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Abstract—This paper presents a pixel-level predictive sampling method for image sensing and processing to reduce the
computing overhead for power-limited image sensing systems. The predictive sampling method scans through rows and
columns to identify the location and value of the critical pixels, which are the turning points in the row and column arrays.
The prediction is performed using the value of prior pixels and a pre-defined error threshold. When the prediction is
successful, the pixel is marked as a non-critical pixel and is skipped for recording and processing. Only the critical pixels
are selected for further processing. We proposed reconstruction methods that recover the raw image from the selected
critical pixels using interpolation. The experimental results show that the proposed method can reduce the data throughput
by 72% with an error of 1.6% for sparse images. The convolutional neural network model applied with this method can
achieve a similar detection accuracy in a standard method while only using 27.1% of data size.

Index Terms—Predictive Sampling, Image Sensing, Image Processing, Machine Learning.

[. INTRODUCTION

One of the primary challenges for image sensing and processing
comes from the large size of the raw data from image sensors
[1]. A high-resolution image sensor produces a large amount of
image data, increasing the processing units’ computing overhead.
The high computing overhead is also linked to the high power
consumption of the device. The recent efforts to alleviate this
problem can be categorized into hardware methods and software
methods. The hardware of image sensing and processing contains
pixel circuits, analog-to-digital converters (ADC), and the image
signal processor (ISP). Most of the power in an image sensor is
consumed by the column-parallel ADCs and digital circuits [2].
Various methods have been proposed to reduce the ADC power such
as reducing supply voltage [3], using multi-stage ADCs [4], and
applying data compression [5]. However, reducing supply voltage
may affect the dynamic range of the sensor. Although Multi-stage
ADCs can reduce the power consumption of the image sensor,
they still suffer from large data throughput which requires high
computing overhead. Data compression needs additional circuits
for image compression and reconstruction. On the software side,
specialized embedded machine-learning models have been applied
to reduce model size for limited hardware resources. For example,
[6] proposed a hardware-friendly user-specific machine learning
algorithm for edge devices that leverage transfer learning. Standard
embedded machine learning solutions have been proposed, such as
Tiny Machine Learning (TinyML) [7], [8]. However, these methods
do not solve the high computing overhead problem since the image
sensor still generates much redundant data for the model.

In this paper, we applied a predictive sampling method for image
sensing and processing, which reduces the data throughput and
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computing overhead for low-power applications. The predictive
sampling method was recently proposed for time domain signal
sensing and processing systems [9], [10]. It uses the digital value
of prior samplings to predict values of the incoming data and only
performs digitization when the prediction fails. One advantage of
this method is that it can save power consumption by avoiding
unnecessary comparison in quantization if the prediction is correct
so that the data conversion can be skipped. A more important
advantage is that it greatly reduces the output digital data throughput,
which can save computing overhead and power consumption of the
following digital processing unit. Unlike a more established solution
such as compressed sensing [15], dynamic sampling approaches the
problem in the pre-processing phase to reduce the data throughput.
Compared to other sampling methods such as the adaptive sparse
image sampling [16], our sampling method allows for more effective
real-time implementation on edge devices.

When applying the predictive sampling method in image sensing
and processing, the proposed system scans the entire image and uses
the digital value of the neighboring pixels to predict the current pixel
value. The scan includes both horizontal row pixel scan and vertical
column pixel scan. The goal of these scans is to identify the location
and digital values of the pixels that are turning points in each row
and column. These pixels are the critical pixels in the image while
other pixels may be removed without introducing large distortion of
the original image. By doing so the whole image can be compressed
to save data throughput. Moreover, the critical pixel locations and
values can be directly processed using a low-computing overhead
image processing algorithm to save power and memory. While this
method can be implemented at the pixel level using a similar method
of prediction ADC architecture [2], in this paper, we perform analysis
using an existing full digital image to evaluate the performance of
the proposed method.

II. SYSTEM DESIGN
A. Predictive Sensing in Image Sensing
The one-dimensional dynamic predictive sampling method can be
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Fig. 1: Predictive sampling method identifies turning points in every
row and column. Column 2 and Row 14 are shown as examples. The
turning points are selected using the predicted slope of the row or
column and two predefined thresholds. The selected pixel is marked
in white and the values are recorded. Other pixel values are removed.
implemented in two-dimensional image sensing and processing by
considering each row or column as a one-dimensional signal. The
overall goal is to locate and record the turning points in each row
and column, and then represent each row and column using these
points as piece-wise linear wave. If the image is sparse, most of
the pixel values are not necessary to be sampled or quantized. only
the locations and values of critical pixels need to be recorded. This
saves much digital storage space and signal processing overhead,
depending on the sparsity of the incoming images. The accuracy of
the processing outcome depends on the specific application, which
can be adjusted by the error tolerance threshold. Moreover, since
the sampling points can represent the information of the image, a
low-overhead computing model can use only these sampling points
to perform image processing, such as classification.

For example, a grayscale image can be represented by a three-
dimensional shape with the X and Y directions referring to the pixel
locations and the Z direction for the amplitude value of the pixel.
The ranges of the X and Y directions limit the size of the image
while the range of the Z direction represents the amplitude. To
apply the dynamic predictive sampling method in image sensing,
we divide the image into a series of pixel rows and columns. Each
row and column is then a vector of pixel amplitude. After applying
the dynamic predictive sampling method to each vector, the pixels
that represent the amplitude turning points are selected. This can
also be done during the sensing phase using prediction-based ADC
architecture [2]. The collection of the values of these pixels (X, Y,
and Z) is then recorded to represent the image.

Fig. 1 shows an example of the above-mentioned process. The
prediction starts at the edge pixels, two consecutive pixels are applied
to form a prediction. An error threshold Delta is applied to the process
so that a small variation of the amplitude is ignored. If a higher
accuracy of the image is required during reconstruction, a smaller
Delta value should be applied. For example, a zero Delta keeps
all the pixel values. A pixel is marked as a turning point if its
value is outside the window formed by the prediction value and the

error threshold. In the example image, some pixels are identified
as horizontal turning points while some other pixels are identified
as vertical turning points. The combination of these two groups is
selected as the collection of turning points, which are marked white.
The proposed method is different from conventional edge detection
since the error threshold is applied to the slope of the prediction
instead of the absolute amplitude.

Algorithm 1 Predictive Image Sampling Algorithm

Load image into matrix A
Initialize matrices H and V with zeros and of the same size as A
Set threshold ¢ to given value
{Process for horizontal pixel selection}
for each row j in image A do
Initialize prediction array P of zeros, length equal to number of
columns in A
Set P[1] and P[2] to the values of the first two pixels in row j
for each column i from 3 to end in row j do
Predict P[i] =2x P[i— 1] = P[i - 2]
Define UTresh = P[i] + 6 and LTresh = P[i] — ¢
if A[j,i] < LTresh or A[j,i] > UTresh then
Mark H[j,i] =1
Update P[i—1] and P|[{] to the latest values basedon A[ j,i—1]
and A[j,i]
end if
end for
end for
{Similar Process for vertical pixel selection}
for each row j in image A do
Initialize prediction array P of zeros, length equal to number of
columns in A
Set P[1] and P[2] to the values of the first two pixels in row j
for each column i from 3 to end in row j do
Predict P[i] =2 %X P[i — 1] — P[i - 2]
Define UTresh = P[i] +6 and LTresh = P[i] — 6
if A[j,i] < LTresh or A[j,i] > UTresh then
Mark V[j,i] =1
Update P[i—1] and P[i] to the latest values basedon A[ j,i—1]
and A[j,i]
end if
end for
end for
Combine matrices H and V to get matrix T

B. Image Reconstruction
Depending on the application specification and the sparsity of the

image, the value of pixels that are not edge or turning points may not
be necessary to be stored. While this saves the size of the image file, it
is necessary to reconstruct the image using the values of the selected
pixels. This can be achieved in two-dimensional (2-D) interpolation, in
which the image is reconstructed by neighboring key sampling pixels
and forms triangle meshes. The algorithm performs interpolation of
scattered data points onto a regular grid and fills the missing data.
Depending on the interpolation method, the algorithm creates a series
of triangular or sinusoidal meshes that approximate the original image.
Fig 2 illustrates the example sampling and reconstruction result of
the “Camera Man” image. Fig. 2 (a) to (b) display the key sampling
points identified using horizontal and vertical predictive sampling
and (c) shows the combined full sample. Fig. 2 (d) shows that with
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Fig. 2: Predictive Sampling of the example image "Camera Man"

and reconstructed image with the same error threshold.
the collection of the key sampling points, 2-D reconstruction provides

a good reconstruction quality.

The error threshold Delta determines the trade-off between the
data throughput and the quality of reconstructed image. Figure 3
compares the selected pixels (top row), reconstructed image (middle
row), and difference between the original image and the reconstructed
image (bottom row) of four Delta values. From the left to the right of
Fig. 3, the Delta values are “128", “64", “32", and “16", respectively.
The original image is a gray-scale “Camera Man" image with a 8-
bit resolution. The value of the pixels are between 0 and 255. As
shown in Fig. 3, a higher Delta value results in a lower quality
of reconstructed image. The quality of the reconstructed images are
quantitatively evaluated using structural similarity index measure
(SSIM) values. SSIM is an image quality computation method and
metric-based, which assesses reconstruction quality based on the
luminance, contrast, and structure of image objects [14], making it
much more akin to the human perception and evaluation of image
quality. A higher SSIM indicates more similarity between the original
image and the reconstructed image. From the left to the right of
Fig. 3, the SSIM values are 0.7754, 0.8624, 0.9236, and 0.9560,
respectively. The acceptable SSIM of images depends on specific
applications.

lll. IMAGE PROCESSING EVALUATION RESULTS
A. Datasets and Machine Learning Models

As predictive sampling produces a less data-intensive copy of
images containing only the essential pixels within the original, it is
possible to perform image processing only using these samples to
save computing overhead. To validate this idea, we trained multiple
image classification convolutional neural network (CNN) models
using datasets of sampled “dog” and “cat” images, a typical image
classification problem for model performance assessment. In our
testing, We trained three models of varying complexity levels on three
different “cat vs dog” datasets, in total nine model for comparison.
The datasets selected for the training was a modified version of the
Kaggle “Dogs vs. Cats” dataset [11]. The original dataset contains
25,000 images (12,500 “dog" and 12,500 “cat" images). We selected
a subset of images from this dataset with 452 ‘dog" and 452 “cat"
images. The selected images are pre-processed to grayscale images

(a) Delta=128, (b) Delta = 64, (c) Delta = 32,(d) Delta = 16,
SSIM = 0.7754 SSIM = 0.8624 SSIM = 0.9236 SSIM = 0.9560

Fig. 3: Performance of the proposed method with different error
threshold Delta: (Top) Selected Pixels (white) using Predictive
Sampling; (Middle) Reconstructed image; (Bottom) SSIM map of
the reconstructions in contrast with the original image.
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Fig. 4: File size of black and white images with given numbers of

selected pixels and their RLC compressed Matlab file equivalent.

with 8-bit resolution for pixel amplitude (0-255). These images are
then processed using predictive sampling with a Delta of 126.
Therefore, we obtained three datasets as colored images, grayscale
images, and predictive sampling images. The files sizes of these
datasets are 31.4 MB, 20.8 MB, and 8.51 MB, respectively.

Three sequential CNN models were trained using each of the
datasets; Small, Medium, and Large CNNs. All of the models were
trained for 20 epochs. The architectural frameworks of these models
are 1) Small and Medium CNNs: The small and Medium CNNs have
similar structures. The only difference between them is the number
of kernels in the convolution layers. The small CNNs have half of
the number of kernels per convolution layer as the Medium CNNs.
They each consist of one input layer, three convolutional layers,
a pooling layer, a flattening layer, and a final dense layer with a
single neuron for binary classification and ‘Sigmoid’ activation. The
models are then compiled with the ‘Adam’ optimizer. 2) Large CNN:
The structure of the large CNN models includes a larger number of
kernels and no zero padding in the convolution layers, as well as
two dense layers prior to the final binary classification. It consists
of one input layer, four convolutional layers, a pooling layer, two
flattening layer, and a final dense layer with a single neuron for
binary classification and ‘Sigmoid’ activation. The model is then
compiled with the ‘Adam’ optimizer.
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B. Classfication Results
The performances of the models are evaluated using the validation

datasets. During the training process, the evaluation metrics for the
validations are /oss and accuracy. After the training process, the
evaluation metrics are precision,recall,and accuracy. These results
are shown in Table 1. The models trained on the sample images are
comparable to the gray-scale and color image models in terms of
accuracy and inference. In terms of speed, the models trained on
the sample images generated using the predictive sampling method
had a better inference rate than those of gray-scale and color image
models. In terms of accuracy, the predictive sampling models were
comparable in the case of the large model and better in the gray-
scale and color image models. The main advantage of the predictive
sampling method can be seen in the file size of the dataset for training.
Compared to other implementations of embedded machine learning
for image processing, the proposed predictive sampling method and its
associated models offer a good mix of accuracy and inference speed,
especially in the small sample model. We compared our results to two
other implementations of embedded machine learning as shown in
Table 2. While having a slower performance in speed, the predictive
sampling models have a higher accuracy. The predictive sampling
method has advantages when the input image is sparse. For example,
for a 511 by 511 black and white image, the proposed method can
reduce the model size only when the number of the selected pixels
is under 2%, which is about 0.1%, as shown in Figure 4.

Table 1: Comparison of the dataset and model size and respective
accuracy and inference time.

Small Medium Large
CNN CNN CNN
(21.690 MB) (43.474 MB) (174.089 MB)
Inf. Acc. Inf. Acc. Inf.
Color
Image 96.9% 35.21 98.4% 375 57.8% 49.38
(31.4 MB) (ms) (ms) (ms)
Grayscale
Image 98.4% s4.77 96.9% 38.67 60.9% 48.62
(20.8 MB) (ms) (ms) (ms)
Predictive
Sampled Image | 96.9% 34.52 98.4% 8723 64% 48.21
(8.51 MB) (ms) (ms) (ms)

Table 2: Performance Comparison to Similar Solutions in terms of
accuracy and inference time.

Accuracy Inf. Time

SVM Classifier [12] 92.47% 0.28(ms)
(Wiﬁ]yg'\‘/e,\;‘)r '[‘ - 81.44% | 0.16B (FLOPS)
2?_’;‘3;??\;:;‘;‘”;:‘3] 81.5% | 0.16B (FLOPS)

(Prosictvs Somplngy | 96%% | 3452ms)

V. CONCLUSION

In this work, we presented a predictive sampling method for
selecting key pixels in image sensing and demonstrated the feasibility
of using the key pixels for image classification. The proposed
method reduces the image size while allowing for effective image
reconstruction using only 27.1% of the input data size of the original
image. This reduction in image size allows for the reduction in the file

sizes of image datasets and the faster training of image classification,
which would benefit computer vision implementation of edge devices
without cloud connectivity. We used our sample models alongside
their color and gray-scale equivalents to train image classification
CNNes of different complexity levels to test the validity of the proposed
methods. Our results showed that despite the far smaller dataset file
size, the sample models had comparable accuracy ratings to that of
the color and gray-scale models.
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