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Abstract

The g-color Ramsey number of a k-uniform hypergraph G, denoted r(G;q), is the minimum
integer IV such that any coloring of the edges of the complete k-uniform hypergraph on IV vertices
contains a monochromatic copy of G. The study of these numbers is one of the most central topics in
combinatorics. One natural question, which for triangles goes back to the work of Schur in 1916, is
to determine the behavior of r(G; q) for fixed G and ¢ tending to infinity. In this paper we study this
problem for 3-uniform hypergraphs and determine the tower height of (G} ¢) as a function of g. More
precisely, given a hypergraph G, we determine when r(G; ¢) behaves polynomially, exponentially or
double-exponentially in ¢q. This answers a question of Axenovich, Gyéarfas, Liu and Mubayi.

1 Introduction

Given k-uniform hypergraphs, or k-graphs, G1,...,Gy, let 7(Gq,...,G,) denote their Ramsey number,
which is the minimum positive integer NV such that in every coloring of the edges of the complete k-graph

K](\?) on N vertices with color set [q] = {1,..., ¢} there is a color ¢ for which there is a monochromatic
copy of G; in color i. When G; = --- = G4 = G, we write 7(G;¢) and when G = K,(Lk), we sometimes

write 7 (n; ). The existence of these numbers was famously proved by Ramsey [19] in 1930. Since then,
obtaining good bounds on 7, (G;q) for various (hyper)graphs G has been among the most significant
areas of study in discrete mathematics. One of the central problems in this area is to obtain good
bounds on the so-called diagonal graph Ramsey number, r2(n;2), for which the current best bounds
are /2" < r(n;2) < (4 — €)", where the lower bound is due to Erdés [9] and the upper bound is a
recent breakthrough of Campos, Griffiths, Morris and Sahasrabudhe [5|. For a survey on graph Ramsey
numbers we refer the reader to |7].

Another classical direction in Ramsey theory is given a fixed graph G, to determine the behavior of
r(G;q) as the number of colors, ¢, tends to infinity. In the case when G is a triangle, the study of
this problem goes back to the work of Schur in 1916, who proved a Ramsey-type result for sum-free
sets (see [18]). For general G, this problem exhibits the following dichotomy. If G is bipartite, then
r(G;q) = O(¢%) for some constant C' = C(G). Indeed, this follows from the famous theorem of Kovari,
Sos and Turéan [15] stating that for bipartite G, there is a constant € = €(G) > 0 such that for large
enough n, any graph on n vertices with at least n>~¢ edges contains a copy of G. On the other hand, if G is
not bipartite, then we have r(G; q) > 2%. This follows by considering the g-edge-coloring of the complete
graph on the vertex set {0,1}? where a pair of vertices is colored by the index of the first coordinate
in which their binary representations differ. In this coloring, every color class is a bipartite graph, so
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there is no monochromatic copy of G. Day and Johnson [8] have improved this lower bound by showing
that for any non-bipartite graph G, there is a positive € > 0 such that r(G;q) > (2 4 €)?. Regarding
upper bounds, a simple extension of the neighbour chasing argument of Erdés and Szekeres [12] yields
r(Kn;q) < ¢™. Hence, for fixed non-bipartite G, we have (2 + €)¢ < r(G; q) < 204189 Determining
whether these numbers should be exponential or not is a very old and major open problem even for the
simplest case when G = K3 for which Erdés offered a prize of $250 [6]. This problem has an interesting
connection to the celebrated Shannon capacity in information theory. Namely, the maximum possible
Shannon capacity of a graph with independence number ¢ is equal to limg—,o0 7(Kty1; q)V/4 (see e.g. [2]).

Although already for graph Ramsey numbers there are significant gaps between the lower and upper
bounds, our knowledge of hypergraph Ramsey numbers is even weaker. In the clique case, Erdés and
Rado [11] showed that for some constant ¢ = ¢(g, k), the Ramsey numbers satisfy rx(n;q) < twg(cn),
where twy,(z) denotes the tower function defined as twi(z) = z and twy(z) = 2"+-1(®) for k > 2. On
the other hand, an ingenious construction of Erdés and Hajnal (see e.g. [14]), known as the stepping-up
lemma, allows one to obtain a lower bound for hypergraphs of uniformity k& + 1 from lower bounds for
uniformity k, essentially gaining an extra exponential at every step. However, this construction only
works if the number of colors, ¢, is at least 4 or the uniformity, &, is at least 3. Therefore, we have
rp(n;4) = twi(©(n)) and the order of magnitude of ri(n;2) depends on the behaviour of 3-uniform
case. The question whether r3(n;2) grows doubly-exponentially remains one of the most intriguing
open problems. We refer the reader to the surveys |7, 17] for more details about hypergraph Ramsey
problems.

The focus of this work is to determine the growth rate of r(G;¢q) for fixed G and ¢ tending to infinity.
This is a natural variant of Erdds’ question (mentioned above) for hypergraphs. We say that a function
f(q) grows as a tower of height h if twy,(2(¢%)) < f(q) < twi(O(¢%)) for some constants ¢, C' > 0. We
study the following problem.

Problem 1.1. Given a fixed k-uniform hypergraph G, determine the integer h (if it exists) such that
r(G; q) grows as a tower of height h as ¢ tends to infinity.

Clearly, not every function grows as a tower of some height, but it might be natural to guess that this is
the case for 7(G; q) for any fixed k-uniform hypergraph G. As discussed above, in the graph case we have
that 7(G; q) grows as a tower of height 1 if G is bipartite (and has at least two edges) whereas otherwise
it grows as a tower of height 2. The 3-uniform case was first studied almost 50 years ago by Abbott and
Williams [1] who, using a modification of the stepping-up construction showed that (K f); q) grows
as a tower of height 3. The 3-uniform case has been revisited in more depth recently by Axenovich,
Gyarfas, Liu and Mubayi [4]. They observed that r(G; ) is at most polynomial, i.e. grows as a a tower
of height 1 in ¢ if and only if G is tripartite and they determined several classes of 3-graphs for which

r(G; q) grows as a tower of height 2. Furthermore, they ask the following question.

Problem 1.2 ([4]). For which 3-uniform hypergraphs G, is (G} q) double exponential? Are there other
jumps that the Ramsey function exhibits?

We resolve Problem 1.1 in the case K = 3 and answer the question of Axenovich, Gyarfas, Liu and
Mubayi in following strong sense. We show that for every non-tripartite 3-uniform hypergraph G, either
29 < (Gq) < 24 for some C' = C(G) or 221/% < R(G;q) and characterize which 3-graphs have
which behaviour.

To state our main result formally, we first require a definition.



Definition 1.3. Let G be a 3-graph. A set U C V(G) with 2 < |U| < |V(G)] is called collapsible if no
edge of GG intersects U in exactly two vertices. Let v* denote a new vertex and let H be the 3-graph with
vertex set (V(G)\U)U{v*} and edge set E(H) = {e € E(G) |enU = 0}U{zyv* | Ju € U,zyu € E(G)}.
We say that H is obtained from G by collapsing U and that G is reducible to the pair (H,G[U]) by
collapsing U.

We define a nested sequence of sets of 3-graphs Uy C U; C ... as follows. First, Uy consists of all
tripartite 3-graphs. The set Uy contains the 3-graphs for which there is a subset of vertices intersecting
every edge in exactly one vertex (note that Uy 2O Uy). For ¢ > 1, U; is the maximal set containing U;_1
and any hypergraph which is reducible to some (H, F') with H € U;_1, F' € U;. Note that if G is reducible
to (H, F), then by definition, v(H),v(F) < v(G), implying that the sets U; are indeed well-defined. Let
U = UiZO UZ

We are ready to state our main result determining the behaviour of r(G; q) for any fixed 3-graph G.

Theorem 1.4. Let G be a fized 3-uniform hypergraph with at least two edges.

a) If G €Uy (i.e. G is tripartite), then r(G;q) = ¢®W).
b) If G € U\ Uy, then 220 < r(G;q) < 20V More precisely, if G € Uy, then r(G;q) < 20(¢" logq)

C) [fG gu’ then 22q/2 S 7,,((]\17 q) S 220(‘1102{‘1).

Our characterization might seem a bit unwieldy at first, but it turns out to be convenient to work with.
For example, using it we can show that most Steiner triple systems have double-exponential multicolor
Ramsey numbers, but there are Steiner triple systems for which it is exponential.

The rest of the paper is structured as follows. In the remainder of the introduction, we give some
examples which might help understand the definition of the sets U;. We prove Theorem 1.4 in Section 2
which is split into three subsections. In the first subsection we prove the upper bounds, starting with
a sketch of the main ideas, in the second we prove the lower bounds and in the third we tie all the
bounds together. In Section 3, we provide examples of 3-graphs exhibiting different behaviours of the
multicolor Ramsey number. We finish with some concluding remarks in Section 4.

We use standard notation throughout the paper. As it appears frequently in our proofs, we denote by
Star(g)(h) the 3-graph on h vertices with the edges being all triples containing a fixed vertex.

1.1 About the sets U;

In this subsection, we briefly discuss the sets U; just defined. Observe first that for all ¢ > 0, the set U;
is closed under taking subgraphs. The rest of the content of this subsection is not needed for any of our
proofs, but it should help clarify the definitions and facilitate understanding the rest of the paper.

First let us show that U; \ U;—1 # 0 for all i > 1. It is easy to see that Star®) (4) € Uy \ Up. Now, let
i > 1 and suppose there is some G; € U; \ U;—1. We define G;11 as follows. The vertex set of G; 1 is
{z} U AU B where |A| = |B| = |V(G})|. Inside each of A and B place a copy of G; and additionally let
Git1 contain all 3-edges of the form {z,a,b},a € A,b € B. See Figure 1 for an illustration. First, let us
show that G,11 € U;y1. Indeed, by collapsing A, G;4; is reducible to (H,G;), where we shall describe
H shortly. Since G; € U;, to show that G;1 € U1, it suffices to show that H € U; as well. Indeed,
V(H) = {x,a} U B where a represents the collapsed set A. Note that H[B] = G, and the remaining
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Figure 1: Construction of G;11 Figure 2: A 3-graph not in U

edges of H are of the form {z,a,b} with b € B. Hence, the set B is collapsible in H and thus H is
reducible to (e, G;), where e denotes the 3-graph consisting of a single edge. Since e € Uy and G; € U;,
it follows that H € U;, as claimed.

Now, we show that G;11 ¢ U;. We claim that any collapsible set in G;11 intersects at most one of
A, B. Indeed, suppose that U is collapsible in G;11 and contains a vertex a € A and a vertex b € B.
Since {z,a,b} € E(Git+1), we must have x € U. However, since {x,a,b'} € E(G;;1) for any V' € B,
it follows that B C U and analogously A C U, so U = V(G;41), a contradiction. Now, suppose that
Git1 is reducible to (H,G[U]) by collapsing some set U. Without loss of generality, U N B = 0, so
G; =2 Gi4+1|B] € H, implying that H € U;. As U was arbitrary, we have that G;11 € U;.

On the other hand, for example the clique K f”) is not in U. Indeed, it has no collapsible set and
no set of vertices such that each edge contains precisely one vertex from this set. A slightly more
complicated example is the 3-graph G depicted in Figure 2. Formally, we have V(G) = {a, b, ¢, d, e} and
E(G) = {acd, bed, ace, bde, cde}. It can be checked that G ¢ U; and that {a,b} is the only collapsible
set in G. However, the 3-graph obtained by collapsing {a, b} is isomorphic to K f’), so G&U.

2 Proof of Theorem 1.4

2.1 Upper bounds

Proof sketch

This aim of this subsection is to prove the single-exponential upper bound in Theorem 1.4 b). Before
presenting the proof formally, we illustrate our ideas on a simple example where G is the Fano plane,
that is, the unique 3-graph on 7 vertices with 7 edges which all pairwise intersect in exactly one vertex.

Let U C V(G) denote the vertex set of an arbitrary edge in G. Note that by the abovementioned
properties of the Fano plane, every edge intersects U in either one or three vertices. Therefore, U is
collapsible and G is reducible to the pair (H, F') where H = Star(g)(5), i.e. a 4-clique in the link of a
vertex, and F' is a single edge. Trivially, F, H € U; which shows that G € Us. Though not required for
the upper bound, it is easy to see that G & U;.

Suppose we are given a g-colored complete 3-graph I' on N vertices, where N is of the form 20(¢* log q)
and we wish to show that there exists a monochromatic copy of G. By considering all triples through
a fixed vertex it is easy to see that r(H;q) < 1+ r(K f); q) < ¢* using the classical bound of Erdds
and Szekeres. Let R = r(H;q). By definition, every set of R vertices contains a monochromatic copy



of H, hence in I' there are at least (]}\%7) / (%:g’) > %—; monochromatic copies of H. By the pigeonhole
principle, there is a set S C V(I'), |S| = 4, and a colour, say red, such that there are at least N/(qR%)
red copies of H = Star(3)(5) with the set S playing the role of the 4-clique. Let V' denote the set of

vertices playing the role of the center of the star in these copies, so [V’| > N/(qR®).

Crucially, observe that if there is a red edge inside the set V', then these three vertices along with the
set S contain a monochromatic copy of G that we aim to find. Therefore, V' is colored by ¢ — 1 colors.
Iterating this argument inside V', we see that it suffices to take N > 3(¢R%)? = 20(¢*1089) a5 claimed.

For general GG, the argument is a little more complicated. Suppose that G € U, and it is reducible
to (H, F) for some H € Uy_1,F € Uy and let U C V(G) be the collapsible set witnessing this. By a
supersaturation argument analogous to the one above, we find a large set V/ C V(T') of vertices that
can play the role of v* € V(H) with the same set S in the same color, say red. Then, however, inside
the set V', we obtain that there is no red copy of F. In the case where G is the Fano plane, F is a
single edge, which makes the argument simpler since we only need to ensure that |V'| > r(G;¢—1). In
general, we shall require that |V’| is at least the off-diagonal Ramsey number r(F, G, G,...,G), where
G appears ¢ — 1 times.

We proceed with the formal proof. We start with the supersaturation argument outlined above, which
allows us to reduce the target hypergraph in one of the colors.

Lemma 2.1. Let Gy,...,G, be given 3-graphs. For i € [q], let (H;, F;) be an arbitrary pair to which
G; 1is reducible and if no such pair exists, let H; = G;. Denoting h = max;cy v(H;), we have

r(Gy,...,Gy) <r(Hy,...,H)" q-max {{1}U{r(G1,...,Gi_1,F;,Gis1,...,Gy) | Gi is reducible}} .

Proof. For convenience, to each graph H; we add isolated vertices so that it has h vertices which clearly
does not change the value of r(Hj,...,Hy). Denote R := r(Hy,...,H;) and N = r(Hq,.. .,Hq)h - q -
max {{1} U {r(G1,...,Gi-1, F;,Git1,...,Gq) | G; is reducible}} and consider an arbitrary g-coloring of
K](\?). Let T' denote this g-colored 3-graph.

By definition, any set of R vertices of I" contains a copy of H; in color ¢ for some i € [¢]. Any such copy

is contained in (%:Z) sets of R vertices, so in total there are at least

(2o =

distinct h-sets of V(I') each of which is a monochromatic copy of H; in color ¢ for some i € [q]. For

such a copy, let v*,v1,...,vp_1 denote its vertices with v* playing the role of the special vertex as in
Definition 1.3 or an arbitrary vertex of H; if H; = G;. By the pigeonhole principle, there is a color
¢ € [q] and an (h — 1)-tuple of vertices S = (w1, ..., wp_1) for which there are at least

Nh N

—r/(@N"1) = —

Rh qRh
copies of H, in color ¢ with wq,...,wp_1, in this order, playing the role of all vertices in of H; except
v*. If H. = G, we are done. Otherwise, let V' C V(I') denote the set of vertices playing the role of v*
in these copies, so |V'| > %.

Crucially, we claim that if there is a copy of F,. in color ¢ inside I'[V], this yields the desired copy of
G. in color ¢ in T'. Indeed, suppose there is such a copy in V/ and let T' C V' denote its vertex set.
Let U. C V(G.) be the collapsible set such that G. is reducible to (H,, F.) by collapsing U, and let
V(Ge)\U. = {z1,...,2m}. So by definition, V(H.) = {v*,z1,..., 2y }. Without loss of generality, we



have for any v € V', the vertices {v, w1, ..., wy,,} form a copy of H. where v is mapped to v* and w; is
mapped to z; for every i € [m)].

Then, T U{wy,...,wy,} forms a red copy of G. with T' being mapped to U and w; being mapped to x;
for i € [m]. To see this, note first that by assumption, 7" contains a red copy of F, = G.[U]. Furthermore,
any edge e = z;xjx;, € E(G.) disjoint from U, is contained in H. and since the vertices v, w1, ..., wn,
for an arbitrary v € V', form a red copy of H,, it follows that the edge w;w;jwy, is red in I' as needed.
Finally, by definition of a collapsible set, any other edge e € E(G,) intersects U, in exactly one vertex.
Consider such an edge e = uz;x; with u € U.. Then, we have v*z;z; € E(H.). Recall that u € V(F,)
so in the assumed red copy of F,, it is mapped to some vertex v € T C V’. Since v € V', the vertices
vV, W1, ..., Wy, form a red copy of H. with v mapped to v* and w; mapped to z; for i € [m]. In particular,
this implies that the edge vw;w; is red in I, as required.

By our choice of N, we have |V'| > r(G1,...,Ge—1,F¢, Gy, ... Gy) so on V' we either find a copy of
G; in color i for i € [q] \ {¢} or a copy of F, in color ¢, thus finishing the proof. O

To prove the upper bound in Part b) of Theorem 1.4, we use the preceding lemma and apply induction.

Lemma 2.2. Let ¢ > 1 and let G1,...,Gq € Up be 3-graphs each on at most h vertices and denote
t=>1,v(G;). Then,

r(Gh, ..., Gy) < (gh)* .
Proof. We prove the lemma by induction on £, h,t. We assume h > 3, otherwise there is nothing to
prove. Consider first £ = 1 and recall that by definition, each of the graphs G; has a subset of vertices
U; intersecting every edge in precisely one vertex. For every i for which |U;| > 1, let (H;, F;) denote the
resulting pair of graphs obtained by collapsing U;. Note that F; is the empty graph on |U;| vertices and
H is a subgraph of Star® (v(Gy) — |U;|4+1). If |U;| = 1, then let H; = G; which is again a subset of a star
Star® (v(G;) — |Ui| +1). Consider a g-colored 3-uniform clique. In order to find a copy of Star® (s;) in
color ¢ for some ¢, we can fix an arbitrary vertex v and then in its link find a graph clique of size s; in color
i. Thus, we can use a classical result in graph Ramsey theory, r2(n1,...,nq) < q23:1 " to obtain that
r(Hy, ..., Hy) < g=i=1(G)-IUil+1 Note that if |U;] > 1, then 7(G1, . .., Gi_1, Fi, Giy1,Gr) < v(F) < h
since F; has no edges. Applying Lemma 2.1, we obtain

) — . 2
r(Gh. o, Gy) < (=TI g < M < (gh)™,
where in the last inequality we used h > 3.

Now, let £ > 1 and assume we have proved the statement for all sequences of graphs in Uy_; as well as
all sequences of graphs in Uy, each on at most h vertices with in total at most ¢ — 1 vertices. Clearly, we
may assume that G; € Uy \ Uy—_1. For each i € [g] such that G; is reducible, let (H;, F;) be a pair with
H; € Uy, F; € Uy to which G; is reducible and recall that v(H;),v(F;) < v(G;). For each i such that
G, is not reducible, let H; = G;. Applying Lemma 2.1 and the induction hypothesis, we have

r(Gi,...,Gg) <r(Hy,...,H)" q-max {{1} U{r(G1,...,Gi_1,F;,Giy1,...,Gq) | G; is reducible} }
< <(qh)qe—2h2e—2(t—1)>h g (qh)qe—lhﬂ(t—l) < (qh)qf—lh#-(t;—h“rqihﬂ*l) < (qh)qg_lhw't

)

where in the last inequality we used that ¢ < gh. O

Applying Lemma 2.2 with G1 = - - - = G4 = G we obtain the upper bound claimed in Theorem 1.4, Part b).



Corollary 2.3. If G € Uy, then r(G;q) < 90(¢" logq)

2.2 Lower bounds

Definition 2.4. Let G be a 3-uniform hypergraph. Suppose there is a partition of its vertex set
V(G) = ViUV, UV, with |Vi],¢ > 2 such that for any edge e € E(G), and any i € [t], we have
leNVi| # 2. For i € [t], let F; :== G[V;] and let H be the 3-uniform hypergraph obtained by collapsing
each of the sets V; into a single vertex. Formally, V(H) = [t] and E(H) = {zyz|Je € E(G),|leN V| =
leNVy| =lenV;| =1}. We say that G' can be decomposed into (H; Fy, ..., Fy).

In our proofs of the lower bounds, Definition 2.4 will play a similar role that Definition 1.3 played in
the proofs of the upper bounds. By taking V; = U and |V3| = --- = |V4| = 1, informally speaking, we
recover the definition of reducibility. On the other hand, a reduction with ¢ parts can, in some sense,
be viewed as a sequence of at most ¢ simple reductions. Formally, we have the following lemma.

Lemma 2.5. If G can be decomposed into (H; F,...,F;), where H, Fy,..., Fy € U, then G € U.

Proof. Let V(G) = V1U- - UV, be the partition exhibiting that G can be decomposed into (H; F1,. .., Fy).
Without loss of generality, assume that |V;| > 2 for ¢ € [s] and |V;| =1 for s+1 < i <t. Denote Gp = G
and for ¢ = 1,...,s, let G; be obtained from G;_; by collapsing V;. Note that these collapses are valid
since a set V; remains collapsible after collapsing a disjoint set V}, j < 7. The final graph G is isomorphic
to H, hence G5 € U. By definition, for each 0 < i < s — 1, G; is reducible to (Gj+1, G[Vit+1]), where
G[Viy1] = Fi41 € U. Hence, by reverse induction, it follows that Gs_1,...,Go = G are also in U, as
claimed. O

Our lower bound constructions are based on the stepping-up approach of Erdés and Hajnal. First, we
recall an important function used in this construction. For a nonnegative integer z, let z = > oo, a;2°
be its unique binary representation (where a; = 0 for all but finitely many 7). We denote bit(zx, i) := a;.
Then for distinct =,y € Z>o, we define d(z,y) = max{i € Z>¢ | bit(z,i) # bit(y,7)}. See Figure 3 for
an illustration.

0

Figure 3: It is convenient to think about the function § in the following way. The value of d(x, y)
is given by the highest line between x and y on the picture. So, for example, §(0,1) = 6(6,7) =0,
5(0,3) = 8(5,6) = 1, §(3,4) = 6(2,7) = 2.

The following properties of this function are well known and easy to verify.

Pl) z <y <= bit(z,d(z,y)) < bit(y,d(x,y)).



P2) For any z <y < z, 0(z,y) # 0(y, 2).
P3) For any 21 <z < - -+ < wp, 5(1'1717@) = mMaxi<i<k—1 5(.%’,.7}1'4_1).

For every even ¢ we define a g-coloring ¢, of a complete 3-uniform hypergraph on the vertex set
{0,..., Ny — 1}, where N, == 2% For0<az< y <z < Ny, let

bq(,y,2) = (6(0(z,y),0(y, 2)), 1{d(z,y) > d(y,2)}).
For example, §(1,4) =2,0(4,6) =1 and §(2,1) =1, so ¢4(1,4,6) = (1,1).
By P2), we have d(x,y) # d(y, 2) so ¢, is well-defined. Additionally, note that &(x,y),d(y, 2) < 29/2,
implying 0 < 6(d(x,y),d(y, 2)) < q/2 — 1, so ¢, indeed uses at most ¢ colors.

We are ready to prove our double-exponential lower bound.

Lemma 2.6. For any even q, if ¢, contains a monochromatic copy of a 3-graph G, then G € U.

Proof. We prove the lemma using induction on |V(G)|. For |V (G)| < 3, there is nothing to prove.

Now, consider a 3-uniform hypergraph G such that there is a monochromatic copy of G in ¢ = ¢,.
Suppose the statement holds for all 3-uniform hypergraphs with fewer vertices. Denote N = N, = 9212
Suppose the color of this monochromatic copy is (¢, s), where ¢t € {0,...,¢/2 — 1} and s € {0,1}. Let
the vertices of G be {1,...,h} and without loss of generality, suppose that in the monochromatic copy
vertex ¢ is embedded into x; where 0 < 1 < 20 < -+ < xp, < N.

If s =1, for i € [h], define &, = N—1—uz;, i.e. 2} is obtained by complementing the binary representation
of ;. Then, we have 0 < 7}, <) ;| <--- < < N and 0(z},2}) = 0(z;,z;) for any 1 <7 < j < h.
It follows that the set {z},..., ]} forms a monochromatic copy of G in color (t,0). Therefore, we may

assume that s = 0.
For 1 <i < h, let 6; :== 0(x;, zi+1). Observe that by Property P3), we have

Vu,v,1 <u <v < h6(xy,zy) = max Ji. (1)
ul1<v

Let m be the largest nonnegative integer such that bit(d;, m) for ¢ € [h — 1] are not all equal. Since
91 # d2, m is well-defined. By Property P3), this choice of m implies

V1 <u < v < h, bit(§(zy, zy),m) =1 <= Ji,u <i<v,bit(d;,m) = 1. (2)

Suppose first that m = t. Then,

Vu,v,w,u < v < w,uwvw € BE(G) = bit(d(xy, ), m) = 0 and bit(d(zy, xy), m) = 1. (3)
Indeed, this is true because for an edge uvw, we have ¢(x,x,2) = (M, 0).
Now, let i be the minimal index such that bit(d;, m) = 1. Suppose that ¢ = h — 1. Then by (1), for any
1 <u<wv<h—1, we have bit(d(zy, ), m) = bit(maxy,<i<y d;,m) = 0. By (3), it follows that every
edge of G contains the last vertex h, implying that G € U; C U.
Hence, we may assume that ¢ < h— 1. Then, in G there can be no edge uvw with v < i and v,w > i+1,
as then bit(6(xy, z), m) = 1 by (2), contradicting (3). Therefore, we can collapse the set {i+1,...,h},
which has at least two vertices by our assumption, to obtain a new 3-uniform hypergraph H on the vertex
set {1,2,...,4,v*}. Let us show that the vertex set {x1,...,x;41} forms a monochromatic copy of H in
color (t,0) with j being embedded into z; for j € [i] and v* embedded into x;41. Indeed, {x1,...,z;}
is a copy of H[{1,...,i}] in color (¢,0) because {z1,...,x,} is a copy of G in color (t,0). Furthermore,
for every edge {j,k,v*} € E(H), we have bit(6(x;, zx),t) = 0 and bit(d(zg, zi+1),t) = 1 by our choice



of i and using Property P3) so ¢(xjzrxir1) = (¢,0). In ¢, there clearly exists a monochromatic copy
of the induced subgraph G[{vit1,...,vs}] so both H and G[{vit1,...,v,}] are in U by the induction
hypothesis. It follows that G € U, as needed.

Finally, suppose that m # t. If m < t, then by (1), no edge is colored (¢,0), so we assume m > t. Let
1 <43 <--- <ip < h denote all indices ¢ for which bit(d;, m) = 1 and note that 2 < p+1 < h. Let
I, ..., I,41 denote the intervals between consecutive z;s Formally, let I} = {1,...,41}, for 2 < j < p,
let Ij = {ij—l +1,... ,ij} and let Ip+1 = {’ip +1,... ,h}

Suppose that there is an edge e = uvw € F(G) with 1 < u < v < w < h and j € [p + 1] such that
le N I;| = 2. Since I is an interval, we have either e N I; = {u,v} or eNI; = {v,w}. In the former case,
by the definition of I;, using (2), we have bit(d(zy, z,), m) = 0 and bit(d(xy, 2y ), m) = 1, which implies
¢(e) = (m,0). Completely analogously, in the latter case we obtain ¢(e) = (m, 1). Both cases contradict
our assumptions, so we conclude that for any e € E(G) and j € [p + 1], it holds that |e N I;| # 2.

For j € [p+ 1], denote F; = G[I;]. Furthermore, let H be the hypergraph on the vertex set {1,...,p+
1} with edges {wvw|3e € G, |lenI,| = leNI,| = |eNI,| = 1}. By definition, the hypergraphs
H,Fy,..., Fyy have fewer vertices than H. Hence, G is decomposable into (H; Fh, ..., Fpi1). By the
induction hypothesis, F1,. .., Fp41 € U since the vertices {z,, | u € I;} form a copy of Fj in color (¢,0) by
assumption. For j € [p+1], let y; = @uyin ;- Next we show that {y1,...,yp+1} contains a monochromatic
copy of H in color (¢,0). Indeed, consider the embedding which maps i € V(H) = [p + 1] into ;.
Consider an arbitrary edge uvw € E(H) with 1 <u < v < w < p+ 1. Recall that by definition there is
a corresponding edge abc € E(G) with a € I,,,b € I,,,c € I,. By (1) and the definition of i1,...,4,, we
have

0 =0(Xminl, , Tminl, ) = max 0; = max 9;, = 0(xq, Tp
(yfzuyfu) ( min I, s Ymin U) min To<j<min I, 7 u<bizy ip ( a )7

and analogously 0(yyyw) = 0(xp, xc). Hence, ¢(yuyoyw) = ¢(zexpze) = (t,0). Thus the claimed embed-
ding is indeed monochromatic so, by the induction hypothesis, we have H € U, which, using Lemma 2.5
implies that G € U as well. O

An exponential lower bound for non-tripartite 3-uniform hypergraphs was proved in [4], but we include
a proof for the sake of completeness.

Lemma 2.7. If G is a non-tripartite 3-uniform hypergraph, then r(G;q) = 252(a)

Proof. Let N = 224/27 and consider ¢ random copies of the complete balanced tripartite 3-uniform
hypergraph, which has at least %(g ) edges, and define ¢ to be the coloring where each triple of KJ(\:,)’) is
colored by the index of the first copy in which it appears. Since each color induces a tripartite graph,
there is no copy of G. It remains to show that with positive probability all edges are colored. Indeed,
by a union bound, the probability that not all edges are colored is at most

(];[) (1—2/9)7 < N3e724/% < 1,

as needed. O

2.3 Putting it together

Proof of Theorem 1.4. The lower bound in Part a) is obtained by coloring edges of a complete 3-uniform
hypergraph on Q(ql/ 3) vertices into distinct colors. For the upper bound, if G is tripartite, by a well



known result of Erdés [10], there is an € > 0 such that for large enough N, any 3-uniform hypergraph on
N vertices with at least N3¢ edges, contains a copy of G. Hence, if we are given a g-colored complete
graph on N = (10q)1/5 vertices, one of the colors will have at least (g)/q > N37¢ edges and thus
contains a copy of G.

The lower bound in Part b) is given by Lemma 2.7 and the upper bound in Corollary 2.3.

Finally, the lower bound in Part c) is given by Lemma 2.6, while the upper bound follows from the
upper bound for cliques proved by Erdés and Rado [11]. OJ

Remark. If G is tripartite and has at least two edges, its multicolor Ramsey number r(G; q) is given by
its extremal (or Turan) number ex(N, G) up to a logarithmic factor in the number of colors. Indeed, every
color class in the Ramsey coloring has at most ex(N, G) edges, which implies that ¢ > O(N3/ex(N, G)).
On the other hand, by taking ¢ = O(log N - N3/ex(N,G)) random copies of an extremal 3-uniform
hypergraph on N vertices and using similar computations as in Lemma 2.7, one can obtain a coloring
with no monochromatic copy of G.

3 Examples

Recall that for non-tripartite G € U, we have the lower bound 7(G; ¢) > 29 given by Lemma 2.7 while
the upper bound is of the form 20(a"1089) fo1 some ¢ > 1. Unless G € U, these bounds are far apart.
However, in certain cases we can refine the lower bound. We start with a definition.

Definition 3.1. We say that a 3-uniform hypergraph G is forward-colorable if there is a vertex partition
ViU- - -UV; = V(G) such that for any edge e € E(G), there are i < j for which [eNV;| = 1 and |eNV}| = 2.

Observe that Uy contains all forward-colorable 3-uniform hypergraphs. Indeed, suppose G is forward
colorable with a vertex partition V; U --- U V; as defined above. If ¢t = 2, every edge of G touches V;
in exactly one vertex, so G € Uy. Else, U = V] U V3 is a collapsible set and G is reducible to the pair
(H,G[U]) where H is forward-colorable with ¢ — 1 parts and G[U] € U;. The claim follows by induction
on t.

Let £; be the maximal family containing all forward-colorable 3-uniform hypergraphs as well as any 3-
uniform hypergraph which is reducible to some (H; F1, ..., F}) such that H is tripartite and Fy, ..., F} €
L.

Lemma 3.2. For any 3-uniform hypergraph G not in Ly, it holds that r(G;q) > 20,

Proof. Let q be a large integer and let ¢ be a coloring of K](\:;)) with colors {1,...,q} containing no
monochromatic non-tripartite graph given by Lemma 2.7, where N = 29, We define a coloring ¢’ on
N1 vertices using 3¢ colors and containing no monochromatic copy of any 3-uniform hypergraph in £,
the existence of which implies the statement. To describe ¢/, we identify the vertex set [N?] with [N].

For a vector a € [N]? we write a = (al, ..

.,a?). Consider three vectors x,y,z € [N]? where x <y < z
according to the lexicographic ordering which is defined as a < b if for some i € [q], a’ < b’ and
a’ =bJ forall 1 < j <. Let j be the first coordinate for which x?,y7,2/ are not all equal. If x/,y7, z/
are all distinct, then set ¢/(x,y,z) = ¢(x/,y’,2/). Else if, x/ < y/ = 2/, set ¢'(x,y,z) = (4,0) and if
x/ =yJ < 2/, then set ¢/(x,y,z) = (j, 1). Note that this covers all cases by the assumed ordering.

Now, we prove, by induction on |V(G)|, that ¢' is a Ramsey-coloring for any 3-uniform hypergraph
G ¢ L1. Let G be a 3-graph, denote V(G) = {1,...,h} and suppose in ¢’ there exists a monochromatic
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copy of a G with vertex v € [h] embedded into x, € [N]?. Assume the color of this copy is (j,0) or
(4,1), for some j € [r]. For s € [N], set V; = {v € V(G)|x) = s}. Then if the color of the copy is
(4,0), it is easy to see that G is forward-colorable with vertex partition V; U - .- Vy while if the color
is (j,1), then G is forward colorable with vertex partition Vy -+ J V4. Thus in either case, we have
G € L;. Now suppose the color of this monochromatic copy is ¢ € [g]. Let j be the first coordinate in
which x1,...,xp are not all equal. Then, there is a partition of the vertex set V(G) = V3 U--- UV, into
m > 2 non-empty sets such that the vertices V; correspond to vectors with the same j-th coordinate.
Let H be the hypergraph with vertex set [m] and edge set F(H) = {abc| E(G) N (V, x V}, x V..) # 0}.
It is easy to see that there is a monochromatic copy of H in ¢, and hence H is tripartite. Additionally,
for all j € [m], there trivially exists a monochromatic copy of G[V;] in ¢' and hence G[V;] € L; by the
induction hypothesis. It follows that G € L1, as required. O

Proposition 3.3. There is a 3-uniform hypergraph G for which r(G;q) = 9¢°

Proof. Let G be the 3-uniform hypergraph obtained by blowing up a non-central vertex of Star(®) (4) by
a set A of 4 vertices and placing a copy of Star(®) (4) inside A. Let v, a1, as, az denote the vertices of A
with v being the center and let u, b1, by denote the remaining vertices with u being the center.

By collapsing the set A we see that G is reducible to (Star(3) (4), Star® (4)) implying that G € Uy and
thus the upper bound follows by Corollary 2.3.

Next we show that G ¢ £1 and then the lower bound follows from Lemma 3.2. First, suppose that G is
forward-colorable and let V(G) = V4 U --- U V; be a partition which certifies it. Then there are indices
i < j such that v € V; and {a1,az2,a3} C V;. By the same argument, since {u, v, b1, b} form a Star® (4)
with center u, we have that b;,b0 € V; and u € V; for some ¢ < ¢. But, then the edge ubya; has its
vertices in three distinct sets, a contradiction.

Now, suppose that G is decomposable into (H; F1,. .., F;) with a partition V(G) = V3 U--- U V;. Note
that if S is a nonempty subset of V(Star(® (4)) such that any edge of Star(®(4) contains either 1 or
3 vertices of S, then either |[S| = 1 or |S| = 4. Suppose that some V; contains at least two vertices
from v, u, by, by. Since these vertices form a star, by the previous observation, it follows that V; contains
all of them. Furthermore, since any w € A forms a copy of Star(®) (4) with {u, by, by}, by the same
observation, we get V; = V(G), a contradiction. Therefore, the vertices u, v, b1, by are in different sets,
implying that Star(®) (4) € H. Since Star® (4) is not tripartite, it follows that G & Ly, as claimed. [

Let G(3)(n, p) denote the random 3-uniform hypergraph on n vertices where each hyperedge is included
independently with probability p.

Proposition 3.4. There is a positive constant C such that if p > n%, then for G ~ G®) (n,p), with high
probability, we have r(G;q) > 22/%

Proof. Using a standard Chernoff bound (see e.g. [3]), it is easy to show that with high probability,
|E(G) N (A1 x Ay x Ag)| > Cn/10°,VA1, Ay, A3 C V(G),| 4| > n/100,Vi € [3]. (4)
Conditioning on (4), we show that G € U, which would complete the proof by Lemma 2.6.

Let us first informally explain the ideas of the proof. If G € U, then G € U; or there is a collapsible
set U C V(@) such that G is reducible to (H,G[U]) by collapsing U, where H,G[U] € U. If |U| < n/2,
next consider the hypergraph Gy = H and otherwise we “put aside” the vertices V(G) \ U and consider
the hypergraph Go = G[U]. Note that this way, |V (G2)| > |[V(G)|/2. By assumption, we have Go € U
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so we can apply the same reasoning as above. In general, at each step we have a hypergraph G; whose
each vertex corresponds to a collapsed set or a single vertex in GG. Now, suppose that at some point we
have in total put aside a set T" of at least n/100 vertices. Since we never put aside more than half of
the current number of vertices, we have |T'| < 0.99n so by (4), in G there is an edge with two vertices in
V(G)\ T and one vertex in T. However this contradicts the fact that we only put aside vertices outside
some collapsible set.

Similarly, we can show that no vertex in V(G;) represents a set of more than n/100 vertices of G.
Indeed, if in some step we collapse a set U C V(G;) representing in total at least n/100 vertices of G
but no more than 0.99n, by (4), in G there is an edge with two vertices represented by U and one vertex
not represented by U, a contradiction.

On the other hand, if no vertex of G; represents more than n/100 vertices, we can group the vertices of
G; into four sets, where each set represents a set of at least n/100 vertices of G, which, by (4), implies
that G; & U;. Therefore, for any i, G; we can define a new hypergraph G;1 as above. However, clearly
this process cannot go on indefinitely, which will yield a contradiction.

We proceed to the formal proof. For the sake of contradiction, suppose G € U. Now, we run the
following algorithm in steps @ = 1,... At each step, we have a set T; C V(G), and a hypergraph G,
where each vertex v € V(Gj) is labelled with a set S;(v) C V/(G) such that the sets (S;(v))vev(ay)
partition V(G) \ T;. The hypergraph G; will correspond to a hypergraph obtained from G after several
reductions and a set S;(v) indicates that v is a vertex representing the collapsed set (possibly in more
than one step) S;(v). Formally, we always have

E(Gl) = {1111)2’1)3 ‘ Jde € E(G), ‘6 N SZ('U])‘ =1,Vj € [3]} (5)
For U C V(G;), we denote S;(U) = J,cry Si(v) and we denote its weight by w;(U) = [S;(U)|. We shall

maintain the following:

(i) G, elU.
(ii) For any v € V(G;), w;({v}) < n/100.
(iii) |T;| < n/100 and for any e € E(G),|e NT;| # 1.

(iv) For any e € E(G) and any v € V(G;), it holds that |e N .S;(v)| # 2.

Initially, we set G; = G, S1(v) = {v},Vv € V(G) and T1 = (. Then, we proceed in steps i = 1,... as
follows.

By assumption, G; € U. Suppose first that G; € Uj, that is, there is a subset W C V(G;) such that
any edge in G; intersects W in exactly one vertex. Hence, either W or V(G;) \ W is an independent
set in G; with weight at least n/4. Let I denote this independent set. Since w({v}) < n/100 for any
v € V(G;), I can be partitioned into three sets Ay, Aa, A3, with w(A4;) > n/100, for all ¢ € [3]. However,
by definition of G;, this implies E(G) N (41 x Az x Az) = (), contradicting (4).

Hence, G; € U, implying that there is a collapsible subset U; C G; such that G;[U;] € U and the
hypergraph H obtained by collapsing U; is also in U. We consider two cases.

First, suppose that w;(U;) < n/2. Let us show that then |w;(U;)| < n/100. Otherwise by (4), G has
an edge in S;(U;) x Si(U;) x Si(V(G) \ (T; UU;)). Such an edge cannot have two vertices in the same
set S;(v) by Property (iv). On the other hand, if all three of its vertices lie in different sets S;(v),

12



this contradicts that U; is collapsible in Gj;, so indeed we have |w;(U;)| < n/100. Now, we let G4
be the hypergraph obtained from G; by collapsing U; and let T;11 = T;. For any v € V(G;) \ U;, we
let Siy1(v) = S;(v) and for the new vertex v* € V(G;y1) representing the collapsed set U;, we let
Sit+1(v*) = Uper, Si(v). Let us verify that Propeties (i)—(iv) for i + 1. Property (i) holds by assmption,
(ii) still holds because w;(U;) < n/100, (iii) is immediate since T;+1 = T; and finally, Property (iv) holds
since U; is a collapsible set in G.

Secondly, suppose that w;(U;) > n/2. Denote T;y1 = T; U S;(V(G;) \ U;), let Giy1 = G;[U;] and
Sit1(v) = S;(v) for all v € U;. Let us verify the invariants. Property (i) is given by the assumption,
while properties (i) and (iv) are immediate since S;11(v) = S;(v) for all v € U; = V(Git1). Let us
check Property (iii). Suppose first there is an edge e € E(G) such that |e N T;| = 1. Then, it has two
vertices inside S;(U;) and by Property (iv), these two vertices are in distinct sets S;(v), S;(v"). However,
this contradicts the fact that U; is collapsible in G;, proving the second part of (iii). Finally, we show
that |T;41] < n/100. Suppose otherwise. Recall that G' has no edges touching 7; in exactly one vertex.
Since U; is collapsible in Gj, it follows that G has no edges touching T;41 in exactly one vertex either.
However, we have that n/100 < |T;41] < n/2, which yields a contradiction to (4) by taking the sets
VG\T, V(G)\ T, T

To conclude, in each step i = 1,... we obtain a new hypergraph G,y still satisfying all the invariants.
However, we always have |V (G,11)| < |V (G;)] so the process cannot run indefinitely, a contradiction. [

We remark that considering the process of collapsing sets is in some sense necessary in the proof above.
Indeed, one might hope to prove Proposition 3.4 by finding a fixed hypergraph H ¢ U such that H
appears in G ~ G®) (n, C'/n?) with high probability. This is however not possible. Indeed, for any fixed
k, the expected number of sets of 2k vertices spanning at least k edges is O(n?*p¥) = O(C*). By the
Poisson paradigm, it follows that with probability £2(1), G does not have 2k vertices spanning at least
k edges for any fixed k. Thus, every subgraph H of G on at most 2k vertices has an edge whose all but
at most one vertex has degree one in H. Collapsing this edge we get a new hypergraph, again having
ratio less than 1/2 between number of edges and vertices and therefore we can continue collapsing. This
implies that with positive probability G does not contain a fixed hypergraph not in U.

Note that the only property of the random 3-uniform hypergraph we used in the proof of Proposition 3.4
is (4), i.e. that for any three sets of size at least n/100, there is an edge with a vertex in each of the
sets. The same property holds for most Steiner triple systems. This was proven in a stronger form
implicitly by Kwan [16] and later stated by Ferber and Kwan [13, Theorem 8.1|. Therefore we obtain
the following corollary.

Corollary 3.5. A random Steiner triple systems with high probability has double-exponential multicolor
Ramsey numbers.

However, this is not the case for all Steiner triple systems. Indeed, let m > 2, and consider the Steiner
triple system G on the vertex set V(G) = F5* \ {0} where a triple xyz forms an edge if and only if
x+y+z =0. Fori e [m], let V; be the set of vectors in V(G) whose last 1-coordinate is in the
i-th place. The partition V(G) = Vi U Vo U - UV, shows that G is forward-colorable, and hence
r(G;q) < 20(¢* logq) by the upper bound in Theorem 1.4 part b).
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4 Concluding remarks

In this paper we determined, for any fixed 3-uniform hypergraph G, the tower height of its multicolor
Ramsey number r(G;q) as the number of colors tends to infinity. Several natural questions remain.
The most obvious one is to resolve Problem 1.1 for higher uniformities. We tentatively conjecture that
the multicolor Ramsey number of any fixed uniform hypergraph grows as a tower of some height. A

counterexample would be very interesting.

Our methods do not seem to provide tight bounds for larger uniformities. For example, we do not know
the correct answer even for the following 4-uniform hypergraph: let G be the 4-uniform hypergraph
with vertex set A U B where A, B are disjoint sets of some fixed size ¢ > 3 and where a 4-tuple forms
an edge if and only if it intersects A and B in two vertices each. Since G is not 4-partite, r(G;q) is at
least exponential in ¢ as shown in [4] and we can show that r(G;¢) is at most double-exponential.

For 3-uniform hypergraphs G € U, our upper and lower bounds usually have different powers of ¢ in
the exponent. It would be interesting to refine these bounds further. A natural simple example is the
Fano plane for which we have 22 < r(Fano; q) < 20(q*logq)

It is easy to see that T(Star(g) (4);q9) = 20" and Proposition 3.3 provides a 3-uniform hypergraph G
with 7(G;q) = 9¢*
upper bound is of the form r(Gy; q) < 29
tight.

. However, for each £ > 3, there are 3-uniform hypergraphs G, for which our best

0 1t would be interesting to determine whether this can be

Problem 4.1. Does there exist, for every £ > 1, a 3-uniform hypergraph Gy with r(Gy; q) = 20ty
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