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Abstract—This paper presents a novel event-driven speech
signal sensing, pre-processing, and compression method using
Dynamic Predictive Sampling. The Dynamic Predictive Sampling
method converts the input analog waveform into a non-uniform
sampled event sequence with both amplitude and timestamp data
of each event, which is the turning point of the analog signal.
The event sequence can be reconstructed without losing the
morphology of the input analog signal. Since the selection of turn-
ing points is performed during the analog-to-digital conversion
process, the circuit generates much less data throughput. This
paper studies the trade-off between the compression factor and
the performance in speech recognition accuracy of the proposed
method. Based on the simulation result, the total data throughput
can be reduced by 87% while keeping the quality of the speech
signal for speech recognition. An integrated circuit of Dynamic
Predictive Sampling has been designed and simulated for the
speech sensing task. The proposed method saves computing
overhead and data throughput, which is ideal for future low-
power embedded voice recognition systems.

Index Terms—event-driven sensing, nonuniform sampling, dy-
namic predictive sampling, speech signal sensing.

I. INTRODUCTION

Voice recognition is the most natural type of human-

computer interaction and has seen rapid progress in recent

years [1]. The primary function of speech recognition is to

match the input audio analog waveform with one or more

words in a vocabulary. Conventionally, this is performed by

using the features extracted from the analog waveform, such as

timing, frequency, amplitude, and phase. Most of the current

industrial solutions, such as Amazon’s Alexa, Apple’s Siri,

Google Assistant, and Microsoft’s Cortana all require high

computing overhead, which heavily relies on cloud comput-

ing and real-time data communication. As the application

scenarios expand to broader areas, there is a need for local

voice recognition systems. For example, a driver may try to

interact with the computer of the car when driving without

a reliable communication link. Recently, processing at the

edge become a popular research direction because it provides

important advantages in terms of energy efficiency, latency,

security, privacy, and autonomy compared to cloud computing

[2]. Another example of local processing is Keyword Spotting

(KWS), which must always remain active to detect the pre-

defined keywords in real-time to wake up the entire system,

which requires ultra-low power as it usually has a limited

battery power supply.

A typical KWS system contains an analog amplifier, analog-

to-digital converter, feature extractor, and classifier. Various

efforts have been made to reduce the power consumption for
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Fig. 1. Comparing the conventional processing chain (a),(b) modified from
[3] with the proposed method (c) in the speech signal sensing systems.

the feature extractor [4] and classifiers such as Depthwise Sep-

arable Convolutional Neural Network DSCNN [5], Binarized

Neural Network (BNN) [6] and Long Short-Term Memory

(LSTM) accelerator [7]. Compact RNN methods can achieve

acceptable detection accuracy, which is usually above 80%

[8]. The power cost of KWS is usually in the level of 10-

20 µW [9], sometimes even below 10 µW [10]. CNN-based

KWS is also a very popular solution, it usually has a few

convolutional (Conv) layers and a few fully connected (FC)

layers. Google speech command dataset (GSCD) is widely

applied for training and validation [11]. Recurrent Neural

Network (RNN) including long short-term memory and gated

recurrent unit (GRU) is good at handling sequential data

for speech and sound [12]. Error-resilient signal processing

such as approximate computing can be applied to achieve

power reduction while minimizing accuracy loss [13], [14].

The model is usually trained using Google Speech Command

Dataset (GSCD). Typically 12 classes and 10 keywords are

in the vocabulary for prediction. They include 10 keywords:

“down”, “go”, “left”, “no”, “off”, “on”, “right”, “stop”, “up”,

“yes”, together with “silence” as well as “unknown” class

representing the other 25 keywords in the GSCD dataset

[10]. On the hardware sensor side, conventional acoustic

signal processing can be categorized into digital-intensive or

analog-intensive methods, as shown in Fig. 1 (a) and (b).

conventional Nyquist-rate sampling may generate unnecessary

data that overload the signal processing devices [15] and

increase the necessary system power. Level-crossing sampling

may introduce insertion and deletion errors, which introduce

drifts in the reconstructed waveform [16]. Recently, a Dynamic

Predictive Sampling method has been proposed [17], which is

based on predicting the digital value using slopes. Because

this method only records the digital value of the unsuccessful



predictions, which are the turning points in the analog signal,

the Dynamic Predictive Sampling system can greatly reduce

the amount of output data. The feature extraction (FE) can

be partially performed in the ADC, as shown in Fig. 1 (c).

This paper applies the Dynamic Predictive Sampling method

in speech signal sensing and studies the trade-off between data

throughput and performance of the reconstructed signal.
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Fig. 2. Dynamic Predictive Sampling uses the prediction with an error
threshold as the sampling reference to select the turning points for digitization
(Left), the output of Dynamic Predictive Sampling contains both the amplitude
and timestamp data of the selected sampling points, which can be used for
reconstruction of the analog waveform (right).II. CIRCUIT AND SYSTEM DESIGN

Dynamic Predictive Sampling processes the analog wave-

form by using prior digitized sampling points to generate a

prediction of current sampling values. It then decides whether

to perform digitization of the current sampling point based

on the comparison result between the current sampling and

the prediction of the current sampling. By doing so, Dynamic

Predictive Sampling only selects the turning point in the analog

waveform to perform digitization. A digital prediction error is

introduced as Delta, which is added to and subtracted from

the predicted digital value to create the upper threshold and

lower threshold for comparison. These two digital thresholds

are then converted into analog values to compare with the

current analog sampling value.

If the prediction is successful, the predicted digital value is

used for the next linear prediction until an analog sampling

value is higher than the upper threshold or lower than the

lower threshold. In such a case, the prediction is considered as

failed and digitization is necessary for the sampling, which is

marked as the selected sampling point, as shown in Fig. 2 (a).

The timing information between the selected sampling points

is recorded as a timestamp. These selected sampling points

are usually turning points in the input analog waveform. The

output of the Dynamic Predictive Sampling contains both the

amplitude of the turning points and the timestamp between the

turning points. Using the amplitude and timestamp data, the

input analog waveform can be reconstructed using piecewise

linear reconstruction or other advanced reconstruction meth-

ods, as shown in Fig. 2 (b).

Fig. 3 presents the circuit block diagram of a Dynamic

Predictive Sampling System. The circuit contains an analog

comparator, a digital-to-analog converter (DAC), a predic-

tion logic, a decision logic, and a digital timer. The circuit

operates similarly with a successive approximation register

(SAR) ADC. The analog portion of the circuit (Comparator

and DAC) is controlled by a sampling clock, which is 8kHz

for speech signal sensing while the digital portion of the
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Fig. 3. Block diagram of the Dynamic Predictive Sensing Circuit.

circuit is operated by a processing clock running at 100kHz,

which is much faster than the sampling clock in the case that

a SAR digitization is necessary. The analog input signal is

always compared with the analog reference value generated

from the DAC. The comparison result is processed by the

prediction logic and decision logic to generate the digital

prediction for the DAC. The prediction logic also uses the

digital error Delta as the input to calculate the upper and lower

threshold of the prediction. If the prediction is not successful,

the prediction and decision logic will be switched to a 10-

bit SAR logic to perform digitization. At this moment the

digitized sampling becomes the data output. The timer is also

reset to zero and starts counting the timestamp between the

selected sampling point and the next selected sampling point.

The prior timestamp is stored in the timestamp register and

sent to the Timestamp Output.

The Dynamic Predictive Sampling method combines the

advantages of Nyquist sampling and Level Crossing sampling.

Compared with the conventional level-crossing sampling, the

Dynamic Predictive Sampling method records multi-bit digital

data of the amplitude and digital data of the time-stamp

between the sampling events, which removes the potential

insertion/deletion of pulses and drift errors. Compared with

the conventional Nyquist sampling method using a fixed clock,

the dynamic predictive sensing method separates the sampling

and quantization processes and only performs quantization at

the turning points of the input analog signal, which saves much

data throughput when the input signal is sparse or contains a

large portion of linear structure. The additional digital error

input provides a trade-off between data throughput and the

accuracy of the reconstructed signal. It also saves power con-

sumption since many quantization steps can be skipped when

the prediction is successful. Therefore, dynamic prediction

sampling is ideal for speech signal sensing applications.

III. SIMULATION AND IMPLEMENTATION RESULTS

Applying Dynamic Predictive Sampling in speech signal

sensing saves much power and data throughput. The speech

signal contains the active voice portion and the pause/noise

portion. The voice portion is in the frequency band of 300-

3400 Hz with a higher amplitude than the pause/noise portion.

The pause/noise portion contains a wider bandwidth with a

lower amplitude. In a conventional speech sensing system,

the sampling rate is 8k Sample/second or 16 kSample/second.

Each sampling is digitized to 8-16 bits. Therefore, the data

throughput is between 64kb/second and 256kb/second. Such

a high data throughput requires a non-trivial power for the
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Fig. 4. Time-domain simulation results of selected sampling points with different error thresholds.

ADC and adds the processing burden to the following digital

signal processing or data communication circuits. In reality,

it is not necessary to sample and digitize the analog signal

during speech pause. This can be achieved using Dynamic

Predictive Sampling with a higher error threshold. In addition,

during an active speech, the sampling and digitization can be

reduced if we can use Dynamic Predictive Sampling to identify

turning points of the signal and use the piece-wise linear signal

to replace the Nyquist sampling sequence. Since digitization

consumes much more power than sampling, this method can

save both power and data throughput.
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Fig. 5. Frequency-Time analysis for raw speech signal and reconstructed
speech signal using Dynamic Predictive Sampling.A time-domain simulation waveform is shown in Fig. 4. The

input waveform is a 30-second speech signal from the TIMIT

database [18]. On the left of Fig. 4, the error threshold is set

as 2% of the voice amplitude. As shown in the zoomed-in

waveform, the selected sampling points show a good-quality

reconstructed signal during the speech voice region while

only a few sampling points are selected in the pause/noise

region. This is because most of the noise amplitude is below

the error threshold. The 2% error threshold results in a 4.47

times sampling point reduction. On the right of the figure, the

error threshold is set as 5% of the voice amplitude, which

results in a 9.8 times sampling point reduction. There are

much fewer sampling points in the pause region while the

selected sampling points can still maintain the morphology

of the waveform in the voice signal region. To evaluate the

performance of Dynamic Predictive Sampling, we performed

the frequency-time analysis in a typical KWS application. The

example result of the word “no” is shown in Fig. 5 with a

3% error threshold. The reconstructed waveform tracks the

original waveform well. The spectrogram shows that during

the voice active region, the reconstructed waveform is similar

to the original waveform, indicating that this method has great

potential in KWS.

Fig. 6. (left) Compression Ratio with different error threshold and jump
points. (right) Reconstructed signal PESQ value with different error thresholds
and jump points.The primary advantage of applying Dynamic Predictive

Sampling in speech signal sensing is reducing the data

throughput. Although the number of the selected sampling

points is much less than the number of the original sampling

points, additional timestamp data need to be recorded. The

length of the timestamp data depends on the maximum dura-

tion between the selected sampling points. In our preliminary

estimation, for a speech signal with a sampling rate of 8kS/s,

a 4-bit timestamp is enough. The compression ratio between

the Dynamic Predictive Sampling and the Nyquist sampling

measures the ratio of the total data throughput between the two

types of systems. It also depends on the error threshold in the

Dynamic Predictive Sampling system. i.e., the Delta value

as a percentage of the maximum signal amplitude. Moreover,

dynamic prediction can also be performed by skipping a

few points. For example, instead of using two consecutive

samplings for prediction, the system can allow a few sampling

points between the two selected sampling points to perform

prediction. More jump points result in a higher compression

ratio. The relations between the compression ratio, jump

points, and Delta percent are shown in Fig. 6 (left).



If the number of jump points and Delta percent is too

high, the system can greatly reduce the data throughput,

but the quality of the speech signal may also be reduced.

The quality of the speech signal is often evaluated using

Perceptual Evaluation of Speech Quality (PESQ). PESQ is an

automated assessment of speech quality that gives predictions

of subjective speech quality through a range of degradation

conditions such as background noise, analog filtering, and

variable delay. PESQ was originally developed to assess the

speech quality of telephone networks and speech codecs [19].

PESQ spans the range 0.5 to 4.5, where 0.5 is indiscernible and

4.5 is distinct and matching the reference audio; A PESQ of

1.5 is the acceptable minimum standard for discernible audio.

Due to the lossy nature of the Dynamic Predictive Sampling

method, the system needs to balance the compression ratio

and the required minimum quality of the recovered audio.

Fig. 6 (right) shows that a high Delta percent leads to a high

compression ratio but a suboptimal PESQ performance; and a

low Delta percent leads to a high PESQ but low compression

ratio. To maintain a high quality of the speech signal, the

error threshold Delta should be under 3%, which leads to a

reasonable compression ratio of 6.67, which is equivalent to

87% data reduction.
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Fig. 7. The integrated circuit was designed with 0.18 µm CMOS process,
which can reduce power and data throughput compared to other speech signal
sensing systems. The chip layout is 1mm by 1mm with a core area of 0.2mm2.

An Event Driven Dynamic Predictive Sampling integrated

circuit for speech signal sensing is designed with a 0.18

µm CMOS process. The design contains the comparator, the

digital-to-analog converter, the prediction logic, the decision

logic, and the timer circuit. The test chip layout is 1 mm

by 1 mm with a core area of 0.2mm. The sampling rate is

8 kHz while the processing clock is set at 100 kHz. The

resolution of the amplitude output is 10-bit and the time output

is 4-bit. The output data throughput depends on the input

signal sparsity, the error threshold Delta present, and the

jump point. The simulation results show that the output data

throughput is 12kb/second, which is much less than a standard

speech signal sensing data throughput. Due to the power-

saving feature in Dynamic Predictive Sampling, the simulated

analog power consumption is 232 nW, which is also lower

than the typical speech signal sensing system thanks to fewer

comparisons in digitization processes. The chip layout and the

comparison between recent speech-sensing systems [20], [21]

are summarized in Fig. 7.

IV. CONCLUSION

This paper studies the performance trade-off of Event-

Driven Dynamic Predictive Sampling for speech signal sens-

ing. Dynamic Predictive Sampling selects only a few percent

of samplings in the analog waveform for digitization. The

selection is based on prediction value using the prior sampling

points and the user-defined digital error threshold. Such a

system can greatly reduce the output data throughput while

selecting the key sampling points during the analog-to-digital

conversion process. The compression ratio and PESQ value

are used to evaluate the performance of speech signal sensing.

Simulation results show that with a 3% error threshold in

Dynamic Predictive Sampling, the system can achieve an

acceptable quality of the speech signal, which refers to 1.5

of the PESQ, and a total of 87% of the data can be saved. An

integrated circuit is designed on a 0.18 µm CMOS process,

which shows that it can also reduce power consumption

compared to standard speech sensing circuits thanks to the

sparsity of the speech signal. Dynamic Predictive Sampling

has great potential for embedded speech recognition and

keyword-spotting applications.
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