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Abstract—This paper introduces a novel Dynamic Slope De-
tection (DSD) system for acquiring electrocardiogram (ECG)
signals. DSD addresses the critical challenge of balancing data
storage requirements with signal fidelity, particularly in resource-
constrained environments like wearable devices. The system
leverages the slope information of the ECG signal to guide
efficient and adaptive data sampling. Validation using ten samples
from the publicly available MIT-BIH Arrhythmia Database
confirmed significant data reduction compared to traditional
sampling. The proposed method achieves a compression ratio
of up to 12.5X while maintaining RR interval estimation error
below +0.1 msec.

Index Terms—Electrocardiogram (ECG), analog-to-digital
converter (ADC), low-power circuits, slope level-crossing sam-
pling, and wearable devices.

I. INTRODUCTION

As wearable health devices become ubiquitous, a critical
need arises for signal processing and transmission techniques
that minimize power consumption and memory usage. Con-
ventional sampling and signal processing occur at a fixed,
worst-case sampling rate dictated by the Nyquist-Shannon
theorem [1]. Biomedical signals such as ECG often show
temporal variations in their spectral properties [2]. In addition,
a fixed sampling rate leads to unnecessary wasted samples and
energy during processing, transmission, and reception. Conse-
quently, reducing memory requirements in portable medical
systems is vital for storing more points, allowing longer-term
monitoring.

Timely diagnosis and treatment of cardiovascular diseases
(CVD) can significantly mitigate health deterioration caused
by these conditions. Real-time heart monitoring is a crucial
strength of wearable devices, offering continuous data collec-
tion with high clinical insight [3]. These systems favor on-
sensor processing over directly transmitting raw data to the
cloud due to latency, security, privacy concerns, and power
consumption [4]. This prioritization of on-sensor processing
allows for diverse applications, such as transmitting extracted
critical information to healthcare professionals or enabling
on-sensor automatic arrhythmia classification using Machine
Learning (ML) algorithms [5].

Event-driven processing, exploiting level-crossing (LC)
techniques, offers an attractive alternative to traditional sam-
pling, significantly reducing data sets [6]—[8]. However, most
of the current approaches lack precision in locating turning
points (fiducial points) due to significant gaps [6], require
necessary post-processing to detect waveform characteristics,
and may generate redundant samples in high-amplitude and
low-frequency signals [8], [9]. While post-ADC compression
can address this, it increases energy and storage demands.

This paper proposes a novel dynamic slope detection
method for ECG monitoring and detection on-device. Inspired
by the Address Event Representation (AER) event-driven com-
munication protocol used in image sensors [10] and particle
detection [11], our approach offers an efficient alternative to
traditional fixed-rate sampling and computationally expensive
level-crossing methods. By leveraging real-time information
about signal turning points and dynamics, our method fa-
cilitates efficient ECG data acquisition, low memory usage,
and reliable transition detection for fiducial points directly on
wearable devices. This capability empowers wearable ECG
monitoring with significant reductions in data volume and
enhanced on-device processing capabilities.

II. CIRCUIT AND SYSTEM DESIGN

Figure 1 shows the proposed system. It consists of a discrete
differentiator circuit [12], followed by dual comparators with
dynamically adjustable thresholds Vi, and Vi, controlled
by digital-to-analog converters (DACs). These comparators
enable configurable detection of positive and negative slopes in
the ECG signal V;,. Finally, a slope controller implemented
within a Field-Programmable Gate Array (FPGA) generates
ADC'’s control signal start-of-conversion (SoC) based on the
input signal and the current state.

An additional set of RC (Resistor + Capacitor) was incor-
porated to differentiate the signal. This introduces a high-
frequency roll-off, reducing gain at higher frequencies and
improving circuit noise rejection and stability. The output of
the differentiator circuit can be described in terms of the
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Fig. 1. Block diagram of the proposed approach, including a differentiator circuit made of one OPAMP, resistors (R1=36 kS2, R2=390 k) and capacitors

(C1=47 nF, Co=4.7 nF’), two DACs, an analog-to-digital converter (ADC), and a digital slope controller embedded in FPGA.
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Fig. 2. (a) Waveforms representing the operation in SSD mode for the circuit

in Figure 1. (b) Flowchart for the DSD method.

resistors (R; and R3) and capacitors (C; and C5) by the
following equation:

Rz> dVin 0

de‘ff:_<R1 at

The minimum slope signal that triggers the comparators out-
puts s_neg and s_pos can be defined as:

Slopemin{p,n} = AV;&h{p,n} (gl) 2
2
where AVyy, = Vip, — Viep and AVy,, = Vi, — Viey.
In this work, we employ a symmetric threshold difference,
denoted by AV}, for both positive and negative peaks.
The system operates in two distinct modes:

1) Static Slope Detection (SSD): In this mode, the system
continuously monitors the ECG signal for slope changes
that exceed the minimum threshold Slopemmm. When
a new crossing (transition point) is detected, the signal
SoC (start-of-conversion) is asserted, as is shown in
Figure 2. This assertion initiates a new ADC conversion
process. Meanwhile, a timer is activated and counting
until a predefined update time, 77, is reached if the dy-
namic condition persists. Then, a new conversion begins,
and the value is updated. Furthermore, a new conversion
is started if no new zero-crossing is detected within
the timeframe of Tp greater than Ty. This approach
ensures a minimum sampling rate even in low-activity
ECG segments.

2) Dynamic Slope Detection (DSD): In DSD mode, the
system behavior is dynamic and adapts to the incoming
ECG signal. A conversion is initiated upon detecting
a significant change or minimum slope, and then the
threshold voltage difference (AVy,) is doubled. If the
change persists (refer to the flowchart in Figure 2(b)
for details), AV, is further doubled. However, if either
a slope event is not detected or the slope condition no
longer holds, the last slope value is stored, and a counter
is activated. This counter increments until it reaches a
predefined wait time, Ty . In the absence of sustained
changes, the system reverts to behaving like the SSD
mode.

The system identifies positive and negative peak events by
analyzing the sequence of trigger events. A positive peak is
detected when a negative-going trigger follows a positive-
going trigger. Conversely, a negative peak is identified by a
positive-going trigger followed by a negative-going trigger, as
shown in Figure 2 (a). Even if the actual peak is not directly
sampled, the system can still estimate the peak value and
time of occurrence. This estimation is possible by leveraging
the information from the slope data and timestamps. The
steepness information provides insight into the rapid changes
around the peak, and the timestamps pinpoint the window
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Fig. 3. Measured results: Blue trace represents the ECG sampled at Nyquist frequency (fn), and the red dots are the sampling points using DSD with
Ty = 20 ms, Ty = 40 ms). The green curve is the DSD slope signal (guides efficient sampling). Positive/negative pulses are generated based on the slope
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Fig. 4. Comparison of RR interval error in time between the proposed method
and Nyquist sampled ECG vs. update time T7; using ten datasets from the
MIT-BIH Arrhythmia database [13].

where the peak likely resides. The system can achieve efficient
peak estimation by utilizing these elements without complex
divisions or further digital processing.

By capturing significant changes at different sensitivity
levels (1x, 2x, and 4x), DSD can effectively differentiate
between the P-wave (often having a lower slope), the QRS
complex (characterized by a larger and steeper slope), and the
T-wave (typically with a smaller slope compared to the QRS).

The DSD’s output is a 32-bit per sample dataset containing
the timestamp and sampled points, as well as the slope and
the positive or negative peak detection (See Figure 1).

III. RESULTS AND DISCUSSION

The proposed system was implemented and tested using
readily available, off-the-shelf electronic components. An Opal
Kelly XEM 7310MT board served as the digital controller.
This board features a Xilinx Artix-7 Field-Programmable Gate
Array (FPGA). A 12-bit DAC 124S085 handled the digital-
to-analog conversion, while a Texas Instruments ADC78H90
(12-bit, 500 kS/s) performed the analog-to-digital conversion.
An MCP6004 operational amplifier (Op-Amp) played a role
in the differentiator circuit.

The system’s clock period is 50 ps, defining the maximum
resolution for timing calculations, including the signal turning
points and counter ticks. Ten ECG signals were selected to
test the approach from the MIT-BIH Arrhythmia Database
available in [13]. These ECG signals were loaded onto a
Keysight EDU33212A Waveform Generator using 1 V},,,. Most
comparisons were based on the same ECG dataset sampled
at the Nyquist frequency (f,, = 200 Hz), named here as the
reference signal.

Figure 3 illustrates the performance of the Dynamic Slope
Detection (DSD) systems compared to traditional Nyquist-
rate sampling for ECG acquisition. Figure 4 shows the mean,
maximum, and minimum error of the estimated RR interval
compared with this reference signal. The RR interval, the
time between consecutive R peaks in the ECG, determines the
heart rate (beats per minute). By comparing the estimated RR
intervals with the reference, we can evaluate the accuracy of
the system’s peak detection and timing estimation capabilities.
Figure 5 represents the downsampling ratio achieved by the
DSD and SSD system compared to the reference signal.
A downsampling ratio of 2 indicates that the DSD system
acquires data points at half the rate of the Nyquist frequency.
Higher ratios signify even more significant data reduction
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Fig. 5. Downsampling ratio achieved by the proposed method compared to
a Nyquist-sampled ECG signal vs. update time T7; using ten datasets from
the MIT-BIH Arrhythmia database [13].

TABLE I
COMPARATIVE ANALYSIS OF STATE-OF-THE-ART APPROACHES.

l l

This work | [8] [ 114 [ [5] |

Method DSD 2n Order | Signal- Slope
LC-ADC dependent | Level
Crossing
Turning point | Yes Yes Yes Yes
detection
Sampling rate Async. 1 kHz 1 kHz 1 kHz
Resolution 12 bits 10 bits 12 bits 10 bits
Compression 5.38 8.33 6.1 6.17
factor @DSD
12.53
@SSD
System imple- | Off-the Integrated Integrated Off-the-
mentation Shelf Circuit Circuit Shelf
Compo- Compo-
nents nents

and lower ADC power consumption. Figure 6 showcases the
potential memory savings achieved by the proposed tech-
niques, showing a trend where the number of storable heart
cycles (N ¢) increases with increasing update time (7). The
SSD/DSD system acquires data points with higher TU values
less frequently, leading to longer heart cycle recordings.

This work is compared to other state-of-the-art methods for
acquiring ECG signals in Table I.

Our approach offers a better alternative to traditional meth-
ods, such as 2"¢ order LC or Slope-Level Crossing (SLC)
techniques, which rely on fixed sampling rates. With DSD,
we can dynamically adjust the sampling rate based on the
slope information of the signal. This results in similar signal
fidelity, including accurate turning point detection and RR
interval estimation, while achieving a higher compression ratio
of 12.53. DSD requires less storage space and may have a
more straightforward implementation using readily available
components.
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Fig. 6. Number of heart cycles (Ng ) stored in a 1 kB memory device using
our method compared to a Nyquist-sampled ECG signal vs. update time Ty,
and based on ten datasets from the MIT-BIH Arrhythmia database [13].

IV. CONCLUSIONS

This work presented a novel Dynamic Slope Detection
(DSD) system for ECG signal acquisition. The system utilizes
slope information to guide efficient, adaptive data sampling,
significantly reducing the number of acquired data points
compared to traditional Nyquist-rate approaches. This strategy
demonstrably leads to a compression ratio of 12.53, making
DSD suitable for applications with limited storage resources,
such as wearable ECG devices. The DSD system’s update time
(Ty) parameter allows users to fine-tune the balance between
data reduction and the amount of ECG signal information
captured, making it relevant to other applications. Overall, the
DSD system presents a compelling approach for ECG signal
acquisition, offering efficient data acquisition, preserved signal
fidelity, and the ability to optimize for specific application
needs. Future work may explore integrating DSD with ML
algorithms for enhanced analysis and real-time health moni-
toring applications.
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