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Abstract

Stroke is a leading cause of adult disability worldwide, with approximately 101 million survivors globally. Over 60% of these
individuals suffer from long-term, often lifelong, movement impairments that significantly hinder their ability to perform
essential daily activities and maintain independence. Post-stroke movement disabilities are highly associated with structural
and functional changes in motor descending pathways, particularly the corticospinal tract (CST) and other indirect motor
pathways via the brainstem. For decades, neuroengineers have been working to quantitively evaluate the post-stroke changes
of motor descending pathways, aiming to establish a precision prognosis and tailoring treatments to post-stroke motor
impairment. However, a clear and practicable technique has not yet been established as a breakthrough to change the standard
of care for current clinical practice. In this review, we outline recent progress in neuroimaging, neuromodulation, and
electrophysiological approaches for assessing structural and functional changes of motor descending pathways in stroke. We
also discuss their limitations and challenges, arguing the need of artificial intelligence and large multi-modal data registry for
a groundbreaking advance to this important topic.

Keywords: Stroke, Motor Descending Pathways, MRI, Transcranial Magnetic Stimulation (TMS), Cortico-muscular
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1. Introduction

Stroke is a leading cause of adult long term disability
worldwide!. There are approximately 101 million stroke
survivors in the world with over 60% of them experiencing
long-term movement disabilities’. These impairments are
often life-long and lead to difficulty with activities of daily
living and returning to work®. A stroke lesion results in focal
damage to motor or sensory cortices and their descending or
ascending pathways. Recovery outcomes are highly variable,
influenced by the lesion's location and size, associated white
matter alterations (e.g., fiber loss or degeneration), and the
effectiveness of therapeutic interventions and rehabilitation
strategies. These factors determine the degree of functional
restoration, highlighting the importance of precise lesion
characterization and individualized rehabilitation plans to
optimize recovery outcomes®.

The somatic motor system is organized into two major
descending pathway systems: direct and indirect pathways.
The direct pathways, including the corticospinal tract (CST),
are primarily responsible for voluntary motor control. In
contrast, the indirect pathways, such as the
corticoreticulospinal tract (CRST), which is composed of the
corticoreticular tract (CRT) and the reticulospinal tract (RST)
with synaptic connections in nuclei at the brainstem, focus
on reflexive and postural control of musculature’. Post-stroke
movement disabilities are highly associated with structural
and functional changes in these motor control pathways.
Reduced CST fiber density severely compromises precise,
individuated control of single joints® 7. CST damage also
triggers secondary adaptive changes in the brain and spinal
cord, including maladaptive hyperexcitability of the CRST, a
key factor in severe post-stroke motor impairments® °. This
leads to stereotyped, coarse, multi-joint movements, known
as pathological limb synergies'’. In the upper limb, this
manifests as "flexion synergy," where increased shoulder
abduction causes involuntary activation of elbow, wrist, and
finger flexors, a hallmark of post-stroke motor dysfunction'"
12

The mechanisms underlying these motor impairments are
closely linked to damage in motor pathways and the
plasticity of the nervous system following a stroke. The RST
consists of two components: the dorsal and medial RST. The
dorsal RST originates from the medullary reticular
formation, receives input from the contralateral primary
motor cortex, and provides inhibitory input to spinal reflex
circuits, descending ipsilaterally to the spinal cord!®. The
medial RST, originating from the pontine reticular formation,
receives input from the ipsilateral premotor cortex and
supplementary motor areas, descending ipsilaterally to the
spinal cord and providing excitatory input to the spinal motor
network®. Post-stroke, damage to the ipsilesional motor
cortex, CST and/or CRT leads to significant motor deficits.

CST damage impairs voluntary limb movement, while CRT
damage reduces input to the contralesional medullary
reticular formation, resulting in hypoactivity of the
contralesional dorsal RST’s inhibitory effects on spinal
stretch  reflexes'®.  Concurrently, inputs from the
contralesional premotor cortex and supplementary motor
areas to the contralesional pontine reticular formation
become hyperexcitable, driving spasticity and abnormal
flexion synergy'> '®. Spasticity, characterized by hyperactive
stretch reflexes, affects up to 65% of stroke patients and is
associated with poor motor function!” 18,

Due to the critical role of motor descending pathways in
post-stroke movement impairments, specifically flexion
synergy and spasticity, neuroengineers are developing
methods to quantify changes in these pathways. Techniques
such as neuroimaging, neuromodulation, and
electrophysiological approaches are being explored to assess
these changes. This review discusses the recent
advancements in these methods, highlighting current
limitations, challenges, and future research directions.

2. Imaging-based approach for detecting and
evaluating structural changes of motor descending
motor pathways post stroke

2.1 Lesion load on the corticospinal tract using
structural imaging

The CST, extending from the motor cortex through the
internal capsule and cerebral peduncles and decussating at
the medulla into the spinal cord, is frequently affected in
both ischemic and hemorrhagic strokes. This leads to lasting
motor deficits due to disruption of signal transmission
between the brain and the extremities!®. Structural magnetic
resonance imaging (MRI), particularly T1-weighted imaging
(TIWI) and T2-weighted imaging (T2WI) are utilized
(Figure 1) because these allow for detailed assessment of
ischemic and hemorrhagic lesions in cortical and subcortical
areas where CST fibers are located®® 2!. TIWI is a powerful
imaging modality providing high-resolution anatomical
details and is particularly useful for detecting primary
ischemic or hemorrhagic lesions, as well as assessing atrophy
and secondary degeneration. This allows for precise
localization of stroke lesions and their relationship to motor
pathways. T2WI is highly sensitive to changes in water
content and is particularly effective in identifying edema,
gliosis, and other pathological changes associated with CST
damage®®>. Each phase of stroke - acute, subacute, and
chronic—presents unique structural changes in the CSTZ,
TIWI and T2WI offer distinct advantages in visualizing
these changes, helping clinicians evaluate lesion load,
secondary degeneration, and the likelihood of functional
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improvement?!.

Figure 1. Lesion appears dark on T1-weighted (left) and bright on T2-
weighted MRI images (right).

In the acute stage of ischemic stroke, TIWI and T2WI
help identify the immediate effects of injury in the CST?,
TIWI shows early hypointensity in the infarcted area,
allowing for lesion localization. T2WI is especially useful for
detecting edema, which appears as hyperintensity in the
affected CST?> ?°. Edema in the acute stage can expand into
surrounding motor-related areas, increasing lesion load and
the risk of additional motor deficits?’. TIWI and T2WI also
help identify the risk of midline shift or compression on the
CST, which can worsen motor outcomes. During the
subacute stage of ischemic stroke, MRI changes become
more pronounced as edema subsides and gliosis begins.
T1WI can reveal hypointense regions as the infarcted tissue
undergoes necrosis and volume loss. Detecting this
degeneration is crucial for assessing prognosis, as it often
correlates with motor impairment severity®,

In chronic stages, Wallerian degeneration, gliosis and
scarring become prominent, and the CST develops persistent
atrophy. Wallerian degeneration is a process of progressive
axonal degeneration that occurs following injury to a neuron,
often due to stroke, traumatic injury, or demyelinating
disease. This degeneration involves the breakdown of the
distal portion of the axon and its myelin sheath after a
disconnection from the neuron's cell body?>3!. The process is
primarily observed in the CST, especially in regions distal to
the primary lesion, such as the cerebral peduncle and pons.
T1WI reveals hypointense signals and associated atrophy,
while T2WI shows hyperintense signal corresponding to
ongoing gliosis®> ¥, These signal changes and degree of
atrophy along the CST indicate sites of irreversible axonal
loss and reduced plasticity potential. Identifying these
changes can aid in assessing long-term outcomes for motor
function in affected patients3* %,

Quantitative analyses of post stroke lesion on MRI can be
predictive of motor outcomes, as larger lesions within or near
the CST often correlate with more significant motor
impairment®® . A study indicated that lesion load to both
the primary motor cortex (M1) and ventral premotor cortex
derived from T1WI were strongly related to stroke motor
severity indexed by Fugl-Meyer Assessment cut-off scores®®.
A meta-analysis assessed the correlation between MRI-based

lesion size and functional outcomes in patients with stroke.
This research included various studies using different
techniques to estimate acute lesion size, such as structural
MRI, diffusion-weighted imaging (DWI), and perfusion-
weighted imaging (PWI)*. Notably, the analysis found that
T2WI was more reliable for estimating lesion volume
compared to other sequences®®. Consequently, T2WI is a
preferred modality to approximate final infarct size, offering
valuable insights into the relationships between infarct size,
functional outcomes, and prognosis*.

In recent years, algorithms driven by artificial intelligence
(AI) have leveraged structural MRI to improve lesion
detection, segmentation, and quantification, thereby aiding in
accurate  stroke severity assessment and outcome
prediction*!.Guo et al. used machine learning algorithms in
combination with support vector machine (SVM) classifiers,
achieving a Dice coefficient of 0.73 for detecting ischemic
stroke lesions on TIWI** 43, Other studies have illustrated
that the Hybrid UNet Transformer (HUT) excelled in single-
modality segmentation on the Anatomical Tracings of
Lesions After Stroke (ATLAS) dataset, demonstrating an
increase of 4.84% in the Dice score and a notable 41%
improvement in the Hausdorff Distance score*.
Classification models have also been developed utilizing
decision tree and k-nearest neighbors (kNN) algorithms. A
recent study revealed that the decision tree algorithm
surpassed kNN in distinguishing between thrombotic,
hemorrhagic, and embolic strokes, demonstrating high
classification accuracy®. With the advancement of novel Al
technologies such as SAM, large language models (LLMs),
and VMamba, future Al-assisted acute stroke diagnosis is
expected to achieve higher levels of accuracy and
reliability*.

2.2 Integrity assessment of motor pathways using
diffusion imaging

To localize the damaged pathways within the CST,
diffusion tensor imaging (DTI)—calculated from diffusion-
weighted MRI (DWI)—provides a method to examine the
integrity of white matter through tractography*’. By
quantifying anisotropic diffusion levels of white matter via
fractional anisotropy (FA) values, DTI can assess brain
microstructures and white matter integrity in various
neurological conditions®®. FA is sensitive to the relative
magnitude of the eigenvalues of the diffusion tensor, which
reflect the directionality and extent of water diffusion®.
Axial diffusivity, the first eigenvalue of the diffusion tensor,
reflects the magnitude of diffusivity parallel to the direction
of maximal diffusion. In the white matter, axial diffusivity is
oriented along the direction of axons, and is thought to
primarily relate to axonal integrity.

Given that lesions from stroke often disrupt white matter,
lower FA values, especially on the ipsilesional side, are
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associated with significant motor deficits’. Recent studies
have shown that lesion load in the CST can better predict
motor impairment on the Fugl-Meyer Assessment,
particularly in severely impaired stroke patients.
Furthermore, analyzing MRI of the brainstem and spinal cord
has revealed that damage to the CST and other sensorimotor
pathways, e.g., the reticulospinal and rubrospinal tracts with
an increased FA, contributes to motor impairment following
stroke®® 3!, Changes in white matter integrity in these
pathways correlate with the severity of motor deficits,
suggesting that abnormal motor synergies and hand
impairments may be related to neuroplastic changes in
bulbospinal pathways. This suggests that alterations in both
FA and diffusivity can provide valuable insight into how
motor pathways may be affected by stroke*. This process of
tracking water diffusion, which reflects the orientation of
neural fibers, is known as tractography. FA values are
typically used with two main types of tractography
algorithms, deterministic and probabilistic, to improve the
accuracy of fiber tracking’>>°. However, deterministic
tractography has the limitation of assuming a fixed fiber
direction at each voxel, without accounting for the inherent
uncertainty in fiber orientation. In contrast, probabilistic
tractography samples a wider range of possible fiber
orientations, generating multiple potential pathways to better
capture uncertainty. While this approach is more accurate, it
requires more computational resources. Some studies also
use CST masks, calculated from probabilistic CST
tractography either in healthy control subjects or individually
for stroke patients, and overlay them onto the FA images of
stroke patients. However, there are growing concerns about
the accuracy of overlaying FA images by directly applying
only the masks of CST tracts from either controls or stroke
patients, due to variability in lesion location and size. In
recent years, more detailed subsegments of the motor cortex
have been explored, which improve the accuracy of
tractography. For example, Derek B. Archer et al. (2018)
proposed a high-resolution sensorimotor area tract template
(SMATT) that segments corticofugal tracts by setting seed
points at six key cortical regions (HMAT) within the specific
sensorimotor areas proposed by Mayka et al. (2006)%, using
DTI of 100 subjects’’. The SMATT, along with a
probabilistic version that quantifies tract overlap, offers new
tools for segmenting and labeling sensorimotor tracts at
higher spatial resolution (Figure 2). However, concerns
remain about the accuracy of directly applying these outcome
masks to stroke cases for extracting FA values. To address
the potential inaccuracies in fiber tracking in the presence of
brain lesions, Qiurong Yu et al. (2023) combined the six
subregional masks from SMATT with a transcallosal tract
template (TCATT) for frontal tracts, allowing for more
precise fiber projections (Figure 3)°% ¢,

Different
cortical regions

Motor descending
pathways

Figure 2. Different cortical regions (HMAT; left) and their underlying
motor descending pathways (SMATT; middle).

They also integrated resting-state fMRI to enhance
functional connectivity assessments, further improving the
accuracy of their approach. Tractography is also highly
sensitive to factors such as image quality, scanning
parameters, and settings (e.g., diffusion modes, number of
directions, and isotropic voxel size). These variables can
impact the tractography process, including the step sizes used
for tracking, potentially introducing bias and making it more
difficult to accurately predict changes in specific motor
pathways. From a practical perspective, increasing the
number of diffusion directions leads to longer scan times,
especially when patients require urgent care. For example,
scanning with 90 diffusion directions can take up to 20
minutes®'. Traditionally, clinical practice has used only three
directions, though more recently, 6 to 12 directions have
become common in neuroimaging. For research purposes,
however, more directions are typically used. However, even
this increase may still limit the accuracy of fiber tracking, as
the eigenvectors and eigenvalues derived from water
molecule diffusion may not fully capture the complexity of
the white matter pathways.

Figure 3. TCATT atlas in transverse, sagittal, and coronal views visualize
the neural pathways that connect the left and right hemispheres of the brain
through the corpus callosum.

As computational technology has developed, several
software programs and algorithms for automatic tractography
have been introduced, including DSI Studio (Figure 4) and
MRtrix®2. These programs utilize DWI images along with
tracking parameters (e.g., angles, minimal step sizes) and
predefined atlas regions for seed placement and ROIs. This
facilitates the visualization and projection of motor pathway
fibers easier by setting the ROI based on the default atlas,
including CST and CRST areas. One the other hand, some
studies have even adopted Al for fiber tractography, such as
DeepDTI.  Later, Hongyu Li et al. (2021)
proposed SuperDTI, model trained on healthy control data
that shows a quantification error of less than 5% in white-
matter and gray-matter regions and has even been applied for
lesion detection in stroke patients®.
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Figure 4. Automatic tractography of the corticospinal tract using the DSI
Studio.

In summary, imaging-based approaches such as structural
MRI provide detailed anatomical information for clinical and
research purposes, helping to identify stroke lesions.
Meanwhile, DWI offers a method for assessing white matter
integrity through the orientation of water molecules, which is
crucial for understanding the status of motor pathways
following a stroke. With advancements in technology, Al
now assists in lesion delineation and even performs
tractography under limited conditions, enhancing our ability
to analyze complex neural structures. These developments
are paving the way for personalized rehabilitation strategies
that are tailored to individual patient needs, ultimately
improving functional outcomes.

3. TMS Motor Evoked Potential for assessing
functional changes of motor descending motor
pathways post stroke

3.1 Motor evoked potential on lesioned corticospinal
tract

Transcranial magnetic stimulation (TMS) is a safe, non-
invasive, and painless technique that can be used to
investigate the excitability of the cortex and motor
descending pathways®. With TMS, a magnetic stimulus is
applied via coil, the effects of the stimulation are dependent
on coil shape, size, orientation®. Motor-evoked potential
(MEP) is a biphasic electromyography (EMG) response to
TMS in the target muscles. In humans, the functional
integrity of the CST can be assessed after stroke using TMS
over ipsilesional M1 to elicit contralateral motor evoked
potentials (¢cMEPs) in paretic upper limb muscles®> . The
simplest method for evaluation is presence or absence of
cMEPs early after stroke to gain information on functional

integrity of the CST?* ¢, Previous studies have found that the
presence of cMEPs correlated with greater strength and
higher FMA scores®. Further, if present, the features of the
cMEP have gained important scientific and clinical
relevance, as they have been associated to motor cortex
excitability, and integrity and conduction velocity of the
activated fibers of the motor pathway®. Specifically, the
peak-to-peak amplitude provides insights into cortico-spinal
excitability and the latency (or onset) provides information
on the conduction within triggered neuronal pathways. Both
latency and amplitude of cMEPs have been shown to be
significantly correlated with clinical motor assessments post
stroke’* 73, This is shown in Figure 5.
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Figure 5. Correlation between the latency and amplitude of ipsilesional
(contralateral) M1 MEP and FM-UE. Adopted from [63], authors received
permission from the primary author and colleagues, CC by 4.0
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However, the extraction of features from ¢cMEPs elicited
by TMS is performed manually, increasing variability due to
observer-dependent subjectivity. To eliminate trials without
MEPs, or with poor signal-to-noise ratio, several studies use
manual protocols comprising a visual inspection of the EMG
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trace from each trial, either during MEP acquisition or in
posterior offline processing’#7. Further, the methodology
employed for MEP signal processing is heterogeneous
throughout the literature”” 78. Therefore, recent research in
this field is focused on unbiased methods to automate
amplitude and latency detection. Many algorisms have been
presented that can accurately detect MEP amplitude and
latency in healthy controls’®!. However, due to neurological
lesion in stroke subjects, there is an increase in the variability
of the extracted features®?. This makes automation of MEP
difficult and can cause unreliability even with good signal-to-
noise ratio®. A recent method has been proposed by
Tecuapetla-Trejo et al (2021). Their algorithm was able to
successfully automate MEP selection and feature extraction
for stroke subject in the acute phase, with no significant
differences from manual measurement performed by three
experts®.

Another cause of variability in the MEP measures is the
activation of the target muscle, a pre- activation will decrease
the threshold required to produce a MEP, and the MEP
amplitude will be larger than that of a muscle at rest®®. This
can cause intra- and inter-subject MEP variability, as
subject-related parameters such as anticipation of
stimulation, active thinking about body movements, or action
observations have shown to effect MEP characteristics®.
Due to the high variability of MEPs from stimulation
pulse to pulse, definitions of intensity thresholds have been
established as an attempt to individualize and standardize the
stimulation intensity applied during TMS¥. The
conventional criteria for resting motor threshold (RMT) is
the lowest stimulation intensity required to elicit an MEP of
50 pV in >5 of 10 trials®® and for activated motor threshold
(AMT) is defined as the lowest intensity to produce a 200 pV
MEP in >5 of 10 trials¥. However, recently, with the
advancement of TMS technologies, MEPs that fall below the
conventional RMT criteria (responses <50 pV) have been
shown to be informative and reliable®®. This is especially
important for stroke participants as they have a lower
amplitude in the paretic limb, compared to the non-paretic
limb and healthy controls®! %2,

3.2 Motor evoked potential on contralesional cortico-
reticulospinal tract

Post-stroke movement disorders are not only linked to
decreased function in the ipsilateral M1 and its descending
CST but are also associated with enhanced activity in the
contralesional premotor and supplementary motor areas’® %,
This suggests that post-stroke motor dysfunction involves
complex interactions between both hemispheres, impacting
motor control and requiring a more comprehensive approach
to understanding stroke recovery mechanisms®’. Most
studies aiming to activate the contralesional CRST use
previously published methodology for targeting the premotor

cortex, by starting at M1 and moving the coil 1-3 cm medial
and 2.5-3 cm anterior of the contralesional M1 and using an
anterior-posterior coil orientation®®!%, This is shown visually
in Figure 6.

Posterior

Anterior

Figure 6. Coil orientation for stimulating ipsilesional primary motor cortex
(iM1) and contralesional dorsal premotor area (cPMd), assuming the lesion
on the left side. Adapted from [63], authors received permission from the
primary author and colleagues, CC by 4.0

Recent research indicates post-stroke changes of CRST
innervation in upper limb muscles, particularly biceps
muscles, underscoring its significance in upper limb
rehabilitation'”. In stroke patients, TMS of the
contralesional hemisphere (at the premotor cortex and at M 1)
can elicit responses in ipsilateral muscles of the paretic arm,
attributed to the activation of oligosynaptic cortico-
bulbospinal pathways. This response likely reflects
hyperexcitability of the CRST!*!1%5, While TMS is used to
assess CRST excitability, the literature shows variability in
stimulation targets, with inconsistent locations and frequent
use of anterior-posterior coil orientation!%,

The presence of ipsilateral motor-evoked potentials
(iMEPs) from contralesional motor cortex is associated with
motor and neurophysiological impairments, with more
frequent iMEPs observed in individuals with greater
impairment, suggesting maladaptive role of contralesional
CRST hyperexcitability. A study found that iMEP
occurrence is higher in stroke patients with severe CST
damage compared to those with milder damage® %7,
Stronger contralesional CRST projections (reflected by
higher iMEP amplitudes) correlate with increased upper limb
strength, while stronger ipsilesional CST projections are
linked to better motor control and improved muscle
individuation'®. The differences in excitatory and inhibitory
capacities of the contralesional CRST and ipsilesional CST
provide insight into their roles: CST terminals are
predominantly excitatory, while CRST terminals include
both excitatory and a significant minority of inhibitory
connections'® % This dual role of the CRST may mediate
the muscle suppression needed to support strength, offering a
potential mechanism for its contribution to motor
recovery'%,
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4. Cortico-muscular connectivity and inter-muscular
connectivity for brain-muscular communication post
stroke

4.1 Cortico-muscular connectivity

Corticomuscular techniques investigate the connections of
the cerebral cortex and muscle activation using functional
corticomuscular ~ coherence  (fCMC)'' 112 and
corticomuscular coherence (CMC)''*. CMC, first presented
by Conway in 1995, emphasizes the importance of cortical
neurons in coordinating motor unit output and demonstrates
how cortical activation directly affects muscle movements''+-
116 Additionally, these measurements capture the
synchronization and coordination required for controlled
movement, reflecting both efferent and afferent motor
pathways'!7-119,

CMC is most commonly measured by monitoring
electroencephalography (EEG) signals and corresponding
surface electromyography (EMG), simultaneously. This
allows for visualization of real-time motor command
projections and sensory feedback during voluntary activities,
allowing for the identification of pathway-specific
corticomuscular interactions'?1?*. Large advancement has
been made in the field of CMC analysis, methods such as
extended partial directed coherence (ePDC)'?, multiscale
transfer entropy (MSTSE)'?% '27) multi-spectral phase
coherence!?8, wavelet-based coherence!?*13!, and generalized
cortico-muscular-cortical  network  (gCMCN)'3?  have
emerged. These methods improve causal coupling
assessments across brain signals and can show complicated
connections between the motor cortex and peripheral
muscles'?® 128 133 134 Collectively, these new results
highlight the importance of fCMC in understanding motor
control processes, particularly after stroke, while also
emphasizing the need for enhanced techniques that go
beyond typical coherence analyses to account for cortical

specialization!'?3 126 135,

Linear neural connection mostly reflects direct
corticospinal tracts and frequently decreases in the
ipsilesional hemisphere following a stroke!!® 136138,

However, no studies have found a substantial increase in
CMC in the contralesional hemisphere during flexion
synergy expression' 14 This finding raises questions about
the usefulness of linear coherence for studying contralesional
indirect motor pathways, which may operate on a nonlinear
basis. Nonlinear connectivity, defined as coupling across
different frequencies, is thought to result from the nonlinear
characteristic of synaptic connections, which can aggregate
across several synapses in indirect motor pathways'#!> 12, In
contrast, the direct corticospinal pathways have fewer
synapses'®. Cross-spectral coherence (CSC) is a method for
identifying various nonlinear interactions, including
harmonic and intermodulation couplings, which can be

observed in both static and dynamic nonlinearities''* 1.

Additionally, the creation of the n:m coherence analysis
approach enables a comprehensive measurement of cross-
frequency coupling between different frequency components
approach!* 1% In chronic hemiparetic stroke, the
recruitment of contralesional indirect motor pathways, such
as the corticoreticulospinal tract (CRST), has been linked to
the expression of flexion synergy, as evidenced by cross-
spectral connectivity analyses that show increased nonlinear
connectivity during shoulder abduction tasks'®, as shown in
Figure 7.
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Figure 7. N-L index (nonlinear-over linear connectivity index):

N-L Index = (SN-SL) / (SN+SL), where SL is the sum of linear connectivity
and SN is sum of nonlinear connectivity for control and stroke subjects with
different level of shoulder abduction (SABD). Two-sample t-test was
applied across groups with same level of SABD, and paired t-test was
applied among groups with different levels of SABD. ™ for p-value < 0.01
and ™ for p-value < 0.001. Adapted from [16], authors received permission
from the corresponding author and colleagues, CC by 4.0

Cortical oscillations between the cortex and the muscle
are also direction-dependent'?® 4% 145 Previous research has
demonstrated that information flow between cortico-cortical
regions is directed, and similar directional viewpoints are
recognized while analyzing corticomuscular interactions'!®
133, 141 The strength of this oscillatory component of the
cortical drive can serve as an index of cortical excitability
and corticospinal tract integrity!3% 140 146 147 a5 a primary
cause of movement difficulties in stroke patients is irregular
nerve oscillation transmission due to the reduction in the
brain's neurological control over muscle movements'*,
Additionally, assessing alterations in CMC time delays may
also give insight into changes in motor descending pathways
post stroke. Stroke participants have been shown to have
significantly longer nerve conduction delays between the
EEG signal from the ipsilesional motor cortex and the EMG
signal from the tested muscles, suggesting the increased
delay caused by the absence of direct corticospinal
projections'®. One could also asses CMC time delays
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between contralesional cortex and the muscles of the paretic
limb to evaluate both corticospinal tract's damage and signal
transmission in the contralesional cortico-reticulospinal
pathway!'> 150,

Following a stroke, it is important to highlight that
patients have considerably lower mean beta CMC values
than healthy controls''. Beta oscillations help to maintain
stable load during muscular contractions and relate to higher
force output in dynamic tasks'*2. Beta-CMC is a significant
measure of motor system performance as it is essential for
connecting motor cortex activity to muscle function during
hand movements, indicating integration and coordination''?
120 146 Recently, Beta-CMC has been found to be
considerably disrupted between ipsilesional motor cortex and
the paretic side deltoid muscle in stroke patients, as seen by
an increased nerve conduction delay from the motor cortex to
the deltoid'*. Chronic stroke patients have also been shown
to exhibit significantly lower Beta-CMC during stable force
contraction tasks compared to healthy persons, implying that
proprioceptive disruptions may reduce beta oscillations,
decreasing fCMC and motor control precision!?® 135 133,
Measuring Beta-CMC is an effective method for evaluating
motor descending pathways and evaluating both linear and
nonlinear brain-muscle connection can reveal information
about the participation of ipsilesional CST and contralesional
CRST. For example, more linearity in Beta-CMC indicates
increased contralateral corticospinal activity, whereas higher
nonlinearity indicates increased ipsilateral
corticoreticulospinal activity, offering a holistic picture of
motor pathway functionality'*.

4.2 Inter-muscular connectivity

Stroke-induced motor impairments disrupt not only the
direct brain-muscle pathways but also the coordination
among various muscles that are crucial for performing
complex and coordinated movements'®. This occurs because
the patients’ intermuscular coordination abilities, or muscle
synergy, become altered or weakened'>*. Previous research,
using EMG patterns, found that the specific altered upper
limb muscle synergies of stroke involve the abnormal
coupling of shoulder and elbow muscles during dynamic
reaching'®. Further, flexion of paretic wrist and fingers is
involuntarily coupled with certain shoulder and elbow
movements'!. Abnormal coactivation of the three heads of
the deltoid muscle has also been observed in stroke!>. These
abnormal muscle synergies are associated with motor
impairment; the incidence of abnormal muscle co-activation
increases as the severity of motor impairment increases'®” 158,
From this perspective, while traditional stroke rehabilitation
often focuses on the strength and recovery of individual
muscles, since actual movement occurs through the
cooperation of various muscles, the importance of

investigating abnormal muscle coactivation should be
emphasized in the stroke neurorchabilitation.

A representative method used to evaluate intermuscular
interactions is inter-muscular coherence (IMC). This
analytical technique is an effective way to observe neural
synchronization between muscles'*’, serving as a metric that
quantifies the correlation between pairs of electromyographic
(EMG) signals across frequency bands!¢® '¢!, IMC explains
the extent of shared contributions of descending neural
activity among the motor neuron pools located in the spinal
cord and the strength of neural synchronization at different
frequency bands'®?, and it signifies the functional
relationships between muscles that are activated together in
specific patterns or synergies to effectively complete motor
tasks!®% 13 IMC can be calculated using the following

equation:

12, (D]

|y (DI = P () By ()

where [ denotes the frequency of each EMG signal, Pex (F)
and By () are auto-spectra of the rectified EMG signals of

any muscle pair at a given frequency and Bey (f) is the
cross-spectrum between them. To measure the importance of
the coherence between muscles, a metric known as
confidence level (CL) is implemented'®3:

1
CL=1-(1-a)i1

Where a signifies the degree of significance (a0 = 0.95) and L
indicates the number of data segments utilized for spectrum
estimation. The coherence between two muscles is
recognized as significant if its value surpasses the confidence
level (CL)'%4,

A review of previous studies reveals that IMC analysis
found significantly lower coherence in the alpha frequency
band between the anterior deltoid and triceps brachii muscles
in stroke patients compared to healthy controls'%3. Watanabe
et al. found that using beta-band IMC, which reflects CST
activity, intermuscular coherence increased with rising
difficulty in postural tasks among young and elderly
adults'®. Further, IMC in the beta frequency band can serve
as a synchronization index for assessing upper limb motor
dysfunction in stroke patients'®’. In this way, IMC across
each frequency band can serve as a synchronization index for
evaluating motor dysfunction in stroke patients, helping to
understand patient characteristics.

In the context of motor descending pathways, IMC can
serve as a critical indicator of the flexion synergy that results
from increased reliance on the corticoreticulospinal tract. As
IMC reflects the shared descending neural drive among
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motor neuron pools in the spinal cord. IMC plays an essential
role in understanding and analyzing these symptoms,
providing insights that can inform the development of more
sophisticated rehabilitation protocols. Such research is
crucial for enhancing the recovery process in stroke patients.

5. Limitation and challenges

Although much work has been done in the field, several
challenges remain for accurately quantifying changes in
motor descending pathways post stroke. Many of the
techniques described use manual processes that are labor-
intensive, time consuming, and have inter-observer
variability. The analysis highly depends on the experience of
the observer, leading to inconsistencies and potential errors.
Al-based software is being developed to streamline these
processes, but it is not yet widely adopted in clinical
practice!®8. There are also unique challenges in improving
these Al-based methods for stroke. Data quality and
availability complicate the development of reliable Al tools.
Moreover, the "black box" nature of many Al algorithms,
where the decision-making process is not easily interpretable,
creates hesitation among clinicians to fully trust Al-based
tools. The integration of Al models into clinical workflows
remains challenging due to concerns the accuracy.

While there is a large number of randomized control trials
evaluating stroke rehabilitation of the upper extremity,
research quality continues to be a challenge. Only a small
percentage of have multi-center trials and many have limited
sample sizes'®. In a recent review of randomized controlled
trails for rehabilitation of the upper limb post stroke, the
median sample size (start/finish) was found to be 30 (IQR
20-48)/29 (IQR 19-44)'%, Sample size is further hindered by
difficulty in recruitment. Recruitment and retention for stroke
rehabilitation trials have barriers such as lack of
understanding of the trial, burdensome time commitment
(work or lack of childcare), and transportation'”’. Neither
recruitment rate or recruitment efficiency has increased in
stroke trials over the past 25 years; if anything, they have
decreased!”!. The small sample sizes within these trials affect
the accuracy and hinder the creation of objective methods for
assessing motor descending pathways post stroke.

6. Future direction: artificial intelligence and large
multi-modal data registry

As mentioned in the previous section, there are significant
challenges in the field of neuroengineering; however, the
techniques are still evolving. With more publicly available
datasets related to stroke, such as The Ischemic Stroke
Lesion Segmentation (ISLES), which includes FLAIR, DWI,
and Apparent diffusion coefficient (ADC) images, and
Anatomical Tracings of Lesions After Stroke (ATLAS),
which provides T1 images from patients at various stages

(acute, subacute, and chronic), researchers can now utilize
multi-modal MR images'’ !, These images come from
different disease stages and even different scanners (e.g., GE,
Philips, and Siemens). Despite potential challenges with co-
registration and the fact that some images may have only
undergone preliminary preprocessing, these datasets reflect
conditions that are much closer to real-life scenarios.

Additionally, recently the American Heart
Association/American Stroke Association hosted a challenge
to merge stroke registry data, which includes patient-level
and inpatient data from hospitals across the US'7%. This
initiative has gained attention from the public, hospitals, and
academic institutions, and is forming a trend of integrating
multi-modal imaging with non-imaging datasets. Once such
comprehensive datasets are established, Al models can be
trained with both imaging data and clinical assessments, such
as stroke outcomes, complications from treatment, or even
muscle assessments. With the integration of non-imaging
data, such as functional movement assessments, Al models
can be further trained to predict the effectiveness of
rehabilitation interventions. These models could identify
patterns that link muscle function recovery with brain lesion
characteristics, enabling personalized rehabilitation plans that
optimize recovery for each patient. Furthermore, Al could
help track progress over time, offering real-time feedback to
clinicians and patients, improving rehabilitation protocols
and outcomes.

With this richer, more holistic dataset, AI models can be
developed to be more objective and accurate. These models
may even be able to predict patient outcomes based on lesion
characteristics, functional impairments, and muscle
rehabilitation progress, offering the potential for personalized
treatment in clinical practice in the future.
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