected. This can

also be done during the sensing phase using prediction-based ADC

architecture [2]. The collection of the values of these pixels (- , . ,

and /) is then recorded to represent the image.

Fig. 1 shows an example of the above-mentioned process. The

prediction starts at the edge pixels, two consecutive pixels are applied

to form a prediction. An error threshold �4;C0 is applied to the process

so that a small variation of the amplitude is ignored. If a higher

accuracy of the image is required during reconstruction, a smaller

�4;C0 value should be applied. For example, a zero �4;C0 keeps

all the pixel values. A pixel is marked as a turning point if its

value is outside the window formed by the prediction value and the

error threshold. In the example image, some pixels are identified

as horizontal turning points while some other pixels are identified

as vertical turning points. The combination of these two groups is

selected as the collection of turning points, which are marked white.

The proposed method is different from conventional edge detection

since the error threshold is applied to the slope of the prediction

instead of the absolute amplitude.

Algorithm 1 Predictive Image Sampling Algorithm

Load image into matrix �

Initialize matrices � and + with zeros and of the same size as �

Set threshold X to given value

{Process for horizontal pixel selection}

for each row 9 in image � do

Initialize prediction array % of zeros, length equal to number of

columns in �

Set %[1] and %[2] to the values of the first two pixels in row 9

for each column 8 from 3 to end in row 9 do

Predict %[8] = 2 × %[8 − 1] − %[8 − 2]

Define *)A4Bℎ = %[8] + X and !)A4Bℎ = %[8] − X

if �[ 9 , 8] < !)A4Bℎ or �[ 9 , 8] > *)A4Bℎ then

Mark � [ 9 , 8] = 1

Update %[8−1] and %[8] to the latest values based on �[ 9 , 8−1]

and �[ 9 , 8]

end if

end for

end for

{Similar Process for vertical pixel selection}

for each row 9 in image � do

Initialize prediction array % of zeros, length equal to number of

columns in �

Set %[1] and %[2] to the values of the first two pixels in row 9

for each column 8 from 3 to end in row 9 do

Predict %[8] = 2 × %[8 − 1] − %[8 − 2]

Define *)A4Bℎ = %[8] + X and !)A4Bℎ = %[8] − X

if �[ 9 , 8] < !)A4Bℎ or �[ 9 , 8] > *)A4Bℎ then

Mark + [ 9 , 8] = 1

Update %[8−1] and %[8] to the latest values based on �[ 9 , 8−1]

and �[ 9 , 8]

end if

end for

end for

Combine matrices � and + to get matrix )

B. Image Reconstruction
Depending on the application specification and the sparsity of the

image, the value of pixels that are not edge or turning points may not

be necessary to be stored. While this saves the size of the image file, it

is necessary to reconstruct the image using the values of the selected

pixels. This can be achieved in two-dimensional (2-D) interpolation, in

which the image is reconstructed by neighboring key sampling pixels

and forms triangle meshes. The algorithm performs interpolation of

scattered data points onto a regular grid and fills the missing data.

Depending on the interpolation method, the algorithm creates a series

of triangular or sinusoidal meshes that approximate the original image.

Fig 2 illustrates the example sampling and reconstruction result of

the “Camera Man” image. Fig. 2 (a) to (b) display the key sampling

points identified using horizontal and vertical predictive sampling

and (c) shows the combined full sample. Fig. 2 (d) shows that with
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(a) Horizontal Key Pixels of

"Camera Man"

(b) Vertical Key Pixels of

"Camera Man"

(c) Combined Key Pixels of

"Camera Man"

(d) Reconstruction Image of

"Camera Man"

Fig. 2: Predictive Sampling of the example image "Camera Man"

and reconstructed image with the same error threshold.

the collection of the key sampling points, 2-D reconstruction provides

a good reconstruction quality.

The error threshold �4;C0 determines the trade-off between the

data throughput and the quality of reconstructed image. Figure 3

compares the selected pixels (top row), reconstructed image (middle

row), and difference between the original image and the reconstructed

image (bottom row) of four �4;C0 values. From the left to the right of

Fig. 3, the �4;C0 values are “128", “64", “32", and “16", respectively.

The original image is a gray-scale “Camera Man" image with a 8-

bit resolution. The value of the pixels are between 0 and 255. As

shown in Fig. 3, a higher �4;C0 value results in a lower quality

of reconstructed image. The quality of the reconstructed images are

quantitatively evaluated using structural similarity index measure

(SSIM) values. SSIM is an image quality computation method and

metric-based, which assesses reconstruction quality based on the

luminance, contrast, and structure of image objects [14], making it

much more akin to the human perception and evaluation of image

quality. A higher SSIM indicates more similarity between the original

image and the reconstructed image. From the left to the right of

Fig. 3, the SSIM values are 0.7754, 0.8624, 0.9236, and 0.9560,

respectively. The acceptable SSIM of images depends on specific

applications.

III. IMAGE PROCESSING EVALUATION RESULTS
A. Datasets and Machine Learning Models

As predictive sampling produces a less data-intensive copy of

images containing only the essential pixels within the original, it is

possible to perform image processing only using these samples to

save computing overhead. To validate this idea, we trained multiple

image classification convolutional neural network (CNN) models

using datasets of sampled “dog” and “cat” images, a typical image

classification problem for model performance assessment. In our

testing, We trained three models of varying complexity levels on three

different “cat vs dog” datasets, in total nine model for comparison.

The datasets selected for the training was a modified version of the

Kaggle “Dogs vs. Cats” dataset [11]. The original dataset contains

25,000 images (12,500 “dog" and 12,500 “cat" images). We selected

a subset of images from this dataset with 452 ‘dog" and 452 “cat"

images. The selected images are pre-processed to grayscale images

(a) �4;C0 = 128,

SSIM = 0.7754

(b) �4;C0 = 64,

SSIM = 0.8624

(c) �4;C0 = 32,

SSIM = 0.9236

(d) �4;C0 = 16,

SSIM = 0.9560

Fig. 3: Performance of the proposed method with different error

threshold �4;C0: (Top) Selected Pixels (white) using Predictive

Sampling; (Middle) Reconstructed image; (Bottom) SSIM map of

the reconstructions in contrast with the original image.

Fig. 4: File size of black and white images with given numbers of

selected pixels and their RLC compressed Matlab file equivalent.

with 8-bit resolution for pixel amplitude (0-255). These images are

then processed using predictive sampling with a �4;C0 of 126.

Therefore, we obtained three datasets as colored images, grayscale

images, and predictive sampling images. The files sizes of these

datasets are 31.4 MB, 20.8 MB, and 8.51 MB, respectively.

Three sequential CNN models were trained using each of the

datasets; Small, Medium, and Large CNNs. All of the models were

trained for 20 epochs. The architectural frameworks of these models

are 1) Small and Medium CNNs: The small and Medium CNNs have

similar structures. The only difference between them is the number

of kernels in the convolution layers. The small CNNs have half of

the number of kernels per convolution layer as the Medium CNNs.

They each consist of one input layer, three convolutional layers,

a pooling layer, a flattening layer, and a final dense layer with a

single neuron for binary classification and ‘Sigmoid’ activation. The

models are then compiled with the ‘Adam’ optimizer. 2) Large CNN:

The structure of the large CNN models includes a larger number of

kernels and no zero padding in the convolution layers, as well as

two dense layers prior to the final binary classification. It consists

of one input layer, four convolutional layers, a pooling layer, two

flattening layer, and a final dense layer with a single neuron for

binary classification and ‘Sigmoid’ activation. The model is then

compiled with the ‘Adam’ optimizer.
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B. Classfication Results
The performances of the models are evaluated using the validation

datasets. During the training process, the evaluation metrics for the

validations are ;>BB and 022DA02H. After the training process, the

evaluation metrics are ?A428B8>=, A420;;, and 022DA02H. These results

are shown in Table 1. The models trained on the sample images are

comparable to the gray-scale and color image models in terms of

accuracy and inference. In terms of speed, the models trained on

the sample images generated using the predictive sampling method

had a better inference rate than those of gray-scale and color image

models. In terms of accuracy, the predictive sampling models were

comparable in the case of the large model and better in the gray-

scale and color image models. The main advantage of the predictive

sampling method can be seen in the file size of the dataset for training.

Compared to other implementations of embedded machine learning

for image processing, the proposed predictive sampling method and its

associated models offer a good mix of accuracy and inference speed,

especially in the small sample model. We compared our results to two

other implementations of embedded machine learning as shown in

Table 2. While having a slower performance in speed, the predictive

sampling models have a higher accuracy. The predictive sampling

method has advantages when the input image is sparse. For example,

for a 511 by 511 black and white image, the proposed method can

reduce the model size only when the number of the selected pixels

is under 28, which is about 0.1%, as shown in Figure 4.

Table 1: Comparison of the dataset and model size and respective

accuracy and inference time.
Small

CNN

(21.690 MB)

Medium

CNN

(43.474 MB)

Large

CNN

(174.089 MB)

. Inf. Acc. Inf. Acc. Inf.

Color

Image

(31.4 MB)

96.9%
35.21

(ms)
98.4%

37.5

(ms)
57.8%

49.38

(ms)

Grayscale

Image

(20.8 MB)

98.4%
34.77

(ms)
96.9%

38.67

(ms)
60.9%

48.62

(ms)

Predictive

Sampled Image

(8.51 MB)

96.9%
34.52

(ms)
98.4%

37.23

(ms)
64%

48.21

(ms)

Table 2: Performance Comparison to Similar Solutions in terms of

accuracy and inference time.
Accuracy Inf. Time

SVM Classifier [12] 92.47% 0.28(ms)

EyeLearn

(with SVM) [13]
81.44% 0.16B (FLOPs)

EyeLearn (with

2-Layer MLP) [13]
81.5% 0.16B (FLOPs)

This work: Small CNN

(Predictive Sampling)
96.9% 34.52(ms)

This work: Medium CNN

(Predictive Sampling)
98.4% 37.23(ms)

IV. CONCLUSION

In this work, we presented a predictive sampling method for

selecting key pixels in image sensing and demonstrated the feasibility

of using the key pixels for image classification. The proposed

method reduces the image size while allowing for effective image

reconstruction using only 27.1% of the input data size of the original

image. This reduction in image size allows for the reduction in the file

sizes of image datasets and the faster training of image classification,

which would benefit computer vision implementation of edge devices

without cloud connectivity. We used our sample models alongside

their color and gray-scale equivalents to train image classification

CNNs of different complexity levels to test the validity of the proposed

methods. Our results showed that despite the far smaller dataset file

size, the sample models had comparable accuracy ratings to that of

the color and gray-scale models.
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