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Abstract

The q-color Ramsey number of a k-uniform hypergraph H is the minimum integer N such that any
q-coloring of the complete k-uniform hypergraph on N vertices contains a monochromatic copy of H.
The study of these numbers is one of the central topics in Combinatorics. In 1973, Erd!s and Graham
asked to maximize the Ramsey number of a graph as a function of the number of its edges. Motivated
by this problem, we study the analogous question for hypergaphs. For fixed k → 3 and q → 2 we prove
that the largest possible q-color Ramsey number of a k-uniform hypergraph with m edges is at most
twk(O(

↑
m)), where tw denotes the tower function. We also present a construction showing that this

bound is tight for q → 4. This resolves a problem by Conlon, Fox and Sudakov. They previously proved
the upper bound for k → 4 and the lower bound for k = 3. Although in the graph case the tightness
follows simply by considering a clique of appropriate size, for higher uniformities the construction is
rather involved and is obtained by using paths in expander graphs.

1 Introduction

For a k-uniform hypergraph H and a positive integer q, we denote by rk(H; q) the q-color Ramsey number
of H defined as the minimum integer N such that any q-coloring of the complete k-uniform hypergraph
on N vertices, denoted by K(k)

N , contains a monochromatic copy of H. When H = K(k)
n , we simply

write rk(n; q). The existence of these numbers was famously shown by Ramsey [21] in 1930. Since then,
finding good bounds on rk(H; q) for various (hyper)graphs H has been one of the most major areas of
study in Discrete mathematics. The first important results in this direction were exponential bounds on
the so-called diagonal graph Ramsey number, namely that

↑
2
n
< r2(n; 2) < 4n, where the upper bound

was proven by Erd!s and Szekeres [14] and the lower bound by Erd!s [8] as one of the first applications
of the probabilistic method. Both of these arguments easily extend to give similar bounds for any fixed
number of colors q. Despite a great amount of interest and the fact that these bounds are at least 70
years old, until very recently they have been only improved by lower order terms. In March 2023, a major
breakthrough was obtained by Campos, Gri"ths, Morris and Sahasrabudhe [2], who improved the upper
bound to (4↓ ω)n.
In the case of hypergraphs, Erd!s and Rado [13] showed that for some constant c = c(k, q), the Ramsey
numbers satisfy rk(n; q) ↔ twk(cn), where twk(x) denotes the tower function defined as tw1(x) = x and
twk(x) = 2twk→1(x) for k → 2. On the other hand, an ingenious construction of Erd!s and Hajnal (see
e.g. [17]), known as the stepping-up lemma, allows one to obtain a lower bound for hypergraphs of
uniformity k + 1 from lower bounds for uniformity k, essentially gaining an extra exponential. However,
this construction only works if the number of colors, q, is at least 4 or the uniformity, k, is at least 3.
In particular, we have the bounds rk(n; 2) → twk→1(cn2) and rk(n; 4) → twk(cn). The first bound comes
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from applying a random construction for uniformity 3 and then applying the stepping-up lemma. Erd!s,
Hajnal and Rado [12] conjectured that r3(n; 2) > 22

cn , which would, by the stepping-up lemma, imply
rk(n; 2) → twk(ckn), thus determining the correct tower height of these numbers. However, this remains a
major open problem.
Given the di"culty of finding good bounds for complete graphs and hypergraphs, Burr and Erd!s [1]
initiated the study of Ramsey numbers of sparse graphs and, in particular, conjectured that for any
integer !, there is c(!) such that r2(G; 2) ↔ c(!)n for any n-vertex graph with maximum degree at most
!. This conjecture was proven by Chvátal, Rödl, Szemerédi and Trotter [3] using Szemerédi’s celebrated
regularity lemma. The development of the hypergraph regularity lemma lead to the generalization of this
result to bounded degree hypergraphs proven by Cooley, Fountoulakis, Kühn and Osthus [7]. Burr and
Erd!s also made the stronger conjecture that r2(G; 2) < c(d)n should also hold for all d-degenerate graphs
on n vertices and it was proved by Lee [20].
In 1973, Erd!s and Graham [11] posed a natural question of maximizing the Ramsey number of a graph as
a function of the number of its edges. Since Ramsey numbers of sparse graphs grow slowly, it is natural to
guess that in order to maximize the Ramsey number of a graph with m edges, one should make it as dense
as possible. This has motivated Erd!s and Graham to conjecture that among all graphs with m =

(n
2

)

edges, the complete graph Kn has the largest Ramsey number. This conjecture appears extremely di"cult
and there has been no real progress on it. Therefore Erd!s [10] made a weaker conjecture that there is
a constant c such that r2(G; 2) ↔ 2c

↑
m for any graph G with m edges and no isolated vertices, which

would be sharp by the above-mentioned lower bound for the Ramsey number of the complete graph. This
conjecture has been resolved by Sudakov [22]. In contrast to many results mentioned above, the argument
in [22] only works for two colors and it would be interesting to extend this result to more colors.
In this paper we consider the Erd!s and Graham question for hypergaphs. Naively one might expect
that for fixed k and q, there exists c = c(k, q) such that any k-uniform hypergraph H with m edges
satisfies rk(H; q) ↔ twk(cm1/k), i.e., the complete hypergraph is a maximizer. This however, was shown
to be false by Conlon, Fox and Sudakov [4] who constructed a 3-uniform hypergraph with m edges whose
4-color Ramsey number at least 22

c
↑
m for some positive absolute constant c. On the other hand, they

showed that any k-uniform hypergraph H with m edges satisfies rk(H; q) ↔ twk(c
↑
m), for k → 4, while

rk(H; q) ↔ twk(c
↑
m logm) for k = 3, where the constant c depends only on k and q. In a survey on

graph Ramsey theory [5], they further asked whether it is possible to remove the logarithmic factor for
the 3-uniform case.

Problem 1.1. Show that for any q → 2, there exists cq such that r3(H; q) ↔ 22
cq

↑
m

for any 3-uniform

hypergraph H with m edges and no isolated vertices.

In the present paper, we resolve Problem 1.1. Moreover, our proof extends to larger uniformities as well
so we present a unified proof for all k → 3.

Theorem 1.2. For any k → 3, and any fixed number of colors q, there is a constant Ck,q such that the

q-color Ramsey number of any k-uniform hypergraph H with m edges and no isolated vertices is at most

twk(Ck,q
↑
m).

We also provide a construction showing that the above bound is tight up to a constant factor in front of↑
m . Although in the graph case the tightness follows simply by considering a clique of appropriate size,

for higher uniformities the construction is rather involved and is obtained by using the paths in expander
graphs. Due to our reliance on the stepping-up lemma, the construction requires 4 colors.

Theorem 1.3. For any k → 2, there exist a constant ck > 0 such that for any positive integer m there

is a k-uniform hypergraph with m hyperedges and no isolated vertices whose 4-color Ramsey number is at

least twk(ck
↑
m).
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The rest of this short paper is organized as follows. In Section 2 we prove Theorem 1.2 and in Section 3
we prove Theorem 1.3. We systematically ignore floor and ceiling signs whenever they are not crucial for
the argument. In the use of asymptotic notation we sometimes omit the dependence on the uniformity, k,
and the number of colours, q, since we treat them as constants.

2 Proof of Theorem 1.2

Before presenting the proof, let us give a brief outline. The main new idea is to show that every hypergraph
with m edges has a strong coloring (see Definition 2.2) with t = O(

↑
m) colors such that the product of

the sizes of the color classes is 2O(
↑
m). Given a colored complete k-uniform hypergraph G on twk(C

↑
m)

vertices, we then apply Erd!s and Rado’s upper bound on hypergraph Ramsey numbers mentioned in the
introduction along with a simple supersaturation argument to find many monochromatic cliques of size t
in G. Then, it is enough to find a set of cliques of one colour which form a complete t-partite hypergraph
with part sizes corresponding to the color classes of the given strong coloring. This will follow from a
version of the hypergraph extension of the K!vári-Sós-Turán theorem [19]. Such an extension was first
proved by Erd!s [9]. In our setting, the number of parts and their sizes are allowed to grow with the size of
the hypergraph. The aforementioned result of Erd!s does not provide such a bound, though it can easily
be extracted from most of the known proofs.
Let Ks1,...,st denote the complete t-partite t-uniform hypergraph with part sizes s1, . . . , st and denote by
ex(n,Ks1,...,st) the maximum number of edges in a t-uniform hypergraph not containing Ks1,...,st as a
subgraph.
We require an upper bound on ex(n,Ks1,...st), where the number of parts and their sizes are allowed to
grow with n. Such an upper bound is surely widely known, but we have not found a reference which
contains the bound we need. Hence, we include the short proof for completeness. Note that the exponent
of n in our bound is not best possible, however, it is su"cient for our purposes and allows for a cleaner
proof.

Lemma 2.1. Let s1, . . . , st be positive integers and denote P =
∏t

i=1 si. Then, for all n → 1,

ex(n,Ks1,...,st) < Pnt→P→1
.

Proof. We prove the statement by induction on t. For t = 1, the claim is trivial. Assume now t → 2 and
let H be a t-uniform hypergraph with m → Pnt→P→1 edges. We need to show that H contains a copy of
Ks1,...,st . For W ↗

(V (H)
st

)
, let

N(W ) =

{
f ↗

(
V (H)

t↓ 1

)
| f ↘ {w} ↗ E(H), ≃w ↗ W

}
.

For f ↗
(V (H)

t→1

)
, let d(f) denote the number of edges of H containing the set f. Double counting, we have

∑

W↓(V (H)
st

)

|N(W )| =
∑

f↓(V (H)
t→1 )

(
d(f)

st

)
.

Using that
(x
s

)
is convex and

∑
f↓(V (H)

t→1 )
d(f) = tm, we can apply Jensen’s inequality to obtain

∑

W↓(V (H)
st

)

|N(W )| →
(

n

t↓ 1

)(
tm/

( n
t→1

)

st

)
→ n · · · (n↓ t+ 2)

(t↓ 1)!
·
(

t!m

st · n · · · (n↓ t+ 2)

)st

→ mst

sstt · n(t→1)(st→1)
.
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Denoting P ↔ =
∏t→1

i=1 si = P/st, by the pigeonhole principle, there is a set W with

|N(W )| →
(
n

st

)→1

· mst

sstt · n(t→1)(st→1)
→ (Pnt→P→1

)st

sstt · n(t→1)(st→1)+st
→ sstt P

↔ntst→(P ↓)→1

sstt · ntst→t+1
= P ↔nt→1→(P ↓)→1

.

By the induction hypothesis, the (t ↓ 1)-uniform hypergraph formed by the edge set N(W ) contains a
copy of Ks1,...,st→1 , which together with W forms Ks1,...,st , as required.

Definition 2.2. A strong coloring of a hypergraph H is a partition of V (H) into color classes V1, . . . , Vt

such that every edge of H contains at most one vertex from each of the sets V1, . . . , Vt.

Lemma 2.3. Fix k → 2 and let H be a k-uniform hypergraph with m edges and no isolated vertices. Then,

there is a strong coloring V1 ·↘ · · · ·↘ Vt of H such that t = O(
↑
m) and moreover,

∏t
i=1 |Vi| ↔ 2O(

↑
m).

Proof. We first partition the vertices of H according to their degree as follows. Set ! :=
↑
m and denote

s = ⇐log2!⇒ + 1. Let U0 = {v ↗ V (H) | d(v) > !} and for 1 ↔ i ↔ s, let Ui = {v ↗ V (H) |!/2i <
d(v) ↔ !/2i→1}. Since V (H) has no isolated vertices, it is clear that U0 ·↘ · · · ·↘ Us is a partition of V (H).
We color each of the sets Ui using distinct colors. Each vertex in U0 receives a distinct color. For i → 1,
the vertices in Ui are greedily colored one by one using at most ti := k!/2i→1 colors. This is possible
since having colored some vertices in Ui, the next vertex v ↗ Ui to be colored shares an edge with at most
(k ↓ 1)d(v) ↔ (k ↓ 1)!/2i→1 ↔ ti ↓ 1 previously colored vertices in Ui.

Let V1, . . . , Vt denote the color classes produced by the coloring described above. It remains to verify that
it satisfies the desired properties. To this end, for 0 ↔ i ↔ s, we denote ni = |Ui| and mi =

∑
v↓Ui

d(v).
Clearly,

∑s
i=0mi =

∑
v↓V (H) d(v) = km and for 0 ↔ i ↔ s, we have km → mi → ni ·!/2i. In particular,

n0 ↔ km/! = k
↑
m.

The number of colors used, t, satisfies

t ↔ n0 +
s∑

i=1

ti ↔ k
↑
m+

s∑

i=1

k
↑
m/2i→1 = O(

↑
m).

Recall that ti = k!/2i→1 and ni ↔ 2imi/! ↔ 2ikm/!. By the AM-GM inequality, the product of the
sizes of the color classes used to color Ui, i → 1 is at most

(
ni

ti

)ti

<

(
4im

!2

)k!/2i→1

= (4i)k!/2i→1
= 2k!i/2i→2

.

Multiplying the above bound for all 1 ↔ i ↔ s and using that the series
∑↗

i=1 i/2
i→2 converges, we obtain

t∏

j=1

|Vj | ↔
s∏

i=1

2k!i/2i→2
= 2Ok(

↑
m).

As mentioned in the outline, we will use the following bound on the Ramsey number of a complete
k-uniform hypergraph.

Theorem 2.4 (Erd!s, Rado [13]). For positive integers q, k there is a constant C ↔ = C ↔(q, k) such that

rk(n; q) ↔ twk(C ↔n).

Proof of Theorem 1.2. Let m = e(H) and let N = twk(C
↑
m) where C = C(k, q) is a large constant to

be chosen implicitly later. Consider an arbitrary q-coloring of the complete k-uniform hypergraph on N
vertices and call this colored hypergraph G. We need to show that G contains a monochromatic copy of
H.
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Let V1 ·↘ · · · ·↘ Vt = V (H) be a strong coloring of H satisfying t ↔ O(
↑
m) and P :=

∏t
i=1 |Vi| ↔ 2O(

↑
m)

given by Lemma 2.3. We remark that P will correspond to the value of P in our application of Lemma 2.1.
We denote si = |Vi| for i ↗ [t]. Let R = rk(t; q) ↔ twk(O(

↑
m)), where the bound holds by Theorem 2.4.

A standard supersaturation argument allows us to find many monochromatic copies of K(k)
t in G of the

same color. Indeed, by definition, every set of R vertices of G contains a monochromatic copy of K(k)
t .

On the other hand, any copy of K(k)
t is contained in

(N→t
R→t

)
sets of R vertices of G. Putting these two

facts together and applying the pigeonhole principle, there is a color, say red, such that the number of red
copies of K(k)

t in G is at least
(
N

R

)
/

(
q

(
N ↓ t

R↓ t

))
→

(
N

R

)t

/q. (1)

We construct an auxiliary t-uniform hypergraph ” on the vertex set V (G) where a t-set forms an edge if
it forms a red t-clique in G. Provided that e(”) > ex(N,K(t)

s1,...,st), there must exist a copy of K(t)
s1,...,st in

” which corresponds to a red complete t-partite k-uniform hypergraph with part sizes s1, . . . , st in G and
by the existence of the strong coloring V (H) = V1 ·↘ · · · ·↘ Vt, it contains a red subgraph isomorphic to H.

It remains to ensure that e(”) > ex(N,K(t)
s1,...,st). Recall that P =

∏t
i=1 |Vi| = 2O(

↑
m). Hence, by (1) and

Lemma 2.1, it is enough to show that
(
N

R

)t

/q > N t→2→O(
↑
m)
,

or equivalently,

Rtq < N2→O(
↑

m)
.

It will be convenient to compare the logarithms of the two sides. We remind the reader that twk(x) =
2twk→1(x) for k → 2. Thus, we have

log2(R
tq) = t log2(R) +O(1) = O(

↑
m) · twk→1(O(

↑
m)) = twk→1(O(

↑
m)),

where in the last inequality we used that k → 3. On the other hand,

log2(N
2→O(

↑
m)
) = log2(N) · 2→O(

↑
m) = twk→1(C

↑
m) · 2→O(

↑
m) → twk→1(C/2 ·

↑
m),

where in the last inequality we used that k → 3 and chose C to be large enough compared to the implicit
constant in the O notation. It follows that for large enough C, we have Rtq < N2→O(

↑
m)
, as needed.

3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We shall start with a few definitions which are used in the proof
and present a variant of the step-up coloring that we use. After that, we give an informal discussion of
the main ideas behind the proof and then we present the proof itself.

3.1 Setup

To begin, we recall an important function used in this construction. For a nonnegative integer x, let
x =

∑↗
i=0 ai2

i be its unique binary representation (where ai = 0 for all but finitely many i). We denote
bit(x, i) = ai. Then ε(x, y) := max{i ↗ Z↘0 | bit(x, i) ⇑= bit(y, i)}. For nonnegative integers x1 < x2 <
· · · < xt, we denote ε({x1, . . . , xt}) = (ε1, . . . , εt→1) where for i ↗ [t ↓ 1], εi = ε(xi, xi+1). The following
properties of this function are well known and easy to verify.

P1) x < y ⇓⇔ bit(x, ε(x, y)) < bit(y, ε(x, y)).
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P2) For any x < y < z, ε(x, y) ⇑= ε(y, z).

P3) For any x1 < x2 < · · · < xk, ε(x1, xk) = max1≃i≃k→1 ε(xi, xi+1).

Let us now define the coloring which will be used to prove Theorem 1.3. For a positive integer n, we start
with a red-blue coloring ϑ(2)

n of the complete graph with vertex set {0, . . . , N2 ↓ 1}, where N2 = N2(n) =
2n/2, containing no monochromatic clique of size n. Such a coloring exists by the well known result of
Erd!s mentioned in the introduction. For k → 3, the coloring ϑ(k)

n is on the vertex set {0, . . . , Nk ↓ 1},
where Nk = Nk(n) = 2Nk→1(n) = twk(n/2) and is defined as follows. For a set {x1, . . . , xk} with 0 ↔ x1 <
· · · < xk < Nk, we consider the vector ε({x1, . . . , xk}) = (ε1, . . . , εk→1). Note that 0 ↔ εi < Nk→1 for all
i ↗ [k ↓ 1]. Hence for distinct εi, the set {ε1, . . . , εk→1} forms an edge of the complete (k ↓ 1)-uniform
hypegraph on {0, . . . , Nk→1 ↓ 1} with color ϑ(k→1)

n ({ε1, . . . , εk→1}). For k = 3, the 4-coloring is given as:

ϑ(3)
n ({x1, x2, x3}) =






C1, if ε1 < ε2 and ϑ(2)
n ({ε1, ε2}) is red;

C2, if ε1 < ε2 and ϑ(2)
n ({ε1, ε2}) is blue;

C3, if ε1 > ε2 and ϑ(2)
n ({ε1, ε2}) is red;

C4, if ε1 > ε2 and ϑ(2)
n ({ε1, ε2}) is blue.

We denote by argmaxi↓[k→1] εi the unique index j ↗ [k ↓ 1] such that εj = maxi↓[k→1] εi, where the
uniqueness follows from Properties P2) and P3). For k → 4, the coloring is given as:

ϑ(k)
n ({x1, . . . , xk}) =






ϑ(k→1)
n ({ε1, . . . , εk→1}), if ε is a monotone sequence;

C1, if ε is not monotone and argmaxi↓[k→1] εi ↗ {1, k ↓ 1};
C2, if argmaxi↓[k→1] εi ⇑↗ {1, k ↓ 1}.

3.2 Proof outline

Let us now discuss the main ideas of our proof. First, we recall Erd!s and Hajnal’s proof of the lower
bound rk(n; 4) → twk(2→kn). Their proof uses a slightly di#erent coloring than given above, but the
same proof works with our coloring, so we consider it instead. Suppose that ϑ(k)

n contains a monochro-
matic clique of size nk = 2kn. Denote by x1 < x2 < · · · < xnk the vertices of this clique and let
ε = (ε1, . . . , εnk→1) = ε({x1, . . . , xnk}). It is not di"cult to show that ε must contain a monotone contigu-
ous subsequence ε↔ = (εa, εa+1, . . . , εb) of length at least nk/2. By Property P3) and the definition of ϑ(k)

n ,

it follows that {εa, εa+1, . . . εb} forms a monochromatic clique in ϑ(k→1)
n of size at least nk/2. Applying the

same argument to this clique in ϑ(k→1)
n , we find a monochromatic clique of size at least nk/4 in ϑ(k→2)

n and
so on. After k ↓ 2 steps, we thus reach a monochromatic clique of size 4n in ϑ(2)

n , a contradiction.
We will show that instead of a clique, we can take a much sparser hypergraph Hk on nk = ϖkn vertices
with m = O(n2

k) = Ok(n2) edges and reach a similar conclusion, i.e. that ϑ(k→1)
n contains a monochromatic

copy of some (k ↓ 1)-uniform hypergraph Hk→1 on ϖk→1n vertices, where Hk→1 is “of the same form” as
Hk. For the argument to work, we need to make sure of a few a things. With x1 < x2 < · · · < xnk and
ε = (ε1, . . . , εnk→1) defined as above, we need that ε contains a monotone subsequence of length #(nk).
Furthermore, this monotone subsequence should imply the existence of a hypergraph Hk→1 on ϖk→1n
vertices on which we can apply induction. We remark here that Hk→1 will not be a fixed hypergraph, but
rather some large enough hypergraph of the same form as Hk. Finally, after k↓2 steps, we should reach a
graph containing a clique of size n to obtain a contradiction. Given that this argument works for a clique
and we want a much sparser hypergraph, it should be no surprise that our construction is based on an
expander graph. We next define our construction formally and carry out the outlined proof strategy.

6



3.3 Formal proof

Given a graph G and an integer k → 2, we define a k-uniform hypergraph H = H(G, k) on the same vertex
set where for every path (v1, . . . , vk→1) in G and any vertex vk ↗ V (G) not on this path, we put the k-edge
{v1, . . . , vk} in H. Note that for k = 2, H(G, k) is simply the complete graph on the vertex set V (G).

Given a k-uniform hypergraph ” with a coloring ϑ : E(”) ↖ C and a hypergraph H, a set of vertices
X ↙ V (”) forms a monochromatic copy of H if there exists a bijection $ : V (H) ↖ X such that ϑ($(e)) =
ϑ($(e↔)) for all e, e↔ ↗ E(H).

We shall need the following simple lemma about sparse random graphs.

Lemma 3.1. For any d → 109 and M su!ciently large, there is a graph G on M vertices such that

a) For all disjoint subsets S, T ↙ V (G) with |S|, |T | → M
d1/3

, we have

∣∣eG(S, T )↓
d

M
|S||T |

∣∣ ↔ 1

2

d

M
|S||T |,

and

b) the maximum degree of G is at most 2d.

Proof. Let H ∝ G(M,d/M), that is, H is a random graph on M vertices where every possible edge is
present with probability d/M independently. Let G be the graph obtained from H by removing all edges
incident to vertices of degree greater than 2d. Thus, G satisfies b) deterministically. The expected number
of edges removed from H to obtain G is at most

∑

{u,v}⇐V (H)

P[uv ↗ E(H)] · P[max{dH(u), dH(v)} > 2d |uv ↗ E(H)]

↔
(
M

2

)
d

M
· 2P[Bin(M ↓ 2, d/M) → 2d] ↔ 2Mde→d/3 < M,

where we used a standard Cherno# bound (e.g. Corollary 2.3 in [18]) and that d → 109. By Markov’s
inequality, with probability at least 3/4, we have e(H)↓ e(G) ↔ 4M. For fixed disjoint sets of vertices S
and T of size at least M

d1/3
using the same form of the Cherno# bound, we have

P
∣∣eH(S, T )↓ d

M
|S||T |

∣∣ > 1

4

d

M
|S||T |


↔ 2e→

d
M |S||T |/48 ↔ 2e→Md1/3/48 < 2e→20M .

Taking a union bound over all sets S, T as above, with probability at least 1↓ 2M · 2M · 2e→20M > 3/4, we
have

∣∣eH(S, T )↓ d

M
|S||T |

∣∣ ↔ 1

4

d

M
|S||T |, ≃S, T ↙ V (H), S ′ T = ∞, |S|, |T | → M

d1/3
. (2)

By a union bound, with probability at least 1/2 we have e(H) ↓ e(G) ↔ 4M and (2). Noting that

4M ↔ 1
4

d
M


M
d1/3

2
, it follows that G satisfies a) with probability at least 1/2, finishing the proof.

Proof of Theorem 1.3. Fix k → 3, let n be a large enough integer, set d = 1020k and let G be a graph on
nk = dn vertices satisfying a) and b) for d whose existence is given by Lemma 3.1. Let Hk = H(G, k). We
will show that there is no monochromatic copy of Hk in ϑ(k)

n , where we remind the reader that ϑ(k)
n is a

coloring of the complete k-graph with vertex set {0, . . . , Nk(n)↓1}, where Nk(n) = twk(n/2). This would
prove the theorem since, by construction, e(Hk) ↔ nk·#{paths of length k↓2 in G} ↔ n2

k(2d)
k→2 = O(n2),

while rk(Hk; 4) > Nk(n) = twk(n/2) = twk(#(

e(H))). We make repeated use of the following lemma.
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Lemma 3.2. Let U ↙ V (G), |U | → nk/(1000k→1) and let ϱ → 3 be an integer. Denote H = H(G[U ], ϱ)

and suppose there is a monochromatic copy of H in ϑ(ω)
n . Then, there exists a set U ↔ ↙ U such that |U ↔| →

|U |/1000 and there exists a monochromatic copy of the (ϱ ↓ 1)-uniform hypergraph H ↔ = H(G[U ↔], ϱ ↓ 1)

in ϑ(ω→1)
n .

First, let us finish the proof of Theorem 1.3 given Lemma 3.2. By repeated uses of the lemma, it follows
that there are subsets V (G) = Uk ∈ Uk→1 ∈ · · · ∈ U2 such that there is a monochromatic copy of
H(G[Uω], ϱ) in ϑ(ω)

n for all 2 ↔ ϱ ↔ k and |Uω| → |Uω+1|/1000 for all 2 ↔ ϱ ↔ k ↓ 1. Hence, we have
|U2| → nk/1000k = 1020kn/1000k > n and a monochromatic copy of H(G[U2], 2) in ϑ(2)

n . Recall that
by definition, H(G[U2], 2) is a clique on |U2| > n vertices, hence there is no monochromatic copy of
H(G[U2], 2) in ϑ(2)

n , a contradiction.

Proof of Lemma 3.2. Let s = |U | = |V (H)|, let X = {x1, . . . , xs} ↙ {0, . . . , Nω ↓ 1}, where x1 < · · · < xs,
form a mononchromatic copy of H and denote by $ : V (H) ↖ {0, . . . , Nω ↓ 1} the given monochromatic
embedding.

Claim 3.3. There is a set Y = {y1, . . . , yt} ↙ X of size t → s/200 where y1 < · · · < yt such that

ε({y1, . . . , yt}) is a monotone sequence.

First we finish the proof of the lemma given Claim 3.3. Let Y ↙ X with |Y | = t → s/200 be given
by Claim 3.3 and assume that ε(Y ) is increasing, the other case being analogous. We denote L =
{$→1(y1), . . . ,$→1(yt/2)} ↙ U and let U ↔ ↙ U be the set of all vertices $→1(yj) with t/2 < j ↔ t which in
G have at least one neighbour in L. We have that |U ↔| → t/4, as otherwise there is a set of t/4 vertices
with no edges toward L, contradicting a) since

|L| → t/4 → s/800 → nk/(1000
k) > nk/(10

20k/3) = nk/d
1/3.

Let us verify that ϑ(ω→1)
n contains a monochromatic copy of H ↔ = H(G[U ↔], ϱ↓ 1). Let z1, z2, . . . , zt↓ be the

elements of $(U ↔) in increasing order and recall that yi < zj for all i ↗ [t/2], j ↗ [t↔]. Denote a1 = ε(y1, z1)
and ai = ε(zi→1, zi) for 2 ↔ i ↔ t↔. We will show that the set A = {a1, . . . , at↓} forms a monochromatic
copy of H ↔ in ϑ(ω→1)

n with the natural correspondence $↔ : U ↔ ↖ A defined by $↔($→1(zi)) = ai for all
i ↗ [t↔]. We do so by showing that, for an edge e ↗ E(H ↔), the color ϑ(ω→1)

n ($↔(e)) is inherited from the
color of ϑ(ω)

n ($(f)) of some edge f ↗ E(H).

By monotonicity of ε({y1, . . . , yt}), using P3), we have ε(zi, zj) = aj for any 1 ↔ i < j ↔ t↔ and ε(yi, zj) =
aj for any i ↗ [t/2] and j ↗ [t↔]. Now, consider an arbitrary edge e = {$→1(zj1), . . . ,$

→1(zjω→1)} ↗ E(H ↔),
where j1 < j2 < · · · < jω→1. By construction, some ϱ ↓ 2 of these vertices form a path P ↔ in G. By
definition of U ↔, any vertex on this path, in particular one of its endpoints, has a neighbour L. So,
we can attach a vertex w ↗ L to one of the endpoints of P ↔ to obtain a path on ϱ ↓ 1 vertices in G.
Hence, f = e ↘ {w} is a set of ϱ vertices, some ϱ ↓ 1 of which form a path in G, implying that f is an
edge of H. Note that ε($(f)) = (aj1 , aj2 , . . . , ajω→1), which is an increasing sequence. If ϱ → 4, we have
ϑ(ω)
n ($(f)) = ϑ(ω→1)

n (ε($(f))) = ϑ(ω→1)
n ($↔(e)). In the case ϱ = 3, if ϑ(2)

n ($↔(e)) = red, then ϑ(ω)
n = C1, and

if ϑ(2)
n ($↔(e)) = blue, then ϑ(ω)

n = C2. In either case, it follows that A forms a monochromatic copy of H ↔

in ϑ(ω→1)
n , as needed.

Proof of Claim 3.3. Consider the following procedure. Start with Z = X. At each step, let q be the largest
integer such that not all elements of Z have the same bit at position q. Consider the partition Z = Z0 ·↘Z1,
where Zp denotes the set of elements z ↗ Z with bit(z, q) = p. Then, let Z be the larger of Z0, Z1 and
continue the procedure. Eventually we reach a point where s/4 ↔ |Z| ↔ s/2, where the lower bound follows
since |Z| drops by a factor of at most 2 in each step. Let Z⇒ denote the final set Z and let q⇒ be the last
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value of q before this point. Then, for all distinct u, v ↗ Z⇒, w ↗ X \ Z⇒, we have ε(u, v) < q⇒ ↔ ε(u,w).
Also, note that the elements of Z⇒ form an interval in the ordered set X. Indeed, at each step all elements
in Z0 are smaller than all elements of Z1, since all elements in Z have the same bit on all positions larger
than q. Hence, if Z was an interval in the ordered set X before step i, it is also an interval after step i.
We shall assume that at least s/4 vertices in X \ Z⇒ are smaller than all elements of Z⇒, the other case
being analogous. Let W denote the set of elements in X \ Z⇒ smaller than every element of Z⇒. Now, let
A = $→1(W ) ↙ U and let B be the set of all vertices in $→1(Z⇒) ↙ U that have at least one neighbour
of G in A. By a), it follows that

|B| → |$→1(Z⇒)|/2 → s/8,

as otherwise we obtain a set of s/8 vertices with no edge towards A, which is a contradiction since
|A| → s/8 → nk/1000k > nk/d1/3.

Now, we analyse the set S1 := $(B) using a similar procedure as above in steps i = 1, . . . , h, where the
number of steps, h, is to be determined by the procedure. At the beginning of step i, we have a set Si of
size at least 2. Let qi be the largest integer such that not all elements of Si have the same bit at position
qi. Let Si = S0

i ·↘ S1
i , where Sp

i consists of the elements z ↗ Si with bit(z, qi) = p. Let pi ↗ {0, 1} be such
that |Spi

i | → |S1→pi
i |. Let Si+1 = Spi

i . If |Si+1| < s/100, stop the process, otherwise continue to step i+ 1.

Assume first that the procedure runs for at least s/100 steps. Then, there is a set I, |I| → s/200 and
p ↗ {0, 1} such that for all i ↗ I, we have pi = p and so Si+1 = Sp

i . For each i ↗ I, let yi be an arbitrary
element in S1→p

i and let Y = {yi, | i ↗ I}. Using P3), we have ε(yi, yi↓) = qi for any i, i↔ ↗ I, i < i↔.
Moreover, the sequence (yi)i↓I is increasing if p = 1, and decreasing otherwise. Observing that qi > qi↓
for i < i↔, it follows that Y is the desired set.
Therefore, we may assume that the above procedure runs for h < s/100 steps and we will show that this
leads to a contradiction. First, we require the following claim.

Claim 3.4. There exists i ↗ [h] such that |S1→pi
i | → 2 and there is a path P of length ϱ↓ 2 in G with an

endpoint v ↗ $→1(S1→pi
i ) and having its remaining vertices in $→1(Spi

i ).

Proof of Claim 3.4. Let Q =


i↓[h],|S1→pi
i |↘2

$→1(S1→pi
i ) and T0 = $→1(Sh+1), where Sh+1 is the final set

after halting the procedure. Note that |T0| → s/200. We repeatedly remove from T0 vertices that have
fewer than ϱ neighbours in G in the current set T0. Let T denote the final set after these deletions. Then,
|T | → s/400 → nk/(1000)k, as otherwise at the point when we removed half of the vertices, we have two
sets of size q → s/400 → n/d1/3 with at most ϱq edges between them, contradicting that G satisfies a).
Using a) again, it follows that there is an edge vu with v ↗ Q and u ↗ T since |Q| → |S1|↓ |Sh+1|↓ h →
s/8↓ s/100↓ s/100 > s/16 > n/d1/3. Since G[T ] has minimum degree at least ϱ, we can extend this edge
to a path of length ϱ↓ 2 using only vertices in T. Let i be the index such that v ↗ $→1(S1→pi

i ). Note that
S
pj
j ↙ S

pj→1

j→1 for all 2 ↔ j ↔ h and T ↙ $→1(Sh+1) = $→1(Sph
h ). It follows that T ↙ $→1(Spi

i ), so the
abovementioned path indeed has all vertices but the first in $→1(Spi

i ). By definition of Q, we also have
|S1→pi

i | → 2, as needed.

Let i, v, P be given by Claim 3.4 and let w be an arbitrary vertex in $→1(S1→pi
i ) distinct from v. We will

show that then $ is not a valid embedding, that is, we will find two edges of H whose images get di#erent
colors. Let e = P ↘ {w} ↗ E(H). We now find another edge f ↗ E(H) whose image under $ gets a
di#erent color than e.

Consider first the case ϱ = 3. Then, the path P consists of a single edge vu for some u ↗ $→1(Spi
i ).

Let u↔ be an arbitrary vertex in Spi
i distinct form u, which clearly exists since |Spi

i | → |S1→pi
i | → 2,

and let f = {v, u, u↔}. Note that, by construction, ε(u, u↔), ε(v, w) < qi, while ε(z, z↔) = qi for any
(z, z↔) ↗ Spi

i ∋ S1→pi
i . It follows that if pi = 1, then ε($(e)) is increasing, while ε($(f)) is decreasing
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whereas if pi = 0, then ε($(e)) is decreasing, while ε($(f)) is increasing. In either case, $(e) and $(f)

are colored di#erently by ϑ(3)
n , as claimed.

 (A)  (B)

S0
i

S1
i

vw

�

 (x)

�1(f)

�2(e) = �3(f)

�1(e) = �2(f) �3(e)

a

(a) Case pi = 1

 (A)  (B)
S0
i

S1
i

v wu

�

 (x)

�1(f)

�3(e) = �4(f)

�2(e) = �3(f)

�4(e)

a

(b) Case pi = 0

Figure 1: The two chosen edges in the case ϱ = 5. Sets $(A),$(B), S0
i and S1

i are depicted by
ovals. The vertices appearing in both e and f are depicted by points, the vertices in e \ f by squares
and the vertices in f \ e by crosses. The vertices further to the right are mapped by $ to larger
values. The black triangles correspond to the value of ε of consecutive vertices, where higher triangles
represent larger bit positions. The red lines represent the edges of the corresponding vertices in G.

Now, consider ϱ → 4 and see Figure 1 for an illustration. Recall that e = P ↘ {w}, so e has exactly two
vertices in $→1(S1→pi

i ) and the other vertices are in $→1(Spi
i ). Let ε = (ε1, . . . , εω→1) = ε($(e)). Then,

argmaxj↓[ω→1] εj = 2 if pi = 1 and argmaxj↓[ω→1] εj = k ↓ 2 if pi = 0. In either case, ϑ(ω)
n ($(e)) = C2. We

will find an edge f ↗ E(H) whose image receives color C1. Recall that every vertex in B ∈ $→1(S1→pi
i )

has a neighbour in A. Hence, we can extend P by attaching a vertex a ↗ A to v and then remove its last
vertex (which is in $→1(Spi

i )) to obtain a path P ↔ of length ϱ ↓ 2 whose first vertex is a ↗ A, the second
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vertex is v ↗ $→1(S1→pi
i ) and the remaining vertices are in $→1(Spi

i ).

If pi = 1, then let f = V (P ↔) ↘ {w} ↗ E(H). Consider ε = (ε1, . . . , εω→1) = ε($(f)). Since f has one
vertex in A and the rest are in B, it follows that argmaxj↓[ω→1] εj = 1. Additionally, $(f) has two vertices
in S0

i and the remaining ones are in S1
i . Hence, ε2 < qi = ε3, so ε is not monotone, implying that

ϑ(ω)
n ($(f)) = C1.

If pi = 0, then let u be an arbitrary vertex in $→1(S0
i ) \ V (P ↔), which exists since |S0

i | → s/100 → ϱ. Let
f = V (P ↔)↘{u} ↗ E(H) and denote ε = (ε1, . . . , εω→1) = ε($(f)). As before, we have argmaxj↓[ω→1] εj = 1.
The largest element of $(f) is $(v) ↗ S1

i , while the second and third largest elements are in S0
i . Hence,

εω→1 > εω→2 < ε1, which gives ϑ(ω)
n ($(f)) = C1.

4 Concluding remarks

There are many remaining interesting problems on Ramsey numbers of hypergraphs. Maybe most notably,
while for four or more colors we have lower bound constructions on hypergraph Ramsey numbers for cliques
and certain other hypergraphs essentially matching the upper bounds, the bounds are still far apart for
two and three colors. It would be interesting to close the gap in these cases.
Another well-studied question is to bound the q-color Ramsey number of bounded degree k-uniform hy-
pergraphs on n vertices. It is known that there is a constant c = c(k, q,!) such that r(H; q) ↔ c(k, q,!)n
for any n-vertex k-uniform hypergraph H with maximum degree at most ! and the main question is to
understand the value of the factor c(k, q,!) as a function of the maximum degree. In the graph case with
two colors, the best lower bound is c(2, 2,!) = 2”(!) due to Graham, Rödl and Ruci$ski [16], while the
best upper bound is c(2, 2,!) < 2O(! log!) due to Conlon, Fox and Sudakov [6]. For more than two colors
the known upper bound proved in [15] is much worse and is of the form c(2, q,!) ↔ 2cq!

2 . Turning to
hypergraphs, [4] showed c(3, q,!) ↔ tw3(c↔! log!) and c(k, q,!) ↔ twk(c↔!) for k → 4, where c↔ is a
constant depending on k and q. It is an outstanding open problem to show that c(k, q,!) ↔ twk(c↔!)
also when k = 2, 3, i.e., for graphs and 3-uniform hypergraphs. Such a result would provide a di#erent
proof of the upper bound for 3-uniform hypergraphs, presented in this paper. Conlon, Fox and Sudakov
[4] also constructed, for any positive integer !, a 3-uniform n-vertex hypergraph H with maximum degree
! and r(H; 4) → tw3(c↔!)n for some absolute constant c↔. The hypergraph we constructed in the proof of
Theorem 1.3 has n vertices, maximum degree ! ↔ ckn and 4-color Ramsey number at least twk(c↔kn)n,
so it can be viewed as a generalization of the aforementioned result to larger uniformities. These results
show that in general, it is necessary to have c(k, 4,!) → twk(c↔k!). However, both our construction and
that in [4] have ! = %(n) and it would be interesting to find a construction which works for any ! and
su"ciently large n similar to the abovementioned lower bound of Graham, Rödl and Ruci$ski which works
for any ! and n △ !.

Finally, we think it would be interesting to study the following generalization of Ramsey numbers. For a
k-uniform hypergraph H and positive integers N and q with q ↔ e(H), let f(N,H, q) be the minimum
number r such that in every r-coloring of the edges of K(k)

N there is a copy of H receiving fewer than q
colors. The case q = 2 is just the inverse (as a function of the number of colors) of the Ramsey number
of H. The case H is a clique was introduced by Erd!s and Gyarfas and has been well-studied (see for
example [5]).
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