

and reversible. A commutative operation does not depend on

the permutation of input but on the combination of input.

TCP checksum operation is not commutative on fields that

are less than 2 bytes. TCP header contains TCP flags, reserved

and data offset fields that are less than 2 bytes. When, we

change the permutation of these fields, the resulting TCP

checksum is not the same as the checksum computed by

the IP/TCP protocol stack. In short, we cannot change the

permutation of these fields, they must be rolled up into a

2-byte virtual field in the same sequence as they appear

in the TCP header. However, all fields that align to a 2-

byte boundary are commutative. For instance, TCP checksum

computed considering IP source before IP destination is equal

to the checksum computed when IP destination is considered

before IP source.

Next, we observe that TCP checksum is reversible. We

demystify the TCP checksum computation to reinforce this

observation. TCP checksum computation breaks down the

entire TCP header, pseudo IP header, and payload into 2 byte

chunks. It then adds all these chunks with carry. Then reduces

the final value to 2 bytes by adding the carry to the 2 byte

least significant bits. Then, a one’s complement is computed

on this and taken as TCP checksum. Since this involves add

operations and one’s complement, TCP checksum computation

is reversible.

The proposed algorithm uses commutative and reversible

properties to neutralize the impact of IP/TCP header fields

on a packet’s TCP checksum. The neutralized checksum on

payload, N (p) = f(c, i, t), where p is the payload, c is the

current TCP checksum, i is the pseudo IP header, t is the TCP

header and f(∗) is the function of c, i, and t. Neutralization

involves more number of fields as compared to an IPv4 header

checksum but is still within the resource limitations of a

switch’s data plane.

IV. EVALUATION

In this section, we evaluate the effectiveness of using a

neutralized TCP checksum implemented in P4 [11]. P4 is a

domain specific language that provides a handle on parser,

deparser, processing pipeline of a network switch. We use

the processing pipeline resources to implement the neutralized

TCP checksum. After forwarding decision is taken on the

packet, we check whether this packet has a TCP header. Then

compute the neutralized checksum on this packet. Neutralized

TCP checksum implementation involves a series of add opera-

tions on the header fields and then the final operation involves

current TCP checksum.

The number of reference packets (r), packet length (l),

number of patches to be introduced in the packet (n), patch

size (s) are the evaluation parameters. Here, r and l are

integers, whereas n ∈ [0, 1, 2, 3] and s ∈ [0, 3, 4, 5] are chosen

randomly. The domain for n and s were chosen from the

HEDM use case where patch size is anywhere between 3× 3
and 5 × 5 pixels. We generate random reference packets of

specified length l that carry the background data. Subsequent

packets are generated from these reference packets based on n

and s. For instance, when n = 3, three random patch sizes of

s are generated. For every patch, a random patch position is

chosen. At this random position, a randomly generated patch

of size s is applied. This results in a series of modifications to

the reference packet at random positions. Finally, the modified

packet is sent over. When zero is chosen as patch size or patch

number, no patch is applied on the packet.

At the P4 switch, a neutralized TCP checksum N (p) is

computed. This indicates whether the data is changed or not.

When there is a change in data, rare event is identified. This

will help the scientific workflow in identifying rare events

while at the same time discarding uninteresting events from

the streaming data.

A. Metrics and objective of evaluation

Checksum collisions are possible and there is chance that

a rare event goes unnoticed. The primary objective is to

measure the false negatives associated with the neutralized

TCP checksum. In addition, false positives increase the noise

in the scientific data stream. The secondary objective is to

minimize the false positives.

B. P4 Implementation

We implemented the neutralized checksum on P4 BMv2 as

shown in code listing 1.

Listing 1. P4 neutralized checksum source code.
a c t i o n n e u t r a l i z e () {

b i t<32> isum = ((b i t <32>) (hdr . i pv4 . s r cAddr >> 16 & 0xFFFF))

+ ((b i t <32>) (hdr . i pv4 . s r cAddr & 0xFFFF))

+ ((b i t <32>) (hdr . i pv4 . ds tAddr >> 16 & 0xFFFF))

+ ((b i t <32>) (hdr . i pv4 . ds tAddr & 0xFFFF))

+ ((b i t <32>) (hdr . t c p . seqNo >> 16 & 0xFFFF))

+ ((b i t <32>) (hdr . t c p . seqNo & 0xFFFF))

+ ((b i t <32>) (hdr . t c p . ackNo >> 16 & 0xFFFF))

+ ((b i t <32>) (hdr . t c p . ackNo & 0xFFFF))

+ ((b i t <32>) hdr . t c p . s r c P o r t

+ (b i t <32>) hdr . t c p . d s t P o r t

+ (b i t <32>) hdr . t c p . o t h e r s)

+ (b i t <32>) (hdr . t c p . window + hdr . t c p . u r g e n t P t r)

+ ((b i t <32>) (hdr . i pv4 . p r o t o c o l & 0x00FF))

+ ((b i t <32>) hdr . i pv4 . t o t a l L e n − ((b i t <32>)hdr . i pv4 . i h l <<2));

b i t<16> sum = hdr . t c p . checksum

+ (b i t <16>)((isum >> 16) & 0xFFFF)

+ (b i t <16>) (isum & 0xFFFF) ;

}

A set of ten r randomly generated reference packets with

different lengths l = 500, 1500, 8000 were used. These lengths

correspond to average packet size on the Internet, MTU of

Ethernet and Jumbo packet size respectively. Then, these ref-

erence packets were used to generate more than 3000 random

packets with and without patches based on the randomly

chosen number of patches n, patch size s and patch positions.

The parameters used to create the packet such as total patch

size (shown in Fig. 3) and the number of patches used to

modify the packet were encoded into the packet to compute

false positives and false negatives.

C. Results and discussion

Out of 3030 packets, 2024 packets were modified and the

rest unmodified. This is more than the number of rare events

that takes place in our scientific use case and evaluation must

be treated as a worst case analysis.

All patches and hence all rare events were identified, So,

Fig. 3 also presents the distribution of patches by total size

identified by the neutralized checksum algorithm.

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on October 28,2025 at 12:43:04 UTC from IEEE Xplore. Restrictions apply.

