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Spatial interdependencies commonly drive the spread of violence in civil conflict. To address such interdependence, scholars
often use spatial lags to model the diffusion of violence, but this requires an explicit operationalization of the connectivity
matrices that represent the spread of conflict. Unfortunately, in many cases, there are multiple competing processes that
facilitate the spread of violence making it difficult to identify the true data-generating process. We show how a network-driven
methodology can allow us to account for the spread of violence, even in the cases where we cannot directly measure the factors
that drive diffusion. To do so, we estimate a latent connectivity matrix that captures a variety of possible diffusion patterns.
We use this procedure to study intrastate conflict in eight conflict-prone countries and show how our framework enables
substantially better predictive performance than canonical spatial-lag measures. We also investigate the circumstances under
which canonical spatial lags suffice and those under which a latent network approach is beneficial.

Con frecuencia, las interdependencias espaciales impulsan la propagacién de la violencia en los conflictos civiles. Para abordar
tal interdependencia, los académicos a menudo utilizan desfases espaciales para modelar la difusion de la violencia, pero
esto requiere un funcionamiento explicito de las matrices de conectividad que representan la propagaciéon del conflicto.
Desafortunadamente, en muchos casos, hay multiples procesos en competencia que facilitan la propagacién de la violencia,
lo que dificulta la identificacion del verdadero proceso de generacion de datos. Mostramos como una metodologia impulsada
por la red nos permite considerar la propagacién de la violencia, incluso en los casos en que no podemos medir directamente
los factores que impulsan la difusién. Para ello, calculamos una matriz de conectividad latente que refleja una variedad de
posibles patrones de difusién. Usamos este procedimiento para estudiar conflictos intraestatales en ocho paises propensos
a experimentar conflictos y mostrar cémo nuestro marco permite un rendimiento predictivo considerablemente mejor que
las medidas de desfase espacial canénicas. También investigamos las circunstancias en que los desfases espaciales canénicos
resultan ser suficientes y las circunstancias en que un enfoque de red latente es beneficioso.

Les interdépendances spatiales favorisent souvent la propagation de la violence dans les conflits civils. Pour traiter de telles
interdépendances, les chercheurs ont souvent recours a des décalages spatiaux pour modéliser la diffusion de la violence,
mais cela exige une opérationnalisation explicite des matrices de contiguité qui représentent la propagation du conflit. Mal-
heureusement, dans de nombreux cas, il y a de multiples processus concurrents facilitant la propagation de la violence, ce qui
complique I'identification du processus qui génére véritablement des données. Nous montrons comment une méthodologie
basée sur les réseaux peut nous permettre de prendre en compte la propagation de la violence, y compris dans les cas ot nous
ne pouvons pas mesurer directement les facteurs qui favorisent sa diffusion. Pour ce faire, nous avons estimé une matrice
de contiguité latente qui capture toute une diversité de modeles de diffusion possibles. Nous avons utilisé cette procédure
pour étudier les conflits intraétatiques dans huit pays sujets aux conflits et nous montrons comment notre cadre permet
d’améliorer substantiellement les performances prédictives par rapport aux mesures de décalages spatiaux canoniques. Nous
étudions également les circonstances dans lesquelles les décalages spatiaux canoniques suffisent ainsi que celles dans lesquelles
une approche par réseaux latents est bénéfique.
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2 Using Latent Networks to Improve Spatial Predictions

Introduction

Patterns of violence tend to exhibit strong degrees of spa-
tial correlation, clustering, and diffusion (Dorff, Minhas,
and Ward 2017). Violence can diffuse spatially across nu-
merous pathways: intuitively, it might propagate through
geographic proximity wherein violence in one province,
neighborhood, or country is liable to spread to a neigh-
boring area (Buhaug and Gleditsch 2008). Similarly,
socioeconomic conditions across regions, such as hori-
zontal inequalities and shared ethnicity, might also drive
trends behind violent events (Cederman, Weidmann, and
Gleditsch 2011). Scholars have shown that climate factors,
such as precipitation and temperature, have a demonstrated
relationship to the risk of violence (O’Loughlin et al. 2012)
and geographic barriers linking vital borders such as moun-
tain ranges, or infrastructure like roads, can influence the
spread of conflict (Braithwaite 2010). Modeling these diffu-
sion pathways has become increasingly common through a
spatial-lag framework (y, ~ pW+y,_1) in which scholars spec-
ify a set of weighting matrices, W, to account for suspected
drivers of conflict diffusion. Yet, given the diverse plausible
drivers of civil conflict diffusion highlighted above, the task
of determining and operationalizing an appropriate set of
weighting matrices is difficult for scholars to accurately iden-
tify ex ante.

The question of how to identify diffusion processes is es-
pecially relevant due to the increased interest in prediction
and use of machine-learning techniques in the study of vio-
lence. It is easy to understand why prediction has taken on
particular significance for conflict scholars (Guo, Gleditsch,
and Wilson 2018). For researchers and policy practitioners
alike, preventing loss of human life means successfully iden-
tifying locations where political violence is likely to be high
in the near future. This goal of prediction, predicated on
the prevention of violence, has led researchers to turn to-
ward machine-learning techniques that can typically handle
more complex data-generating processes and outperform
traditional approaches in forecast accuracy.

Of course, machine-learning techniques have important
limitations. First, such models are only as good as the fea-
tures the user is able to construct for the model’s input.
Dealing with this problem in the context of conflict pre-
diction is especially relevant as we need to think carefully
about how to account for the variegated pathways through
which conflict may spread across a country. Second, high-
quality, fine-grained data are often not available at the sub-
national unit of analysis in a time-series context. If our goal
is to predict violence within a relatively small time frame at
any subnational level, these data problems limit the benefit
of adopting these approaches.

To overcome these obstacles, we propose an unsupervised
network approach, which estimates a weighting matrix with
probabilistic measurements of diffusion pathways within a
country. This approach enables us to take advantage of pre-
vious methodological advances in the spatial modeling liter-
ature and supplement them with recent advances in network
science to generate a set of features that embed subnational
geographic units onto a latent conflict space. Subnational

has appeared in the Journal of Politics, British Journal of Political Science, Politi-
cal Analysis, and Journal of Conflict Resolution, among other journals.
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units more proximate in the latent space are more likely
to spread conflict to one another. We apply this technique
to eight countries that have experienced particularly high
counts of intrastate conflict during the twenty-first century
according to the Uppsala Conflict Data Project (UCDP).
Each of the countries ranks among the most violent civil
conflicts in Africa during the twenty-first century. For each
of these eight countries, we show that simply integrating our
network-based feature into machine-learning pipelines for
conflict prediction enables us to better predict the occur-
rence of conflicts in an out-of-sample context.

Spatial Dimensions of Conflict

For decades, scholars have recognized the importance of
spatial factors in the study of interstate violence (Richardson
1960; Bremer 1992), with an early focus on shared bor-
ders and a later focus on both distance and the regional
context of regime type (Ward and Gleditsch 2002). While
Ward and Kirby (1987) find significant spatial autocorrela-
tion in conflict, they argue that treating borders as a cause
of conflict misses the strategic and contingent nature of
borders. Gartzke (2007) shows that the effect of contigu-
ity on violence depends on the relative development of
states, where distance has less of a pacifying effect on richer
states.

In more recent years, scholars have investigated not just
the spatial diffusion of conflict across states, but also how
conflict spreads within a country. Weidmann and Ward
(2010) find strong spatial correlation in patterns of vio-
lence in Bosnia during the 1990s, and Townsley, Johnson,
and Ratcliffe (2008) find similar spatial and temporal cor-
relations in the use of improved explosive devices in Iraq.
O’Loughlin and Witmer (2011) show how conflicts spread
from hotspots in the caucuses and highlight how conflicts
are driven, not just by distance but by shared religious affilia-
tions between groups. Schutte and Weidmann (2011) distin-
guish between conflict flows due to relocation (violence that
is no longer in location 1 but has moved into location 2) and
escalation (when violence appears in location 1 and then,
in the next time period, also in location 2) and find that
escalation is more common than relocation in several civil
conflicts.

Literature on the spatial diffusion of intrastate conflict
has offered multiple mechanisms that might explain the
spread of violence across substate regions (Gleditsch 2007).
Salehyan and Gleditsch (2007) find that refugees are an
important vector in the spread of conflict due to shared
networks and shifts in population composition in the host
state. Similarly, a number of studies have shown that coun-
tries that share ethnic kin are more likely to be linked in the
spread of conflict (Buhaug and Gleditsch 2008; Cederman,
Buhaug, and Rod 2009; Cederman, Hug, and Krebs 2010;
Wucherpfennig et al. 2011; Metternich, Minhas, and Ward
2017).

Focusing on governments’ role in enabling or con-
straining violence, Kathman (2010), Beardsley (2011), and
Danneman and Ritter (2014) find that the spread of
civil conflict is conditional on states’ policy choices—
intervention, peacekeeping, and repression, respectively.
Research on the micro-foundations of conflict and peace
suggests that both violent and nonviolent actions are often
driven by localized conditions, such as historical legacies of
repression (Osorio, Schubiger, and Weintraub 2018), com-
petition between anti-government groups (Metternich et al.
2013), and the distribution of civilian collective action ef-
forts (Dorff and Braithwaite 2018).
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CAssy DORFF ET AL. 3

Undoubtedly, previous scholarship has consistently found
that spatially distributed conditions are substantively impor-
tant to our understanding of conflict processes, but the
particular ways in which these spatial factors manifest can
change substantially from conflict to conflict. Franzese and
Hays (2008) provide a useful typology of the ways that spa-
tial effects can manifest. Spatially driven patterns can arise
when an exogeneous common shock has similar effects in
a number of areas or they can occur because the processes
we study are actually interdependent. For example, Franzese
and Hays (2008) point to five different mechanisms that
might drive interdependence among actors: coercion, com-
petition, strategic learning, emulation, and migration. Of
course, multiple factors may be at play in a given conflict.
Thus, the state of the literature suggests that there are many
barriers to identifying appropriate measures for the spatial
dimensions of conflict.

Conflict Prediction

While research identifying the drivers of diffusion has led to
important advances in the field, the focus on prediction is
a welcomed addition to the literature. Increasingly, scholars
have begun to pay attention to prediction both as a way of
evaluating the effects of important variables and as an end
in and of itself. Both Ward, Greenhill, and Bakke (2010)
and Schrodt (2014) have criticized the emphasis on statis-
tical significance in the field and suggest that scholars in-
stead aim to generate models that can predict out-of-sample.
As a number of scholars have pointed out, many extant em-
pirical models in conflict are quite lacking when it comes
to predicting conflict out-ofssample (Beck, King, and Zeng
2000; Ward, Siverson, and Cao 2006; Gleditsch and Ward
2010). Recently, however, more conflict researchers have
developed models explicitly focused on the prediction of
conflict-related processes, such as humanitarian crises (Gurr
and Harff 1996), civil war onset (Hegre and Sambanis 2006;
Ward et al. 2013), civil war duration (Bennett and Stam
2009), the incidences of armed conflict over a 40-year pe-
riod (Hegre et al. 2013), mediation in civil conflict (Clayton
and Gleditsch 2014), and dissident groups’ turns toward vi-
olence (Shellman, Levey, and Young 2013), among others.
Some scholars have even attempted to use predictive ac-
curacy as a substitute for “pvalues” by showing which fac-
tors improve on the ability to predict out-of-sample, such as
Brandt, Colaresi, and Freeman (2008)’s assessment of the
effect of public opinion on conflict in Israel. This research
demonstrates the value of prediction for predicting and—
hopefully—ameliorating civil conflict.

The rise in scholarship on the benefits of prediction
has led to a growing interest in the ability of machine-
learning techniques to aid in the prediction of violent pro-
cesses. Notably, Colaresi and Mahmood (2017) argue that
machine learning could help to develop better predictors
for the study of violent conflict. In early attempts, results
were mixed: in an initial effort to predict interstate con-
flict using a neural network, Schrodt (1990) was unable
to out-predict more conventional linear models. The pre-
diction of interstate conflict using a similar technique by
Beck, King, and Zeng (2000) was the subject of contro-
versy over whether it could really predict accurately out-
of-sample (de Marchi, Gelpi, and Grynaviski 2004). How-
ever, in the decades since, advances in computing power
and algorithmic sophistication have increased our ability to
use machine-learning techniques to predict conflict. For ex-
ample, Hill and Jones (2014) have used random forests to

distinguish which factors best predict government repres-
sion and Jones and Lupu (2018) implement a random-
forest-like algorithm to explore the relationship between
regime type and violence. Muchlinski et al. (2016) employ
a random-forest model to predict civil war onsets, and Perry
(20138) also utilize a random forest (along with a Naive Bayes
classifier) to predict the incidence of battles at the district
level. One of the biggest issues with these techniques, how-
ever, is that they are quite data intensive and require large
numbers of features to yield their promised predictive ac-
curacy. This becomes difficult when the goal is to predict
phenomena at increasingly fine resolutions—both tempo-
rally and spatially.

Latent Diffusion

Clearly, conflict processes are exceedingly complex. To ac-
complish accurate prediction, we turn to a latent variable
approach. Latent variable frameworks generate variables
that are not directly observable but can be constructed
from observable information. This allows for a compression,
or reduction, of complex data, making it easier to under-
stand multidimensional data-generating processes. We sug-
gest that this is a particularly useful strategy for conflict pre-
diction, where conditions that predict violence are often
shifting and difficult to identify over time. Further, a singu-
lar, dominant “cause” or predictor of diffusion might not
actually exist, producing even greater barriers for predic-
tion. To return to Franzese and Hays (2008)’s typology, a
civil conflict might experience common shocks (due to eco-
nomic factors, e.g., which effect some but not all regions
of a country) or there could be coercion by international ac-
tors to channel or suppress violence in certain regions. In
some cases we have even seen learning, where different non-
state actors share tactical and strategic innovations, and civil
conflict often leads to migration where refugees from one re-
gion repeat certain conflict behaviors in a new region. All of
these phenomena will not necessarily map onto a proximity-
based weight matrix, and some of them will cut in different
directions. A latent approach allows us to capture the latent
connections between provinces in a given country, based on
past diffusion patterns, and leverage this measurement for
prediction.

These latent connections might be driven by an assort-
ment of important processes even at the substate level, such
as communal relations between warring parties, shared eth-
nic ties, or state capacity and reach. For example, in the case
of Nigeria, changes in the location of violent events in the
northeast, where Boko Haram engages in terroristic behav-
ior against civilians, are arguably driven by different factors
than conflict in the Niger Delta where militia groups vie to
capture oil production centers. In South Sudan, though oil
revenues and resource management have played a key role
in sustaining conflict, the behavior and presence of inter-
national actors are also significant to the conflict’s develop-
ment (Johnson 2014).

Notably, it is beyond the goals and scope of this article to
explicitly characterize our latent variable for each conflict
to offer a new, named concept of diffusion that specifies cer-
tain processes over others. However, focusing too much on
perfectly specifying and measuring one process, or a collec-
tion of processes, over others as key determinants of diffu-
sion will likely hinder our ability to forecast violence.
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Data and Features
Case Selection

In order to study patterns of spatial diffusion and vio-
lence, we will rely on the UCDP’s Geolocated Event Data
(GED) developed by Sundberg and Melander (2013). This
dataset has 142,902 records of violent events in 118 coun-
tries between 1989 and 2017 located across space and
time. To begin, we rank all countries in the data by or-
der of conflict intensity, by which we define as countries
with the highest number of violent events per year of
conflict; we then examine the longest continuous period
of violence.! At first, we had chosen to examine the top
20 most violent countries but chose to drop one case,
Uganda, and thus added the 21% most violent country.?
UCDP’s GED are used to create our measure of con-

flict where y; , = 1 indicates that a conflict occurred in
country ¢’s region [ at time ¢ (y;, , = O if no conflict
occurred).

We obtain data on administrative boundaries in these
twenty countries from the United Nations Organization
for Coordination of Humanitarian Affairs, which has made
shape files for these countries available on the Humanitar-
ian Data Exchange. In each of these cases, we attempt to
choose the administrative divisions that would provide be-
tween ten and fifty units. We do this to avoid having too
few units for our network analysis and to prevent using an
overly sparse matrix. In the end, this means we utilize the
level two divisions for South Africa, Sierra Leone, Rwanda,
and Senegal and the level one divisions for the other sixteen
countries. In table 1, we display descriptive information for
each case. Years is recorded as the number of years with a
GED event in the country, Conflict years are the periods of
time where each year had at least one conflictual event, #
of events is the total number of GED events for that country,
and FEuvents per conflict year is the number of events divided by
the number of years with at least one event. This collection
of cases displays variability across these measures, ranging
from countries that have an average of 140 GED events per
year to those that only have around 6. In the remaining sec-
tions, we explain the details of our approach. To do so, we
select South Sudan as an illustrative case in order to clearly
demonstrate each step of our analysis. Of course, all of these
steps are applied to all twenty cases in our study.?

Features

Using these data, we generate a set of standard features to
account for temporal and geographic spatial dependence.
In particular, we include variables measuring the occur-
rence of battles in the surrounding provinces in the previ-
ous period, following work by Ward and Gleditsch (2002),
Hays, Kachi, and Franzese (2010), and Neumayer and Plim-
per (2010), among others. This is done using both a binary
weight matrix, where provinces i and j have a value of 1 if
they are directly contiguous and 0 otherwise, and weights us-
ing the distance between each province’s centroid. We also
create one- to five-year lags for battles in the province it-
self and use a cubic spline of these lagged values to capture

!The most consecutive years where there was at least one violent event per
year.

2We dropped Uganda because the country is in the process of persistent ad-
ministrative boundary changes, making the process of predicting violence in a
given district fraught.

3 As shown in Table 1, we drop the Ugandan case due to persistent changes
in boundary descriptions, which made the creation of consistent spatial matrices
untenable.

more complex and non-monotonic patterns of temporal de-
pendency (Carter and Signorino 2010). Finally, we include
indicator variables for each province to capture the differen-
tial likelihood of violence in different regions of a country.
We will compare these features to our network approach,
which we explain in the following section. These features
are shown in table 2.

One issue with adopting this approach is that it leads to
the generation of a large number of features that are likely
correlated with one another. Correlations between the fea-
tures would not be surprising as we are generating multiple
lagged versions of the same variable. To deal with this, we
conduct a principal component analysis (PCA) over our set
of spatial and temporal features. PCA reduces the dimen-
sionality of a dataset by finding a set of linearly uncorrelated
principal components while still retaining key patterns in
the original dataset. The new, uncorrelated variables (the
principal components) are what we pass as features to the
classifiers in all of the analyses presented in the following
sections.

Network-Based Feature Construction

The set of spatial variables we include in the model all oper-
ate under the principle that there is an explicit geographic
connection, which explains how conflict diffuses from one
province to another. However, there might be factors be-
yond just geography that explain why conflict diffuses within
a country. Measuring these kinds of latent connections is
possible through a network-based approach. The first step
in doing this is to construct a set of sociomatrices from
of our events of interest. Specifically, the measure we con-
struct should represent the ways in which conflict may dif-
fuse across provinces. To do this, we employ a simple deci-
sion rule:

* Given province i has a value of 1 at time ¢ and province j
has a value of 0 at time ¢

» Ifat time ¢ 4+ 1 j also experiences an event, then we code
the 1, j‘ " values in our diffusion matrix as 1

* Alternatively, if at time ¢ 4+ 1, j does not experience an
event, then we code the i, j”’ values of our diffusion ma-
trix for that value as 0

We generate sociomatrices using this decision rule for
every time period and country* Next, we generate our
low-dimensional representation of connectivity between
provinces using the multiplicative effects portion of the ad-
ditive and multiplicative effects (AME) model (Hoff 2005;
Minhas, Hoff, and Ward 2019). Generally, the AME model
can be used to represent network dependencies through a
set of random effects.”> We use the multiplicative effects por-
tion of this model to develop a latent factor space that mea-
sures how likely an event is to spread from one province to
another. The model is specified as follows:

yij = f(0;;), where 6;;= UIDV]' (1)

The multiplicative term here is: u; D Vi= D ek dr UiV
K denotes the dimensions of the latent space. The construc-
tion of the latent factor model (LFM) here is actually quite
similar to the recommender systems that companies such as

4Aggrcgat(:d to a monthly level due to sparsity when attempting to use a
weekly level.

®A similar framework has been used previously to estimate the latent mea-
sures of connectivity between states and political actors (Cranmer, Menninga, and
Mucha 2015; Cheng and Minhas 2021; Gallop and Minhas 2021; Huhe, Gallop,
and Minhas 2021).
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Table 1. Country-case information

Country Conflict years # of events  Euvents per conflict year Admin
Algeria 1990-2016 3,786 140.22 1
Somalia 1989-2016 3,685 131.61 1
Libya 2011-2012, 2014-2016 621 103.5 1
South Africa 1989-2000, 2004-2004, 2016-2016 2,232 79.71 2
Nigeria 1990-1994, 1996-2016 1,981 73.37 1
Sudan 1989-2016 1,801 64.32 1
Sierra Leone 1991-2001 644 58.55 2
Angola 1989-2005, 2007-2011, 2013-2016 1,586 56.64 1
Ethiopia 1989-2016 1,568 56 1
South Sudan 2011-2016 262 43.67 1
DR Congo (Zaire) 1993-2004, 2006-2016 1,008 42 1
Uganda 1989-1992, 1994-2009, 2016-2016 1,110 39.64 Not Used
Burundi 1990-1992, 1994-2008, 2012-2012, 2014-2016 882 32.67 1
Central African Republic ~ 2001-2003, 2006-2007, 2009-2016 313 19.56 1
Kenya 1989-1989, 1991-2016 537 19.18 1
Liberia 1989-1996, 2000-2003 180 12 1
Mali 1990-1991, 1994-1994, 1997-1997, 1999-1999, 20042005, 2007-2016 293 10.85 1
Rwanda 1990-1994, 1996-1998, 2001-2001, 2004—2004, 2012-2013 243 10.12 2
Senegal 1989-1990, 1992-1993, 1995-2006, 2008-2013 176 7.04 2
Mozambique 1989-1992, 2004-2005, 2012-2014, 2016-2016 189 6.75 1
Chad 1989-1995, 1997-2010, 2015-2016 185 6.61 1

Note: Years used are in bold.

Table 2. Feature construction of available dependence measures in
both baseline and network models

Features Dependence Baseline Networks
Spatial lag using contiguity Spatial N N
matrix

Spatial lag using centroid Spatial N N
matrix

1-5-year lag of DV Temporal N N
Cubic splines of DV Temporal V Vv
State-level indicator Heterogeneity N N
Spatial lag using latent Unobserved spatial Vv
diffusion matrix

Total number of features 9 10

Amazon and Netflix have used to model customer behav-
ior (Resnick and Varian 1997; Bennett and Lanning 2007).
This model posits a latent vector of characteristics u; and v;
for each sender ¢ and receiver j, respectively. The similarity
or dissimilarity of these vectors will then influence the likeli-
hood of activity and provide a representation of third-order
interdependencies. The LFM parameters are estimated by
a variant of the singular value decomposition (SVD) of the
observed network.b

These latent factors are calculated to account for ho-
mophily and stochastic equivalence in relational data. These
factors map well onto the phenomenon that we are attempt-
ing to measure through our latent diffusion matrix. Ho-
mophily captures the idea that certain unobserved factors
make two provinces more or less similar and that we are
more likely to see the diffusion of violence across similar
provinces. We can again turn to the example of regions with
similar populations of an ethnic minority, in which violence
in either region is likely to spread to the other through

5Unlike in traditional SVD, in the latent factor model, the singular values
are not restricted to be positive; this allows us to account for both positive and
negative homophily.

ethnic mobilization. The essential message here is that
while we may not know exactly which characteristics across
provinces influence processes of diffusion, the AME model,
by using the SVD, is very good at inferring latent similarity
by using previously observed instances of diffusion.

Stochastic equivalence captures the idea that two
provinces might play similar roles in the diffusion of vio-
lence within a state. In particular, this means that violence
is equally likely to diffuse from either province to a com-
mon third province: for example, violence is likely to diffuse
from either state i or state j to state k but not to state /. We
could see an example of this in cases of separatist violence
against the government. Violence is likely to begin in poten-
tial breakaway provinces on the periphery and move toward
the center. So, we might observe that different peripheral
states with large separatist groups are stochastically equiva-
lent, as violence is unlikely to diffuse between these states
but is very likely to move from these states to the country’s
capital. On the other hand, in cases of violence between ri-
val groups in the core of a country, we should see the cen-
tral provinces of that country exhibit stochastic equivalence,
as violence is likely to diffuse between them first and later
spread to the periphery.

To compute the SVD, we factorize our observed net-
work into the product of three matrices: U, D, and V. This
provides us with a low-dimensional representation of our
original network.” Values in U provide a representation of
how stochastically equivalent certain provinces are as signal
markers for where conflict will occur next. &; ~ @i; would in-
dicate that provinces i and j experience conflict at the same
time as a specific set of other provinces. V provide a simi-
lar representation but from the perspective of how similar
actors are as receivers. The values in D, a diagonal matrix,
represent levels of homophily in the network.

These third-order interdependencies can capture the dif-
ferent patterns and pathways in which violence spreads
within a given country. Itis important to note here that while

"The dimensions of Uand Vare n x K and Disa K x K diagonal matrix.
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6 Using Latent Networks to Improve Spatial Predictions

we will see high variance between states based on differential
patterns of homophily and stochastic equivalence, our tech-
nique allows us to account for these interdependencies in
our latent diffusion matrix without needing to specify them
beforehand or determine the appropriate covariates.

This model is estimated through a Bayesian probit frame-
work. The algorithm proceeds as follows until convergence:

* Foreach k€ K:
— Sample Uy 7 | Uy, V (Normal)
— Sample V| ;) | U,V _;) (Normal)
— Sample Dy 41 | U,V (Normal)®

Once we estimate these models for every country and
time period, we calculate the likelihood that conflict dif-
fuses from one province to another based on this model.
We then proceed to use the predicted probabilities from our
model as a new weighting matrix, through which we gener-
ate a new set of spatial lags that we include in our set of
features for predicting conflict across our sample of twenty
countries. Figure 1 summarizes our framework for devel-
oping weighting matrices to account for diffusion patterns.
For each country, we not only include all of the features
discussed in table 2, but we also include this network-derived
measure of spatial dependence in the principle component
analysis.

Simple Machine-Learning Pipeline for Modeling
Conflict

To provide a framework to test whether or not our network-
based features improve our ability to predict the occurrence
of conflict, we construct a straightforward machine-learning
pipeline. To begin, we utilize a wide array of models com-
mon to the machine-learning literature that use the features
described above as inputs. Each model will have two ver-
sions, one that uses a PCA including the first nine features
detailed in table 2 and one using use those nine features as
well as our network measure of spatial dependence. These
sets of models are listed below:

* Logistic regression via penalized maximum likelihood
(Friedman, Hastie, and Tibshirani 2010)

* Support vector machines (Meyer and Wien 2001; Chang
and Lin 2011)

* Random forest (Liaw and Wiener 2002)

* Regularized boosted regression models (Chen and
Guestrin 2016)

These models are run separately on each of the countries
in our sample. After having run these models for each coun-
try, we then work toward leveraging the predictions from
each model using Bayesian Model Averaging (BMA) to cali-
brate a forecast ensemble. Our logic for doing so is straight-
forward and flows from a long-recognized suggestion in the
prediction literature that multiple models often provide a
better description of the data-generating process (Hoeting
etal. 1999). Relying on any one model comes with the down-
side of having to rely on that model’s particular distribution
or assumptions. BMA is an extension of the Bayesian infer-
ence to the problem of model selection (Raftery etal. 2005).
With BMA, the likelihood of a conflict assigned to a given
subnational month unit by the overall model is determined
by taking the probability of an event as predicted by a sin-
gle model, multiplying by the probability that the model is a
true model given a sample of the data, and summing these

8Subsequent to estimation, D matrix is absorbed into the calculation for V as
we iterate through K.

values across all models in the hypothesis space. Say that we
have data, D, which are comprised of a set of features, X,
and an outcome vector, y. The model space is approximated
by a set of learners, L, with [ representing an individual hy-
pothesis in that space. Equation 2 then describes how the
probability of conflict is determined for a given subnational
month unit:

p(ilxi, D, L) = 1Z; p ilxi, 1) p(11D) (2)

Utilizing Bayes’ theorem, the posterior probability that /
is the true model (p(I|D)) can be estimated by Equation
3, where p(l) represents the prior probability of / and the
product of p(d;|!) determines the likelihood.?

n

pID) o p (1) TT p(dill) (3)

=1

We follow the typical approach in the BMA literature of as-
suming a uniform class noise model to determine the likeli-
hood in Equation 3. The uniform class noise model assumes
that the possible value of each observation is corrupted with
probability €; thus, p(d;|l) is 1 — € if the learner, [, correctly
predicts the value of y; and € otherwise. This enables us to re-
formulate Equation 3 as Equation 4, where s is the number
of correct predictions determined by / and € can be approx-
imated by the average error rate of the model.

P(”D) X l)(l) (1 —6)5(6)"_‘ (4)

Accordingly, this approach enables us to generate a pre-
diction from a set of learners, such that the final predic-
tion from the BMA is a weighted, linear combination of
each learner’s probability distribution. We summarize this
approach in figure 2.

For each country we end up having two sets of predictions
from BMAs, one that includes all ten features and one that
excludes the latent network measure of spatial dependence.

In sum, our full pipeline to generate predictions for the
two approaches is shown below:

1. Baseline: Nine features!® — PCA!! — 4 ML Models!?
— BMA!3 — Prediction

2. Baseline + Network: Ten features!* — PCA —4 ML
Models — BMA — Prediction

Assessment Strategy

Using our machine-learning pipeline, we conduct two out-
of-sample exercises. The first involves a thirty-fold cross-
validation exercise in which we set observations of our de-
pendent variables for each country to missing, and then see
whether we can reconstruct those missing observations.!®
The second out-of-sample exercise is a forecasting one in
which we set all the observations from the last month of con-
flict for each country to missing and attempt to predict the
missing values.

9The prior probability of p(D) is the same for each model and can thus be
ignored.

10See table 2.

See pages 9-10.

2See page 15.

¥ See figure 2.

14Including the network features described on pages 10-14.

1> The Bayesian approach that we use to generate our network-based diffusion
features can accommodate missing data.
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Rule to Convert from
Spatial to Network-Like Structure

South Sudan Spatial Conflict Data

S | Akobo ...  Nile
Akobo NA VANt
Nile VYN AR ‘e NA
where:
yantg=11iff ya;1=1 & yn;4—1 =0, and
ynvae=1 1 ynve1=1 & ya4-1=0
t =2

Determine Likely Diffusion
Paths Between Provinces
Accounting for Network
Dynamics

yij = [(0y), where

14

Save predicted
probabilities from

the model
| Akobo ... Nile
Akobo NA iy BA NG
Nile ];'.'\’..-l.r P NA

T
=u; Dv;

Figure 1. Summary of process to create network-based features for South Sudan.

Logistic Regression Support
via Penalized Vector
Maximum Likelihood Machines

l l

Regularized
Random Boosted

Forest Regression

l |

pilxi, ) pilxi, ) pQilxilz) pOilxi,ls)

X X
p(lL[D) p(L2ID)

X X
p(L3|D) p(14]D)

|

pilx;, D, L)

Figure 2. Summary of how we combine classifiers using BMA to generate predictions.

Cross-Validation Results

To evaluate the predictive ability of our model, we uti-
lize receiver operating characteristic (ROC) and precision-
recall (PR) curves. ROC curves depicting our model’s per-
formance for South Sudan are shown on the left-most plot
of figure 3 and PR curves on the right. To highlight the im-
provement our framework provides, we compare a version
of our machine-learning pipeline that includes network fea-
tures (in blue) against a “base” version of the same pipeline
excluding network features (but that includes traditional
spatial measures; this model is shown in red).!6 For both
ROC and PR curves, we also provide area under the curve

®The tuning parameters for each of the classifiers were kept static across
these two versions.

statistics in the bottom right. Last, we include separation
plots to provide a visual summary of how well the two mod-
els fair in predicting conflict (Greenhill, Ward, and Sacks
2011).

Across each of these tests, it is clear that in the case of
South Sudan, utilizing our network-based features as inputs
notably improves the predictive ability of the pipeline.
For the remaining nineteen countries, we summarize the
performance results in figure 4. For almost each country,
we achieve substantively better predictive ability when we
include our network-based features. Most importantly, the
difference in performance is even more stark when we
examine the area under the PR curves, which indicate that
incorporating our network-based features enables us to
better capture actual instances of conflict.
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Figure 3. Assessments of out-of-sample performance for the prediction of conflict occurrence in South Sudanese states using
ROC curves, separation plots, and PR curves for 30-fold cross-validation.
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Figure 4. Out-of-sample AUC statistics from a 30-fold cross-validation exercise across the countries in our sample. Cases are
sorted by the precision-recall (PR) performance of the Base 4+ Network Features model, from low (left) to high (right).
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Figure 5. Forecasting occurrences of battles by state. Cases are sorted by the precision-recall (PR) performance of the
Base 4+ Network Features model, from low (left) to high (right).

Temporal Forecasting

Last, we examine the ability of our pipeline to generate
forecasts of future events. To do this, we compare the two
versions of our pipeline in their ability to predict conflict-
ual events during the final year of our data. The results are
summarized in figure 5. In general, we find similar patterns
as to what was shown from the cross-validation analysis. Par-
ticularly, we see that incorporating network-based features
always leads to an improvement in performance and that
improvement is most notable when we examine our ability
to predict actual instances of conflict.

Explaining Differences in Performance

We observe significant variation in the benefit of using
this network technique to account for spatial interde-
pendencies across the different cases. While the inclu-
sion of network features improves predictive performance
in all countries, in some cases (notably Chad, Kenya,
and the Democratic Republic of Congo) the improve-
ment is particularly stark, while in other cases (South
Africa being a noteworthy example), the difference is
slight. To try to explain this divergence between coun-
tries, we look at the relationship between our latent spa-
tial lags and more traditional geographically based features.
Figure 6 shows the proportion of variation in our latent dif-
fusion matrix that is explained by contiguity and centroid
distance in each country.

Evidence shown in figure 6 suggests that geography
does not primarily explain variation in the latent diffusion

matrix; in fact, only one of our twenty countries has geog-
raphy explaining close to half of the variance in our latent
diffusion matrix. This is consistent with findings from the in-
terstate conflict literature on diffusion. More interestingly,
the three countries where the correlation is strongest are
those like South Africa where our technique yielded little
improvement in forecasting accuracy. The countries with
the smallest correspondence between spatial weight matri-
ces are the three countries where the network model had
some of the most notable over-performance. If a country
has relatively small patterns of spatial interdependence, or
if these patterns are relatively close to the geographic pat-
terns we included as spatial weights in the models, then
we should expect to see convergence in predictive perfor-
mance between the models with and without these network
features. On the other hand, when there are strong patterns
of spatial diffusion that do not map well onto adjacency ma-
trices, models that only include classic weight matrices will
fall behind.

Discussion

As has been established in the literature on civil conflict,
violence diffuses spatially, but the way it diffuses is condi-
tional on many factors—factors that are difficult to observe
in a granular way. To help account for these varying spatial
factors, we turn to a network approach that allows us to infer
a latent diffusion matrix based on the history of conflictin a
given country. When we apply this technique to civil conflict
in twenty African countries, we consistently find that we are
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Figure 6. Visualization shows the proportion of variation explained in the latent diffusion matrices by contiguity and centroid

distance for each country.

able to better predict violence out-of-sample. Importantly,
we are able to both more accurately predict where there will
be an absence of conflict, and when and where battles will
occur. This improvement holds when we look at countries
with high levels of violence and those where violence is only
moderate. In addition, by investigating the correlation be-
tween the geographic and the latent spatial weight matrices,
our study offers new insights into the types of cases that will
benefit the most from this new approach.

Our study highlights the potential of our approach to sub-
stantially enhance the prediction of conflict at fine-grained
levels of analysis. Although it makes an important contribu-
tion, a critical question remains: what conditions make con-
flict more likely to spill over from one region to another?
In the future, we hope to examine not only the regional-
level covariates that make a particular subnational unit more
or less likely to spread conflict but also the role played by
shared attributes of those units. Doing so will enable us to
both test the existing theories of conflict contagion and
provide insight into how to limit the spread of violence in
the future. Most importantly, we can combine these factors
with measures of third-party interventions in civil conflict—
peacekeepers, election-monitors, and military personnel—
to determine the extent to which policy interventions can
contain and roll back civil conflict. This will generate an im-
portant contribution not just for scholarship but to broader
audiences including policy practitioners.

While this approach has been quite fruitful in predicting
conflict, we believe it can be applied more broadly to
different phenomena that diffuse spatially. The utility of
this approach depends on a few key requirements. First,
there must be a phenomenon of interest that displays some
spatial interdependencies—if these are not present, the
latent network measure will simply be adding noise to
an estimator. Second, there must be multiple variegated
pathways in which spatial interdependence can effect the
phenomenon of interest, since if there were only one path-
way, it would be preferable to simply measure that pathway
directly. Finally, there should be some reason that you

cannot simply use data on each of the different potential
pathways to measure diffusion directly. If these require-
ments hold, we believe this method can provide significant
improvements on using a traditional geographic lag, in our
ability to predict the spread not just of conflict but of many
different international phenomena. Notably, our approach
might be particularly useful for studying the diffusion of in-
ternational trade agreements and the cross-national spread
of civil war. Both political phenomena express known pat-
terns of interdependence with multiple pathways but often
elude straightforward measurement strategies. As our study
demonstrates, it is in these areas of political science, where
measurement is difficult, interdependence is known, and
competing mechanisms might be at play, where a latent
network approach will prove most beneficial.

Supplementary Information

Supplementary information is available at the International
Studies Quarterly data archive.
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