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Abstract

The g-color Ramsey number of a k-uniform hypergraph H is the minimum integer IV such that any
g-coloring of the complete k-uniform hypergraph on N vertices contains a monochromatic copy of H.
The study of these numbers is one of the central topics in Combinatorics. In 1973, Erdés and Graham
asked to maximize the Ramsey number of a graph as a function of the number of its edges. Motivated
by this problem, we study the analogous question for hypergaphs. For fixed £ > 3 and ¢ > 2 we prove
that the largest possible g-color Ramsey number of a k-uniform hypergraph with m edges is at most
twy (O(y/m)), where tw denotes the tower function. We also present a construction showing that this
bound is tight for ¢ > 4. This resolves a problem by Conlon, Fox and Sudakov. They previously proved
the upper bound for k£ > 4 and the lower bound for & = 3. Although in the graph case the tightness
follows simply by considering a clique of appropriate size, for higher uniformities the construction is
rather involved and is obtained by using paths in expander graphs.

1 Introduction

For a k-uniform hypergraph H and a positive integer g, we denote by ri(H;q) the g-color Ramsey number
of H defined as the minimum integer N such that any ¢-coloring of the complete k-uniform hypergraph
on N vertices, denoted by K](\];), contains a monochromatic copy of H. When H = Knk , we simply
write r(n; q). The existence of these numbers was famously shown by Ramsey [21] in 1930. Since then,
finding good bounds on ri(H;q) for various (hyper)graphs H has been one of the most major areas of
study in Discrete mathematics. The first important results in this direction were exponential bounds on
the so-called diagonal graph Ramsey number, namely that V2" <y (n;2) < 4™, where the upper bound
was proven by Erdds and Szekeres [14] and the lower bound by Erdés [8] as one of the first applications
of the probabilistic method. Both of these arguments easily extend to give similar bounds for any fixed
number of colors ¢q. Despite a great amount of interest and the fact that these bounds are at least 70
years old, until very recently they have been only improved by lower order terms. In March 2023, a major
breakthrough was obtained by Campos, Griffiths, Morris and Sahasrabudhe [2], who improved the upper
bound to (4 — €)".

In the case of hypergraphs, Erd6s and Rado [13] showed that for some constant ¢ = ¢(k, ¢), the Ramsey
numbers satisfy ri(n;q) < twi(cn), where twy(z) denotes the tower function defined as twy(z) = x and
twy(z) = 2""+-1(®) for k > 2. On the other hand, an ingenious construction of Erdés and Hajnal (see
e.g. [17]), known as the stepping-up lemma, allows one to obtain a lower bound for hypergraphs of
uniformity k£ + 1 from lower bounds for uniformity k, essentially gaining an extra exponential. However,
this construction only works if the number of colors, ¢, is at least 4 or the uniformity, k, is at least 3.
In particular, we have the bounds ry(n;2) > twi_;(cn?) and ri(n;4) > twi(cn). The first bound comes
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from applying a random construction for uniformity 3 and then applying the stepping-up lemma. Erdds,
Hajnal and Rado [12] conjectured that r3(n;2) > 22, which would, by the stepping-up lemma, imply
ri(n; 2) > twi(cgn), thus determining the correct tower height of these numbers. However, this remains a
major open problem.

Given the difficulty of finding good bounds for complete graphs and hypergraphs, Burr and Erdés [1]
initiated the study of Ramsey numbers of sparse graphs and, in particular, conjectured that for any
integer A, there is ¢(A) such that r9(G;2) < ¢(A)n for any n-vertex graph with maximum degree at most
A. This conjecture was proven by Chvatal, Rodl, Szemerédi and Trotter [3]| using Szemerédi’s celebrated
regularity lemma. The development of the hypergraph regularity lemma lead to the generalization of this
result to bounded degree hypergraphs proven by Cooley, Fountoulakis, Kithn and Osthus [7]. Burr and
Erdds also made the stronger conjecture that ro(G;2) < ¢(d)n should also hold for all d-degenerate graphs
on n vertices and it was proved by Lee [20].

In 1973, Erdés and Graham [11] posed a natural question of maximizing the Ramsey number of a graph as
a function of the number of its edges. Since Ramsey numbers of sparse graphs grow slowly, it is natural to
guess that in order to maximize the Ramsey number of a graph with m edges, one should make it as dense
as possible. This has motivated Erdés and Graham to conjecture that among all graphs with m = (g)
edges, the complete graph K, has the largest Ramsey number. This conjecture appears extremely difficult
and there has been no real progress on it. Therefore Erdés [10] made a weaker conjecture that there is
a constant ¢ such that ro(G;2) < 2eV for any graph G with m edges and no isolated vertices, which
would be sharp by the above-mentioned lower bound for the Ramsey number of the complete graph. This
conjecture has been resolved by Sudakov [22]. In contrast to many results mentioned above, the argument

in [22] only works for two colors and it would be interesting to extend this result to more colors.

In this paper we consider the Erdds and Graham question for hypergaphs. Naively one might expect
that for fixed k& and ¢, there exists ¢ = c¢(k,q) such that any k-uniform hypergraph H with m edges
satisfies 7, (H;q) < twk(cml/ k), i.e., the complete hypergraph is a maximizer. This however, was shown
to be false by Conlon, Fox and Sudakov [4] who constructed a 3-uniform hypergraph with m edges whose
4-color Ramsey number at least 22™ for some positive absolute constant ¢. On the other hand, they
showed that any k-uniform hypergraph H with m edges satisfies r(H;q) < twg(cy/m), for k > 4, while
ri(H;q) < twg(cy/mlogm) for k = 3, where the constant ¢ depends only on k£ and ¢. In a survey on
graph Ramsey theory [5], they further asked whether it is possible to remove the logarithmic factor for
the 3-uniform case.

Problem 1.1. Show that for any q > 2, there exists ¢, such that r3(H;q) < g2eav™ for any 3-uniform
hypergraph H with m edges and no isolated vertices.

In the present paper, we resolve Problem 1.1. Moreover, our proof extends to larger uniformities as well
so we present a unified proof for all £ > 3.

Theorem 1.2. For any k > 3, and any fized number of colors q, there is a constant C 4, such that the
g-color Ramsey number of any k-uniform hypergraph H with m edges and no isolated vertices is at most

twi (Ckgv/m).

We also provide a construction showing that the above bound is tight up to a constant factor in front of
v/m . Although in the graph case the tightness follows simply by considering a clique of appropriate size,
for higher uniformities the construction is rather involved and is obtained by using the paths in expander
graphs. Due to our reliance on the stepping-up lemma, the construction requires 4 colors.

Theorem 1.3. For any k > 2, there exist a constant ¢, > 0 such that for any positive integer m there
s a k-uniform hypergraph with m hyperedges and no isolated vertices whose 4-color Ramsey number is at

least tw(cir/m).



The rest of this short paper is organized as follows. In Section 2 we prove Theorem 1.2 and in Section 3
we prove Theorem 1.3. We systematically ignore floor and ceiling signs whenever they are not crucial for
the argument. In the use of asymptotic notation we sometimes omit the dependence on the uniformity, &,
and the number of colours, ¢, since we treat them as constants.

2 Proof of Theorem 1.2

Before presenting the proof, let us give a brief outline. The main new idea is to show that every hypergraph
with m edges has a strong coloring (see Definition 2.2) with ¢ = O(y/m) colors such that the product of
the sizes of the color classes is 200V Given a colored complete k-uniform hypergraph G on twy(Cy/m)
vertices, we then apply Erdés and Rado’s upper bound on hypergraph Ramsey numbers mentioned in the
introduction along with a simple supersaturation argument to find many monochromatic cliques of size ¢
in G. Then, it is enough to find a set of cliques of one colour which form a complete ¢-partite hypergraph
with part sizes corresponding to the color classes of the given strong coloring. This will follow from a
version of the hypergraph extension of the K&évari-Sos-Turan theorem [19]. Such an extension was first
proved by Erdés [9]. In our setting, the number of parts and their sizes are allowed to grow with the size of
the hypergraph. The aforementioned result of Erdds does not provide such a bound, though it can easily
be extracted from most of the known proofs.

Let Ky, . s denote the complete t-partite t-uniform hypergraph with part sizes s1,...,s; and denote by
ex(n, K, s ) the maximum number of edges in a t-uniform hypergraph not containing K, s as a
subgraph.

We require an upper bound on ex(n, K, s, ), where the number of parts and their sizes are allowed to
grow with n. Such an upper bound is surely widely known, but we have not found a reference which
contains the bound we need. Hence, we include the short proof for completeness. Note that the exponent
of n in our bound is not best possible, however, it is sufficient for our purposes and allows for a cleaner
proof.

Lemma 2.1. Let sq1,...,s: be positive integers and denote P = H:f:l si. Then, for alln > 1,
ex(n, Kyy...s) < P~
Proof. We prove the statement by induction on . For ¢t = 1, the claim is trivial. Assume now t > 2 and

let H be a t-uniform hypergraph with m > Pn'=F - edges. We need to show that H contains a copy of
K, . 5. For W e (V(H)), let

St N(W) = {f e (‘;@) | FU{w} € B(H),vw € W} .

For f € (‘;(_I?), let d(f) denote the number of edges of H containing the set f. Double counting, we have
d(f
> wmi- ¥ (")
we(Vi") re(t)

Using that (;”) is convex and ZfE(V(H)) d(f) = tm, we can apply Jensen’s inequality to obtain

t—1

> INW)I2 (ﬂl) (tm/s(:ﬁl)) = nm((tn_lf 2} <St.n. . .t(!;n_t+2)>8t = .ngixst_l)'

we(Vy)




Denoting P’ = Hf;} s; = P/sy, by the pigeonhole principle, there is a set W with

-1 St t—P1\s; St DI tSt—(P/)71
NOW)| > <n> . m (Pn ) - syt P'n
s

ft =1 (st—1) — Sft =D (se=1)+st — Sft . ptst—t+1
By the induction hypothesis, the (¢ — 1)-uniform hypergraph formed by the edge set N (W) contains a
copy of K, . s, which together with W forms K, ,,, as required. L]

_ P/ntflf(P’)—1‘

St

Definition 2.2. A strong coloring of a hypergraph H is a partition of V(H) into color classes Vi,...,V;
such that every edge of H contains at most one vertex from each of the sets V..., V;.

Lemma 2.3. Fiz k > 2 and let H be a k-uniform hypergraph with m edges and no isolated vertices. Then,
there is a strong coloring Vi \J--- W'V, of H such that t = O(y/m) and moreover, [[i_, |Vi| < 200/m).

Proof. We first partition the vertices of H according to their degree as follows. Set A := /m and denote
s = [logg Al + 1. Let Uy = {v € V(H)|d(v) > A} and for 1 < i < s, let U; = {v € V(H)|A/2" <
d(v) < A/271}. Since V(H) has no isolated vertices, it is clear that Uy U - - - J Uy is a partition of V (H).
We color each of the sets U; using distinct colors. Each vertex in Uy receives a distinct color. For ¢ > 1,
the vertices in U; are greedily colored one by one using at most t; := kA /2! colors. This is possible
since having colored some vertices in U;, the next vertex v € U; to be colored shares an edge with at most
(k—1)d(v) < (k —1)A/271 < t; — 1 previously colored vertices in U;.

Let V4, ..., V; denote the color classes produced by the coloring described above. It remains to verify that
it satisfies the desired properties. To this end, for 0 < i < s, we denote n; = |U;| and m; = ZveUi d(v).
Clearly, >0 m; = > vev(m) d(v) = km and for 0 < i < s, we have km > m; > n; - A/2¢. In particular,
no < km/A = ky/m.

The number of colors used, ¢, satisfies
t<no+ Y t <kym+> ky/m/27" = O(v/m).
i=1 i=1

Recall that t; = kA/27! and n; < 2'm;/A < 2'km/A. By the AM-GM inequality, the product of the
sizes of the color classes used to color U;,7 > 1 is at most

ni\ " 4'm kA2 i—1 i—2
i am _ (4T\RA/21TY _ okAi/2i72
() <(&) -o

Multiplying the above bound for all 1 <7 < s and using that the series > -2, i/ 2i=2 converges, we obtain
t s
H |Vj\ < H2km‘/2if2 — 90k(vm)_
j=1 i=1

O

As mentioned in the outline, we will use the following bound on the Ramsey number of a complete
k-uniform hypergraph.

Theorem 2.4 (Erdés, Rado [13]). For positive integers q,k there is a constant C' = C'(q, k) such that
re(n;q) < twg(C'n).

Proof of Theorem 1.2. Let m = e(H) and let N = twy(C'y/m) where C = C(k,q) is a large constant to
be chosen implicitly later. Consider an arbitrary g-coloring of the complete k-uniform hypergraph on N
vertices and call this colored hypergraph GG. We need to show that G contains a monochromatic copy of

H.



Let V4 U--- UV, = V(H) be a strong coloring of H satisfying t < O(y/m) and P = [[i_, [Vi| < 20v™)
given by Lemma 2.3. We remark that P will correspond to the value of P in our application of Lemma 2.1.
We denote s; = |V;| for i € [t]. Let R = ri(t;q) < twr(O(y/m)), where the bound holds by Theorem 2.4.
A standard supersaturation argument allows us to find many monochromatic copies of Kt(k) in G of the
same color. Indeed, by definition, every set of R vertices of G contains a monochromatic copy of Kt(k).
On the other hand, any copy of Kt(k)

facts together and applying the pigeonhole principle, there is a color, say red, such that the number of red

copies of Ktk in G is at least
N N —t N\’
> | = .

We construct an auxiliary t-uniform hypergraph I' on the vertex set V(G) where a t-set forms an edge if

is contained in (%:tt) sets of R vertices of G. Putting these two

it forms a red t-clique in G. Provided that e(I") > ex(N, Kg)st), there must exist a copy of Kg)st in
I which corresponds to a red complete t-partite k-uniform hypergraph with part sizes sq,...,s; in G and
by the existence of the strong coloring V(H) = V; U --- UV, it contains a red subgraph isomorphic to H.
It remains to ensure that e(I') > ex(N, Kg)st) Recall that P = []i_; [Vi| = 2°0v™). Hence, by (1) and
Lemma 2.1, it is enough to show that

N\' —O(v/m)
o) /q > Nt_g )
)

or equivalently,

Rlq < N2 V™

It will be convenient to compare the logarithms of the two sides. We remind the reader that twy(x) =
2tWk—1(2) for k> 2. Thus, we have

logy(R'q) = tlogy(R) + O(1) = O(vVm) - tw—1(0(v/m)) = twy—1(O(v/m)),
where in the last inequality we used that k£ > 3. On the other hand,
logy(N? 7Y™ = logy(N) - 2700 =ty (Cv/m) - 2700 > twy,_1(C/2 - V/m),

where in the last inequality we used that k£ > 3 and chose C' to be large enough compared to the implicit
constant in the O notation. It follows that for large enough C, we have Rlq < N 2_0(\%), as needed. [

3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We shall start with a few definitions which are used in the proof
and present a variant of the step-up coloring that we use. After that, we give an informal discussion of
the main ideas behind the proof and then we present the proof itself.

3.1 Setup

To begin, we recall an important function used in this construction. For a nonnegative integer x, let
z = Y%, a;2" be its unique binary representation (where a; = 0 for all but finitely many ). We denote
bit(z,i) = a;. Then §(x,y) = max{i € Z>o|bit(x,7) # bit(y,7)}. For nonnegative integers =1 < za <
-+ < x4, we denote 6({z1,...,2¢}) = (01,...,0,—1) where for i € [t — 1], §; = d(x;,x11). The following
properties of this function are well known and easy to verify.

Pl) z <y <= bit(z,d(x,y)) < bit(y,o(z,y)).



P2) For any z <y < z, 6(z,y) # 0(y, 2).

P3) For any z1 < 3 < -+ < g, 0(x1,2%) = maxij<i<k—1 0(Ts, Tit1).

Let us now define the coloring which will be used to prove Theorem 1.3. For a positive integer n, we start
with a red-blue coloring qﬁg) of the complete graph with vertex set {0,..., Ny — 1}, where Ny = Na(n) =
27/2 containing no monochromatic clique of size n. Such a coloring exists by the well known result of
Erd6s mentioned in the introduction. For k& > 3, the coloring qﬁgf) is on the vertex set {0,..., Ny — 1},
where N = Ni(n) = 2Vs-1(") = tw;(n/2) and is defined as follows. For a set {1, ..., 23} with 0 < z1 <
-+ < xp < N, we consider the vector 6({z1,...,2x}) = (01,...,0k_1). Note that 0 < §; < Nj_1 for all
i € [k —1]. Hence for distinct d;, the set {d1,...,dx—1} forms an edge of the complete (k — 1)-uniform
hypegraph on {0,..., Ny_1 — 1} with color qﬁglk_l)({él, ...y 0p—1}). For k = 3, the 4-coloring is given as:
Cl, if 51 < 52 and ¢7(12)({51, (52}) is red;

CQ, if (51 < 52 and ¢£l2)({(51, 52}) is blue;

03, if 61 > 9 and ¢7(12)({51, 52}) is red;

C4, if 61 > 9 and ¢7(12)({51, (52}) is blue.

&) ({21, 22, 23}) =

We denote by arg max;c;_;)9; the unique index j € [k — 1] such that §; = max;e[p_1)di, where the
uniqueness follows from Properties P2) and P3). For k > 4, the coloring is given as:

%k_l)({dl, ...,0p—1}), 1if d is a monotone sequence;
gﬁ,(f)({l’h s xe)) =< O, if 4 is not monotone and argmax;c(,_1)0; € {1,k -1}
Cs, if arg MaxX;c,_1] 6 ¢ {1,k —1}.

3.2 Proof outline

Let us now discuss the main ideas of our proof. First, we recall Erdds and Hajnal’s proof of the lower
bound ry(n;4) > twg(27%n). Their proof uses a slightly different coloring than given above, but the
same proof works with our coloring, so we consider it instead. Suppose that ¢£Lk) contains a monochro-
matic clique of size n = 2*n. Denote by =1 < x5 < --- < T, the vertices of this clique and let
d=(01,...,6n,—1) =0({z1,...,2pn, }). It is not difficult to show that § must contain a monotone contigu-

ous subsequence &' = (0q4, 041, - - -, 0p) of length at least ng /2. By Property P3) and the definition of ¢$f) )
it follows that {04, 0441, - .- 0p} forms a monochromatic clique in ¢§f‘1) of size at least ny/2. Applying the
same argument to this clique in ¢$f‘1), we find a monochromatic clique of size at least ny /4 in ¢£Lk_2) and
so on. After k — 2 steps, we thus reach a monochromatic clique of size 4n in qﬁg), a contradiction.

We will show that instead of a clique, we can take a much sparser hypergraph Hj on ni = ain vertices
with m = O(n2) = Og(n?) edges and reach a similar conclusion, i.e. that ¢n, ~Y contains a monochromatic
copy of some (k — 1)-uniform hypergraph Hy_1 on aj_in vertices, where Hy_1 is “of the same form” as
Hj,. For the argument to work, we need to make sure of a few a things. With z; < 29 < --- <z, and
d = (61,...,0n,_,) defined as above, we need that ¢ contains a monotone subsequence of length (ny).
Furthermore, this monotone subsequence should imply the existence of a hypergraph Hp_ 1 on ag_1n
vertices on which we can apply induction. We remark here that Hy_; will not be a fixed hypergraph, but
rather some large enough hypergraph of the same form as Hy. Finally, after k — 2 steps, we should reach a
graph containing a clique of size n to obtain a contradiction. Given that this argument works for a clique
and we want a much sparser hypergraph, it should be no surprise that our construction is based on an

expander graph. We next define our construction formally and carry out the outlined proof strategy.



3.3 Formal proof

Given a graph G and an integer k > 2, we define a k-uniform hypergraph H = H(G, k) on the same vertex
set where for every path (v1,...,vx—1) in G and any vertex v € V(G) not on this path, we put the k-edge
{v1,...,vt} in H. Note that for k = 2, H(G, k) is simply the complete graph on the vertex set V(G).

Given a k-uniform hypergraph I' with a coloring ¢: F(I') — C and a hypergraph H, a set of vertices
X C V(T') forms a monochromatic copy of H if there exists a bijection ¥: V(H) — X such that ¢(¥(e)) =
d(U(e)) for all e, e’ € E(H).

We shall need the following simple lemma about sparse random graphs.

Lemma 3.1. For any d > 10° and M sufficiently large, there is a graph G on M wvertices such that

a) For all disjoint subsets S, T C V(G) with |S|,|T| > dl/g, we have

T)— —|S||T <f— T,

and

b) the mazimum degree of G is at most 2d.

Proof. Let H ~ G(M,d/M), that is, H is a random graph on M vertices where every possible edge is
present with probability d/M independently. Let G be the graph obtained from H by removing all edges
incident to vertices of degree greater than 2d. Thus, G satisfies b) deterministically. The expected number
of edges removed from H to obtain G is at most
> Plww € E(H)] - Plmax{dg(u), du(v)} > 2d |uv € E(H)]
{u,v}CV(H)

< <A24> % - 2P[Bin(M — 2,d/M) > 2d] < 2Mde~* < M,

where we used a standard Chernoff bound (e.g. Corollary 2.3 in [18]) and that d > 10°. By Markov’s
inequality, with probability at least 3/4, we have e(H) — e(G) < 4M. For fixed disjoint sets of vertices S
and T of size at least dl% using the same form of the Chernoff bound, we have

[\eﬂ (5.7) — <LISI[T]] > rsrm] < e~ WISITI/A8 < go=M/3/45 g —20M

Taking a union bound over all sets S, T as above, with probability at least 1 —2M .2M .2¢=20M . 3 /4 we
have

d 1d M
en(S. )~ ~LISITI| < 3L |S|1TI, v, T € V(H), S AT = 0,181, 7] > 7 2
By a union bound, with probability at least 1/2 we have e(H) — e(G) < 4M and (2). Noting that
2
AM < ( dﬂ%) , it follows that G satisfies a) with probability at least 1/2, finishing the proof. O

Proof of Theorem 1.3. Fix k > 3, let n be a large enough integer, set d = 102° and let G be a graph on
ny = dn vertices satisfying a) and b) for d whose existence is given by Lemma 3.1. Let Hy = H(G, k). We
will show that there is no monochromatic copy of Hy in qb%k), where we remind the reader that d)%m is a
coloring of the complete k-graph with vertex set {0, ..., Nx(n) — 1}, where Ni(n) = twi(n/2). This would
prove the theorem since, by construction, e(Hy) < ng-#{paths of length k—2 in G} < ni(2d)*~2 = O(n?),
while ri(H;4) > Ni(n) = twi(n/2) = twi(Q(\/e(H))). We make repeated use of the following lemma.



Lemma 3.2. Let U C V(G), |U| > ny/(1000Y) and let £ > 3 be an integer. Denote H = H(G[U],¥)

and suppose there is a monochromatic copy of H in ¢$f). Then, there exists a set U' C U such that |U'| >
|U|/1000 and there exists a monochromatic copy of the (£ — 1)-uniform hypergraph H' = H(G[U'],¢ — 1)

in ot

First, let us finish the proof of Theorem 1.3 given Lemma 3.2. By repeated uses of the lemma, it follows
that there are subsets V(G) = Uy 2 Ug—1 2 --- 2D Uy such that there is a monochromatic copy of
H(G[U),0) in ¢ for all 2 < ¢ < k and |Uy| > |Up1]/1000 for all 2 < £ < k — 1. Hence, we have
|Us| > n/1000F = 102%17,/1000F > n and a monochromatic copy of H(G[Uz],2) in qﬁn Recall that
by definition, H (?[U 2],2) is a clique on |Uz| > n vertices, hence there is no monochromatic copy of

H(G[U:],2) in ¢

a contradiction. O

Proof of Lemma 3.2. Let s = |U| = |V (H)|, let X = {z1,...,25} C{0,. — 1}, where 1 < -+ < wg,
form a mononchromatic copy of H and denote by ¥: V(H ) — {0,... ,Ng - 1} the given monochromatic
embedding.

Claim 3.3. There is a set Y = {y1,...,y:} C X of size t > s/200 where y; < --- < y; such that
0({y1,-..,yt}) is a monotone sequence.

First we finish the proof of the lemma given Claim 3.3. Let ¥ C X with |Y| = ¢ > s/200 be given
by Claim 3.3 and assume that §(Y) is increasing, the other case being analogous. We denote L =
{1 (y1), ..., ¥ (y2)} C U and let U’ C U be the set of all vertices U~ (y;) with ¢/2 < j < ¢ which in
G have at least one neighbour in L. We have that |U’| > t/4, as otherwise there is a set of ¢/4 vertices
with no edges toward L, contradicting a) since

|L| > t/4 > 5/800 > ng/(1000%) > ny,/(1029%/3) = ny, /d' /3.

Let us verify that qbg_l) contains a monochromatic copy of H = H(G[U'],£ —1). Let 21, 29, ..., 2y be the
elements of ¥(U’) in increasing order and recall that y; < z; for all 7 € [t/2], j € [t']. Denote a1 = 6(y1, 21)
and a; = 6(z—1, zz) for 2 < i <. We will show that the set A = {a1,...,ap} forms a monochromatic
copy of H' in ¢5f ~" with the natural correspondence ¥': U’ — A defined by ¥/(¥~1(2;)) = a; for all
i € [t']. We do so by showing that, for an edge e € F(H'), the color qZ) (= 1)(\11’( )) is inherited from the
color of qﬁ?(f)(\ll(f)) of some edge f € E(H).

By monotonicity of §({y1,...,vy:}), using P3), we have d(z;, z;) = a; for any 1 <i < j <t and 6(y;, z;) =
aj for any i € [t/2] and j € [t']. Now, consider an arbitrary edge e = {¥"1(z;,),..., 9" Y(zj,_,)} € E(H),
where j; < jo < -+- < jy_1. By construction, some ¢ — 2 of these vertices form a path P’ in G. By
definition of U’, any vertex on this path, in particular one of its endpoints, has a neighbour L. So,
we can attach a vertex w € L to one of the endpoints of P’ to obtain a path on £ — 1 vertices in G.
Hence, f = e U {w} is a set of ¢ vertices, some ¢ — 1 of which form a path in G, implying that f is an
edge of H. Note that §(¥(f)) = (aj,,aj,,--.,a;j, ,), which is an increasing sequence. If £ > 4, we have

oW () = oL VBT (F))) = oV (W (e)). In the case £ = 3, if ¢{2 (V/(e)) = red, then ¢ = Cy, and
if ¢(2)( ( )) = blue, then ¢$f ) = Cy. In either case, it follows that A forms a monochromatic copy of H’
in qbn , as needed. O

Proof of Claim 3.3. Consider the following procedure. Start with Z = X. At each step, let ¢ be the largest
integer such that not all elements of Z have the same bit at position ¢q. Consider the partition Z = ZyJ 71,
where Z,, denotes the set of elements z € Z with bit(z,q) = p. Then, let Z be the larger of Zy, Z; and
continue the procedure. Eventually we reach a point where s/4 < |Z| < s/2, where the lower bound follows
since |Z| drops by a factor of at most 2 in each step. Let Z* denote the final set Z and let ¢* be the last



value of ¢ before this point. Then, for all distinct u,v € Z*,w € X \ Z*, we have d(u,v) < ¢* < §(u, w).
Also, note that the elements of Z* form an interval in the ordered set X. Indeed, at each step all elements
in Zj are smaller than all elements of Z1, since all elements in Z have the same bit on all positions larger
than ¢. Hence, if Z was an interval in the ordered set X before step 7, it is also an interval after step 1.
We shall assume that at least s/4 vertices in X \ Z* are smaller than all elements of Z*, the other case
being analogous. Let W denote the set of elements in X \ Z* smaller than every element of Z*. Now, let
A =U"Y(W) C U and let B be the set of all vertices in ¥=(Z*) C U that have at least one neighbour
of G in A. By a), it follows that

Bl = [01(27)|/2 = s/8,

as otherwise we obtain a set of s/8 vertices with no edge towards A, which is a contradiction since
|A] > 5/8 > ny/1000% > ny,/d'/3.

Now, we analyse the set S} := ¥(B) using a similar procedure as above in steps ¢ = 1,..., h, where the
number of steps, h, is to be determined by the procedure. At the beginning of step i, we have a set S; of
size at least 2. Let ¢; be the largest integer such that not all elements of S; have the same bit at position
g;. Let S; = S? U Sil, where S? consists of the elements z € S; with bit(z, ¢;) = p. Let p; € {0,1} be such
that |S?*| > |Si1_pi|. Let Sip1 = S, If |S;41] < s/100, stop the process, otherwise continue to step i + 1.
Assume first that the procedure runs for at least s/100 steps. Then, there is a set I,|I| > s/200 and
p € {0,1} such that for all i € I, we have p; = p and so S;4+1 = S?. For each i € I, let y; be an arbitrary
element in Silfp and let Y = {y;,|i € I}. Using P3), we have §(y;,y») = ¢; for any 4,7’ € I,i < .
Moreover, the sequence (y;)ics is increasing if p = 1, and decreasing otherwise. Observing that ¢; > gy
for i < ¢/, it follows that Y is the desired set.

Therefore, we may assume that the above procedure runs for h < s/100 steps and we will show that this
leads to a contradiction. First, we require the following claim.

Claim 3.4. There exists i € [h] such that |Si1_p"\ > 2 and there is a path P of length £ — 2 in G with an
endpoint v € \I'_l(Sil*pi) and having its remaining vertices in W=1(SP).

\I/_l(S-l_p") and Ty = U~1(S,,1), where Sy, is the final set

Proof of Claim 3.4. Let QQ = Uie[h},|s,1’pi\>2 5
after halting the procedure. Note that |To| > s/200. We repeatedly remove from T vertices that have
fewer than ¢ neighbours in G in the current set Ty. Let T denote the final set after these deletions. Then,
IT| > 5/400 > n;/(1000)*, as otherwise at the point when we removed half of the vertices, we have two
sets of size ¢ > s/400 > n/dl/ 3 with at most £q edges between them, contradicting that G satisfies a).
Using a) again, it follows that there is an edge vu with v € Q and u € T since |Q| > |S1| — |Sh41| — h >
/8 — /100 — 5/100 > 5/16 > n/d*/3. Since G[T] has minimum degree at least ¢, we can extend this edge
to a path of length £ — 2 using only vertices in T. Let 7 be the index such that v € \If_l(Sil_pi). Note that
SY C S forall 2 < j < hand T C U '(Shy1) = UH(SH). Tt follows that T C W='(SP), so the
abovementioned path indeed has all vertices but the first in \If_l(Sf ). By definition of @, we also have
]Silfpﬂ > 2, as needed. O

Let i, v, P be given by Claim 3.4 and let w be an arbitrary vertex in \Iffl(Sl-l_pi) distinct from v. We will
show that then ¥ is not a valid embedding, that is, we will find two edges of H whose images get different
colors. Let e = PU{w} € E(H). We now find another edge f € E(H) whose image under ¥ gets a

different color than e.

Consider first the case £ = 3. Then, the path P consists of a single edge vu for some u € W=1(S).
Let u' be an arbitrary vertex in S distinct form w, which clearly exists since |S¥*| > ]Sil*pﬂ > 2,
and let f = {v,u,u'}. Note that, by construction, §(u,u’),d(v,w) < g¢;, while d(z,2') = ¢; for any
(z,2') € SV x Silfpi. It follows that if p; = 1, then §(¥(e)) is increasing, while §(¥(f)) is decreasing



whereas if p; = 0, then 6(¥(e)) is decreasing, while 6(¥(f)) is increasing. In either case, ¥(e) and ¥(f)
are colored differently by <Z>$13), as claimed.

A

(a) Casep; =1

ou(f)

d2(e) = d3(f)

—— e — - — - =

i

(b) Case p; =0

Figure 1: The two chosen edges in the case £ = 5. Sets W(A), ¥(B),SY and S} are depicted by
ovals. The vertices appearing in both e and f are depicted by points, the vertices in e\ f by squares
and the vertices in f \ e by crosses. The vertices further to the right are mapped by ¥ to larger
values. The black triangles correspond to the value of § of consecutive vertices, where higher triangles
represent larger bit positions. The red lines represent the edges of the corresponding vertices in G.

Now, consider ¢ > 4 and see Figure 1 for an illustration. Recall that e = P U {w}, so e has exactly two
vertices in \Il_l(SlAlfpi) and the other vertices are in W=(SP"). Let § = (61,...,8,-1) = d(¥(e)). Then,
argmax;cp_1)0; = 2 if p; = 1 and argmax;c,_y)d; = k — 2 if p; = 0. In either case, qbsf)(\ll(e)) = (3. We
will find an edge f € F(H) whose image receives color Cy. Recall that every vertex in B D 111*1(51.1 P
has a neighbour in A. Hence, we can extend P by attaching a vertex a € A to v and then remove its last

vertex (which is in ~1(S?")) to obtain a path P’ of length ¢ — 2 whose first vertex is a € A, the second
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vertex is v € \Il_l(Sil*pi) and the remaining vertices are in W—1(S?").
If p; = 1, then let f = V(P')U{w} € E(H). Consider § = (01,...,0p—1) = 6(¥(f)). Since f has one
vertex in A and the rest are in B, it follows that arg max;c,_qd; = 1. Additionally, ¥(f) has two vertices

in SY and the remaining ones are in S}. Hence, dy < ¢; = d3, so & is not monotone, implying that

o (U (f) = Cr.

If p; = 0, then let u be an arbitrary vertex in W=(S?)\ V(P’), which exists since |SY| > /100 > ¢. Let
f=V(P)u{u} € E(H) and denote 6 = (d1,...,d0-1) = 5(¥(f)). As before, we have arg max;cf,_1;6; = 1.
The largest element of W(f) is ¥(v) € S}, while the second and third largest elements are in SY. Hence,
So_1 > Go_s < 6y, which gives ¢\ (¥(f)) = C1. O

4 Concluding remarks

There are many remaining interesting problems on Ramsey numbers of hypergraphs. Maybe most notably,
while for four or more colors we have lower bound constructions on hypergraph Ramsey numbers for cliques
and certain other hypergraphs essentially matching the upper bounds, the bounds are still far apart for
two and three colors. It would be interesting to close the gap in these cases.

Another well-studied question is to bound the g-color Ramsey number of bounded degree k-uniform hy-
pergraphs on n vertices. It is known that there is a constant ¢ = ¢(k, g, A) such that r(H; q) < c(k,q, A)n
for any n-vertex k-uniform hypergraph H with maximum degree at most A and the main question is to
understand the value of the factor ¢(k, g, A) as a function of the maximum degree. In the graph case with
two colors, the best lower bound is ¢(2,2,A) = 2U2) due to Graham, Rodl and Rucinski [16], while the
best upper bound is ¢(2,2, A) < 20(21°84) due to Conlon, Fox and Sudakov [6]. For more than two colors
the known upper bound proved in [15] is much worse and is of the form ¢(2,q,A) < 2¢A?  Turning to
hypergraphs, [4] showed ¢(3,¢,A) < tws(c’Alog A) and c(k, ¢, A) < twy(c/A) for k > 4, where ¢ is a
constant depending on k and ¢. It is an outstanding open problem to show that c(k,q, A) < twy(dA)
also when k = 2,3, i.e., for graphs and 3-uniform hypergraphs. Such a result would provide a different
proof of the upper bound for 3-uniform hypergraphs, presented in this paper. Conlon, Fox and Sudakov
[4] also constructed, for any positive integer A, a 3-uniform n-vertex hypergraph H with maximum degree
A and r(H;4) > tws(c/A)n for some absolute constant ¢’. The hypergraph we constructed in the proof of
Theorem 1.3 has n vertices, maximum degree A < ¢;n and 4-color Ramsey number at least twy(cj.n)n,
so it can be viewed as a generalization of the aforementioned result to larger uniformities. These results
show that in general, it is necessary to have c(k,4,A) > twy(c,A). However, both our construction and
that in [4] have A = O(n) and it would be interesting to find a construction which works for any A and
sufficiently large n similar to the abovementioned lower bound of Graham, R6dl and Rucinski which works
for any A and n > A.

Finally, we think it would be interesting to study the following generalization of Ramsey numbers. For a
k-uniform hypergraph H and positive integers N and ¢ with ¢ < e(H), let f(N, H,q) be the minimum
number 7 such that in every r-coloring of the edges of K](\]; there is a copy of H receiving fewer than ¢
colors. The case ¢ = 2 is just the inverse (as a function of the number of colors) of the Ramsey number
of H. The case H is a clique was introduced by Erdds and Gyarfas and has been well-studied (see for
example [5]).
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