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Abstract—This paper introduces a novel Dynamic Slope De-
tection (DSD) system for acquiring electrocardiogram (ECG)
signals. DSD addresses the critical challenge of balancing data
storage requirements with signal fidelity, particularly in resource-
constrained environments like wearable devices. The system
leverages the slope information of the ECG signal to guide
efficient and adaptive data sampling. Validation using ten samples
from the publicly available MIT-BIH Arrhythmia Database
confirmed significant data reduction compared to traditional
sampling. The proposed method achieves a compression ratio
of up to 12.5× while maintaining RR interval estimation error
below ±0.1 msec.

Index Terms—Electrocardiogram (ECG), analog-to-digital
converter (ADC), low-power circuits, slope level-crossing sam-
pling, and wearable devices.

I. INTRODUCTION

As wearable health devices become ubiquitous, a critical

need arises for signal processing and transmission techniques

that minimize power consumption and memory usage. Con-

ventional sampling and signal processing occur at a fixed,

worst-case sampling rate dictated by the Nyquist-Shannon

theorem [1]. Biomedical signals such as ECG often show

temporal variations in their spectral properties [2]. In addition,

a fixed sampling rate leads to unnecessary wasted samples and

energy during processing, transmission, and reception. Conse-

quently, reducing memory requirements in portable medical

systems is vital for storing more points, allowing longer-term

monitoring.

Timely diagnosis and treatment of cardiovascular diseases

(CVD) can significantly mitigate health deterioration caused

by these conditions. Real-time heart monitoring is a crucial

strength of wearable devices, offering continuous data collec-

tion with high clinical insight [3]. These systems favor on-

sensor processing over directly transmitting raw data to the

cloud due to latency, security, privacy concerns, and power

consumption [4]. This prioritization of on-sensor processing

allows for diverse applications, such as transmitting extracted

critical information to healthcare professionals or enabling

on-sensor automatic arrhythmia classification using Machine

Learning (ML) algorithms [5].

Event-driven processing, exploiting level-crossing (LC)

techniques, offers an attractive alternative to traditional sam-

pling, significantly reducing data sets [6]–[8]. However, most

of the current approaches lack precision in locating turning

points (fiducial points) due to significant gaps [6], require

necessary post-processing to detect waveform characteristics,

and may generate redundant samples in high-amplitude and

low-frequency signals [8], [9]. While post-ADC compression

can address this, it increases energy and storage demands.

This paper proposes a novel dynamic slope detection

method for ECG monitoring and detection on-device. Inspired

by the Address Event Representation (AER) event-driven com-

munication protocol used in image sensors [10] and particle

detection [11], our approach offers an efficient alternative to

traditional fixed-rate sampling and computationally expensive

level-crossing methods. By leveraging real-time information

about signal turning points and dynamics, our method fa-

cilitates efficient ECG data acquisition, low memory usage,

and reliable transition detection for fiducial points directly on

wearable devices. This capability empowers wearable ECG

monitoring with significant reductions in data volume and

enhanced on-device processing capabilities.

II. CIRCUIT AND SYSTEM DESIGN

Figure 1 shows the proposed system. It consists of a discrete

differentiator circuit [12], followed by dual comparators with

dynamically adjustable thresholds Vthp and Vthn controlled

by digital-to-analog converters (DACs). These comparators

enable configurable detection of positive and negative slopes in

the ECG signal Vin. Finally, a slope controller implemented

within a Field-Programmable Gate Array (FPGA) generates

ADC’s control signal start-of-conversion (SoC) based on the

input signal and the current state.

An additional set of RC (Resistor + Capacitor) was incor-

porated to differentiate the signal. This introduces a high-

frequency roll-off, reducing gain at higher frequencies and

improving circuit noise rejection and stability. The output of

the differentiator circuit can be described in terms of the
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Fig. 1. Block diagram of the proposed approach, including a differentiator circuit made of one OPAMP, resistors (R1=36 kΩ, R2=390 kΩ) and capacitors
(C1=47 nF , C2=4.7 nF ), two DACs, an analog-to-digital converter (ADC), and a digital slope controller embedded in FPGA.

G2

G1

G3

Vthp

Vthn

Vref

TU TU TU TU

G4

sampled points

generated points

estimated slope

Vin

s_pos

s_neg

Vdiff

soc

pk_pos

pk_neg

Start

ADC Conversion

=1? Wait

ADC Conversion

Wait

Wait

=1?

Y

N

Y

N

=1?
N

Y

time

(a) (b)

Fig. 2. (a) Waveforms representing the operation in SSD mode for the circuit
in Figure 1. (b) Flowchart for the DSD method.

resistors (R1 and R2) and capacitors (C1 and C2) by the

following equation:

Vdiff = −

(

R2

R1

)

dVin

dt
(1)

The minimum slope signal that triggers the comparators out-

puts s neg and s pos can be defined as:

Slopemin{p,n} = ∆Vth{p,n}

(

R1

R2

)

(2)

where ∆Vthp
= Vthp

− Vref and ∆Vthn
= Vthn

− Vref .

In this work, we employ a symmetric threshold difference,

denoted by ∆Vth, for both positive and negative peaks.

The system operates in two distinct modes:

1) Static Slope Detection (SSD): In this mode, the system

continuously monitors the ECG signal for slope changes

that exceed the minimum threshold Slopeminp,n
. When

a new crossing (transition point) is detected, the signal

SoC (start-of-conversion) is asserted, as is shown in

Figure 2. This assertion initiates a new ADC conversion

process. Meanwhile, a timer is activated and counting

until a predefined update time, TU , is reached if the dy-

namic condition persists. Then, a new conversion begins,

and the value is updated. Furthermore, a new conversion

is started if no new zero-crossing is detected within

the timeframe of TO greater than TU . This approach

ensures a minimum sampling rate even in low-activity

ECG segments.

2) Dynamic Slope Detection (DSD): In DSD mode, the

system behavior is dynamic and adapts to the incoming

ECG signal. A conversion is initiated upon detecting

a significant change or minimum slope, and then the

threshold voltage difference (∆Vth) is doubled. If the

change persists (refer to the flowchart in Figure 2(b)

for details), ∆Vth is further doubled. However, if either

a slope event is not detected or the slope condition no

longer holds, the last slope value is stored, and a counter

is activated. This counter increments until it reaches a

predefined wait time, TW . In the absence of sustained

changes, the system reverts to behaving like the SSD

mode.

The system identifies positive and negative peak events by

analyzing the sequence of trigger events. A positive peak is

detected when a negative-going trigger follows a positive-

going trigger. Conversely, a negative peak is identified by a

positive-going trigger followed by a negative-going trigger, as

shown in Figure 2 (a). Even if the actual peak is not directly

sampled, the system can still estimate the peak value and

time of occurrence. This estimation is possible by leveraging

the information from the slope data and timestamps. The

steepness information provides insight into the rapid changes

around the peak, and the timestamps pinpoint the window
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Fig. 3. Measured results: Blue trace represents the ECG sampled at Nyquist frequency (fN ), and the red dots are the sampling points using DSD with
TU = 20 ms, TW = 40 ms). The green curve is the DSD slope signal (guides efficient sampling). Positive/negative pulses are generated based on the slope
information.
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Fig. 4. Comparison of RR interval error in time between the proposed method
and Nyquist sampled ECG vs. update time TU using ten datasets from the
MIT-BIH Arrhythmia database [13].

where the peak likely resides. The system can achieve efficient

peak estimation by utilizing these elements without complex

divisions or further digital processing.

By capturing significant changes at different sensitivity

levels (1×, 2×, and 4×), DSD can effectively differentiate

between the P-wave (often having a lower slope), the QRS

complex (characterized by a larger and steeper slope), and the

T-wave (typically with a smaller slope compared to the QRS).

The DSD’s output is a 32-bit per sample dataset containing

the timestamp and sampled points, as well as the slope and

the positive or negative peak detection (See Figure 1).

III. RESULTS AND DISCUSSION

The proposed system was implemented and tested using

readily available, off-the-shelf electronic components. An Opal

Kelly XEM 7310MT board served as the digital controller.

This board features a Xilinx Artix-7 Field-Programmable Gate

Array (FPGA). A 12-bit DAC 124S085 handled the digital-

to-analog conversion, while a Texas Instruments ADC78H90

(12-bit, 500 kS/s) performed the analog-to-digital conversion.

An MCP6004 operational amplifier (Op-Amp) played a role

in the differentiator circuit.

The system’s clock period is 50 µs, defining the maximum

resolution for timing calculations, including the signal turning

points and counter ticks. Ten ECG signals were selected to

test the approach from the MIT-BIH Arrhythmia Database

available in [13]. These ECG signals were loaded onto a

Keysight EDU33212A Waveform Generator using 1 Vpp. Most

comparisons were based on the same ECG dataset sampled

at the Nyquist frequency (fn = 200 Hz), named here as the

reference signal.

Figure 3 illustrates the performance of the Dynamic Slope

Detection (DSD) systems compared to traditional Nyquist-

rate sampling for ECG acquisition. Figure 4 shows the mean,

maximum, and minimum error of the estimated RR interval

compared with this reference signal. The RR interval, the

time between consecutive R peaks in the ECG, determines the

heart rate (beats per minute). By comparing the estimated RR

intervals with the reference, we can evaluate the accuracy of

the system’s peak detection and timing estimation capabilities.

Figure 5 represents the downsampling ratio achieved by the

DSD and SSD system compared to the reference signal.

A downsampling ratio of 2 indicates that the DSD system

acquires data points at half the rate of the Nyquist frequency.

Higher ratios signify even more significant data reduction
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Fig. 5. Downsampling ratio achieved by the proposed method compared to
a Nyquist-sampled ECG signal vs. update time TU using ten datasets from
the MIT-BIH Arrhythmia database [13].

TABLE I
COMPARATIVE ANALYSIS OF STATE-OF-THE-ART APPROACHES.

This work [8] [14] [15]

Method DSD 2n Order
LC-ADC

Signal-
dependent

Slope
Level
Crossing

Turning point
detection

Yes Yes Yes Yes

Sampling rate Async. 1 kHz 1 kHz 1 kHz

Resolution 12 bits 10 bits 12 bits 10 bits

Compression
factor

5.38
@DSD

8.33 6.1 6.17

12.53
@SSD

System imple-
mentation

Off-the
Shelf
Compo-
nents

Integrated
Circuit

Integrated
Circuit

Off-the-
Shelf
Compo-
nents

and lower ADC power consumption. Figure 6 showcases the

potential memory savings achieved by the proposed tech-

niques, showing a trend where the number of storable heart

cycles (NHC) increases with increasing update time (TU ). The

SSD/DSD system acquires data points with higher TU values

less frequently, leading to longer heart cycle recordings.

This work is compared to other state-of-the-art methods for

acquiring ECG signals in Table I.

Our approach offers a better alternative to traditional meth-

ods, such as 2nd order LC or Slope-Level Crossing (SLC)

techniques, which rely on fixed sampling rates. With DSD,

we can dynamically adjust the sampling rate based on the

slope information of the signal. This results in similar signal

fidelity, including accurate turning point detection and RR

interval estimation, while achieving a higher compression ratio

of 12.53. DSD requires less storage space and may have a

more straightforward implementation using readily available

components.
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IV. CONCLUSIONS

This work presented a novel Dynamic Slope Detection

(DSD) system for ECG signal acquisition. The system utilizes

slope information to guide efficient, adaptive data sampling,

significantly reducing the number of acquired data points

compared to traditional Nyquist-rate approaches. This strategy

demonstrably leads to a compression ratio of 12.53, making

DSD suitable for applications with limited storage resources,

such as wearable ECG devices. The DSD system’s update time

(TU ) parameter allows users to fine-tune the balance between

data reduction and the amount of ECG signal information

captured, making it relevant to other applications. Overall, the

DSD system presents a compelling approach for ECG signal

acquisition, offering efficient data acquisition, preserved signal

fidelity, and the ability to optimize for specific application

needs. Future work may explore integrating DSD with ML

algorithms for enhanced analysis and real-time health moni-

toring applications.
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