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Abstract—This paper presents a novel event-driven speech
signal sensing, pre-processing, and compression method using
Dynamic Predictive Sampling. The Dynamic Predictive Sampling
method converts the input analog waveform into a non-uniform
sampled event sequence with both amplitude and timestamp data
of each event, which is the turning point of the analog signal.
The event sequence can be reconstructed without losing the
morphology of the input analog signal. Since the selection of turn-
ing points is performed during the analog-to-digital conversion
process, the circuit generates much less data throughput. This
paper studies the trade-off between the compression factor and
the performance in speech recognition accuracy of the proposed
method. Based on the simulation result, the total data throughput
can be reduced by 87% while keeping the quality of the speech
signal for speech recognition. An integrated circuit of Dynamic
Predictive Sampling has been designed and simulated for the
speech sensing task. The proposed method saves computing
overhead and data throughput, which is ideal for future low-
power embedded voice recognition systems.

Index Terms—event-driven sensing, nonuniform sampling, dy-
namic predictive sampling, speech signal sensing.

I. INTRODUCTION

Voice recognition is the most natural type of human-
computer interaction and has seen rapid progress in recent
years [1]. The primary function of speech recognition is to
match the input audio analog waveform with one or more
words in a vocabulary. Conventionally, this is performed by
using the features extracted from the analog waveform, such as
timing, frequency, amplitude, and phase. Most of the current
industrial solutions, such as Amazon’s Alexa, Apple’s Siri,
Google Assistant, and Microsoft’s Cortana all require high
computing overhead, which heavily relies on cloud comput-
ing and real-time data communication. As the application
scenarios expand to broader areas, there is a need for local
voice recognition systems. For example, a driver may try to
interact with the computer of the car when driving without
a reliable communication link. Recently, processing at the
edge become a popular research direction because it provides
important advantages in terms of energy efficiency, latency,
security, privacy, and autonomy compared to cloud computing
[2]. Another example of local processing is Keyword Spotting
(KWS), which must always remain active to detect the pre-
defined keywords in real-time to wake up the entire system,
which requires ultra-low power as it usually has a limited
battery power supply.

A typical KWS system contains an analog amplifier, analog-
to-digital converter, feature extractor, and classifier. Various
efforts have been made to reduce the power consumption for
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Fig. 1. Comparing the conventional processing chain (a),(b) modified from
[3] with the proposed method (c) in the speech signal sensing systems.

the feature extractor [4] and classifiers such as Depthwise Sep-
arable Convolutional Neural Network DSCNN [5], Binarized
Neural Network (BNN) [6] and Long Short-Term Memory
(LSTM) accelerator [7]. Compact RNN methods can achieve
acceptable detection accuracy, which is usually above 80%
[8]. The power cost of KWS is usually in the level of 10-
20 W [9], sometimes even below 10 W [10]. CNN-based
KWS is also a very popular solution, it usually has a few
convolutional (Conv) layers and a few fully connected (FC)
layers. Google speech command dataset (GSCD) is widely
applied for training and validation [11]. Recurrent Neural
Network (RNN) including long short-term memory and gated
recurrent unit (GRU) is good at handling sequential data
for speech and sound [12]. Error-resilient signal processing
such as approximate computing can be applied to achieve
power reduction while minimizing accuracy loss [13], [14].
The model is usually trained using Google Speech Command
Dataset (GSCD). Typically 12 classes and 10 keywords are
in the vocabulary for prediction. They include 10 keywords:
“down”, “go”, “left”, “no”, “off”, “on”, “right”, “stop”, “up”,
“yes”, together with “silence” as well as “unknown” class
representing the other 25 keywords in the GSCD dataset
[10]. On the hardware sensor side, conventional acoustic
signal processing can be categorized into digital-intensive or
analog-intensive methods, as shown in Fig. 1 (a) and (b).
conventional Nyquist-rate sampling may generate unnecessary
data that overload the signal processing devices [15] and
increase the necessary system power. Level-crossing sampling
may introduce insertion and deletion errors, which introduce
drifts in the reconstructed waveform [16]. Recently, a Dynamic
Predictive Sampling method has been proposed [17], which is
based on predicting the digital value using slopes. Because
this method only records the digital value of the unsuccessful



predictions, which are the turning points in the analog signal,
the Dynamic Predictive Sampling system can greatly reduce
the amount of output data. The feature extraction (FE) can
be partially performed in the ADC, as shown in Fig. 1 (c).
This paper applies the Dynamic Predictive Sampling method
in speech signal sensing and studies the trade-off between data
throughput and performance of the reconstructed signal.
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Fig. 2. Dynamic Predictive Sampling uses the prediction with an error
threshold as the sampling reference to select the turning points for digitization
(Left), the output of Dynamic Predictive Sampling contains both the amplitude
and timestamp data of the selected sampling points, which can be used for
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Dynamic Predictive Sampling processes the analog wave-
form by using prior digitized sampling points to generate a
prediction of current sampling values. It then decides whether
to perform digitization of the current sampling point based
on the comparison result between the current sampling and
the prediction of the current sampling. By doing so, Dynamic
Predictive Sampling only selects the turning point in the analog
waveform to perform digitization. A digital prediction error is
introduced as Delta, which is added to and subtracted from
the predicted digital value to create the upper threshold and
lower threshold for comparison. These two digital thresholds
are then converted into analog values to compare with the
current analog sampling value.

If the prediction is successful, the predicted digital value is
used for the next linear prediction until an analog sampling
value is higher than the upper threshold or lower than the
lower threshold. In such a case, the prediction is considered as
failed and digitization is necessary for the sampling, which is
marked as the selected sampling point, as shown in Fig. 2 (a).
The timing information between the selected sampling points
is recorded as a timestamp. These selected sampling points
are usually turning points in the input analog waveform. The
output of the Dynamic Predictive Sampling contains both the
amplitude of the turning points and the timestamp between the
turning points. Using the amplitude and timestamp data, the
input analog waveform can be reconstructed using piecewise
linear reconstruction or other advanced reconstruction meth-
ods, as shown in Fig. 2 (b).

Fig. 3 presents the circuit block diagram of a Dynamic
Predictive Sampling System. The circuit contains an analog
comparator, a digital-to-analog converter (DAC), a predic-
tion logic, a decision logic, and a digital timer. The circuit
operates similarly with a successive approximation register
(SAR) ADC. The analog portion of the circuit (Comparator
and DAC) is controlled by a sampling clock, which is 8kHz
for speech signal sensing while the digital portion of the
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Fig. 3. Block diagram of the Dynamic Predictive Sensing Circuit.

circuit is operated by a processing clock running at 100kHz,
which is much faster than the sampling clock in the case that
a SAR digitization is necessary. The analog input signal is
always compared with the analog reference value generated
from the DAC. The comparison result is processed by the
prediction logic and decision logic to generate the digital
prediction for the DAC. The prediction logic also uses the
digital error Delta as the input to calculate the upper and lower
threshold of the prediction. If the prediction is not successful,
the prediction and decision logic will be switched to a 10-
bit SAR logic to perform digitization. At this moment the
digitized sampling becomes the data output. The timer is also
reset to zero and starts counting the timestamp between the
selected sampling point and the next selected sampling point.
The prior timestamp is stored in the timestamp register and
sent to the Timestamp Output.

The Dynamic Predictive Sampling method combines the
advantages of Nyquist sampling and Level Crossing sampling.
Compared with the conventional level-crossing sampling, the
Dynamic Predictive Sampling method records multi-bit digital
data of the amplitude and digital data of the time-stamp
between the sampling events, which removes the potential
insertion/deletion of pulses and drift errors. Compared with
the conventional Nyquist sampling method using a fixed clock,
the dynamic predictive sensing method separates the sampling
and quantization processes and only performs quantization at
the turning points of the input analog signal, which saves much
data throughput when the input signal is sparse or contains a
large portion of linear structure. The additional digital error
input provides a trade-off between data throughput and the
accuracy of the reconstructed signal. It also saves power con-
sumption since many quantization steps can be skipped when
the prediction is successful. Therefore, dynamic prediction
sampling is ideal for speech signal sensing applications.

III. SIMULATION AND IMPLEMENTATION RESULTS

Applying Dynamic Predictive Sampling in speech signal
sensing saves much power and data throughput. The speech
signal contains the active voice portion and the pause/noise
portion. The voice portion is in the frequency band of 300-
3400 Hz with a higher amplitude than the pause/noise portion.
The pause/noise portion contains a wider bandwidth with a
lower amplitude. In a conventional speech sensing system,
the sampling rate is 8k Sample/second or 16 kSample/second.
Each sampling is digitized to 8-16 bits. Therefore, the data
throughput is between 64kb/second and 256kb/second. Such
a high data throughput requires a non-trivial power for the
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Fig. 4. Time-domain simulation results of selected sampling points with different error thresholds.

ADC and adds the processing burden to the following digital
signal processing or data communication circuits. In reality,
it is not necessary to sample and digitize the analog signal
during speech pause. This can be achieved using Dynamic
Predictive Sampling with a higher error threshold. In addition,
during an active speech, the sampling and digitization can be
reduced if we can use Dynamic Predictive Sampling to identify
turning points of the signal and use the piece-wise linear signal
to replace the Nyquist sampling sequence. Since digitization
consumes much more power than sampling, this method can
save both power and data throughput.
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Fig. 5. Frequency-Time analysis for raw speech signal and reconstructed
spepeltitigealiBting R XIARIgaRTEH WV FBR¥PEs shown in Fig. 4. The
input waveform is a 30-second speech signal from the TIMIT
database [18]. On the left of Fig. 4, the error threshold is set
as 2% of the voice amplitude. As shown in the zoomed-in
waveform, the selected sampling points show a good-quality
reconstructed signal during the speech voice region while
only a few sampling points are selected in the pause/noise
region. This is because most of the noise amplitude is below
the error threshold. The 2% error threshold results in a 4.47
times sampling point reduction. On the right of the figure, the
error threshold is set as 5% of the voice amplitude, which
results in a 9.8 times sampling point reduction. There are
much fewer sampling points in the pause region while the
selected sampling points can still maintain the morphology

of the waveform in the voice signal region. To evaluate the
performance of Dynamic Predictive Sampling, we performed
the frequency-time analysis in a typical KWS application. The
example result of the word “no” is shown in Fig. 5 with a
3% error threshold. The reconstructed waveform tracks the
original waveform well. The spectrogram shows that during
the voice active region, the reconstructed waveform is similar
to the original waveform, indicating that this method has great
potential in KWS.
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Fig. 6. (left) Compression Ratio with different error threshold and jump
points. (right) Reconstructed signal PESQ value with different error thresholds
andpler B9fSry advantage of applying Dynamic Predictive
Sampling in speech signal sensing is reducing the data
throughput. Although the number of the selected sampling
points is much less than the number of the original sampling
points, additional timestamp data need to be recorded. The
length of the timestamp data depends on the maximum dura-
tion between the selected sampling points. In our preliminary
estimation, for a speech signal with a sampling rate of 8kS/s,
a 4-bit timestamp is enough. The compression ratio between
the Dynamic Predictive Sampling and the Nyquist sampling
measures the ratio of the total data throughput between the two
types of systems. It also depends on the error threshold in the
Dynamic Predictive Sampling system. i.e., the Delta value
as a percentage of the maximum signal amplitude. Moreover,
dynamic prediction can also be performed by skipping a
few points. For example, instead of using two consecutive
samplings for prediction, the system can allow a few sampling
points between the two selected sampling points to perform
prediction. More jump points result in a higher compression
ratio. The relations between the compression ratio, jump
points, and Delta percent are shown in Fig. 6 (left).



If the number of jump points and Delta percent is too
high, the system can greatly reduce the data throughput,
but the quality of the speech signal may also be reduced.
The quality of the speech signal is often evaluated using
Perceptual Evaluation of Speech Quality (PESQ). PESQ is an
automated assessment of speech quality that gives predictions
of subjective speech quality through a range of degradation
conditions such as background noise, analog filtering, and
variable delay. PESQ was originally developed to assess the
speech quality of telephone networks and speech codecs [19].
PESQ spans the range 0.5 to 4.5, where 0.5 is indiscernible and
4.5 is distinct and matching the reference audio; A PESQ of
1.5 is the acceptable minimum standard for discernible audio.
Due to the lossy nature of the Dynamic Predictive Sampling
method, the system needs to balance the compression ratio
and the required minimum quality of the recovered audio.
Fig. 6 (right) shows that a high Delta percent leads to a high
compression ratio but a suboptimal PESQ performance; and a
low Delta percent leads to a high PESQ but low compression
ratio. To maintain a high quality of the speech signal, the
error threshold Delta should be under 3%, which leads to a
reasonable compression ratio of 6.67, which is equivalent to
87% data reduction.

This work |TCASI [21]| TCASI [22]
Process 180nm 180nm 130nm
Sampling rate 8kS/sec | 8kS/sec 8kS/sec
Core Area (mn) 0.2 0.58 0.79
Analog Power (nW) 232 667 800
Data Throughput 12kb/sec |80kb/sec | 80kb/sec

Comparison of Analog Front-end for Speech Processing

Chip Layout

Fig. 7. The integrated circuit was designed with 0.18 pum CMOS process,
which can reduce power and data throughput compared to other speech signal
sensing systems. The chip layout is Imm by 1mm with a core area of 0.2mm?.

An Event Driven Dynamic Predictive Sampling integrated
circuit for speech signal sensing is designed with a 0.18
pum CMOS process. The design contains the comparator, the
digital-to-analog converter, the prediction logic, the decision
logic, and the timer circuit. The test chip layout is 1 mm
by 1 mm with a core area of 0.2mm. The sampling rate is
8 kHz while the processing clock is set at 100 kHz. The
resolution of the amplitude output is 10-bit and the time output
is 4-bit. The output data throughput depends on the input
signal sparsity, the error threshold Delta present, and the
jump point. The simulation results show that the output data
throughput is 12kb/second, which is much less than a standard
speech signal sensing data throughput. Due to the power-
saving feature in Dynamic Predictive Sampling, the simulated
analog power consumption is 232 nW, which is also lower
than the typical speech signal sensing system thanks to fewer
comparisons in digitization processes. The chip layout and the
comparison between recent speech-sensing systems [20], [21]
are summarized in Fig. 7.

IV. CONCLUSION

This paper studies the performance trade-off of Event-
Driven Dynamic Predictive Sampling for speech signal sens-
ing. Dynamic Predictive Sampling selects only a few percent

of samplings in the analog waveform for digitization. The
selection is based on prediction value using the prior sampling
points and the user-defined digital error threshold. Such a
system can greatly reduce the output data throughput while
selecting the key sampling points during the analog-to-digital
conversion process. The compression ratio and PESQ value
are used to evaluate the performance of speech signal sensing.
Simulation results show that with a 3% error threshold in
Dynamic Predictive Sampling, the system can achieve an
acceptable quality of the speech signal, which refers to 1.5
of the PESQ, and a total of 87% of the data can be saved. An
integrated circuit is designed on a 0.18 um CMOS process,
which shows that it can also reduce power consumption
compared to standard speech sensing circuits thanks to the
sparsity of the speech signal. Dynamic Predictive Sampling
has great potential for embedded speech recognition and
keyword-spotting applications.
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