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The Multiplex p» Model: Mixed-Effects
Modeling for Multiplex Social Networks

Anni Hong* and Nynke M. D. Niezink'

Abstract. Social actors are often embedded in multiple social networks, and there
is a growing interest in studying social systems from a multiplex network perspec-
tive. In this paper, we propose a mixed-effects model for cross-sectional multiplex
network data that assumes dyads to be conditionally independent. Building on the
uniplex p2 model, we incorporate dependencies between different network layers
via cross-layer dyadic effects and through the covariance structure among the ac-
tor random effects. These cross-layer effects model the tendencies for ties between
two actors and the ties to and from the same actor to be dependent across differ-
ent relational dimensions. The model can also study the effect of actor and dyad
covariates. As simulation-based goodness-of-fit analyses are common practice in
applied network studies, we here propose goodness-of-fit measures for multiplex
network analyses. We evaluate our choice of priors and the computational faith-
fulness and inferential properties of the proposed method through simulation. We
illustrate the utility of the multiplex p2 model in a replication study of a toxic
chemical policy network. An original study that reflects on gossip as perceived by
gossip senders and gossip targets, and their differences in perspectives, based on
data from 34 Hungarian elementary school classes, highlights the applicability of
the proposed method. The proposed methodology is available in the R package
multip2.

Keywords: social network analysis, multiplex networks, conditionally
independent dyad model, Bayesian, mixed effects.

1 Introduction

The study of the social behavior of individuals and groups is inseparable from the study
of social networks. Social networks can be described by graphs, consisting of nodes,
representing social actors (e.g., individuals, countries, organizations), and edges, repre-
senting the connections among the actors (e.g., friendship, trade, collaboration). Social
actors are often embedded in multiple social networks simultaneously, and the field of
social network analysis has long recognized the importance of this multiplexity (Borgatti
et al., 2009; Kadushin, 2012). For example, the development of bullying in a classroom
cannot be understood without the context of friendships in that classroom (e.g., Ram-
baran et al., 2020) — the dynamics of positive and negative relations are dependent. Yet,
in much applied work, the multiplex network perspective is not leveraged, and single
networks are considered in isolation.

*Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213,
annihong@andrew.cmu.edu

TDepartment of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213,
nniezink@andrew.cmu.edu

© 2025 International Society for Bayesian Analysis https://doi.org/10.1214/25-BA1527


https://bayesian.org/resources/bayesian-analysis/
mailto:annihong@andrew.cmu.edu
mailto:nniezink@andrew.cmu.edu
https://doi.org/10.1214/25-BA1527

2 The Multiplex p» Model

Multiplex networks are structures representing multiple relationships observed
among the same group of actors. These relationships can represent heterogeneous edge
types, e.g., retweet, follows, and mentions among Twitter users (Greene and Cunning-
ham, 2013), or co-authorship, co-citation, and co-venue relationships among academics
(Hmimida and Kanawati, 2015). Multiplex networks also play a major role when study-
ing network perspectives. Self-reported social networks might be imprecise measure-
ments of underlying social behavior, and social actors can have different perspectives
on a relationship (e.g., ¢ may experience behavior by j as bullying but j does not think
they bully 7). Social desirability bias too can drive individuals to adjust their reports
(e.g., i reports less gossip than ¢ actually participated in). Tatum and Grund (2020)
studied the difference in perspectives between bullies and victims in school classes by
aggregating the two networks with different perspectives into a single disagreement
network. While this approach allows us to study discrepancies, it does not provide an
understanding of the context in which they arose. A multiplex network approach would
be a more natural way to study the multiple perspectives (relationships) as well as their
discrepancies.

In this paper, we develop a multiplex network model that would allow for such an
analysis: a mixed-effects model assuming conditionally independent dyads (CID) for
cross-sectional, directed, binary network data. Network dyads are given by pairs of
nodes and the configuration of relations among them. Social networks are characterized
by dependent relationships, making modeling their structure fundamentally different
from that of other types of data. The various existing models for network data can
be distinguished by how they handle network dependencies. In CID models, dyads are
independent when conditioned on latent variables and other model components (Dabbs
et al., 2020). Examples of CID models include the stochastic block model (Holland et al.,
1983) and the latent space model (Hoff et al., 2002), which can capture a wide range of
complex network dependencies.

We develop our model in the tradition of the ps modeling framework (van Duijn
et al., 2004), a CID model that represents the probability of a dyad outcome in terms
of baseline network density, reciprocity, and actor and dyad heterogeneity. While its
predecessor, the p; model (Holland and Leinhardt, 1981), models actor heterogeneity
with fixed effects representing actors’ differential tendencies to send and receive ties
(thus giving rise to a large number of parameters for large networks), the ps model
represents these tendencies by random effects and incorporates covariates to model
actor and dyadic heterogeneity. For its interpretability and simplicity, the p, model has
been widely used, e.g., to study physician communication patterns (Keating et al., 2007)
and advice seeking between public schools (Spillane et al., 2015). The multilevel model
extension of the ps model (Zijlstra et al., 2006) enabled a large number of multi-group
network studies (e.g., Veenstra et al., 2007; Vermeij et al., 2009; Tolsma et al., 2013;
Smith et al., 2014; Zijlstra et al., 2008).1

Here, we extend the ps model for multiplex network analysis. The parameters and
characteristics of the uniplex ps model remain as within-network effects in the multi-

I'While revising this article for resubmission, we learned that a multivariate extension of the pa
model was proposed in Chapter 4 of the PhD thesis by Zijlstra (2009).
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plex model. Yet, the multiplex model introduces new cross-network density and cross-
network reciprocity parameters, modeling the tendencies for ties between two actors to
be dependent across different relational dimensions. Actors’ random sender and receiver
effects for the different relational dimensions are modeled as different, but dependent.

Bellio and Soriani (2021) proposed a maximum likelihood-based approach to ps mo-
del estimation. However, a robust Bayesian estimation procedure is still lacking. The
R package dyads (Zijlstra, 2021) is the only existing Bayesian implementation of the
p2 model, but has a few limitations. These include its inability to include multiple actor
covariates, its lack of convergence checks and goodness-of-fit tests, and its inability to
handle missing network data. Accompanying this paper, we developed a Bayesian imple-
mentation of the multiplex ps model in the Stan probabilistic programming framework
(Stan Development Team, 2022). This method includes the standard (uniplex) ps model
as a special case. Our R package multip2 includes multiplex goodness-of-fit measures
and the implementation can handle missing network data.

In the following, we will first give a brief overview of existing methods for cross-
sectional multiplex network data (Section 1.1) and then present the multiplex pa model
(Section 2) and its estimation (Section 3). We then introduce goodness-of-fit measures
for multiplex networks, which can be used in posterior predictive checks (Section 4).
Section 5 presents several simulation studies in which we evaluate our choice of priors,
the accuracy of our estimation procedure, and the inferential properties of the method.
Sections 6 and 7 present two applications. The first one replicates the analysis by Leifeld
and Schneider (2012) of how information is exchanged in policy networks, and illustrates
that our multiplex approach offers additional insights into reciprocation patterns across
different types of information (political and scientific). The second study analyzes the
discrepancies in reports on gossip ties from the viewpoint of the gossiper and the gossip
target based on data not previously studied. We find that students are not particularly
perceptive when it comes to identifying individuals who gossip about them. However,
they tend to gossip about those whom they believe are gossiping about them. We
conclude with a discussion in Section 8.

1.1 Multiplex network methods

Several methods have been developed for the analysis of cross-sectional multiplex net-
work data. Network regression techniques such as the multiple regression quadratic
assignment procedure (MRQAP; Krackhardt, 1988; Dekker et al., 2007) allow us to
model a network as a function of other networks (cf. multiple regression) but do not
simultaneously model multiple networks as the outcome (cf. multivariate regression).
The multiplex stochastic block model (Barbillon et al., 2017) detects communities with
information from multiple network layers, and a recent development allows the number
of communities to vary in different layers (Amini et al., 2024) but does not allow for bor-
rowing of actor-specific information across layers. Moreover, these methods are tailored
to assign group membership to social actors based on network data, but do not take
into account the role of covariate information. The social relations model (SRM) does
take this into account and supports the simultaneous analysis of multiple continuous-
valued networks (Nestler, 2018). Hoff et al. (2013) includes formulations that extends
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SRM binary networks and Redhead et al. (2024) applied a multiplex extension of the
SRM for binary network data without covariates to study indirect reciprocity based on
network-structured economic games. Multiplex latent space models (Salter-Townshend
and McCormick, 2017; Sosa and Betancourt, 2022) can be used to model continuous or
binary networks, but differ from the ps model in terms of how the probability of a tie
is modeled. The ps model explicitly models network characteristics such as density and
reciprocity while the latent space model assumes that unobserved actor attributes, as
represented by latent positions, affect the connectivity pattern. Recent developments
in exponential family random graph models (ERGMs) allow for the modeling of two
or more binary networks as outcomes simultaneously (Wang et al., 2013, 2016; Chen,
2021). Yet, ERGM estimation can be computationally expensive and model conver-
gence is hard to achieve in practice with increasing network dimensions. The stochastic
actor-oriented model (SAOM) was developed to analyze the dynamics of network data
(Snijders, 2001), and extended for the coevolution of multiple binary networks (Snijders
et al., 2013). Although it is possible to study cross-sectional network data using a sta-
tionary SAOM, the applicability and properties of stationary SAOMs, even for uniplex
network data, remain unexplored.

2 The multiplex ps model

Suppose there are T layers of networks on the same set of n actors. Let M € {0, 1}7xn*T
denote the directed binary multiplex network among these actors. We assume that this
network has no self-loops (i.e., @ can not send ties to themselves; M;;; = 0 for all ¢ and
t). We denote the p dyadic covariates (e.g., absolute age difference) by Z € R"*nxP
and the ¢ actor covariates (e.g., gender) by X € R™*9. In the following, we treat p and
q as the same for all effects, without loss of generality. If we let mﬁj = 1 denote that
there is an edge from i to j in layer ¢, and mgj = 0 if there is no such edge, we can
represent the (multiplex) outcome on dyad {7, j} by M{;;; = {m}j,m;i, .. ,miTj,ijZ- .
Since the po, model is a conditionally independent dyads model, we can decompose the
probability of a network M into the probabilities of the dyad outcomes Mj;;;.

Within each layer, the multiplex p; model accounts for the overall propensity of ties
by a density parameter, and for the likelihood of a tie being reciprocated between two
actors by a reciprocity parameter. We denote the density and reciprocity parameters
for layer t as u! and p?, and let p = {ut,...,uT} and p = {p',..., pT'}. The model also
allows us to evaluate the effects of network covariates on density and reciprocity. If we
denote the corresponding coefficients by 6; € RP and 6; € RP, the total density and
reciprocity effects for dyad {i,7} in layer ¢ are

Nﬁj = Mt + (le) 5:’” (1)
T

pfj = pt + (Z”) 5;
Across layers, we can model the tendency for one actor to establish multiple connections
to another actor (e.g., i considers j a friend and a collaborator) by a cross-layer density
effect. We can also capture cross-layer reciprocity — the tendency for actors to reciprocate
an incoming tie of one kind (e.g., political information) with an outgoing tie of another
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kind (e.g., scientific information) We let uéﬁjs)s denote the baseline cross-layer density

effect for layers s and ¢ and pcross the baseline cross-layer reciprocity, with fieross and
Peross containing the cross-layer density and cross-layer reciprocity parameters for all
pairs of layers. The cross-network density and reciprocity too can depend on dyadic

covariates, with corresponding coefficients JffciM € R? and 6,(]2? € RP. In the model,

the total cross-layer density and reciprocity effects for dyad {i,;j} in layers s and ¢ are
thus given by

rugoss)s g = M goss)b + ( Z iJ ) ! (sl(ttci)ss ’ (2)
pgoss)s Y pgicfs)s + (ZiJ )T 61({:2.5

The p; model captures actors’ differential tendency to send ties by random sender
effects, and their differential tendency to receive ties by random receiver effects. The ten-
dencies for actors to send and receive ties can depend on individual actor characteristics.
We define different actor sender and receiver effects for each layer, and allow actors’ ten-
dencies to send and to receive ties to be correlated across relationships. For example, if a
person sends texts to a lot of people, they may also send emails to a lot of people. Yet, we
assume that one actor’s tendency to send or receive ties does not affect this tendency of
the other actors — the random effects are correlated within but not between individuals.
Formally, we let ! and 3! denote the tendencies for actor i to send and receive ties in
network layer ¢, respectively. The sender and receiver effects for all actors in layer ¢ are
ot ={at,...;al} and Bt = {B%,...,BL}. Let C; = [A},... AT B} ... BI|T € R?T
denote the random actor effects for actor 7 in the T network layers. We assume that
Cy,...,C, are an i.i.d. sample from N(0,X ap). The actor sender and receiver effects
are given by

af = Xv, + A,
B' = X~ + B,
where A = [A},...;AY]T and B' = [B!,...,B!]". The coefficients v, € RY and

'yg € RY represent the effects of the individual-specific covariates X on actors’ tendencies
to send and receive ties.

3)

Now we can bring all the parts together and define the probability function on a
dyad in a T-plex network. If we define

z] M{’L,J} Z( /’[’zj +a +6t) +m (/J’jz+a +ﬁ ) +m myzpz_])

t,
> (i mms) ne (1)
t,s=1,....T:t<s
t
+ Z (mtgm + m mz]) p:(:rogs)s Ky
t,s=1,..,T:t<s
the probability of outcome My, ;3 on dyad {7,;} is given by

exp{Kij (M{%]})}
ZGH,J}G{OJ}” exp{Kij(Gigy)}

P(My; ;) =
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where the denominator sums over all possible realizations Gy; ;i of the T relationships
on this dyad.

3 Model estimation

The iterated generalized least-squares procedure (van Duijn et al., 2004) was one of
the earliest proposed methods for parameter estimation in the p, model. Subsequently,
Zijlstra et al. (2009) explored several Markov chain Monte Carlo (MCMC) estimation
procedures for the ps model, two of which used random walk proposals. More recently,
Bellio and Soriani (2021) proposed a maximum likelihood estimation procedure based
on the Laplace approximation.

In this study, we employ Hamiltonian Markov chain Monte Carlo (HMCMC) (Du-
ane et al., 1987; Neal, 2011; Betancourt and Stein, 2011) for estimating the parameters
of the multiplex ps model. HMCMC significantly improved the sampling performance
compared to random walk Metropolis in situations where hierarchical structures, such
as random-effect models, induce correlations between global and local parameters (Be-
tancourt and Girolami, 2015). The advantage of HMCMC lies in its ability to effectively
explore the parameter space by leveraging the local curvature of the target distribution.
However, HMCMC requires careful fine-tuning, including specifying the derivative of
the target distribution. To address this, we utilize the robust implementation of HM-
CMC provided by the Stan probabilistic programming language (Carpenter et al., 2017;
Stan Development Team, 2022). By leveraging the HMCMC algorithm in Stan through
the R package rstan (Stan Development Team, 2023a), we can effectively handle the
structure of the multiplex p, model.

Next, we present the likelihood function and the prior distributions for the multiplex
po model. There are 227 possible outcomes on a dyad in a T-plex network. Dyadic
outcome My; ;1 follows a categorical logit distribution, as defined in equation (5). We
assume normal priors with mean 0 and variance 100 for the baseline within-network

parameters p! and p' and cross-network parameters u(.i’jgs and pgi’jzs,

“t’ ptv Ngtrﬁgs’ Pgn’izs ~ N(07 100)' (6)

This is a weakly informative prior. Since parameters in the p, model should be inter-
preted on a log odds scale, parameter values of, for example, +10 and —10 correspond to
very large and small probabilities, respectively (Zijlstra et al., 2009). We set the priors
for the fixed network and actor effects of the covariates to

0~N(0,%>, (7)

where 6 € R denotes any entry of the parameter vectors d,,, 0,, 0,000 Operosss Yo, and
~s, and o(gp)? denotes the sample variance of the corresponding covariate gg. This
reflects the belief that the magnitude |6 - gg| of the effect of most covariates is likely to
be less than 10 on the log odds scale. For a covariate with a larger sample variance, we
thus set the prior variance of the associated parameter smaller to bound the combined
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effect. However, if this does not reflect the reality of a particular data context, analysts
can freely change the prior variance of the covariate parameters (as well as the priors
for other parameters) using our multip2 package in R.

In the multiplex p, model, the random effect C; € R?T follows a multivariate
Gaussian distribution. There are several potential choices for the prior of the variance-
covariance matrix X 4pg. It is common to assume an inverse Wishart distribution, as
was done by Zijlstra et al. (2009) for the univariate ps model, because of its conjugate
property. However, many issues of the inverse Wishart distribution have been pointed
out; most notably, the variance and the correlation parameters are correlated (e.g., Ak-
inc and Vandebroek, 2018; Tokuda et al., 2011; Liu et al., 2016). Since Stan does not
require the use of conjugate priors, we will use the strategy first proposed by Barnard
et al. (2000) and studied by Akinc and Vandebroek (2018) and Tokuda et al. (2011).
That is, we first decompose the covariance matrix 3 4 g into a vector of coefficient scales
o and a correlation matrix €2,

Y ap = diag(o) x Q x diag(o), (8)

and let the scale and correlation components have different, independent priors. We
set the prior of the elements of the scale vector to an inverse gamma distribution, and
let the correlation matrix follow an Lewandowski-Kurowicka-Joe (LKJ) distribution
(Lewandowski et al., 2009) with shape parameter 7 = 2,

o; ~ InverseGamma(a = 3, 8 = 50)

9
Q ~ LJKCorrelation(n = 2). ©)

In the LKJ distribution, 7 = 1 generates a uniform correlation distribution. For n > 1,
the distribution puts more mass on the unit matrix, representing less correlation. For
1 < 1, mass concentrates away from the unit matrix thus favoring matrices with more
correlation. We let 1 be slightly larger than 1 (i.e., n = 2), because most of the weight
should be on the unit matrix but some correlation among actors’ roles across networks
in terms of sending and receiving ties is expected. We picked the hyperparameters o« = 3
(shape) and 8 = 50 (scale) for the priors of o; based on the results of the prior predictive
checks in Section 5.

Prior predictive checks To determine whether a model with a given set of priors
on the parameters is consistent with domain expertise, we conduct prior predictive
checks, examining if the simulated data generated from the priors is representative of
the expected data. We analyze three key social network statistics: density, reciprocity,
and transitivity. Network density refers to the proportion of potential ties that are
actually present while reciprocity refers to the proportion of ties that are reciprocated.
Similar to density and reciprocity, transitivity is another key network statistic, which
refers to the proportion of nodes with a common connection that are also connected.
Reciprocity and transitivity can capture the human tendencies to reciprocate positive
ties (e.g., liking) and to operate in small groups (Robins, 2015). All three statistics are
bounded between 0 and 1 and have context-dependent expected ranges. For example,
friendship networks often have high reciprocity and transitivity, while networks with
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density reciprocity transitivity
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Figure 1: Prior predictive checks: density, reciprocity, and transitivity calculated on
1000 networks simulated based on the priors defined in Section 3.

implicit hierarchies, such as advice-seeking, tend to have low reciprocity. Density tends
to decrease with increasing network size. We aim to choose weakly informative priors
that incorporate this prior knowledge while allowing the data to drive the inference.

Figure 1 shows the prior predictive check results based on 1000 network draws from
the prior defined above. The simulated density and reciprocity cover a wide range of
values with peaks at 0.5, coinciding with the zero means of the priors for the density and
reciprocity parameters p and p. The simulated transitivity skews higher than typical
social networks (0.3 to 0.6 is typical in, e.g., friendship networks), but it still covers
a wide range of values. Note also that this statistic is not explicitly modeled by the
p2 model. Overall, the prior predictive checks yield adequate results, especially when
we compare them to the results obtained with the inverse Wishart prior, which used
to be the default for the ps model (Zijlstra et al., 2009). For the prior predictive check
results using the inverse Wishart prior, see Figure 1 of the Supplementary Material
(Hong and Niezink, 2025).

Post-sweeping of random effects Without additional constraints, the parameters in
the mixed-effects model given in equation (5) are only weakly identifiable, in the sense
that the parameters are correlated within MCMC chains (Ogle and Barber, 2020). In
particular, a change in the within-layer density parameters u’ can be offset by adding
a constant to each of the random effects terms a! and S!. We resolve this issue by a
procedure referred to by Ogle and Barber (2020) as “post-sweeping of random effects”.
This solution retains the original model parameterization, but calculates identifiable
quantities after each iteration. These quantities are the ones we report in this paper
and use to assess convergence. We compute the identifiable quantities as

tLPS _ t ¢
L =a — o,

(%

prrs = gt — g, (10)
'ut,PS _ Mt + at + Bt7
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where @' and f3* are the average random sender and receiver effects for layer t. The iden-
tifiable density parameter is obtained by adding the means of both the non-identifiable
sender and receiver random effects to p?.

4 Goodnesss-of-fit on multiplex networks

A useful model should capture the key structure of the data-generating process such
that the fitted model generates data similar to the observed data. In this section, we
discuss existing methods for assessing uniplex network model fit and propose measures
for multiplex goodness-of-fit analysis. We illustrate these methods in the application in
Section 6.

Uniplex goodness-of-fit Simulation-based goodness-of-fit methods are widely used in
social network research to evaluate if a model has captured the characteristics of the
observed networks (Hunter et al., 2008), and have been adapted to the Bayesian frame-
work in the form of posterior predictive checks (Caimo and Friel, 2011). In the latter,
the observed network data are compared to a set of networks simulated from the pos-
teriors of the parameters, on key network statistics such as the indegree and outdegree
distribution, and the triad census (Leinhardt, 1971; Holland and Leinhardt, 1970). The
indegree and outdegree distribution are the distribution of actors’ numbers of incoming
and outgoing ties, respectively. Their goodness-of-fit analyses help assess whether the
model captures the tendencies of actors in a social network to send and receive ties.
The triad census counts the frequency of each of the sixteen possible network configura-
tions among three actors present in a directed network. Goodness-of-fit analysis on the
triad census helps assess the extent to which triadic effects (e.g., transitivity) and local
group structure are accurately represented by the model. Other potential goodness of
fit measures include network density (the proportion of potential ties that are actually
present), reciprocity (the proportion of ties that are reciprocated) the distribution of
geodesic distances (lengths of shortest paths between actors in a network) and mea-
sures of network autocorrelation (e.g., Moran, 1948; Geary, 1954). Generally, it is good
practice to align network goodness-of-fit measures with the applied research question
studied. For example, if a researcher is interested in the effect of performance homophily
on friendship network formation, it makes sense to evaluate a model’s goodness-of-fit
on network autocorrelation on performance.

Multiplex goodness-of-fit In line with this rationale, we propose statistics to describe
the fit of multiplex network models. Although we illustrate these only in the context
of the multiplex p, model, they are applicable for multiplex network models generally.
Naturally, for each layer of the observed multiplex network, we can evaluate goodness-
of-fit on the statistics described above for uniplex networks. Moreover, for every pair
of layers, we can measure the tendency for ties to occur jointly and to be reciprocated
between layers. We can measure the tendency for ties to occur in two layers simulta-
neously by the Jaccard index of the two layers — the proportion of ties that appear in
both networks out of the total number of unique ties in the two networks. If we let
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Mt € {0,1}™*™ denote the adjacency matrix corresponding to layer ¢ of multiplex net-
work M, and let X (M?) denote the set of edges in layer ¢, then the Jaccard distance
between layers s and ¢ is given by

_ XM n X (M)

M M?®) = .
Jaccard(M*, ) X (M) U X (M)

(11)

We can evaluate cross-layer reciprocity by Jaccard(M*, (M?#)"). The Jaccard index
does not capture the joint absence of ties. In the context of social network analysis,
tie presence is typically more meaningful than tie absence as social networks are often
sparse. Therefore, counting similarity in non-ties would generally result in very high
network similarity scores. Finally, to capture the similarities of actors’ tendencies to
send and receive ties in different network layers, we can use the correlations among
actors’ indegrees and outdegrees in all layers. Note that each of the statistics presented
above aligns with an effect in the multiplex py model.

5 Simulation studies

In this section, we present the results of several simulation studies assessing the ap-
propriateness of the selected priors for social networks, the accuracy of the estimation
algorithm, and the inferential properties of the proposed method, following the workflow
discussed by Gelman et al. (2020) and Schad et al. (2021). To this end, we simulate
networks with a biplex structure (I' = 2) consisting of 30 actors and thus (320) = 435
dyads. Networks of this size are typical in educational applications. The policy-related
network in Section 6 is of this size as well. Our simulation model does not include co-

variates (p = ¢ = 0) and its parameters are the within-layers densities u! and u?, the

within-layer reciprocities p1 and p2, the cross-layer density uélo?s and reciprocity pé}:)?s,

and the covariance X o p. The latter is not reported on below. The data are generated
outside our estimation environment. The simulation studies were conducted on a server
equipped with 64 GB of RAM and 32-core processors. We utilized the doSNOW (version
1.0.20) package and the internal functionality of rstan (version 2.32.6) to run the chains
and models in parallel in R (R version 4.4.1).

Computational faithfulness We conduct simulation-based calibration (SBC) to assess
the soundness of our posterior sampler (Talts et al., 2020). This procedure relies on
the fact that the posterior distribution estimated from data generated from the prior
should resemble the prior distribution, on average. We first draw L = 1000 random
samples from the prior distribution, 6; ~ (@), with [ = 1,..., L, and for each prior
draw we generate a biplex network M;. We then fit the multiplex p, model to each
simulated network M), thus obtaining L estimated posterior distributions. If the model
is well-calibrated, the sample from the prior could fall anywhere on the corresponding
estimated posterior distribution. In other words, the rank of parameter élj with respect
to a given number of K = 1000 draws from the posterior {923‘,1’ cee 92j7K} should be
uniformly distributed. Figure 2 shows the histograms of the percentile statistics of the
model parameters. The sampled statistics appear to be uniformly distributed, providing
evidence that the model matches the generator and the algorithm is working as expected.
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(a) The distribution of the observed rank statistics for the model parameters. The exact uniform
distribution is given by the horizontal gray line and an approximate 95% interval of expected
deviations from the uniform distribution is given in blue.
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(b) The empirical cumulative distribution function (in black) where we expect to see diagonal
lines with some deviations from exact uniformity. The blue ellipse outlines the 95% expected
deviations.

Figure 2: Simulation-based calibration plots, created using the R package SBC (Modrdk
et al., 2023).

Model sensitivity We assess the model’s adequacy for inference by measuring the bias
of the posterior mean and the variance reduction from the prior to the posterior. We
repeat the simulation steps from the computational faithfulness section and obtain the
posterior estimates. For each parameter, the bias can be summarized by a posterior
z-score, z = (Upost — 5) /Opost; Where the posterior mean pipos, is compared to the true
parameter value 6, scaled by the posterior uncertainty. We estimate the reduction in
uncertainty by the posterior contraction, which is the variance reduction compared to
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cross_mu_1 cross_rho_1 mu_1 mu_2 rho_1 rho_2

Z-score

Posterior contraction

Figure 3: The model sensitivity plots of z-scores against posterior contractions calculated
on 1000 simulations (26 outliers not shown). If no bias is present in the simulations, then
the z-score distribution of should be centered on 0. The posterior contraction estimates
how much prior uncertainty is reduced in the posterior estimation. Thus high posterior
contraction and posterior z-scores close to zero reflect an ideal situation and good model
fit. Here, we observe moderately low bias and low variance.

the prior variance, s = (02, — 0ost)/Tprior- Schad et al. (2021) recommend plotting

the posterior z-score against the posterior contraction for each parameter. Ideally, a
model with low bias and low variance would have all the points concentrated around a
posterior z-score of 0 and a posterior contraction of 1. Figure 3 shows that the posterior
z-scores are centered around 0 with concentration at the level of posterior contraction
close to 1.

We note that the py and pe we report are the post-swept density parameters (see
Section 3), whose prior variance incorporates the hyperprior for the random effects.
Since we approximated the prior variance, the resulting posterior contraction is not
exact and may be negative. In a few cases, extreme draws from the prior distribution
led to uninformative networks from which the model could not recover the parameters.
We have removed 26 of the 6000 points, showing extreme outliers, from Figure 3.

Computation assessment We assessed the computation time of the multiplex ps mo-
del on biplex networks of varying sizes: 20, 30, 45, 70, 150, and 200. Each model was
estimated with 1000 warmup iterations and 1000 sampling iterations, without covariates.
The setup mirrors the beginning of Section 5, with the exception of the increasing
network sizes. For each network size, Figure 4 shows the total time for three chains:
computation considerably increases with network size. Reducing computation time for
larger networks is an important direction for future work.
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Figure 4: Computation time in hours for a biplex p, model without covariates for various
network sizes (20, 30, 45, 70, 150, and 200). Three chains were run in parallel with 2000
iterations (warmup and sampling) for each chain and network size.

6 Application: Information exchange in a policy network

In this illustrative study, we analyze the patterns of information exchange and the per-
ception of influence among 30 actors in the policy domain of toxic chemicals regulation
in Germany in the 1980s. This (multiplex) policy network was studied previously by
Leifeld and Schneider (2012), to determine how governmental and nongovernmental ac-
tors chose their potential interaction partners in this historic context, though not from
a multiplex network perspective.

Leifeld and Schneider (2012) studied two types of information exchange networks
and the network of organizations’ perception of influence. In the political information
network, an edge from organization i to organization j indicates that ¢ perceived j as a
partner in exchanging political information regarding chemical controls. This network
was obtained by asking organizations to list the names of all organizations with whom
they regularly exchanged information about affairs related to chemicals control. An edge
in the scientific information network indicates that organization i provided scientific
and technical information about toxic chemicals to organization j. In the perception
of influence network, an edge from organization i to organization j indicates that ¢
perceived j to be particularly influential in the policy making process. Figure 5 depicts
the three networks. We refer to Schneider (1988) and Leifeld and Schneider (2012) for
further details about the data collection process.

Given that power dynamics likely impact information exchange and perception of
influence, we take into account the effect of governmental status (indicating whether an
organization is governmental) in our analyses. An organization is also likely to perceive
another organization as more influential and engage in greater information exchange if
they hold similar policy positions. Therefore, we account for policy preference similarity
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@ Interest Group
@ International

Political Party
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Figure 5: The information exchange and perception of influence networks of organiza-
tions in the policy domain of toxic chemicals regulation in Germany in the 1980s. Node
shape and color combinations indicate institution type.

in this study, which is a pairwise similarity score reflecting how closely two actors align
on six key policy issues (self-regulation, scope of the reform, control procedure, timing of
the control mechanism, intensity of control, and treatment of chemicals on the market);
see Leifeld and Schneider (2012) for the similarity score formula.

We address two of the main hypotheses by Leifeld and Schneider (2012) in this study.
Firstly, we assess whether information exchange is more likely among organizations with
pre-existing communication ties. We expect ties will co-occur in the two information
networks, and to be reciprocated within and across these two network layers (Hypothesis
1). Secondly, we investigate whether institutions are more likely to exchange information
with institutions they perceive as influential (Hypothesis 2), as the potential benefits
gained from high-influence actors may justify the costs associated with establishing
information ties.

Leifeld and Schneider (2012) tested these hypotheses by fitting separate (uniplex)
exponential random graph models to the political and scientific information networks,
including the other two networks as covariates to examine cross-layer effects. By con-
trast, here we fit a multiplex ps model that simultaneously models the three networks as
outcomes. As both directions of cross-layer effects (that is, density and reciprocity) are
incorporated in our model, this approach naturally extends the idea of using existing
communication channels to cross-layer reciprocity, going beyond what was analyzed in
the original study. Moreover, our random actor-level effects may yield insights into the
association of actors’ behaviors within different relational contexts.

Results Table 1 shows that the political information network and the perception of
influence network are more dense than the scientific information network, while the
proportion of ties that are reciprocated is highest in the political information network.
Notably, there is a large overlap between the political information network and the
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Network Density  Reciprocity
Political information (PO) 0.393 0.614
Scientific information (SC) 0.072 0.349
Perception of influence (PE)  0.325 0.382

Table 1: Density and reciprocity of the three layers in the policy network.

distance to: sc | scT | PE E'

Obs J) | Obs ‘ Obs J) | O E(J)
PO 0.174 0.061 | 0.157 0.061 398 0.182 | 0.308 0.182
SC 123 0.060 | 0.078 0.060

Table 2: The observed (Obs) Jaccard distance between networks X and Y reflects cross-
layer network overlap in the data and is determined as in equation (11). The Jaccard dis-
tance between X and Y ' reflects cross-layer reciprocity. For reference, the E(.J) columns
show the expected Jaccard index under random edge permutation.

perception of influence network (see Table 2), meaning that organizations send politi-
cal information to the organizations they deem influential. Approximately 40% of the
unique ties between these networks overlap, as indicated by a Jaccard index of 0.398.
Moreover, organizations tend to send information to those organizations who perceive
them to be influential (Jaccard index: 0.308). However, we do not observe such strong
association between the scientific information network and the perception of influence
network. We note that the observed Jaccard indices are a lot higher than the expected
Jaccard indices if we had permuted the edges randomly.? This is true for most network
combinations, except for the scientific information and reversed perception of influence
ties: organizations are not very likely to receive scientific information from organizations
they perceive as influential.

We estimated two multiplex ps models on the policy network. Model 1 is a baseline
model, while Model 2 includes the effect of governmental status on actors’ tendencies to
send and receive ties and that of policy preference similarity on within-network density.
For both models, we ran four Hamiltonian MCMC chains with 4000 total iterations
(2000 warm-ups) each and the priors specified in Section 3. The potential scale reduction
statistics R are smaller than 1.05 for all the parameters in both models, suggesting model
convergence (Gelman and Rubin, 1992). Further convergence diagnostics for Model 2
can be found in Figures 3-6 in the Supplementary Material (Hong and Niezink, 2025).

2The expected Jaccard index of two networks among n actors under random edge permutation,
assuming ms edges in the first network and m¢ edges in the second, is given by

min(g ) A 13 ot -
k=max(0,ms+m¢—N) ms +me —k (T]r:],) (Tlryt)

with N = n - (n — 1) the total number of possible edges in a graph with n actors, k the number of

common edges, and #m,f—k the corresponding Jaccard index. The numerator of the second term
s L

counts the unique ways of picking two sets of size ms and m+ with k overlaps.
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Model 1 Model 2
mean 95% CI mean 95% CI
Within-layer dyadic effects
Density 1i*° -2.15  (-2.63, —1.68) -3.84 (—5.15, —2.56)
Preference similarity 4,,° 0.36 (0.16, 0.57)
Density 8.84 (—10.80, —7.19) -9.32 (—12.31, —6.74)
Preference similarity 4, —0.10  (—0.44, 0.23)
Density /i -2.02 (=250, —1.56) -3.19 (—4.77, —1.51)
Preference similarity ¢, 0.07  (-0.16, 0.30)
Reciprocity p™° 1.95 (1.11, 2.82) 1.93 (1.06, 2.81)
Reciprocity p* 171 (032, 3.21) 170 (0.32, 3.19)
Reciprocity p™® 0.14  (-0.67, 0.96) 0.17  (-0.62, 0.96)
Cross-layer dyadic effects
Cross-density p"°¢ 2.46 (1.13, 3.99) 2.50 (1.16, 4.11)
Cross-density PP 113 (0.56, 1.70) 1.09 (055, 1.66)
Cross-density p*<** 0.31 (—0.56, 1.21) 0.33  (—0.56, 1.20)
Cross-reciprocity p"°*¢ 2.50 (1.43, 3.61) 2.53 (1.49, 3.65)
Cross-reciprocity p"o"F —0.06 (—0.65, 0.53) —0.05 (—0.64, 0.53)
Cross-reciprocity pS*® -0.17  (-1.02, 0.70) -0.16  (—1.04, 0.70)
Sender effects
Gov. status 50 0.26  (—2.60, 3.22)
Gov. status 75° —0.67  (—4.16, 3.01)
Gov. status 75" 0.59  (-1.87,3.12)
Receiver effects
Gov. status vg° 1.93  (—0.19, 4.06)
Gov. status g 2.02  (—1.05, 5.25)
Gov. status 5" 2.07  (—0.99, 5.18)

Table 3: Posterior means and 95% credible intervals (CIs) for the multiplex
p2 parameters in the German toxic chemical policy network (PO = political informa-
tion, s¢ = scientific information, PE = perception of influence). Posterior means with
ClIs above or below 0 are bolded. Cross-density and cross-reciprocity are short for cross-
layer density and cross-layer reciprocity. Model 2 accounts for the effects of preference
similarity on network density (d,,) and the actor effects of being a governmental orga-
nization (Va,v8)-

Table 3 summarizes the results of the two models. In line with the descriptive statis-
tics, we find a very negative density effect for the scientific information network. No-
tably, information ties are likely to be reciprocated within and across network layers (log
odds: 1.95 for within-layer political, 1.71 for within-layer scientific, 2.50 for cross-layer
reciprocity). These findings support Hypothesis 1, suggesting that if actor ¢ delivers
any type of information to actor j, actor j is more likely to reciprocate with at least
one type of information to actor i. Furthermore, we observe a positive cross-network
density effect between the perception of influence and the political network (log odds:
1.13). This aligns with Hypothesis 2, indicating that actors are more likely to deliver
political information to institutions they perceive as influential. In Model 2, we observe
a slightly positive effect of policy preference similarity on political network density (log
odds: 0.36), suggesting that organizations are more likely to send political information
to others with whom they tend to agree on the core policy topics relevant to the chemical
regulation process.
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Figure 6: The correlation matrix for the actor random effects in the chemical policy
networks (PO = political information, SC = scientific information, PE = perception of
influence).

Figure 6 displays the estimated correlation matrix, including the 95% credible in-
tervals. The tendency to receive political information ties is positively correlated with
the tendency to be perceived as influential (posterior correlation: 0.76). While results
are not conclusive, the positive correlations observed in the top-right (receiver) block
suggest that the tendency to receive ties is positively correlated across network layers.

Goodness-of-fit We apply the goodness-of-fit methods described in Section 4 to Model
2. Figure 7 displays the results of the proposed multiplex goodness-of-fit methods which
demonstrate an adequate fit to the multiplex network. Additional goodness-of-fit checks
on the covariance among the in- and outdegrees of actors in the three networks can be
found in the Figure 7 in the Supplementary Material. Figure 8 shows the results of the
existing uniplex goodness-of-fit methods with implementation adapted from the RSiena
package (Snijders et al., 2024). Overall, we observe a good fit for the indegree and
outdegree distributions, as well as for the triad census, in each layer of the network
individually. The adequate fit of the triad census suggests that the p, model is appro-
priate for these data, despite not explicitly modeling triadic effects. (Hong and Niezink,
2025).

7 Application: Discrepancies in perceptions of gossip

Gossip is a universal phenomenon in human groups. It can be defined as informal com-
munication about a third, non-present person (Dores Cruz et al., 2021) and has been
linked to both positive outcomes, such as promoting cooperation, and negative out-
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Descriptive Statistics Observed vs Simulated basic multiplex statistics

SC.PE_Jaccard_cross_rho l—@+
PO.PE_Jaccard_cross_rho . -+—B]—+—-
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Figure 7: Multiplex goodness-of-fit measures. The white dots indicate the statistics
calculated on the observed network. The box-plots are based on statistics calculated on
networks simulated from 1000 posterior draws.

comes, such as the social exclusion of the target (e.g., Feinberg et al., 2014; Kisfalusi
et al., 2019). In this section, we focus on gossip in the school setting. Here, gossip has
been considered a form of bullying (Kisfalusi, 2018), which significantly affects children’s
social development and school outcomes.

Despite the important role of gossip in social interactions in schools, there are nu-
ances to the phenomenon which are often overlooked. In particular, studies on gossip
usually only consider the viewpoint of either the gossiper or the gossip target. Yet,
different individuals may perceive the same event differently, leading to divergent per-
spectives. In the case of bullying, for example, individuals who are identified as bullies
by their victims may not self-identify as such. The non-confrontational nature of gossip
introduces an additional layer of complexity when gossip targets need to identify who
they think is talking about them behind their back. Previous research has examined
the disagreements between bullies and victims in reported bullying behavior (Veenstra
et al., 2007; Tolsma et al., 2013; Kisfalusi, 2018; Tatum and Grund, 2020). In this set-
ting, the two perspectives were highly complementary. Yet, the disagreements between
gossipers and gossip targets so far remain unstudied.

In this section, we take a multiplex network perspective on the gossip relation, simul-
taneously studying self-reported gossip behavior and the perceptions of gossip behavior
by the gossip target. Being a gossiper might affect how an individual perceives them-
selves as the victim of gossip, and gossip victims may feel the need to retaliate. A
multiplex network perspective is necessary to understand such associations. In partic-
ular, we will focus on the following two research questions. First, are students more
likely to gossip about people who they think are gossiping about them? We expect this
is the case and will refer to this as retaliation. Second, are students likely to accurately
perceive their gossipers? As discrepancies between reports by aggressors and victims
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Figure 8: Simulated goodness-of-fit statistics for the policy triplex network: political
information (first column), scientific information (middle), and perception of influence
(last column). From top to bottom, the statistics are the cumulative indegree distri-
bution, the cumulative outdegree distribution, and the triad census (See Figure 2 in
Leinhardt (1971) for triad configurations). The figure compares the observed network’s
statistics (red line) to the distribution of the same statistics on networks generated from
the fitted model (black dots: simulated average). The plotting functions are adopted
from the R package RSiena (Snijders et al., 2024).

have been found in the case of bullying (Veenstra et al., 2007), we expect these to exist
as well in reports of gossip. We will refer to this as perception discrepancy (as opposed
to perception accuracy). In the case of retaliation, individual ¢ both gossips about j and
thinks that j is gossiping about them. Accurately perceived gossip ties are those where
individual ¢ gossips about 7, and j thinks that ¢ gossips about them. Figure 9 illustrates
these relations.

We expect that gender moderates the above effects, such that the likelihood of
retaliation and accurate perception is higher when the sender and the receiver are of
the same gender. To investigate this hypothesis, we incorporate the binary indicator of
whether the two actors in a dyad share the same gender as a covariate when examining
cross-network density and reciprocity. Additionally, we study how gender influences
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(a) Gossip network: (b) Perception net- (c) Retaliation: i — (d) Accurately per-
i — j means ¢ admits work: ¢ — j means ¢ j means ¢ thinks j gos- ceived gossip: i — j

to gossip about j. thinks j gossips about sips about them and ¢ means i admits to gos-
them. admits to gossip about sip about j and j ac-
j. curately perceives i as

gossiping about them.

Figure 9: An example of a biplex network of self-reported gossip ties and perceived
gossip ties among 15 students. There are 10 female (yellow circle) and 5 male students
(blue square).

individuals’ propensities to both send and receive ties by incorporating gender as an
actor covariate in our analysis.

Data We will study the gossiper-target relationship based on data from the fourth
wave of a six-wave panel study on Hungarian elementary school students, conducted
between 2013 and 2017. The fourth wave of data collection occurred in the spring of
2015, when the students were enrolled in the sixth grade and were on average 13 years
old. We dropped 9 classes with zero perception ties and analyze the remaining 34 classes
containing a total of 702 students. See Kisfalusi (2018) and Kisfalusi et al. (2021) for
more detailed information on the data collection. We simultaneously study self-reported
gossip (students’ answers to the question: ‘About whom do you talk with your classmates
behind his/her back?’) and perceived gossip (‘Who do you think is talking about you
with other classmates behind your back?’). These two relations together yield a biplex
network. Figure 9 illustrates the gossip data collected in one of the classrooms. An
example of a retaliation-only dyad is {9, 21}, where student 9 believes that student 21
is gossiping about him, and retaliates by gossiping about 21. However, 21 neither gossips
about 9 nor accurately perceives that 9 is gossiping about him.

Descriptive statistics of the 34 biplex networks are summarized in Table 4. On av-
erage, we have about 20 students present in each classroom with a balanced proportion
of female to male students. On average, the gossip networks have fewer ties than the
perception networks, and reciprocity is also lower in the gossip networks. Based on the
Jaccard indices, there are considerably more pairs of students ¢ and j where i gossips
about j and ¢ thinks j is gossiping about them than pairs where i gossips about j and
j accurately perceives that ¢ is gossiping about them. This descriptive finding concurs
with our expectation on students’ retaliating behavior.
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Mean Median SD

Number of students 20.7 19.5 4.96
Proportion female 0.48 0.47 0.10
Gossip density 0.09 0.08 0.06
Gossip reciprocity 0.13 0.14 0.11
Perception density 0.15 0.14 0.06
Perception reciprocity 0.23 0.23 0.11
Gossip x perception Jaccard 0.24 0.21 0.12
Gossip x perception” Jaccard 0.11 0.10 0.07
Expected gossip x perception Jaccard 0.05 0.05 0.02

Table 4: Summary statistics of the gossip and perceived gossip networks in 34 Hungarian
elementary school classrooms. The expected Jaccard distance of the gossip and percep-

tion network under random edge permutation equals that of gossip and perception .

Plan of Analysis We fit two models to each classroom: a baseline biplex ps; model
and a model that additionally includes the effect of gender (female=1) on students’
tendencies to send and receive ties, and the (dyadic) effect of having the same gender
on cross-layer density and reciprocity. For each model, we ran 4 chains with 4000 total
iterations (2000 warm-ups). Posterior estimates are calculated based on 8000 posterior
draws. The potential scale reduction statistic R was less than 1.05 for all the parameters
in each of the 68 models, suggesting the convergence of the models.

To aggregate the results from all classrooms, we conduct a Bayesian meta-analysis
by fitting a normal-normal hierarchical model to the fixed parameters of each classroom
(Gelman et al., 2013, Ch. 5.5). Let 6 € R3* denote the vector of the posterior means for
one of the fixed model parameters. We assume that

PN

0; ~ N(0;,07),
0; ~N(u,7%),

where p and 7 are the overall population mean and standard deviation. For the priors
of the hyperparameters, we assume pu ~ AN(0,10) and 7 ~ Cauchy(0,0.5) for all the
fixed effects. Since correlations only take values in [—1,1], we compute the Fisher z-
transformation (Fisher, 1921) of the estimated correlations and apply the normal-normal
model to the transformed quantities. We used the R package brms (Biirkner, 2021) with
5000 iterations for the meta-analysis (Harrer et al., 2021, Ch. 13).

Results Table 5 shows the posterior means and the 95% credible intervals of the pop-
ulation means of the ps model parameters. In Model 1, we find a positive cross-density
effect (estimated population mean g = 2.62), which supports our expectation about
gossip retaliation. Students are about 13 times more likely to gossip about someone if
they think the person is gossiping about them (or vice versa). We do not observe a posi-
tive cross-reciprocity effect (i = —0.13) indicating no evidence that students accurately
perceive who is gossiping about them. This result is consistent with our expectation on
gossip perception and the studies on the dual perspective on bullying.
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Model 1 Model 2
mean 95% CI mean 95% CI

Within-layer dyadic effects

Density ~11.45 (—13.37, —9.49) —12.91 (—15.72, —10.18)

Density 4" —6.46  (~7.30, =5.62)  —7.72  (—9.00, —6.30)

Reciprocity p© —0.75 (—2.01, 0.57) —0.90 (—2.44, 0.53)

Reciprocity p° 1.35 (0.53, 2.07) 1.49 (0.65,2.23)
Cross-layer dyadic effects

Cross-density u®* 2.62 (1.75, 3.57) 1.36 (0.33,2.42)

Same-gender 0;1°¢, s 2.05 (0.85,3.09)

Cross-reciprocity p®F —0.13 (—0.98, 0.79) —0.94 (—2.20, 0.23)

Same-gender 65 —0.33 (—1.89, 1.67)
Sender effects

Female 7S —0.14  (—1.99, 1.64)

Female 7, 0.71 (—0.50, 1.76)
Receiver effects

Female ~§ —0.54 (—1.53, 0.52)

Female 7 094  (—0.28, 2.05)
Correlations

Sender® x receiver® p4c go —0.04  (—0.12, 0.05) —0.03 (—0.11, 0.07)

Sender® x sender” pac ar 0.24 (0.14, 0.33) 0.22 (0.14, 0.31)

Sender® x receiver’ pac pr 0.06  (—0.05, 0.17) 0.00 (—0.11, 0.10)

Sender" X receiver® par pe 0.09  (-0.05, 0.23) 0.11 (—0.02, 0.23)

Receiver® x receiver’ ppe pr 0.16 (0.03, 0.29) 0.14 (0.03, 0.25)

Sender"” x receiver” p4c pr —0.11 (—0.27, 0.05) —0.15 (—0.27, 0.00)

Table 5: Posterior means and 95% credible intervals (CIs) of the overall means of the
multiplex gossip networks p, parameters from 34 Hungarian elementary school class-
rooms (G = gossip, P = perception of gossip). Posterior means with CIs above or below
0 are bolded. Cross-density and cross-reciprocity are short for cross-layer density and
cross-layer reciprocity. Model 2 accounts for the effects of gender on cross-layer density
(09F oss) and reciprocity (09F o) and the actor effects of being female (yq,7v3)-

4,CTOSS p,Cross

Gossip networks are generally sparse, and we indeed find negative network-specific
density effects in Model 1 for both self-reported gossip and perceived gossip. Negative
ties are often reciprocated but, interestingly, we do not observe a reciprocity effect for
self-reported gossip (i = —0.75, CI = [—-2.01,0.57]). Yet, when it comes to perceived
gossip, we do observe a positive reciprocity effect. One reason for this may be that
students feel more comfortable reporting on perceived negative behavior than on their
own negative behavior, because of social desirability bias. Also, if two students dislike
each other, they may each suspect the other to be gossiping about them. As such, a
reciprocated perceived gossip relation could indicate a more generally negative tie.

After accounting for effects of gender in Model 2, the above-mentioned findings
remain the same. We find a positive same-gender cross-density effect (4 = 2.05), indi-
cating that ¢ is about 7.5 times more likely to gossip about j and to think j is gossiping
about them if ¢ and j are of the same gender. We do not find evidence that perception
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accuracy changes when gossiper and target are of the same gender. Also, controlling for
the other effects, we do not find a differential tendency for female students to send or
receive self-reported or perceived gossip ties.

Finally, we consider the estimated correlation of the actor random effects, for which
the two models yield comparable results, though Model 2 shows slightly lower estimated
correlations after accounting for actor effects of gender. In particular, the gossip network
sender random effect is positively correlated with the perception network sender random
effect and the same holds true for the receiver random effects in both networks. This
means that individuals who report to gossip a lot about others also tend to think others
are gossiping about them — a tendency that goes beyond the urge to retaliate among
specific student pairs. And individuals who are gossiped about a lot are also suspected to
be avid gossipers. Note that the first finding is a negative form of generalized reciprocity,
where individuals treat others in the same way that others treated them in the past.
Interestingly, we find a negative covariance between the perception network random
sender and receiver effects. That is, the more students think they are gossiped about,
the less likely they are accused of gossip by others. This finding contrasts the positive
perception reciprocity effect we found at the dyad level.

8 Discussion

As social actors are often embedded in multiple interconnected social networks, we
propose a Bayesian multiplex network model in the ps modeling framework. This model
captures the interplay of social dynamics across different network layers by introducing
cross-layer dyadic effects and actor random effects. Assuming the dyads are conditionally
independent, we formulate the model as a mixed-effects multinomial logistic regression
capable of handling a range of network dependencies while remaining interpretable. The
proposed methodology is available in the R package multip2.? The code to replicate
the simulation studies and data analyses can be found in a separate repository.*

Despite being widely used and simplifying model specification and estimation, the
conditionally independent dyads assumption precludes modeling some more intricate
network dependencies. In real networks, higher-order network effects such as transi-
tivity (e.g., befriending a friend of a friend) can be strong drivers of tie formation,
beyond the effect of reciprocity, individual and dyadic covariates, and variation in ac-
tors’ tendencies to send and receive ties. Our definition of the multiplex p, model does
not explicitly represent triadic effects. Surprisingly, however, the model adequately cap-
tures the triadic structures present in the policy network, as is illustrated in Figure 8.
Regarding dyadic goodness of fit, as shown in Figure 8 of the Supplementary Material,
the multiplex p, model captures multiplex goodness-of-fit statistics, such the overlap
between different networks, much better than a uniplex approach, where a p, model is
fitted on each of the network layers separately.

The ability of lower-order network models to capture higher-order effects (i.e., triad
effects) has been documented and explored by Faust (2010). In the context of the social

3See GitHub: https://github.com/annihong/multip2
4See GitHub: https://github.com/annihong/multiplex_p2_replication_code
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relations model, Minhas et al. (2019) accounted for triadic effects while preserving the
conditionally independent dyads assumption by incorporating a multiplicative compo-
nent in the form of a latent factor model in their model. The multiplex ps model could be
extended similarly. Moreover, while we have proposed several multiplex goodness-of-fit
measures, it still remains unexplored how to best incorporate goodness-of-fit statistics
that capture multiplex triadic patterns. As the number of network layers increases, the
number of possible triad configurations on a dyad grows exponentially. Therefore, the
choice of which multiplex network triad configurations to include should be guided by
the specific applied research context.

Additionally, it is important to note that the priors employed in our study remain
invariant to increasing network dimensions and network size across key network statis-
tics, such as density, reciprocity, and transitivity. We have included additional prior
predictive checks in Figure 2 of the Supplementary Material (Hong and Niezink, 2025).
However, when applying the multiplex ps model, practitioners should conduct separate
prior predictive checks to ensure that the selected priors induce appropriate network
properties.

In the gossip study (Section 7), we considered data from 34 school classes and aggre-
gated the multiplex py model results by a Bayesian meta-analysis. Nowadays, network
data collection frequently involves sampling from a population of networks (e.g., school
classes, households, organizational work units; Goeyvaerts et al., 2018; Lubbers, 2003).
In such samples, bigger networks typically have lower density, while the mean degree
is similar across the networks (Krivitsky et al., 2011) — something we did not account
for in the current study. A multilevel extension of the multiplex ps model would enable
researchers to study a sample of multiplex networks across various groups, and thus
obtain more generalizable results and address group-level research questions. Moreover,
the multilevel approach would estimate parameters more efficiently by partially pooling
observations across the groups to estimate the global parameters. The multilevel model
could also explicitly account for the effect of network size variation in a sample of net-
works on parameter estimates, in case that variation was large (Krivitsky et al., 2023;
Niezink, 2023).

The R package multip2, associated to this paper, allows for part of the network
data to be missing. This feature can be leveraged to assess, e.g., the impact of removing
dyadic outliers by setting all layers of a certain dyad to missing and refitting the model
for comparison. Yet, the current implementation of the package does not support miss-
ing data in specific layers — if data on a dyad in one layer are missing, all layers for that
dyad are excluded. We plan to improve this functionality by retaining dyadic informa-
tion in non-missing layers. We also plan to improve the computational efficiency of the
estimation algorithm by utilizing Graphics processing units (GPUs) through the OpenCl
framework and the Stan OpenCL backend implementation in CmdStan (Stan Develop-
ment Team, 2023b). Enhancing the estimation speed will increase the applicability of
the multiplex ps model and will be essential for its multilevel extension.
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