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Abstract

With the rise of Artificial Intelligence (AI) systems in society,
our children have routine interactions with these technolo-
gies. It has become increasingly important for them to un-
derstand how these technologies are trained, what their lim-
itations are and how they work. To introduce children to AI
and Machine Learning (ML) concepts, recent efforts intro-
duce tools that integrate ML concepts with physical com-
puting and robotics. However, some of these tools cannot be
easily integrated into building projects and the high price of
robotics kits can be a limiting factor to many schools. We ad-
dress these limitations by offering a low-cost hardware and
software toolkit that we call the Smart Motor to introduce
supervised machine learning to elementary school students.
Our Smart Motor uses the nearest neighbor algorithm and
utilizes visualizations to highlight the underlying decision-
making of the model. We conducted a one week long study
using Smart Motors with 9- to 12- year old students and mea-
sured their learning through observation, questioning and ex-
amining what they built. We found that students were able
to integrate the Smart Motors into their building projects but
some students struggled with understanding how the underly-
ing model functioned. In this paper we discuss these findings
and insights for future directions for the Smart Motor.

Smart Motor — https://smartmotors.notion.site/
Smart App — https://smart-motors.web.app/

Introduction
The integration of Artificial Intelligence (AI) systems into
everyday life has increased in recent years. Children are in-
troduced to these systems through virtual assistants such as
Siri and Amazon Alexa, AI-powered recommendation sys-
tems for content platforms, and AI-powered toys. As these
technologies become more common in our daily lives, it is
crucial to understand how they are trained, what their limi-
tations are, and how they work.

To integrate AI education into K-12 school curricula, ini-
tiatives like AI4K12 have been developed, outlining key
concepts or “Big Ideas” of AI that all students should know
(Touretzky et al. 2019; Broll and Grover 2023). Currently,
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pre-college AI education programs that introduce super-
vised machine learning concepts are very limited but rapidly
growing in number. Some of the publicly accessible educa-
tional AI tools include Teachable Machine, Cognimates, and
AI for Oceans (Yang 2022; Sabuncuoglu 2020). Teachable
Machine allows users to train models to recognize images
and sounds and is one of the most popular methods of teach-
ing ML (Li, Fengchao, and Zhang 2024). Similarly, AI for
Oceans introduces training datasets where users play a game
to provide training data.

(a) (b)

(c) (d)

Figure 1: (a) Smart Motor hardware where the left face has
navigation buttons and (b) the right face has a sensor port.
(c) The front face has an OLED screen and (d) the back face
has LEGO® compatible holes and a motor on top. The but-
ton and dial shown in (c) were included for other operation
modes not used in this workshop.
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Although these software are good baselines for introduc-
ing ML concepts to children, they are typically limited to the
virtual world. In our work, we seek to enhance child engage-
ment through tangible exploration with robotics. Robotics
has been used to encourage critical thinking, problem-
solving, and collaborative skills among students while in-
troducing technological skills (López-Belmonte et al. 2021).
Our goal is to combine ML concepts with robotics activities
to boost engagement and develop technical skills.

In this paper, we introduce a low-cost hardware tool that
we call Smart Motor with a complementary web-based user
interface called Smart App. We pilot-tested the Smart Mo-
tor and the Smart App system in a 5-day workshop to deter-
mine how the system would support students’ understanding
of Machine Learning concepts. This experience report dis-
cusses the integration of the devices into classroom settings,
and how the activities influenced students’ understanding
of Machine Learning. Our next steps involve adding new
features to the Smart Motor system and developing more
machine-learning-integrated activities for students.

Background
Initiatives like AI4K12 establish foundational concepts that
all students should grasp when learning about AI. These
key ideas include understanding how computers perceive the
world through sensors, how they represent their surround-
ings, and how they learn from data (Touretzky et al. 2019).
The design of the Smart Motor aims to address these learn-
ing objectives through the constructivist education theory
that students construct their own knowledge through interac-
tive experiences (Mota-Valtierra, Rodrı́guez-Reséndiz, and
Herrera-Ruiz 2019). We particularly build upon the concepts
of providing multiple representations and scaffolding. Re-
cent research has shown that providing multiple represen-
tations allows students to better connect abstract and tangi-
ble concepts and apply these skills in the future (Uttal et al.
2009).

There have been efforts to integrate the concepts of ML
with physical computing. The micro:bit and ml-machine.org
Web page allows students to train supervised machine learn-
ing models for classification and redesign of everyday ob-
jects (Bilstrup et al. 2022). In a similar effort, PlushPal is a
web-based design for children to make interactive plush toys
with ML. One of the limitations of the micro:bit is that in-
tegrating robotics components into the hardware, such as a
motor or external sensors, requires additional materials and
wiring skills. To address this limitation, a key design consid-
eration for the Smart Motor was to ensure that the hardware
includes a motor and can interface with a variety of sensors.

Studies have shown that educational robotics can integrate
technical subjects, such as engineering and physics, with so-
cial topics (Anwar et al. 2019). They have shown that edu-
cational robotics supports teaching STEM concepts (Khan-
lari and Mansourkiaie 2015; Williams et al. 2007; Ortiz
2010) while fostering soft skills like collaboration, commu-
nication, creativity (Sahin, Ayar, and Adiguzel 2014; Okita
2014), critical thinking, problem-solving (Okita 2014) and
inquiry (Ganesh et al. 2010). Among the various commer-
cial robotic kits available, LEGO® Robotics kits are one of

the more popular kits due to their wide range of applications
(Souza et al. 2018; Takacs et al. 2016). Although numer-
ous researchers have used LEGO® Robotics kits to demon-
strate robotics education in classrooms, the cost of a kit is a
limiting factor that hinders broader impact (Couceiro et al.
2012; Gorjup and Liarokapis 2020). Therefore, a key ob-
jective in designing our Smart Motor was to minimize cost
while maintaining versatility.

In efforts to incorporate ML with robotics, LEGO®

introduced machine learning through the LEGO®

MINDSTORMS® Robot Inventor App in 2022 (Kar-
alekas, Vologiannidis, and Kalomiros 2023). Machine
learning is an extension of this app that allows the use of
the microphone or camera to identify different objects or
sounds. Although students are introduced to ML concepts
through platforms like this, many current AI educational
tools teach ML as a black box model. According to a
survey evaluating the instructional modules dedicated to
teaching ML concepts, it was reported that several of the
units present ML concepts but only on an abstract level such
that some of the underlying ML processes were obscure
to reduce complexity for students (Marques, Gresse von
Wangenheim, and Hauck 2020).

In summary, previous educational robotics tools that in-
corporate ML concepts are often costly and not easily inte-
grated into building projects. Our primary goals when de-
signing the Smart Motor were to create a system that is (1)
affordable, (2) versatile for building projects to foster cre-
ativity, and (3) introduces ML concepts in a clear, transpar-
ent way through simple algorithms and multiple representa-
tions. Our Smart Motor, which includes a motor, sensor, and
screen, is priced at $30.

Smart Motor
Early Smart Motor prototypes were developed using inex-
pensive, off-the-shelf components that could be substituted
with locally available materials for adaptation and adoption
in international settings by collaborators (Dahal et al. 2023).
The version of the Smart Motor system used in this expe-
rience report was refined to reduce assembly time and was
enhanced with a web-based user interface (Smart App) for
the exploration of supervised learning.

When using a Smart Motor, the objective for the user is
to train their motor behavior based on sensor input. Users
can connect different sensors to the Smart Motor, such as a
distance sensor, a light sensor, and a rotary, and slide poten-
tiometer. The sensor reading is the input of the Smart Motor,
and the output is the motor’s position. Users can switch the
Smart Motor into Train mode and train the Smart Motor by
selecting motor positions corresponding to the sensor read-
ings. During the Play mode, these sensor-motor pairings and
current sensor values are used to determine the position the
motor should move to in real time.

Examples of projects that students can use Smart Motors
for include training the Smart Motor with a light sensor to
open and close a window shade when it is sunny or dark out-
side. Similarly, students can use a distance sensor to open
and close a door when someone is near. Our goal is for stu-
dents to understand how sensors receive input from the en-
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vironment, how this data can be represented, and how the
Smart Motor can learn from this data.

In classrooms, the Smart Motor can be integrated with
structural and decorative materials when building projects.
The Smart Motors have LEGO® compatible holes so that
they can be easily attached to LEGO® components. Addi-
tionally, the Smart Motors can be integrated in building with
arts and crafts materials such as cardboard and construction
paper.

Hardware
The Smart Motor hardware consists of a discrete servo mo-
tor connected to a Seeed Studio XIAO ESP32C3 microcon-
troller on a custom-printed circuit board. The Smart Motor
has a cubical form factor (47mm X 47mm X 47mm) with
3D-printed front and back faces, and the rest of the faces
are made of laser-cut plywood. Figure 1a and b shows that
there are two navigation buttons on the left face and a Grove-
compatible sensor port on the right face. Figure 1c shows
the Smart Motor’s front face with a button (selection but-
ton), a dial, a power switch, and a 0.96-inch monochrome
OLED screen. The top face has a servo motor connected to
a LEGO®-compatible wheel. There are LEGO®-compatible
holes for mounting LEGO® pieces on the box’s left, right
bottom, and back faces. The dial and buttons were included
for other operation modes not used in the workshop dis-
cussed in this paper.

Supervised Machine Learning
Supervised learning is a category of machine learning where
a computational model is trained on a dataset that is com-
posed of both input values, called examples, and matching
desired outcomes, called labels. The training data of the
Smart Motor is composed of a single input value from a
sensor connected to the Grove-compatible port and a single
value label that corresponds to the desired angular position
of the servo motor.

The k-Nearest Neighbor method is one of the sim-
pler algorithms for predicting the class of a test example,
which makes it well-suited for introducing concepts of ML
decision-making (Elkan 2011). For the training phase, each
training example is stored with its label. To generate a pre-
dicted label for a test example, its Euclidean distance to ev-
ery training example is first computed. The k closest training
examples are kept, where k ≥ 1 is a fixed integer. The label
that is most common among these examples then becomes
the prediction for this test example.

The Smart App use k-NN with a k of 1. We do this to re-
duce the complexity of the algorithm for users. Users train
the Smart Motor by entering a dataset composed of sensor-
motor pairings. During Play mode, the current sensor read-
ing is used as a test example, and its Euclidean distance to
every sensor reading in the dataset is calculated. The clos-
est sensor-motor pair is kept, the motor position is used as
the prediction for this test example, and the motor moves to
this position. This calculation happens in real time, and the
motor moves in real time depending on the current sensor
reading and the training data the user enters.

Figure 2: Smart App: Users connect the Smart Motor to their
laptop and navigate to a web page that allows them to con-
nect to the Smart Motor device, control the motor, and view
sensor readings in real time.

User Interface
The Smart Motor and Smart App system allows users to train
and test the Smart Motor and add and delete individual train-
ing data points. As shown in Figure 2, students can connect
their Smart Motor to a computer or other personal device via
USB cable and navigate to a web page that will allow them
to connect to the Smart Motor. Students can then use this
web page to control the motor and view sensor readings in
real-time. Since the computer interface is provided as a web
page, it is compatible with many platforms, including smart-
phones and tablets, enabling the system to work in various
classroom technology environments.

The Smart App is designed to give students more detailed
and user-friendly visualizations of the training data and the
sensor and motor values. The design of the Smart App in-
terface uses multiple representations to support student de-
velopment of conceptual understandings of ML. It provides
visually distinct representations with a blue pie chart and
slider representing the motor position and a yellow progress
bar for the sensor reading. The sensor and motor readings
are then represented together through a scatter plot and a ta-
ble that contains the sensor and motor training data. These
numerical and graphical representations are available to stu-
dents to help them better connect how the motor and sensor
readings correlate to the real-time motor and sensor states.
These features provide multiple representations of how the
sensor and motor values are perceived. Finally, the scatter
plot represents the underlying model and during Play mode
highlights how the current sensor reading informs the algo-
rithm’s decision-making in real time.

The Smart App consists of an Explore tab to encourage
users to experiment with the sensor and motor (Figure 3),
a Train tab where users can add sensor and motor values
(Figure 4-top), and finally, a Play tab where they can let the
Smart Motor run on the training values they input (Figure 4-
bottom). In the graph, the yellow vertical line moves in real
time, which is associated with the sensor reading, and the
blue horizontal line can be manually moved to change the
motor position. Any added data points are saved such that
disconnecting the Smart Motor from the Smart App pre-
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Figure 3: Smart App Explore: Users can choose their sensor
and drag the motor slider to change the angle of the motor.

serves added data values.

Methodology
Workshop Overview
We conducted a workshop with 24 9- to 12-year-old stu-
dents (13 male and 11 female). Our goal with this workshop
was to determine how the Smart Motor and Smart App sys-
tem supported students’ projects and their understanding of
ML concepts. The students were part of a 5-day educational
summer program in St. Louis, MO. The workshop was con-
ducted during a robotics program with a total of 10 hours of
instructional time. During this workshop, we provided stu-
dents with LEGO® pieces and craft materials such as card-
board, construction paper, and felt fabric sheets. Each stu-
dent was provided with a laptop, USB cable and Smart Mo-
tor. They also had four compatible sensors made available
to them: a distance sensor, a light sensor, and a rotary, and a
slide potentiometer. Two elementary school teachers led the
workshops, and three researchers were present as facilitators
and collected data. Two months before this workshop, the
elementary school teachers participated in a co-design work
to develop the curriculum and Smart Motor system during
a two-day workshop led by a member of the research team
(Xu, Dahal, and Gravel 2024).

Data Collection
The primary data collection method was video footage of
students working on their projects. Cameras were mounted
over the group workstations to record the conversation and
activity for the duration of the workshop. Researchers also
recorded observations and field notes of students working.
We recorded students’ design choices and conversations
while building and training with Smart Motors. All the video
footage was compiled and played back. Video footage con-
taining students’ conversations about the design process,
building, and training were identified. These clips were used
to analyze students’ progression and understanding of the
Smart Motors system through the design, build, and train-
ing process. After the initial analysis of the videos by the

Figure 4: Smart App Train (top): ‘Add Value’ allows users
to add sensor and motor pairs to their training data. Users
can also delete data points from the table where the corre-
sponding data point on the graph is highlighted. The yellow
vertical line refers to the sensor reading, and the blue hori-
zontal line refers to the angle of the motor in real life. Smart
App Play (bottom): After adding all training data, the ‘Play’
button allows users to test the data. The graph highlights the
data point used to inform the algorithm’s decision-making.

first author, these clips and notes were shared with a sec-
ond co-author to confirm the conversation topics and details.
Identified conversations among students were organized into
the following categories: (1) conversations surrounding the
training of the Smart Motor and (2) design choices for each
activity.

Novel Engineering-inspired Literacy Integration
with MunchA! MuncHa! MuNcha!
The workshop had an activity inspired by the concept of
Novel Engineering (Portsmore and Milto 2018). In a Novel
Engineering curriculum, students are given reading materi-
als and tasked to identify problems the characters face. They
then have to use the engineering design process to build a
solution for a character of their choice. During the work-
shop, students watched a video reading of the book MunchA!
MuncHa! MuNcha! In this book, Mr. McGreely is a farmer
who owns a garden, and every night, three rabbits come to
his garden and eat his vegetables. Every day, he is upset,
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and he builds contraptions for his garden to protect his veg-
etables from the three rabbits. Students were instructed to
determine the main characters in the story and identify the
problems each character faces. They were then asked to de-
sign and build a solution to solve one of the problems they
noticed using the Smart Motor system.

Workshop Design
The workshop was conducted in four sessions: a discussion
of Artificial Intelligence and Machine Learning, an introduc-
tion activity with the Smart Motors and Smart App system,
a Novel Engineering-inspired MunchA! MuncHa! MuNcha!
activity, and a final engineering activity.

Session 1: Discussion of Artificial Intelligence and Ma-
chine Learning To introduce students to the concept of
Artificial Intelligence, students were first given AI games
to play with. These include “Quick, Draw!” where a neu-
ral network attempts to guess a drawing, and “Shadow Art.”
The teachers also led a class discussion on what AI is and
examples of AI they may have encountered in real life.

Session 2: Introduction to the Smart Motors and Smart
App system In the second session, students were intro-
duced to Smart Motors. They were given a laptop, a Smart
Motor, and a sensor of their choice. Students explored the
Smart Motors and Smart App to understand how everything
worked together at their own pace. The teachers then led a
discussion on how AI is used with the Smart Motors and the
different parts of the Smart Motor and Smart App system.

Session 3: Novel Engineering-inspired Design with
MunchA! MuncHa! MuNcha! In this session, students
watched a video of the book. They were then asked to pick
either Team Rabbit or Team Farmer. Students were given
time to brainstorm problems the characters encounter and
how they can help the character solve those problems. They
were then tasked to design and build solutions for the char-
acters’ problems.

Students were also provided with cardboard and arts and
crafts materials to help build their structures. For this activ-
ity, students were given a Sphero Mini (small robot ball) that
they controlled using a tablet. They placed a cup over the
Sphero Mini to give the illusion of a rabbit moving around.
The teachers demonstrated example projects using the dis-
tance and light sensor for team Farmer. The teacher also
demonstrated the process of training the Smart Motor. Ses-
sion 3 was conducted on the second and third day with 4
hours of instruction. Students formed groups of 2-3 for this
activity.

Session 4: Final Engineering Activity For the final activ-
ity, students were instructed to choose a topic for a problem
they are passionate about. These included building a com-
munity garden, a future city, a maze, or an escape room. The
goal was to incorporate the Smart Motors system into their
project. The teacher demonstrated an example maze project
incorporating a Smart Motor and rotary potentiometer as the
sensor. Students formed groups of 2-3 for this activity and
had the opportunity to build upon their projects from Ses-

Figure 5: Group 1 used a Smart Motor to open and close a
door to capture rabbits with a distance sensor for the Novel
Engineering-inspired activity in session 3.

Figure 6: Group 1 used a Smart Motor and distance sensor
to hit rabbits for the Novel Engineering-inspired activity in
session 3.

sion 3. Session 4 was conducted on the fourth and fifth day
with 4 hours of instruction.

Results
We present case studies of two groups of students and
their design development throughout the workshop. We se-
lected groups who were more verbose throughout the work-
shops and volunteered to participate with researchers when
prompted about the progress of their projects. We focused
on the design and build process for sessions 3 and 4 be-
cause these activities involved open-ended use of the Smart
Motors. In the sections below, we discuss the sensors stu-
dents used and how they integrated the Smart Motor system
with their projects. We also discuss conversations students
had about Machine Learning, concepts they struggled with,
and future directions for integrating Machine Learning with
Smart Motors.

Group 1: During the Novel Engineering-inspired activity
in session 3, this group discussed they would like to be Team
Farmer and build mechanisms to capture the rabbits. They
used a Smart Motor to open and close a door to capture rab-
bits and a distance sensor to locate when the door should
open and close (Figure 5). In addition to capturing the rab-
bits, they used a second Smart Motor and distance sensor
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Figure 7: Future City: Group 1 used a Smart Motor to scoop
trash for the final engineering activity.

Figure 8: Future City: Training data for garbage scooper that
Group 1 built for the final engineering activity.

to hit the rabbits when they came close to the Smart Motor
(Figure 6).

“We’re farmers, so we have two motors, one that opens
the door and one that hits. For both of them, I use a dis-
tance sensor because this is an automatic door, and this is to
hit the bunnies.” The group trained the Smart Motors using
two data points where a lower sensor value corresponded to
one extreme motor position and a higher sensor value corre-
sponded to the other.

For the final engineering activity, the group decided to
build a future city where they built upon their team Farmer
project. In this future city, there was trash all over the streets,
and they decided to use Smart Motors to help clean the city.
“We’ll make a robo thingy that will clean it (the trash).”
“Let’s attach something to that (Smart Motor) that can pick
up the trash.”

The group decided to build something that could scoop
the trash from the city street into a cup. To build the garbage
scooper, the group attached a beam to the motor, which was
then attached to a cardboard piece that allowed for a scoop-
ing motion when the motor moved (Figure 7). When training
the garbage scooper, the team decided to use a slider to move
the scooper back and forth. However, unlike the two mecha-
nisms from the Novel Engineering-inspired activity, they did
not use only two data points (Figure 8).

“So right now I’m just using the slider, I’m coding, kind

(a) Smart Motor opens and
closes the door vertically us-
ing a slider.

(b) Two data points are used
when training the Smart Mo-
tor.

Figure 9: Group 2 used a Smart Motor to capture rabbits in
a box for the Novel Engineering-inspired activity in session
3.

of training it... I want to use a lot of values.” When asked
what using a lot of values meant and why do that, the student
said “It’s more specific. If you just use two data values then
its more of a on and off switch.” “If I have a lot of data
points, when I move a tiny little bit, it will still move but if
you have 3 or 2 values then it wouldn’t move specific like
this. . . ” The student showed how the scooper moved even
though they only moved the slider a little bit. The way this
group was able to recognize the impact of several training
data points versus only two and how these data points affect
the movement of the motor was noteworthy.

Group 2: During the Novel Engineering-inspired activity
in session 3, this group discussed they would also like to be
Team Farmer and build a contraption to capture the bunnies.
“We are going to use a distance sensor so that it will go
down (referring to cardboard door) when a rabbit comes.”
This group used a Smart Motor to open and close a vertical
door that they attached to a beam on the motor. Similar to
Group 1, they also used two data points to train their Smart
Motor but towards the end of their project they opted to use
a slider instead of a distance sensor (Figure 9).

For the final engineering activity, Group 2 chose to build
a maze by adding on to their project from session 3 (Fig-
ure 10). This group used a second Smart Motor that had two
LEGO® beams attached to the motor that would move up
and down to act as an obstacle in the maze. A user would
navigate the maze by using a tablet to move a Sphero Mini
and would have to try to navigate the ball through the obsta-
cle. To build the obstacle, the students in this group chose to
use a distance sensor that was attached to the bottom of the
maze facing the ceiling. They trained the Smart Motor by
inputting data points of extreme motor positions with very
close sensor readings (Figure 11). Since the distance sensor
value was often noisy, training the Smart Motor in this way
caused random movements and this random behavior was
what they intended for the beam to do.
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Figure 10: Maze: Group 2 built a maze for their final engi-
neering activity using a Smart Motor as an obstacle.

Discussion
During this workshop experience, we found that students
were excited to work with the Smart Motor system and had
positive feedback regarding the user interface. In general,
students were able to integrate the Smart Motor and Smart
App system with their building projects. When training their
Smart Motors, we found that most students chose to use two
data points of extreme sensor and motor pairs which would
create a sweeping motion back and forth by the motor. Since
examples of training was demonstrated by the teacher using
two data points, it was not clear if all students understood
how the underlying algorithm worked or if they were fol-
lowing the demonstrations led by the teacher. We also found
that students spent a majority of the time building the phys-
ical structure and less time on the training of the Smart Mo-
tors. To encourage students to explore more with the training
of the Smart Motors, we will incorporate more guidelines in
future activities such as requiring that the motor moves to
at least three different positions. Additionally, to reduce the
amount of time spent building, we will limit the size of the
physical structure that students can build. We also plan to
use a WiFi-connected app rather than using serial commu-
nication because we found that the USB cable limited the
location that the Smart Motor could be mounted.

The conversation with students from Group 1 explaining
why they used so many data points to train their garbage
scooper rather than choosing only a couple was significant
because they recognized that having several data points ver-
sus only a couple affects the movement of the motor. When
they described that having two data points is like an on or
off switch especially shows their understanding of having a
few versus several training data points. At the same time, a
careful look at the way this group trained their Smart Motor
suggests that these students were hoping to have a sort of
linear relationship between the sensor and motor data. For
future directions with the Smart Motor, we hope to incorpo-
rate more Machine Learning algorithms so that students can
learn about the different algorithms and when one may be
preferred over the other. Additionally, our current algorithm
uses a k value of 1 but we will allow students to change this
value and develop activities that will allow them to explore
this concept.

Figure 11: Maze: Group 2 training data for maze obstacle
course in session 4.

In Group 2, we observed how the students were able to use
a limitation of the system to their advantage. The distance
sensor reading in general can be noisy and it was creative
on the students’ part to use this noisy reading to their advan-
tage by training the random behavior of the motor. Having
training data with extreme motor positions with very close
sensor readings allowed for the Smart Motor to move back
and forth randomly. This worked well when other users nav-
igated the Sphero Mini through the maze. The use of the
sensors with the Smart Motors introduced students to how
data can be noisy. Moving forward, we aim to develop Smart
Motor activities that provide opportunities for students to in-
vestigate how noisy data can impact the performance of a
Machine Learning algorithm and cause limitations.

Conclusion and Future Work
Our goal in developing the Smart Motor and Smart App sys-
tem was to introduce a low-cost hardware tool that students
can integrate into physical projects while learning about Ma-
chine Learning concepts. Specifically, we wanted for stu-
dents to understand how computers understand their envi-
ronment through sensors, how this data can be represented
and how it can be used to learn. Through our pilot work-
shop, we found that students were able to integrate the Smart
Motors with their projects and had conversations regarding
Machine Learning, specifically about training data and how
it affects the output of the Smart Motor. For future direc-
tions, we hope to have several Machine Learning algorithms
available on the Smart Motor system.

One of the limitations of our workshop was that it was
conducted during an out-of-school STEM summer program.
As a result, the students likely had higher than average pre-
existing interest in STEM and robotics topics. Additionally,
our participant numbers were limited by both the small pilot
workshop size and the limited number of students assenting
to be video recorded for this study. To collect more gener-
alizable student data, we plan to integrate similar activities
into in-school elementary classes.
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