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Abstract— International focus on the COVID-19 pandemic
has caused a wealth of new mathematical models for capturing
the impact of a virus. As COVID-19 seems to be approaching
an endemic status, it is becoming increasingly clear that a new
variant has the strong probability of becoming dominant in
a short period of time from first appearance. A model with
the goal of representing past data and forecasting will need
the flexibility to incorporate a time-evolution of variants. In
this paper we explore two methods for encompassing mutating
viruses: coupled Ordinary Differential Equations (ODE) and
Markov Chains and coupled ODE with Measure Differen-
tial Equations (MDE). In both approaches, ODEs are used
to represent classical compartmental models. Coupled ODE-
Markov chain method uses Markov chains to govern the
mutation of the virus between predetermined variants. This
method considers a discrete variant space allowing for more
simple parameter tuning to previously recorded data. For the
ODE-MDE approach, MDEs describe the virus mutations over
time in a continuum space. A cost function is designed in
order to study optimal decision making with respect to non-
pharmaceutical interventions such as social distancing. These
models will serve to highlight the importance of considering
variants in the long-term decision making process.

I. INTRODUCTION

This paper focuses on models for pandemics with time-
evolution of virus variants. During the COVID-19 pandemic,
a wealth of different models were proposed, thus we start
with motivations and a brief review of modeling approaches.

A. The Importance of Modeling Viral Variants

To replicate, and therefore establish infection in a new
host, SARS-CoV-2 (the virus causing COVID-19) must take
over a host cell and duplicate itself. Errors often occur during
the process of duplication resulting in virus variants that are
similar but not exact copies of the original. These errors are
called mutations and though subtle, could result in a new
dominating variant [14]. New dominating variants cannot be
predicted exactly on both temporal and structural scales, but
understanding patterns of mutating viruses, such as mutation
rate and genetic diversity, can shed light to make educated
guesses about future mutations [29]. This information can
then be used to increase the long term predictive capabilities
of epidemiological models and to provide estimates of best
practices for decision makers and policy writers [12].
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In the case of COVID-19, there have been a handful of
dominating variants whose parameters, such as infection rate
and hospitalization rate, were so different from the previous
variant that the governing bodies needed to adapt their plans
to mitigate risk such as increased social distancing [31],
increased testing [4], and the development of an updated
vaccine [8]. It is also well known that different populations
can be experiencing different dominating variants of COVID-
19 at the same time [34]. Especially unique populations have
frequently reported different viral makeups than the rest of
the world and sometimes, in the case of Alaska, even within
their own countries [19].

Comparing the tenure of dominant variants using publicly
sourced variant sequencing data [13] to the daily case count
of COVID-19 in a population [10], one finds a strong corre-
lation between a new variant’s takeover and a spike in cases,
see Figure 1. Each new dominating variant’s appearance is
followed shortly by a spike-then-fall in new cases.
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Fig. 1: Rolling average of the daily confirmed COVID-19
cases in the state of New Jersey since the pandemic onset
(black contour). In color, stacked percentage of the dominant
variants normalized to the daily case data. BA.1, BA.2, BA.3,
BA.4, BA.5 are sub-variants of the Omicron variant.

B. Models for COVID-19

A first step in developing an epidemiological model is to
choose a type of model: Agent Based Modeling (ABM) is
a stochastic process which can give very granular results.
For example in [30] an agent based model is updated hourly



with new interactions between susceptible and infected pop-
ulations. These models can also be tuned to very small
heterogeneous populations such as small towns and cities
[35], [16]. Compartment based modeling is equation driven
and much less computationally expensive than ABM [11].
These models can be adapted to many populations and yet
retain fast run times computationally [32]. They also have the
added benefit of being able to model an infectious disease
well with the need for very few parameter estimates [33].

After a method is chosen, one can then decide exactly what
parameters they would like to study in their model. Examples
include studying an age based structure of your population
[1], studying how work status could affect trajectories of a
model [3], questions of vaccine allocation [25] and questions
of non-pharmaceutical parameters used to mitigate risk [2].
Such parameters remain fairly constant over a smaller time-
frame. When studying a longer time-frame, the characteris-
tics of the virus itself play a factor in how these parameters
change; especially in the case of COVID-19, at many stages
the virus has both mutated towards infectivity [17], and away
from the efficacy of the original vaccines [20].

C. Contribution of the paper

In previous work, we introduced two models to address
the mutability of a virus with the goal of increasing temporal
viability [36]. We did so through the coupling of a classical
epidemiological model in the first case with a Markov chain
(briefly MC), and in the second case with a measure differ-
ential equation (briefly MDE). Here, we expand both models
and define optimal control problems for non-pharmaceutical
interventions, with cost function taking into account the
economic cost of lockdown, hospitalization and deaths.

II. COUPLED MODELS FOR MUTATING VIRUS

A classical method of modeling the relationship between
a virus and a population is through a compartmental SIR
model (Susceptible, Infected, Removed) that uses differential
equations to govern the flow of population between the
compartments [22]. The most basic model has the following
structure: S = —%, I= % —vI, R=yI, where B and y are
the infection rate and recovery rate respectively and N repre-
sents the total population. From here, one can manipulate the
compartments, adding compartments/parameters in order to
better represent the population that they would like to model.
In the next two sections we show how to couple SIR-type
models with Markov chains and time-evolving measures to
model mutating viruses.

A. SIR Coupled Markov Model

The COVID-19 pandemic has been driven by a number of
discrete dominant “umbrella” variants such as Alpha, Delta
and Omicron [28]. A SIR model is coupled with a nonlinear
discrete-time Markov chain (briefly NDMC) to govern the
emergence of such virus variants in order to capture variant
dynamics.

The total population of infected people Y ;I; will follow a
standard compartmental model, with I;/ Y ; I; representing the

probability of the generic infected person having contracted
variant i. The SIR model with multiple variants reads:

=Xl B L),
I; :ﬁi%[i@) —%li(2), M
R=YI, %li(t).

Here S is the susceptible population, I;(¢) is the population
infected by the i-th variant, R recovered population, N the
total population, B; and 7 represent the infection rate and
recovery rate of the i-th variant. Now the evolution of %
can be given by an NDMC associated to a transition matrix
T ={t(i,j)}ij=1,. p- Assuming the time step of the MC is
given by At, the updating term takes the following form:

I (kAt+) = 7 (kAt) - T(S (kAr)), k € N. 2)

Notice that T = T(.#) and the dependence on .# makes it a
nonlinear MC. The state of this MC is a dynamic characteris-
tic tied to both the number of infected people with the given
variant and the total infected. In the simulations to follow,
we choose T;;(.¥) = T; - w(I;), where yw(I;) =1—n[l; — L]+
Here, I; is a chosen threshold and 1) depends on both the
total infected and amount of infected with infection i. Lastly,
reinfection is introduced carefully, as it is well known that
natural immunity to reinfection is dependent on both the
previous variant of infection and the new variant of exposure.
To address this, the following term is included:

Sk,
R, *1,
N

Sk, = iR — Y B(i.0) (3)
where f(i,1) is the infection rate of variant i among patients
that recovered from variant i and o is a loss of immunity rate.
Lastly, a variable u is included which serves as a lockdown
measure. More precisely, u can be thought of as “percent of
usual interaction rates”. Additional compartments are also
introduced; H for hospitalized and D for deceased, thus the
fully coupled model has the following structure:

S= *uzip=1ﬁi%li

Iy = uBili— X B (i, 1) % #1—Yl; — 61

I (kA+) = 7 (kit) - T (.7 (kAr))

H; = 81, — yH; — H;d 4)
R; = Yili+ YH — GiR,

Sk, = GiRi—Zﬁ(i,i)*%*I

D=YHd

where d represents a death rate for hospitalized patients.
This is a simple death rate calculated as the total reported
deaths divided by total cases giving about 0.013. Using the
described equations, an MC coupled SIRS model simulates
the dynamics of a virus spreading through a population while
capturing the changing characteristics of the disease due to
new variants appearing and taking hold over the majority of
the field of infections.



B. SIR Coupled MDE Model

Where the ODE-MC model captures discrete variant dy-
namics, here the population of infected is represented by a
measure over a space of all possible virus mutations, taking
on a continuous structure. Once infection begins, the virus
causing COVID-19 begins to multiply rapidly producing
billions of viral particles with small copy mistakes occurring
during each cycle. With about 30,000 nucleotides in the
SARS-CoV-2 genome, and with each nucleotide having one
of four states, there are millions of possible variants inside of
each infected person which, if sufficiently beneficial, could
lead to a new dominating variant [23]. While the majority
of those possible variants offer no benefit and thus have a
small chance of gaining traction in a population, the number
of possible mutations suggests that it may be advantageous
to model the field of mutations in a continuous way.

If one assumes that the space of viral mutations can be
parametrized, then it can be thought of as a continuous
distribution over a closed interval. The corresponding time
evolution can then be visualized as a graph in R? for which
each point along the x-axis represents one unique possible
mutation, y-axis represents the total infected, and z-axis time.
The total infected would be the area under this graph.

The distance between two variants can be assumed to hold
some biological similarity significance or temporal signifi-
cance, i.e. a variant of concern is close to the current domi-
nant variant. We use the parameter o to represent the ordered
mutations. Once there is a clearly defined parametrization
over the pool of variants, there must be a means by which
the virus can mutate. This is accomplished by considering
our / to be a solution to a measure differential equation
(MDE) for which each I(a) can be thought of as a Dirac
mass of infected with variant o [27]. An MDE is defined by
assigning a speed of propagation via a probability vector field
(PVF). In simple words, the speed of propagation is given
by a probability measure instead of a deterministic vector.
Precisely, an MDE corresponding to a PVF V is defined by:

fo=Vvu]. ©)

where 1t is a Radon measure with finite mass. The mass of
u over a set A C R" is transported along the velocities of
the support of V[u]. Therefore, we define the equation for
infected population as:

[=V,[ll+ %ﬁ(a)l— y(o)l. (6)

Here [, at each variant, is governed by the usual SIR
dynamics. However, there is a new term as well, Vj, [/] which
represents the velocities, governed by some function ¢, at
which the infected populations mutates over the field of
possible variants.

Now even though [ is a parametrized continuous function,
a person in S and R has either not yet come in contact
with a variant of the disease, or has recovered from their
interaction with the disease. We take the S population to be
homogeneous, and thus consider it to be a single mass. R also
need not be parametrized unless reinfection is introduced; It

is well documented that viral mutation could result in height-
ened reinfection rates [6], so R may need parametrization if
one were to investigate this further. Without reinfection, our
model takes the following form:

§=—3 faBla) di(a),

1=Vl + 3 B()] —y(a)l, (7

R= [py(a) dI(c).
where S and R take the usual form with the difference that,
in order to correctly estimate the interactions with the full
field of variants, the field of variants must be integrated over
with respect to the infection rates in the case of S and the
recovery rates in the case of R.
One goal of this paper is to not only provide a route for a
SIR model to capture viral mutation, but also show that such
a model is capable of showing nuanced characteristics of the
system which may be helpful for policy makers. Therefore,
the system of equations has the following structure:

§= (=3 o Bla) di(a)u,
[=Vy[l]+ux2B(a)—y(a)—8(a),

H=[pé(a)dl(a)—v«H—dxH, 8)
R= [gy(a) S (a)+Vv+H,
D=dxH.

where & is the hospitalization rate of a given variant
(note this is also parametrized because severity of disease
is tied strongly to the nature of the variant), u quantifies the
lockdown measures as before, and d the death rate.

ITII. OPTIMAL CONTROL PROBLEM

In this section we consider optimal control problems for
the systems (4) and (8) with the control representing the
“severity” of lockdown measures. The cost function will be
designed to take into account the lockdown effects on both
the pandemic dynamics and the economy. More precisely the
cost function in USD is defined as:

cost=C1+Cr+C3 )

where Ci, (>, and Cs, are given by:

Ci=c1S(1—u) c1= 70, social distancing,
Cy =c2h cp= 2700, hospitalization,
C3=c3d c3= 1500000 death

Here c¢i, ¢, and c¢3 are estimates for the cost of social
distancing from [26], [7], [21], Hospitalization from [15] and
death from [9]. The model input parameters are based on
New Jersey data with the goal of optimizing a strategy over
the economic cost of pandemic management under various
conditions. The optimal control problem considered here is
in Bolza form over a fixed time horizon [0,7]. We indicate
by X the state variable with dynamics given by (4) or (8)
and consider the optimal control problem:

min /T C(X,u)dt (10)
0

u(-) e



where u € [0,1] is the control and % the set of admissible
control functions, e.g. measurable functions since the control
set is compact. Notice that we are using a slight abuse of
notation for X. More precisely, for the dynamics (4) we
have X = (S,I;,H;,R;,Sg,,D) belongs to a Euclidean space
as in classical control systems, while for (8) we have X =
(S,I,H,R,D) with S € R but the other components being
Radon measures.
New rules introduced by government to impose social dis-
tancing measures are not immediate and there has even
been observed lag effect between implementation of a new
rule and societal compliance with regards to COVID-19
regulations [5]. We choose 30 days as an estimate of the
minimum switching time mid-pandemic for the government
to identify a shift in the populations relationship with the
virus, choose a plan of action, write the plan into legislature,
and have the public be informed and compliant with the new
rules. In other words, our controls are piecewise constant
with switching times every 30 days. Therefore the set % is
finite dimensional and compact so we obtain the following:
Theorem 1: There exists a solution for the optimal control
problem (10) with dynamics (4) or (8)
The proof is straightforward for (4), while for (8) we can
apply results from [18].

A. Numerics for Optimization

To solve optimal control problems as (10) one generally
chooses between direct and indirect methods. Here we use
a direct method, since the optimal control problem proposed
involves some state constraints and the set of admissible
controls is compact. The direct method is based on standard
Runge-Kutta schemes to discretize the ODE part of the
systems (SIR model) and on discrete sums of Dirac masses
for the measures called Lattice Approximate Solutions, see
[27] for details. Due to space constraint we will present only
results for the system (4). To initialize our optimization, we
create a vector, u of length “total days of run” divided by 30,
with values initialized between 0 and 1. The “law-maker” is
then given the ability to change the lockdown percent at each
interval to simulate decision making.

B. Optimization of a Lockdown With Viral Mutation Dynam-
ics Using ODE-Markov model

There are some universal results which can be expected
regardless of viral mutation, examples such as Figures 2 and
3 show the detriment of a lag time in the government initially
identifying the pandemic. Both simulations are run using the
same parameters. In Figure 2, the pandemic begins on day
one, and the first government lockdown decision happens
on day 90. In Figure 3, the first government intervention
does not happen until day 150. We see from the figures
that this two month lag results in not only a much stricter
requisite lockdown, but also a much larger economic cost.
The difference in total cost after 400 days is around 15%.

With our optimal control problem defined, we implement
our SIR-Markov model to study how variant dynamics can
affect the minimization of an intervention such as lockdown.
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Fig. 2: Government updates lockdown policy every 30 days
with the first update occurring on day 90. Total cost over
time horizon is 8.1597e10.
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Fig. 3: Government updates lockdown policy every 30 days

with the first update occurring on day 150. Total cost over
time horizon is 9.3472¢10.

In the three years since the COVID-19 began, there have
been 3 —5 dominating variants depending on the population
being considered, namely the original variant, the Alpha
variant, Delta and Omicron. Therefore, for the purposes of
this model, we will consider four variants.

In Figure 4 we see the daily cases of our model with
no lockdown imposed. We see that as the virus progresses
through the population, the different variants take over the
state-space as dominant variant, sometimes even being the
sole variant contributing to the system. We also see the
characteristic fluctuations in cases with peaks seen each time
a new variant has completely taken over. This is an exciting
and validating result as these fluctuations correlate strongly
with the real data visualized in Figure 1. In our simulations,
we wish to see a progression from first variant to fourth
over our time horizon, so we define our § in such a way
that variant one can only mutate towards variant two which
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Fig. 4: Evolution of daily case rate for a simulation of our
SIR-MC model with four variants. The total cost with no
lockdown is 1.2371e+11.
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Fig. 5: Optimal lockdown schedule fo the SIR-MC model
with maximum lockdown 80%. The infectivity of variants
is, respectively, 1.5,2,2.5,3. The total cost is 7.0316e+10.

can only mutate towards variant three etc. In Figure 5 we
represent the optimal lockdown schedule for the evolution
with four variants with increasing level of infectivity and
lockdown limited to 0.8 (80% closure of economy). Notice
that the total cost for the controlled case is around half of
the not controlled case despite the bound on the control and
strong lockdown exerted only for around 200 days our of
1000. An interesting finding which can be seen in Figure 5
is that for a virus which will inevitably mutate, the optimal
solution is to allow the virus to grow unchecked until the first
mutation at which time we begin implementing a lockdown.
We see the first intervention takes place on day 180 which
coincides with the area of time in which the second variant

begins taking hold in Figure 4 where the first replication rate
is also 1.5. We then see a peak between days 400 and 500
corresponding with the dip in cases between variants 2 and
3, and lastly another small peak between days 600 and 700
corresponding with the last dip in cases before the end of the
simulation. This suggests that in long term virus mitigation,
the “time to strike” with regards to an intervention that would
drive costs down may be during the period of time in which
the dominant variant is in a transitional period.

In many large countries, an 80% lockdown in the middle
of the pandemic could be considered unrealistic. Therefore,
if we only allow for at most a 50% lockdown, the optimal
lockdown schedule transforms into the schedule seen in
Figure 6. A one time lockdown as shown in the figure is not
surprising and has been observed in previous studies [24].
What is interesting here is that once again, the lockdown
begins after the first variant has run its course and the second
variant is becoming more prevalent, as seen in Figure 7.
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Fig. 6: Optimal lockdown schedule for a simulation of our
SIR-MC model with maximum lockdown of 50%. The total
cost is 8.5316e+10.

IV. CONCLUSION

SIR models have been widely used in order to predict best
strategies for short term policy making. A mutating virus can
drastically change both biologically and in its relationship
to the population it is infecting. To capture these changes,
we develop two frameworks: A Markov chain coupled ODE
system which takes on a discrete set of viral mutations, and
an MDE coupled ODE system which takes on a continuum of
viral mutation. We then couple these models with an optimal
control problem in order to elucidate possible connections
between optimal policy decision making surrounding non-
pharmaceutical interventions. As expected, any level of lock-
down significantly decreases the cost over the time horizon,
suggesting that continued vigilance is key in the mitigation
of viral impact. In fact, earlier first government intervention
itself can result in a much less drastic lockdown schedule
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while still finding a lower cost. An interesting finding is

that

if the mutation of the virus is inevitable, the optimal

solution seems to be to implement a more strict lockdown
during times where two variants are having an exchange

of p
mod

[1]

[2]

[3]
[4]

[6]
[7]
[8]

(10]

(11]

ower. Moreover, limiting lockdown intensity increases
estly the total cost.

REFERENCES

Daron Acemoglu, Victor Chernozhukov, Ivan Werning, and Michael D
Whinston. Optimal targeted lockdowns in a multigroup sir model.
American Economic Review: Insights, 3(4):487-502, 2021.

Nikhil Anand, A Sabarinath, S Geetha, and S Somanath. Predicting
the spread of covid-19 using sir model augmented to incorporate
quarantine and testing. Transactions of the Indian National Academy
of Engineering, 5(2):141-148, 2020.

Erhan Bayraktar, Asaf Cohen, and April Nellis. A macroeconomic sir
model for covid-19. Mathematics, 9(16):1901, 2021.

Akshaya Srikanth Bhagavathula, Philip M Massey, and Jagdish
Khubchandani. Covid-19 testing demand amidst omicron variant
surge: Mass hysteria or population health need? Brain, Behavior, and
Immunity, 101:394, 2022.

Zilin Bian, Fan Zuo, Jingqin Gao, Yanyan Chen, Sai Sarath Chan-
dra Pavuluri Venkata, Suzana Duran Bernardes, Kaan Ozbay, Xue-
gang Jeff Ban, and Jingxing Wang. Time lag effects of covid-19
policies on transportation systems: A comparative study of new york
city and seattle. Transportation Research Part A: Policy and Practice,
145:269-283, 2021.

Ewen Callaway. The coronavirus is mutating—does it matter? Nature,
585(7824):174-178, 2020.

US  census. Us and  world
https://www.census.gov/popclock/, 2020.
Santenna Chenchula, Padmavathi Karunakaran, Sushil Sharma, and
Madhavrao Chavan. Current evidence on efficacy of covid-19 booster
dose vaccination against the omicron variant: A systematic review.
Journal of Medical Virology, 94(7):2969-2976, 2022.

The  Apothecary Chris  Conover. How  economists
calculate the costs and benefits of covid-19 lockdowns.
https://www.forbes.com/sites/theapothecary/2020/03/27/how-
economists-calculate-the-costs-and-benefits-of-covid-19-
lockdowns/?sh=44a20e846163, 2020.

Jonathan M Clarke, Azeem Majeed, and Thomas Beaney. Measuring
the impact of covid-19, 2021.

Ozden O Dalgi¢, Osman Y Ozaltin, William A Ciccotelli, and Fatih S
Erenay. Deriving effective vaccine allocation strategies for pandemic
influenza: Comparison of an agent-based simulation and a compart-
mental model. PloS one, 12(2):e0172261, 2017.

population  clock.

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

GE Dever. An epidemiological model for health policy analysis. Social
indicators research, 2(4):453-466, 1976.

S Elbe and G Buckland-Merrett. Data, disease and diplomacy: Gisaid’s
innovative contribution to global health. glob chall. 2017; 1 (1): 33-46.
W Robert Fleischmann Jr. Viral genetics. Medical Microbiology. 4th
edition, 1996.

The Henry J. Kaiser Family Foundation. Hospital adjusted expenses
per inpatient day, 2019.

Navid Mahdizadeh Gharakhanlou and Navid Hooshangi. Spatio-
temporal simulation of the novel coronavirus (covid-19) outbreak
using the agent-based modeling approach (case study: Urmia, iran).
Informatics in Medicine Unlocked, 20:100403, 2020.

Carmen Elena G6mez, Beatriz Perdiguero, and Mariano Esteban.
Emerging sars-cov-2 variants and impact in global vaccination pro-
grams against sars-cov-2/covid-19. Vaccines, 9(3):243, 2021.
Xiaogian Gong and Benedetto Piccoli. A measure model for the spread
of viral infections with mutations, 2022.

Tracie J Haan, Lisa K Smith, Stephanie DeRonde, Elva House, Jacob
Zidek, Diana Puhak, Logan Mullen, Matthew Redlinger, Jayme Parker,
Brian M Barnes, et al. A repeat pattern of founder events for sars-
cov-2 variants in alaska. medRxiv, 2022.

Azizul Haque and Anudeep B Pant. Mitigating covid-19 in the
face of emerging virus variants, breakthrough infections and vaccine
hesitancy. Journal of Autoimmunity, page 102792, 2022.

The Wall Street Journal. State shutdowns have taken a quarter of u.s.
economy offline, 2020.

William Ogilvy Kermack and Anderson G McKendrick. Contributions
to the mathematical theory of epidemics. ii.—the problem of endemic-
ity. Proceedings of the Royal Society of London. Series A, containing
papers of a mathematical and physical character, 138(834):55-83,
1932.

Kai Kupferschmidt. Evolving threat, 2021.

Sean T McQuade, Ryan Weightman, Nathaniel J Merrill, Aayush Ya-
dav, Emmanuel Trélat, Sarah R Allred, and Benedetto Piccoli. Control
of covid-19 outbreak using an extended seir model. Mathematical
Models and Methods in Applied Sciences, pages 1-26, 2021.
Chantal Nguyen and Jean M Carlson. Optimizing real-time vaccine
allocation in a stochastic sir model. PloS one, 11(4):e0152950, 2016.
Federal Reserve Bank of St. Louis. Bullard discusses impact of
economic shutdown during a u.s. chamber of commerce event, 2020.
B. Piccoli. Measure differential equations. Archive for Rational
Mechanics and Analysis, 233(3):1289-1317, 2019.

Angel Manuel Ramos, Maria Vela-Pérez, Miriam R Ferrandez, AB Ku-
bik, and Benjamin Ivorra. Modeling the impact of sars-cov-2 variants
and vaccines on the spread of covid-19. Communications in Nonlinear
Science and Numerical Simulation, 102:105937, 2021.

Rafael Sanjuan and Pilar Domingo-Calap. Mechanisms of viral
mutation. Cellular and molecular life sciences, 73(23):4433-4448,
2016.

Md Shamil, Farhanaz Farheen, Nabil Ibtehaz, Irtesam Mahmud Khan,
M Sohel Rahman, et al. An agent-based modeling of covid-19:
validation, analysis, and recommendations. Cognitive Computation,
pages 1-12, 2021.

Raphael Sonabend, Lilith K Whittles, Natsuko Imai, Pablo N Perez-
Guzman, Edward S Knock, Thomas Rawson, Katy AM Gaythorpe,
Bimandra A Djaafara, Wes Hinsley, Richard G FitzJohn, et al. Non-
pharmaceutical interventions, vaccination and the delta variant: epi-
demiological insights from modelling england’s covid-19 roadmap out
of lockdown. medRxiv, 2021.

Simone Sturniolo, William Waites, Tim Colbourn, David Manheim,
and Jasmina Panovska-Griffiths. Testing, tracing and isolation in
compartmental models. medRxiv, 2020.

Juliana Tolles and ThaiBinh Luong. Modeling epidemics with com-
partmental models. Jama, 323(24):2515-2516, 2020.

Ingrid Torjesen. Covid-19: Delta variant is now uk’s most dominant
strain and spreading through schools, 2021.

Agnieszka Truszkowska, Brandon Behring, Jalil Hasanyan, Lorenzo
Zino, Sachit Butail, Emanuele Caroppo, Zhong-Ping Jiang, Alessandro
Rizzo, and Maurizio Porfiri. High-resolution agent-based modeling of
covid-19 spreading in a small town. Advanced theory and simulations,
4(3):2000277, 2021.

Ryan Weightman, Anthony Sbarra, and Benedetto Piccoli. Coupling
compartmental models with markov chains and measure evolution
equations to capture virus mutability. Mathematical Models and
Methods in Applied Sciences, 2022.



	INTRODUCTION
	The Importance of Modeling Viral Variants
	Models for COVID-19
	Contribution of the paper

	COUPLED MODELS FOR MUTATING VIRUS
	SIR Coupled Markov Model
	SIR Coupled MDE Model

	OPTIMAL CONTROL PROBLEM
	Numerics for Optimization
	Optimization of a Lockdown With Viral Mutation Dynamics Using ODE-Markov model

	CONCLUSION
	References

