2024 1EEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) | 979-8-3503-9172-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/ANTS63515.2024.10898859

IEEE ANTS 2024: Short Papers

Computing in Transit to Identify Rare Events in
Streaming Scientific Data

Ganesh C. Sankaran
Information Sciences Institute
Los Angeles, CA, USA
gsankara@isi.edu

Abstract—Programmable networks, aside from carrying out
their core network functions, can look deep into the data stream
and perform application layer processing. But, expect for a few
demonstrations, this capability remains largely under explored
and under utilized. Currently, scientific computing leverages
networks only for communication and not for computation. We
propose Computing in Transit to unleash the potential of network
computing for scientific workflows. Specifically, we investigate
computing in transit in the context of light source experiments.
Researchers using light sources are interested in rare events
and we intend to leverage computing in transit to solve this
problem. As the compute and memory resources available within
the network are scarce, we must use these resources prudently
without sacrificing on performance metrics. Computing within
the network can support significantly higher throughput at low
latency but it may be less accurate as there are limitations to
how deep a network can inspect the payload. We propose a
neutralized checksum that takes in TCP checksum as an input
to avoid processing the entire payload. We evaluate this approach
to identify rare events by introducing random perturbations to
reference frames. We measure the effectiveness of neutralized
checksum to identify changes. We see that neutralized checksum
identifies all changes and is a very promising approach to rare
event detection.

I. INTRODUCTION

Scientific workflows continuously monitor a phenomenon
and generate huge amount of raw data. Researchers on the
other hand are interested in streams that carry regions of
interest. For instance, light source facilities such as Argonne’s
Advanced Photon Source (APS) [1], encompass a diverse set
of scientific workflow in which researchers are more interested
in changes in data rather than the raw data. Current state-of-
the-art in scientific workflow (see left hand side of Fig. 1)
involves moving data to edge resources for preprocessing, and
then to remote Cloud / High-performance Computing (HPC)
resources for large-scale processing and storage. We envision
that scientific workflows will be able to compute and distribute
data at optimal points along the network path (see right hand
side of Fig. 1) by leveraging programmable networks.

Programmable networks provide benefits in terms of pro-
cessing huge volumes of data, while in-network computing
is the process of offloading operations from end hosts into
networking devices (e.g., switches, routers, or smart NICs) [2].
When near-network computing resources are also used, we
can call this paradigm in-transit computing (see Figure 2).
Since the initial work on in-network computing [3], there has

Joaquin Chung
The University of Chicago
Chicago, IL, USA
chungmiranda@uchicago.edu

Rajkumar Kettimuthu
Argonne National Laboratory
Lemont, IL, USA
kettimut@anl.gov

Instrument

Feedback Raw data

Large scale
processing/ Preprocessing
storage
Network as a

pipeline

State of the art

Instrument
\Raw data
Store regions \ Intransit
of interest G
(Network)
P

Proposed

)

Feedback

—)

-

Fig. 1. Scientific Workflow computing In-Transit: Network computes on
streaming data in the proposed system.

been a lot of research interest in this area. Still, realising
a scientific workflow is highly challenging. There are only
a handful of closely related works at the intersection of
scientific computing and in-network computing. Relevant work
in this space attempted to solve two important problems: (i)
providing an unified interface across heterogeneous network
resources [4] and (ii) supporting floating point and logarith-
mic math function on programmable switch hardware [5].
Recently, Patel et al. [6] realized a richer set of math functions
using Taylor series approximation.

In this paper, we take another step towards in-transit
computing by solving the rare event detection problem for
streaming scientific data. We present a preliminary study to
evaluate the TCP checksum as change detection mechanism.
Checksums have been used to ensure integrity and for change
detection. In this case, we propose the use of transport layer
checksums for change detection. The primary advantage of
this approach is that this solution can be programmed within
a network switch. Due to the computing and memory resource
limitations, we compute neutralized checksums from transport
layer checksums. Our initial results look promising and we
propose to carry out a detailed evaluation of the proposed
checksum with possible use cases where it is suitable and
where it is not.

II. MOTIVATION AND CHALLENGES

Broadly, scientific workflows involving physical phe-
nomenon with a sense of continuity have additional clues em-
bedded in raw data. For instance, a perturbation of a point on
the surface of an object impacts nearby space and is to be seen
in subsequent monitoring cycles. This change is continuously
visible both in time and space until it disappears. We will

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on October 28,2025 at 12:43:04 UTC from IEEE Xplore. Restrictions apply.

979-8-3503-9172-5/24/$31.00 ©2024 IEEE

Packets

Beamline II _
Sample Data -
Light Source Acquisition o

. ~ > “
“In-transit computing

? Feedback

i _ Region of
T N interest

Fig. 2. In-transit system for a light source facility use case.

exploit these characteristics for solving the change detection
problem in transit. We consider a light source facility use case
to motivate this work, specifically the High-Energy Diffraction
Microscopy (HEDM) type of experiment. HEDM experiments
could be described as follows: a typical experiment comprises
16 layers, with each layer containing four scans. A scan refers
to the collection of angular projections of an object, while a
projection refers to an image snapshot obtained by illuminating
the object at a specific angle. Each scan captures 1440 frames,
where every frame is an image with a resolution of 2048 x 2048
pixels. In the analysis phase of HEDM data, the primary
focus is on extracting patches that feature a singular diffraction
peak, crucial for the 3D microstructural mapping of materials.
Typically, each diffraction peak spans across 2-3 frames within
a single scan. Following the acquisition phase, where each scan
takes approximately 6-7 minutes to produce a raw image, the
patch extraction process is completed within 1-2 minutes. It is
within these extracted patches that the singular peak (persisting
for a few frames) provides vital insights into the material’s
microstructure.

A programmable switch provides a high-speed, stateful
processing pipeline that can operate on Gbps to Tbps of
data. Packet data and its metadata is available throughout
the processing pipeline. While, the pipeline operates on the
packet headers and metadata, it is not capable of operating on
the complete packet payload. Depending on the OEM vendor
design, a small portion (e.g., 200 to 500 bytes) of payload
can be parsed out as a header and processed by the pipeline.
In comparison with the Jumbo packet size (i.e., 8000+ bytes),
this is significantly small.

One of the key challenges when realizing a scientific
workflow is the limited pipeline resources. The number of
pipeline stages and resources available per pipeline stage are
limited. Flight Plan [7] and DINC [8] extended the pipeline
beyond a single network switch to address this limitation.
Moreover, Kim et al. [9] outline the challenges in processing
high-dimensional data used in scientific computing. Finally,
transport is another key challenge. Traditionally, TCP based
transport was defined in an immutable payload regime and it
is sensitive to deflation or compression of payloads as a result
of processing as pointed out by Stephens et al. [10].

III. APPROACH

In this paper, we use the terms payload and application
data interchangeably. In the current use case, a checksum
on payload is desired. While both IP and TCP headers have
checksum fields, the IP header checksum is not a function
of the packet payload, and does not indicate changes in
payload. On the contrary, the TCP checksum takes the payload
as its input. However, this checksum also takes additional
inputs such as source and destination IP addresses, source
and destination TCP ports, sequence numbers, and other
TCP fields to compute its checksum. These header fields
change significantly across connections and within the same
connection, leaving an undesired impact on the TCP checksum
for our change detection objective.

Next, we argue that the option of computing a checksum
on payload within the data plane is infeasible. Programmable
switches have limitations in terms of resources and payload
visibility as mentioned in Section II. A switch data plane has
lookup tables, limited pipeline stages, registers and arithmetic
operation support. In short, the resources are limited for
computing a checksum on the payload.

When arguing about resource limitation, the question on
whether any checksum can be computed at all within the
data plane arises. TCP checksum involves the entire payload
whereas IPv4 checksum does not. IPv4 header gets updated
at every router hop. This update involves decrementing TTL,
thus IPv4 header checksum is recomputed on IPv4 header
fields. This operation is limited to 20-byte header. On the
other hand, a TCP checksum involves the entire payload, so
the data plane has the capability to compute checksums such
as IP header checksum that involve handful header fields but it
is not capable of computing checksums on the entire payload
such as TCP checksum or a custom checksum on payload as
we desire.

A. Neutralized TCP Checksum

Having presented the challenges, here, we present a neutral-
ized checksum computation algorithm N (p). We know that
TCP checksum takes payload along with pseudo IP header
fields and entire TCP header as its input. We observe two key
properties of this checksum: it is conditionally commutative

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on October 28,2025 at 12:43:04 UTC from IEEE Xplore. Restrictions apply.

and reversible. A commutative operation does not depend on
the permutation of input but on the combination of input.

TCP checksum operation is not commutative on fields that
are less than 2 bytes. TCP header contains TCP flags, reserved
and data offset fields that are less than 2 bytes. When, we
change the permutation of these fields, the resulting TCP
checksum is not the same as the checksum computed by
the IP/TCP protocol stack. In short, we cannot change the
permutation of these fields, they must be rolled up into a
2-byte virtual field in the same sequence as they appear
in the TCP header. However, all fields that align to a 2-
byte boundary are commutative. For instance, TCP checksum
computed considering IP source before IP destination is equal
to the checksum computed when IP destination is considered
before IP source.

Next, we observe that TCP checksum is reversible. We
demystify the TCP checksum computation to reinforce this
observation. TCP checksum computation breaks down the
entire TCP header, pseudo IP header, and payload into 2 byte
chunks. It then adds all these chunks with carry. Then reduces
the final value to 2 bytes by adding the carry to the 2 byte
least significant bits. Then, a one’s complement is computed
on this and taken as TCP checksum. Since this involves add
operations and one’s complement, TCP checksum computation
is reversible.

The proposed algorithm uses commutative and reversible
properties to neutralize the impact of IP/TCP header fields
on a packet’s TCP checksum. The neutralized checksum on
payload, N(p) = f(c,i,t), where p is the payload, ¢ is the
current TCP checksum, ¢ is the pseudo IP header, ¢ is the TCP
header and f(x) is the function of ¢, 4, and t. Neutralization
involves more number of fields as compared to an IPv4 header
checksum but is still within the resource limitations of a
switch’s data plane.

IV. EVALUATION

In this section, we evaluate the effectiveness of using a
neutralized TCP checksum implemented in P4 [11]. P4 is a
domain specific language that provides a handle on parser,
deparser, processing pipeline of a network switch. We use
the processing pipeline resources to implement the neutralized
TCP checksum. After forwarding decision is taken on the
packet, we check whether this packet has a TCP header. Then
compute the neutralized checksum on this packet. Neutralized
TCP checksum implementation involves a series of add opera-
tions on the header fields and then the final operation involves
current TCP checksum.

The number of reference packets (r), packet length (1),
number of patches to be introduced in the packet (n), patch
size (s) are the evaluation parameters. Here, r» and [are
integers, whereas n € [0, 1,2, 3] and s € [0, 3,4, 5] are chosen
randomly. The domain for n» and s were chosen from the
HEDM use case where patch size is anywhere between 3 x 3
and 5 x 5 pixels. We generate random reference packets of
specified length [that carry the background data. Subsequent
packets are generated from these reference packets based on n

and s. For instance, when n = 3, three random patch sizes of
s are generated. For every patch, a random patch position is
chosen. At this random position, a randomly generated patch
of size s is applied. This results in a series of modifications to
the reference packet at random positions. Finally, the modified
packet is sent over. When zero is chosen as patch size or patch
number, no patch is applied on the packet.

At the P4 switch, a neutralized TCP checksum A (p) is
computed. This indicates whether the data is changed or not.
When there is a change in data, rare event is identified. This
will help the scientific workflow in identifying rare events
while at the same time discarding uninteresting events from
the streaming data.

A. Metrics and objective of evaluation

Checksum collisions are possible and there is chance that
a rare event goes unnoticed. The primary objective is to
measure the false negatives associated with the neutralized
TCP checksum. In addition, false positives increase the noise
in the scientific data stream. The secondary objective is to
minimize the false positives.

B. P4 Implementation

We implemented the neutralized checksum on P4 BMv2 as
shown in code listing 1.

Listing 1. P4 neutralized checksum source code.

action neutralize () {

bit <32> isum = ((bit<32>) (hdr.ipv4.srcAddr >> 16 & OxFFFF))
((bit<3>) (hdr.ipv4.srcAddr & OxFFFF))
((bit<32>) (hdr.ipv4.dstAddr >> 16 & OxFFFF))
((bit<32>) (hdr.ipv4.dstAddr & OxFFFF))
((bit<32>) (hdr.tcp.seqNo >> 16 & OxFFFF))
((bit<32>) (hdr. tcp .seqNo & OXFFFF))
((bit <3>) (hdr. tcp.ackNo >> 16 & OXFFFF))

+

((bit <32>) (hdr.tcp.ackNo & OxFFFF))

((bit <32>) hdr.tcp.srcPort

(bit <32>) hdr.tcp.dstPort

(bit <32>) hdr.tcp.others)

(bit<32>) (hdr.tcp.window + hdr.tcp.urgentPtr)
((bit<32>) (hdr.ipv4.protocol & 0x00FF))

s

+

((bit<32>) hdr.ipv4.totalLen — ((bit<32>)hdr.ipv4.ihl <<2));
bit<I6> sum = hdr.tcp.checksum
+ (bit <16>)((isum >> 16) & OxFFFF)

) + (bit <16>) (isum & OxFFFF);

A set of ten r randomly generated reference packets with
different lengths [= 500, 1500, 8000 were used. These lengths
correspond to average packet size on the Internet, MTU of
Ethernet and Jumbo packet size respectively. Then, these ref-
erence packets were used to generate more than 3000 random
packets with and without patches based on the randomly
chosen number of patches n, patch size s and patch positions.
The parameters used to create the packet such as total patch
size (shown in Fig. 3) and the number of patches used to
modify the packet were encoded into the packet to compute

false positives and false negatives.

C. Results and discussion

Out of 3030 packets, 2024 packets were modified and the
rest unmodified. This is more than the number of rare events
that takes place in our scientific use case and evaluation must
be treated as a worst case analysis.

All patches and hence all rare events were identified, So,
Fig. 3 also presents the distribution of patches by total size
identified by the neutralized checksum algorithm.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on October 28,2025 at 12:43:04 UTC from |IEEE Xplore. Restrictions apply.

Distribution of total patch size

1000 A

800 4

600

Frequency

F

[=]

o
L

200 4

0 2 4 6 8 10 12 14
Total patch size per packet

Fig. 3. Distribution of total patch size per packet.

TABLE I
EFFICIENCY OF NEUTRALIZED CHECKSUM

Rare?
Y N
Y [20240
N[O 1006

Identified?

With random patches, neutralized TCP checksum indicated
a change in all 2024/2024 cases and identified rare events.
In the unmodified cases, it identified no rare events. No
false positives or false negatives were observed. In 25/3030
cases, checksum collision was observed across different ref-
erences. For the same reference, two checksum collisions
were observed. When, collision is non-zero, there is a non-
zero possibility that the light source moves from one random
state to another but will go unnoticed. We need additional
mechanisms to ensure that this situation does not occur.

To conclude, neutralized checksum in this initial study looks
as a promising option for identifying rare events. We observe
non-zero collisions and detailed research is required to reduce
the collisions.

V. CONCLUSION

In this paper, we proposed the application of computing
in transit to scientific workflows. We chose HEDM scientific
use case where researchers are continuously looking for rare
events. When data is still in transit, we proposed the use
of programmable data plane switches to identify rare events.

TABLE I
NUMBER OF PATCHES APPLIED TO A PACKET AND HOW MANY WERE
IDENTIFIED

Identified
1006/1006
624/624
656/656
7441744

W~ 3

Since switches lack the capability to process entire payloads,
we proposed a neutralized checksum to identify changes in
data. We evaluated our approach in P4 and were able to find all
change instances successfully. We also observed that checksum
collision is a non-zero probability incident. This affects the
accuracy of the approach. We conclude that the neutralized
checksum approach is promising in terms of efficiency in
identifying changes.

In future, we intend to study multiple checksums, leveraging
limited payload visibility and processing payload by progres-
sively chopping off a portion of data. In case of doubt, we
intend to study the use of near-network resources to cross-
verify.

REFERENCES

[1] “Advanced Photon Source,” https://www.aps.anl.gov.

[2] N. Zilberman, “In-network computing,” https://www.sigarch.org/in-
network-computing-draft/.

[3] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-
network computation is a dumb idea whose time has come,” in Pro-
ceedings of the 16th ACM Workshop on Hot Topics in Networks, 2017,
pp. 150-156.

[4] G. C. Sankaran, J. Chung, and R. Kettimuthu, “App2net: Moving appli-
cation functions to network & a case study on low-latency feedback,”
in 2022 IEEE/ACM International Workshop on Innovating the Network
for Data-Intensive Science (INDIS), 2022, pp. 1-8.

, “Leveraging in-network computing and programmable switches
for streaming analysis of scientific data,” in 2021 IEEE 7th International
Conference on Network Softwarization (NetSoft). 1EEE, 2021, pp. 293—
297.

[6] S. Patel, R. Atsatsang, K. M. Tichauer, M. H. Wang, J. B. Kowalkowski,
and N. Sultana, “In-network fractional calculations using p4 for scientific
computing workloads,” in Proceedings of the 5th International Workshop
on P4 in Europe, 2022, pp. 33-38.

[7]1 N. Sultana, “Leveraging in-network application awareness,” in Proceed-
ings of the ACM SIGCOMM 2021 Workshop on Network-Application
Integration, 2021, pp. 63-67.

[8] C.Zheng, H. Tang, M. Zang, X. Hong, A. Feng, L. Tassiulas, and N. Zil-
berman, “Dinc: Toward distributed in-network computing,” Proceedings
of the ACM on Networking, vol. 1, no. CONEXTS3, pp. 1-25, 2023.

[9] D. Kim, A. Jain, Z. Liu, G. Amvrosiadis, D. Hazen, B. Settlemyer, and
V. Sekar, “Unleashing in-network computing on scientific workloads,”
arXiv preprint arXiv:2009.02457, 2020.

[10] B.E. Stephens, D. Grassi, H. Almasi, T. Ji, B. Vamanan, and A. Akella,
“Tep is harmful to in-network computing: designing a message transport
protocol (mtp),” in Proceedings of the 20th ACM Workshop on Hot
Topics in Networks, 2021, pp. 61-68.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, July 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[51

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on October 28,2025 at 12:43:04 UTC from IEEE Xplore. Restrictions apply.

