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Abstract—We discuss quantum two-block codes, a large class
of CSS codes constructed from two commuting square matrices.
Interesting families of such codes are generalized-bicycle (GB)
codes and two-block group-algebra (2BGA) codes, where a cyclic
group is replaced with an arbitrary finite group, generally
non-abelian. We present code construction and give several
expressions for code dimension, applicable depending on whether
the constituent group is cyclic, abelian, or non-abelian. This
gives a simple criterion for an essentially non-abelian 2BGA
code guaranteed not to be permutation-equivalent to such a code
based on an abelian group. We also give a lower bound on the
distance which, in particular, applies to the case when a 2BGA
code reduces to a hypergraph-product code constructed from a
pair of classical group codes.

Index Terms—CSS codes, QECC, quantum LDPC codes, group
algebra codes, group codes, two-block codes, 2BGA codes, GB
codes, generalized bicycle codes

I. INTRODUCTION

Generally, any family of quantum low-density parity-check
(LDPC) codes with stabilizer generators of bounded weight
and distance scaling logarithmically or faster with the block
length has a finite fault-tolerant threshold to scalable error
correction [1]-[4]. Recently, there was a significant progress
in constructing such codes [5]-[11]. Unfortunately, many of
the proposed “product” constructions, e.g., in Refs. [8]-[15],
tend to give rather long codes, and the existing lower bound
for the generator weight to give asymptotically good quantum
LDPC codes with finite rates and linear distance scaling is
also very large [11].

In comparison, much shorter quantum codes, including
quantum LDPC codes with bounded generator weights, can be
constructed with a two-block anzats [16], a construction based
on a pair of square commuting matrices. It gives a family of
Calderbank-Shor-Steane (CSS) codes [17], [18] with relatively
small block lengths, twice the size of the original matrices.
The commutativity can be achieved, e.g., by taking a pair
of circulant matrices, which gives generalized bicycle (GB)
codes [5], [16], [19], [20], or using an arbitrary finite abelian
group instead of the cyclic group [21]. An important advantage
of two-block quantum LDPC codes is an overcomplete set
of minimum-weight stabilizer generators which may improve
their performance in the fault-tolerant setting. Finally, GB
and more general two-block codes include certain families
of hypergraph-product (HP) codes [12] as a subclass, which
guarantees the existence of finite-rate codes with O(y/n)
distance scaling in this family, but they also include codes
with linear distances [20]. In comparison, the distance of an
HP code with the block length n cannot exceed +/n.

In this paper we discuss general quantum two-block codes.
We introduce a family of two-block group algebra (2BGA)
codes based on an arbitrary finite group, abelian or non-
abelian. Just like GB codes can be seen as CSS codes
constructed from a pair of index-two quasicyclic codes, 2BGA
codes are the smallest lifted-product (LP) codes [9], [11].

We give a formal expression based on idempotent ma-
trices for the dimension of general two-block codes. The
dimension is necessarily even for such codes based on an
abelian group algebra [21] (which includes GB codes), as well
as for more general quantum two-block codes identified by
certain additional commutativity conditions. We show that this
constraint is automatically satisfied for 2BGA codes based on
a semi-simple group algebra; the dimension of such codes is
necessarily even. This gives a simple sufficient criterion for an
essentially non-abelian 2BGA code which cannot be reduced
to such a code based on an abelian group. We also discuss the
distance of 2BGA codes and, for a family of such codes, give
a lower bound in terms of distances of classical group algebra
codes. In particular, this bound applies in the case where a
group algebra code reduces to an HP code.

The structure of the rest of the paper is as follows. We
introduce necessary notations in Section II. Our main results
are given in Sec. III, followed by conclusions in Sec. IV.

II. PRELIMINARIES

A classical code C linear over a finite field F' = F,, where
g > 1 is a power of a prime p, the characteristic of the field,
with parameters [n,k,d],, is a k dimensional vector space
in F™, the set of all length-n strings using elements of F' as
characters. Such a code can be specified in terms of a generator
matrix G whose rows are vectors from C forming a complete
basis, rank G = k, or its parity-check matrix H whose rows
are orthogonal to any vector in C, with rank H = n — k,

C=Cs=C#4, GHT =o. (1)

The codes Cs and Cpy generated by rows of G and H,
respectively, are called mutually dual. The support of a vector
x = (r1,22,...,2,) € F™ is the set of indices ¢ correspond-
ing to non-zero components x; # 0, and its Hamming weight
is the size of the support. The distance d of a linear code C is
the smallest Hamming weight of a non-zero vector in C; by
convention, d = oo for a trivial code with £ = 0.

A very important class of codes are cyclic linear codes
[22], invariant under the group C,, of cyclic permutations. A
generalization to an arbitrary group are group codes, or group
algebra codes [23]-[26].
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Given a finite field F" and a finite group G, the group algebra
F[G] is the linear space of all formal sums

r=Y 249, wg€EF, 2)
geG

where group elements g € G serve as basis vectors, equipped
with the product naturally associated with the group operation,

ab=Y" <Z ahbhlg>g, a,b € FIG]. 3)

geG “heG

Similar to cyclic codes, a left (right) group algebra code is
isomorphic to a left (right) ideal J in F[G], defined as a linear
space such that for any = € J and any r € F[G], rx € J for
the left ideal (xr € J for the right ideal).

The structure of ideals in F'[G] is particularly simple when
characteristic of the field and the group size are mutually
prime, ged(p, |G|) = 1. In this case, according to Maschke’s
theorem, the group algebra is semisimple, and any ideal is
a principal ideal generated by an idempotent element, e.g.,
J = ey - F|G] for a right ideal J = Jg, with an idempotent
e?, =-ey € J (see, e.g., Corollary 2.2.5 in Ref. [27]).

A quantum Calderbank-Shor-Steane (CSS) code [17], [18]
Q = CSS(Hx, Hz) can be defined as a direct sum of two
quotient spaces, Q = Qx ® Q,

Ox =Cp,/Cuy, Qz=Ch,/Cu,. 4)

For example, elements of Qx are equivalence classes of
vectors in Cf;IZ, where two vectors are equivalent, z ~ y, if
they differ by an element of Crr,,, t—y € Cpr, . Such a pair of
equivalent vectors are called mutually degenerate, while any
vector in the equivalence class of the zero vector is called
trivial. The CSS generator matrices Hx and Hz have equal
number of columns, n, and orthogonal rows, Hx H T — (. The
parameters of the code (4) are denoted [[n, k, d]],, where

k =n —rank Hy —rank Hy 5

is the common dimension of the quotient spaces Qx and Q,
and d = min(dx,dz) is the minimum weight of any non-
trivial vector in Q, e.g.,

dZ = d(Qz) =

min
L
UGCHX \Cr,

wgt(u). (6)

Physically, a quantum code CSS(Hx,Hz) operates in a
Hilbert space ’H;@’" associated with n quantum-mechanical
systems of dimension ¢ each, Galois-qudits [28], and a well
defined basis of X and Z operators acting in ’H;@” [29].
Vectors of the codes Cp,, and Cg, correspond to X- and
Z- operators in the stabilizer group whose generators must be
measured frequently during the operation of the code; gener-
ating matrices Hx and Hz with smaller row weights result in
codes which are easier to implement in practice. Orthogonality
condition Hy HL = 0 ensures that the stabilizer group is
abelian. Non-trivial vectors in Q7 and Qx correspond to
Z and X logical operators, respectively. Codes with larger
distances have logical operators which involve more qudits;
such codes typically give better protection against errors.

III. TWO-BLOCK CODES

In this work we discuss two-block CSS codes with generator
matrices in the form [16]

where A and B are square commuting ¢ X ¢ matrices with
elements in F'. The commutativity guarantees the CSS orthog-
onality condition, Hx H % =0.

Code dimension: Given a square size-¢ matrix A with
elements in a finite field F, consider square idempotent
matrices F/4 and F'4 of the same size and rank such that

E4=E,, F3=F,, FEpA=AF,=A. (8)

While these matrices are not unique, they can always be
constructed from the Smith normal form decomposition A =
UaDsVy, where Uy and V4 are square invertible matrices,
and Dy = diag(1,...,1,0,...,0) has exactly rank A non-
zero elements along the diagonal. Namely, we may choose

Ea=UaDAUL', Fa=V'DaVa. )

With idempotent matrices (8), it is easy to express the ranks
of block matrices (7). Indeed, row and column transformations
give (this is a simplified version of more general expressions
in Refs. [30], [31])

_ A EAB
rank Hy = rank< 0 (I—EA)B)
= rank(A) +rank(l — E4)B,  (10)
and a similar result for the rank of the other matrix,
rank Hy = rank A +rank B(I — Fa). (11)

In general, rank Hz # rank Hx. However, the equality can
be achieved with some additional commutativity conditions.
For example, if both £ 4 and F'y commute with B, the second
terms in the r.h.s. of Egs. (10) and (11) are both equal rank B—
rank AB. This gives

Statement 1. Suppose that idempotents E 4 and F4 in Eq. (8)
commute with B in Eq. (7). Then,

rank Hy =rank Hz, and k=2((—rankHx). (12)

Evidently, Eq. (12) also remains true after interchanging the
blocks, e.g., if idempotents Eg and Fg commute with A.

In particular, the conditions of Statement 1 are satisfied if A
has a square-free minimal polynomial. Indeed, in such a case
A can be diagonalized, A = S~!AS, where square matrix S
over F'is invertible, and the idempotents can be constructed as
Ej, = F4 = S™!'DS, with D a diagonal matrix with elements
equal to zero or one according to whether the corresponding
element of A is zero or not. It is easy to check that thus
constructed F4 = F'4 necessarily commute with B if A does.

Construction from classical group algebra codes: To get
a pair of commuting matrices, we use an ansatz introduced by
Panteleev and Kalachev [9], [11]. Namely, given an element
x € F[G] of the group algebra with the group size ¢ = |G|,
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the ¢ x ¢ square matrices L(x) and R(z), respectively, are
defined by the left and right action on group elements,

[L(z)]ap = Z Tg0a,g8:  [R(T)]a,p = Z Tg0a,8g, (13)

geqG geG

where group elements o, 8 € G are used to index rows and
columns, cf. Eq. (2), and d, 3 = 1 if o = 8 and 0 otherwise
is the Kronecker delta. Row and column weights of I,(x) and
R(z) are equal to wgt(x), the Hamming weight of the vector
in F¢ with components x,, « € G, which makes it easy to
construct sparse matrices. Furthermore, for any a,b € F[G],
L(a)L(b) = L(ab), R(a)R(b) = R(ba), while a left and a
right matrices always commute,

L(a)R(b) = R(b) L(a). (14)
With a group algebra element entirely supported on a sub-
group, x4 # 0 only if g € K < G, one can also form smaller
matrices, e.g., [Li(z)]a,s of size |K| x |K]|, with indices
restricted to the same subgroup, «, 8 € K. If we introduce
the support group [32]

G ={geG:zy#0}) (15)

generated by elements of G in the support of z, it is evident
that matrices L(x) and R(x) are block-diagonal (up to a
permutation), with square blocks of equal size |G|, corre-
sponding to, respectively, right and left cosets of the support
group G, in G.

With these definitions, the two-block group algebra (2BGA)
codes, the CSS codes (7) with A = L(a) and B = R(b) given
by Eq. (13), are the smallest lifted-product codes [11] LP[a, b,
where group algebra elements a, b are treated as 1 x 1 matrices
over F'[G]. Previously considered special cases are GB codes
[5]1, [16], [20], with G a cyclic group, and abelian 2BGA codes
[21], with G an abelian group.

The structure of matrices A and B is such that the row
labeled by a group element x € G is associated, respectively,
with the block supported in the right coset G, and that in the
left coset xG». When the product of the two support groups
(the double coset associated with the group identity element
1 € G) does not contain all group elements, G,G, T G,
the code LP[a,b] is decomposed into smaller mutually dis-
connected subcodes associated with different double cosets
in G,\G/G}. The individual double-coset subcodes are not
necessarily equivalent to each other; it is well known that even
the sizes of double cosets may differ.

The case of GB codes [5], [16], [20] is recovered when G
is a cyclic group,

Co=(x)= {1,222, ., 21, 2'=1
There is an obvious one-to-one map between the group algebra
F[Cy] and the ring of modular polynomials F[x]/(z* — 1).
Then, a 2BGA code LP[a, b] is also a generalized-bicycle code
GBla(z), b(x)] specified by a pair of polynomials a(z), b(z) €

F[z]/(x* — 1), and the square blocks in Eq. (7) are just the
circulant matrices A = a(P) and B = b(P), where

0 ... 01
1 0

P= . : (16)
10

is an ¢ x ¢ cyclic permutation matrix. A simple expression for
the dimension of a code GBJa,b] was given in Ref. [5]. In
this case rank Hx = rank Hz = £ — deg h(x), and

k=2degh(z), h(z)=ged (a(x), b(x),z’ — ). an

Evidently, Eq. (12) is satisfied, as it also does when the group
G is abelian [21], or when one of the subgroups, G, or Gy
[see Eq. (15)], is cyclic. In the latter case the GB code is
equivalent to a quasi-cyclic LP code [9].

More generally, consider semi-abelian 2BGA codes satisfy-
ing the conditions of Statement 1. Namely, take a code LP][a, b]
where, e.g., a € F|[G] is such that the corresponding right
a- F[G] and left F|G] - a ideals are generated by idempotents
eq and f,, e;a = af, = a, and choose E4 = L(e,) and
Fa = L(f.) to guarantee their commutativity with B = R(b).
In particular, a semi-abelian 2BGA code is always obtained if
the group algebra F'[G] is semisimple. Alternatively, we can
select a so that the corresponding subgroup G, in Eq. (15)
has the order mutually prime with the field characteristic p,
ged(p, |Ga|) = 1, so that only the subalgebra F[G,] be semi-
simple. Then, the idempotents e, € F[G,] and f, € F[G,]
also generate the right and left ideals of a in F[G], and, again,
we can choose E4 = L(e,) and Fy = L(f,), so that the
conditions of Statement | be satisfied.

To summarize, any abelian 2BGA code (including any
GB code) or any semi-abelian 2BGA code, e.g., based on
a semisimple group algebra, has an even dimension, see
Eq. (12). Thus, any 2BGA code with an odd dimension k is
essentially non-abelian, i.e., it is not permutation-equivalent
to an abelian or a semi-abelian 2BGA code.

Example 2. Consider the alternating group A4, also known
as the rotation group of a regular tetrahedron,

T = (w,y|x3 = (ym)?’ =y’ = 1), |T]=12,

and the binary algebra Fo[T). Select a = 1+ +y+ 2 lyz
and b = 14+x+y+yx to get an essentially non-abelian 2BGA
code LPla, b] with parameters [[24, 5, 3]]2.

Distances of GB codes: Several existence bounds for
unrestricted GB codes (without the limit on row weight) are
given in Ref. [20]. In particular, with g(x) = (¢ — 1)/h(z)
irreducible, cf. Eq. (17), a counting argument in the style of
Gilbert-Varshamov bound proves the existence of GB codes
with ¥ = 2 and linear distance scaling (Example 8 in
Ref. [20]), and rate-1/4 GB codes with d > VY related to
quadratic-residue cyclic codes (Example 9 in Ref. [20]). This
should be contrasted with, e.g., HP codes whose distances
satisfy the upper bound d < /n.
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In practice, we are more interested in quantum LDPC codes,
with weight of stabilizer generators not exceeding some fixed
w. Unfortunately, the regular structure of GB codes is a
disadvantage in this case, as any such code is equivalent to
a code local on a hypercubic lattice 7P, with D < w—1, or
D < w —2if ¢ is prime (Statement 13 from Ref. [20]). With
general results from Refs. [33], [34], this gives upper bounds

d <O ~YP) and kd*/P~1 < O(n). (18)

Numerically, for a family of GB codes with k = 2, the distance
scaling is consistent with d = A(w)n'/? 4+ B(w), with A(w)
an increasing function of w, although d = O(n®) with some
a =1/2+ ¢ with a small ¢ > 0 cannot be excluded [20].

Lower distance bounds for 2BGA codes: Best known are
the usual CSS bounds,

dz > d(Cg,), dx >d(Cq,). (19)

However, since the rows of Hx and Hz are mutually orthogo-
nal, we have, e.g., d(Cﬁx) < wgy, the minimum row weight of
the matrix Hz. Since our main interest is in highly-degenerate
quantum LDPC codes with bounded stabilizer weights and
diverging distances, the CSS bounds (19) are not very useful.

Consider the special case of a 2BGA code LP[a, b], with
a,b € F[G] such that the intersection subgroup N = G, NGy,
is central in (5. In such a case, if we choose two transversal sets
of coset representatives, A from G, /N and B from G}, /N, any
element of a double coset G,\x/G} can be written as oz,
with a € A, 8 € B, and v € N. This gives matrices A and
B with individual square blocks of size ¢ = |N| given by,
respectively, Ly (aq,o’) and Ry (bg /), with matrix elements
Q.o bg,gr € N defined by the action of the two group algebra
elements on the corresponding cosets, and indices o, o’ € A
and 3,8 € B. Explicitly, e.g., given the expansion (2) of
a € F[G], aa',a = Y., cN Gara—147- This gives exactly the
structure of a square-matrix quasi-abelian LP code [9] over
the group algebra F'[N], and also the following lower bound:

Statement 3 (Version of Theorem 5 from Ref. [16]). Given
any two group algebra elements a,b € F[G] such that the
intersection subgroup N = G, NG, of size ¢ = |N| is central
in G, consider classical codes with parity check matrices A =
L(a) and B = R(b). Let dy = min {d(Cy),d(C%)} be the
minimum of their distances. Then, the distance dz of the 2BGA
code LP[a,b| satisfies the inequality dz > [do/c].

In fact, this lower bound becomes exact when the intersec-
tion subgroup is trivial, N = {1}. In this case each double-
coset subcode of the 2BGA code LP[a,b] is equivalent to
a hypergraph-product code constructed from classical codes
with parity-check matrices L, (a) and R, (b) over the cor-
responding subgroups, the individual blocks of I.(a) and R(b).

It is known [26] that group algebra codes include good
codes with finite rates and finite relative distances. This guar-
antees the existence of finite-rate 2BGA codes with distance
scaling as a square root of block length. Unfortunately, we do
not have a matching upper bound for finite-rate 2BGA codes.

IV. CONCLUSIONS

In conclusion, we considered a family of quantum two-block
codes, an ansatz particularly suitable for constructing short
and intermediate-length quantum LDPC codes. This family
includes previously studied GB codes and their generalization,
2BGA codes, which may be based on an abelian or a non-
abelian group. Compared to “single-block” quantum cyclic
codes [35]-[37] and a related construction based on a general
finite group [38], the 2BGA codes have much more freedom:
here the CSS orthogonality constraint is naturally satisfied for
any pair of group algebra elements, and it is much easier to
construct highly-degenerate quantum LDPC codes.

We constructed a general expression relating the dimension
of a two-block code to those of single-block codes and, in the
case of 2BGA code LP][a,b], identified the cases of abelian,
semi-abelian, and non-abelian 2BGA codes, depending on the
group G, the chosen group algebra elements a,b € F'[G], and
the associated support groups G, and G. We also constructed
a lower distance bound applicable when the subgroup N =
G, N Gy is central in G. The bound becomes exact when
N = {1}, a trivial subgroup, in which case the 2BGA code
is equivalent to an HP code constructed from a pair of group
algebra codes.

Research in progress [39] includes enumeration of 2BGA
codes with row weights w < 8 for all inequivalent small
groups of size £ < 50. Of particular interest are 2BGA
codes with larger k¥ which have many redundant minimum-
weight stabilizer generators and are expected to perform well
in a fault-tolerant setting as data-syndrome codes [40]-[43].
This could enable single-shot fault-tolerant quantum error
correction [44], [45].
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