Approximation Algorithms for Optimal Hopsets
Michael Dinitz &
Johns Hopkins University, Baltimore, MD, USA

Ama Koranteng &
Johns Hopkins University, Baltimore, MD, USA

Yasamin Nazari &
Vrije Universiteit Amsterdam, The Netherlands

—— Abstract

For a given graph G, a hopset H with hopbound [and stretch « is a set of edges such that between
every pair of vertices u and v, there is a path with at most 8 hops in G U H that approximates
the distance between u and v up to a multiplicative stretch of . Hopsets have found a wide range
of applications for distance-based problems in various computational models since the 90s. More
recently, there has been significant interest in understanding these fundamental objects from an
existential and structural perspective. But all of this work takes a worst-case (or existential) point
of view: How many edges do we need to add to satisfy a given hopbound and stretch requirement
for any input graph?

We initiate the study of the natural optimization variant of this problem: given a specific graph
instance, what is the minimum number of edges that satisfy the hopbound and stretch requirements?
We give approximation algorithms for a generalized hopset problem which, when combined with
known existential bounds, lead to different approximation guarantees for various regimes depending
on hopbound, stretch, and directed vs. undirected inputs. We complement our upper bounds with a
lower bound that implies Label Cover hardness for directed hopsets and shortcut sets with hopbound
at least 3.

2012 ACM Subject Classification Theory of computation — Routing and network design problems
Keywords and phrases Hopsets, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2025.69

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2502.06522 [29]

Funding Michael Dinitz: Supported in part by NSF award 2228995.

Ama Koranteng: Supported in part by an NSF Graduate Research Fellowship.

Yasamin Nazari: This publication is part of the project VI.Veni.232.038 of the research programme
“Dynamic graph algorithms: distances and clustering” which is financed by the Dutch Research
Council (NWO).

1 Introduction

A hopset H with hopbound 3 and stretch « for a given (directed or undirected) graph G is a
set of (possibly weighted) edges such that between every pair of vertices u and v in G there
is a path with at most 8 hops in G U H that approximates the distance between u and v up
to multiplicative stretch « (our results hold for a more generalized version of the problem
formally defined in Definition 3). A related object is shortcut sets, which preserve reachability
via low-hop paths, rather than distances. Hopsets were formally introduced 25 years ago
by Cohen [25], and they were used to compute approximate single-source shortest paths in
undirected graphs in parallel settings. More recently, they have been shown to be useful for
a variety of different problems and settings, and have been studied extensively. Examples

© Michael Dinitz, Ama Koranteng, and Yasamin Nazari;
oy

licensed under Creative Commons License CC-BY 4.0
52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025).
Editors: Keren Censor-Hillel, Fabrizio Grandoni, Joél Ouaknine, and Gabriele Puppis
Article No. 69; pp. 69:1-69:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:mdinitz@cs.jhu.edu
https://orcid.org/0000-0002-2632-966X
mailto:akorant1@jhu.edu
mailto:y.nazari@vu.nl
https://orcid.org/0000-0003-1315-9355
https://doi.org/10.4230/LIPIcs.ICALP.2025.69
https://arxiv.org/abs/2502.06522
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

69:2

Approximation Algorithms for Optimal Hopsets

of these applications include low parallel depth single-source shortest paths algorithms
[65, 25, 65, 37], distributed shortest-paths computation [36, 35, 16], and dynamic shortest-
paths [8, 48, 46, 18, 62] with implications for fast static flow-based algorithms [64, 7, 20]
and dynamic clustering [27], faster construction of related objects such as distributed or
massively parallel distance sketches [35, 32, 34], parallel reachability [68], and work-efficient
algorithms for reachability and directed shortest paths [14, 15, 13, 41, 54].

In addition to their wide range applications, hopsets and shortcut sets are also studied as
fundamental objects in their own right. There has been a surge of recent work that, rather
than focusing on running time, focuses on finding the best existential (extremal) upper or
lower bounds for hopsets and shortcut sets [57, 9, 49, 53, 58, 70]. Namely, the main goal is
to find the smallest value v(n, 8, a) such that every graph G on n nodes admits a hopset
with hopbound S and stretch «. Another line of work has explored the connections between
hopsets and many other fundamental objects such as spanners [5, 2], emulators [38, 52|, and
distance preservers [56, 50, 12].

The two main existing lines of work in this direction are on finding efficient algorithms
for constructing hopsets in various computational models for specific applications, or on
existential bounds and structural properties. Such results are very useful, since they give
us a worst-case bound on how many edges we must add to an arbitrary graph if we want a
hopset of a certain quality and how fast can this be done for our particular application. The
focus in these results has been on improving these existential bounds and developing fast
algorithms for a variety of different settings and parameters. see Section 1.2 for a discussion
of known results of this form.

A complementary type of problem with a very different flavor is optimization: given a
graph G, hopbound g, and stretch bound «, can we design an algorithm to efficiently find
the smallest hopset for G (rather than in the worst case over all graphs)? If the minimization
problem is NP-hard, then can we approzimate the smallest hopset for G? Note that the
existential and optimization versions of these problems are complementary: good existential
bounds guarantee that no matter the graph G, there will be a reasonably small hopset;
conversely, good optimization results guarantee that we can find an approximately minimum
hopset, even if the best hopset for G is significantly smaller than for the worst-case graph.
An existential bound might convince someone to use a hopset for some application—since they
know they will never need to add too many edges—but once they commit to using a hopset
for that application, they might naturally want to find the best hopset for their particular
input. Additionally, in many distributed and parallel settings, adding hopset edges can be
seen as a preprocessing step (that can take considerable time), after which (approximate)
distance queries can be performed in fewer distributed/parallel rounds (often corresponding
to the hopbound). Thus in such cases, we may be willing to spend more preprocessing time
in order to add the fewest number of edges.

This natural complementarity between the existential and optimization versions has led
to significant study of both versions for a number of related objects, most notably graph
spanners (subgraphs that approximately preserve distances). For spanners, while the vast
majority of work has been on the existential questions (see, e.g., [3] for the fundamental
tradeoff between stretch and size), there has also been significant work on the optimization
versions (see, e.g., [60, 61, 59, 39, 31, 6, 30, 33, 42, 21, 22, 45, 23, 24]). Similarly, there
has also been work on optimization versions of other related objects such as reachability
preservers|[1], 2-hop covers [26], and diameter reduction[28].

Despite both the recent importance of hopsets and the extensive study of optimization
for related objects, the optimization version of hopsets has not yet been considered. In this
paper we initiate this line of research, introducing these optimization variants and proving
both upper and lower bounds on their approximability.

M. Dinitz, A. Koranteng, and Y. Nazari

1.1 Our Results and Techniques

There are many variants of this problem, divided along three main axes: whether the graph
is directed or undirected, what the desired hopbound [is, and what the required stretch is
(and in particular whether it is arbitrary or whether it is in some particularly nice regime
like 1 + € for small € or 2k — 1 for integer k). A summary of our results for these variants
can be found in Table 1.

Table 1 Comparison of hopset results, where ¢ > 0 is an arbitrarily small constant, € € (0, 1),
and n > ,81/(1“1“’8_%1“1“1“5). For g > 3, n > 6. “Individual” stretch means arbitrary distance
bounds, possibly different for each individual demand pair. All results are for pairwise demands,
with edge lengths being nonnegative integer and upper bounded by poly(n).

Un/Directed Hopbound 3 Stretch Approximation Theorem
Directed 5(n2/5) Individual 5(B1/3 . n2/3+5/) 21
Directed 5(112/5) Individual 5(11”5,/\/[;) 22
Directed > 20logn 1+¢ 5(n3/4+5' . e*i) 23
Directed 2 Individual O(lnn) Full Version [29]

Undirected 5(71%_2%7) 1+e€ 5(¢B-n%+%n+5/) 24
Undirected O(k:_l/2 n%_ﬁ) 2k —1 6(\/@415‘*‘%*'5/) 25

1.1.1 Upper Bounds

While this list may appear a bit complex, it turns out that almost all of the results are
generated by trading off several approximation algorithms that we design and analyze with
the known existential bounds for the given regime. In particular, we consider three main
approximation algorithms: one based on rounding an LP relaxation, one based on randomly
sampling stars, and one based on defining and analyzing an appropriate variant of junction
trees [42, 44, 22]. Instead of just analyzing the approximation ratio of each algorithm as a
function of n (the traditional point of view), we analyze the approximation ratios as functions
of n, OPT, 8 and the local neighborhood size [31, 6]. Importantly, none of these algorithms
have performance that depends on whether the graph is undirected or directed, or what the
allowed stretch is.

To get the results in Table 1, we trade these three algorithms off not only with each

other based on the described parameters, but also with the known existential bounds.

Unsurprisingly, there are different existential bounds known for each setting. These different
existential bounds are what lead to each of the different rows of Table 1.

We also note that there is a simple reduction from hopsets to the multicriteria spanner
problem, introduced by [44]. For multicriteria spanners, instead of edges being associated
with just edge lengths—as with traditional spanners—edges in the multicriteria spanner problem
each have a resource consumption vector, where each entry corresponds to the consumption
of the respective resource on that edge. The simple reduction to multicriteria spanners
implies a O(|D|Y/2*¢ . B)-approximation for hopsets, where D is the set of vertex demand
pairs given in the input.

69:3

ICALP 2025

69:4

Approximation Algorithms for Optimal Hopsets

1.1.1.1 Technical Overview

Technical components of our main approximation algorithms have appeared before, in
particular, in the literature on approximation algorithms for spanners. The LP rounding
algorithm we use is a variant of the one introduced for spanners by [6], our star sampling
is a variant of the arborescence sampling used by [31], and our junction tree algorithm is
a variant of the junction trees used by [22] and [42]. But using them for hopsets involves
overcoming a number of technical difficulties.

First, the performance bound on arborescence sampling used by [31, 6] fundamentally
depends on the fact that for traditional graph spanners, the required connectivity implies
that OPT > n — 1, and hence polynomial size bounds of the form n” can be interpreted as
nY~1.OPT, i.e., as n”~l-approximations. But for hopsets, since we are adding edges rather
than removing them, this is not the case: the only bound we have is the trivial bound of
OPT > 1 (or else we are already done). Hence bounds that are sublinear for spanners (e.g.,
the O(n'/2?)-approximation of [6]) turn into superlinear approximation ratios if translated
to hopsets in the obvious way. These are still nontrivial bounds, in the sense that the
trivial bound for hopsets is an O(n?)-approximation (OPT > 1 and we can just add all
pairwise edges to get a solution of size O(n?)). But superlinear approximation ratios are not
particularly satisfying. This is why we need different algorithms for various regimes of OPT.
By combining the star sampling and randomized LP rounding we get an approximation
bound that is comparatively better for cases where § is small and OPT is large. On the
other hand, our junction tree algorithm performs better when OPT is smaller.

Second, while the LP relaxation that we use for our rounding algorithm is a natural
variant of the standard spanner LP relaxation (see [31, 6, 33]), the hopset variant turns out
to be significantly more difficult to solve. Most notably, solving the equivalent LP relaxations
for spanners (either the flow version of [31] or the fractional cut version of [33]) requires using
the ellipsoid method with a separation oracle for a problem known as Restricted Shortest
Path, in which we are given two distance metrics (think of one metric as being our original
edge lengths and one metric as being the fractional values given by the LP to edges) and are
asked to find the shortest path in the second metric subject to a distance constraint in the
first metric. Unfortunately, Restricted Shortest Path is NP-hard, but it turns out that one
can use approximation algorithms for Restricted Shortest Path to solve the LP up to any
desired accuracy (see [31]). But for our hopset LP, the equivalent separation oracle has three
metrics (the original edge lengths, the number of hops, and the LP values), and we need to
find the shortest path in the third metric subject to upper bounds in the first two metrics.
So we design a PTAS for this more complex problem in order to solve our LP.

Third, for similar reasons our junction tree argument is more complex. Junction trees
were originally introduced for network design problems where the only constraints are on
connectivity, not distances; see, e.g., [19, 40]. By reducing to a “layered” graph, Chlamtéé
et al. [22] showed that junction tree-based schemes are also useful in distance-constrained
settings, and this layering technique was pushed significantly further by [42]. When trying
to use these ideas for hopsets, though, we have the same difficulty as when solving the LP:
we have essentially two distance constraints for each demand, corresponding to the number
of hops and the allowed distance. To overcome this, we give a “two-stage” layering reduction,
where we first construct a layered graph that allows us to get rid of the hop requirement
without changing the distance requirements. Then we can use the further layered graph
of [42] to get rid of the distance requirement, transforming it into a pure connectivity problem.
In fact, we can use [42] as a black-box for this second step.

The black-box nature of our use of [42] has an interesting corollary: even without caring
about junction trees, the layered graph reduction we design will immediately let us use the
known results for pairwise spanners [42] (by considering them on the weighted transitive

M. Dinitz, A. Koranteng, and Y. Nazari

closure) to get a non-trivial approximation guarantee for our full problem. However this
reduction introduces additional factors in £, which we improve by white-boxing their approach,
which will in turn give us a better trade-off in combination with the other algorithms.

1.1.2 Lower Bounds

To complement our upper bounds, we show that (at least for directed graphs) we cannot hope
to get approximation ratios that are subpolynomial. In particular, we give an approximation-
preserving reduction from the famous Label Cover problem (or more precisely, its minimization
variant Min-Rep [59]) to the problem of computing the smallest hopset in a directed graph
with hopbound at least 3, for any stretch value. This gives the following theorem.

» Theorem 1. Assuming that NP ¢ DTIM E(2P°'°9() " for any constant € > 0, and for
any B > 3, there is no polynomial-time algorithm that can approzimate directed GENERALIZED
B-HOPSET (for any stretch value; see Definition 3) or the minimum shortcut set on directed
graphs with approximation ratio better than glog' " m

Our reduction is quite similar to known hardness reductions used for spanners [59, 39,
30, 21]. The main difficulty is that these previous reductions, since they are for spanners,
only have to reason about subgraphs of the graph created by the reduction. That is, given an
instance of Min-Rep, they create some graph G and argue that if the Min-REP optimum is
large then any subgraph of G that is a spanner must be large. But for hopsets, not only are
the edges of G “free,” we also need to argue about hopset edges that are not part of G. This
requires some changes in the reductions and analysis. The full reduction and details can be
found in the full version of the paper [29].

1.2 Related Work

In earlier applications, sparse (1 + ¢)-approximate hopsets for undirected graphs were used to
obtain low parallel depth single-source shortest paths algorithms [55, 25, 65, 37]. Similarly,
fast hopset constructions for undirected graphs were studied in many other settings such as
distributed [36, 35, 16, 35, 32, 34] and dynamic settings [8, 48, 46, 18, 62].

Another line of work focuses on fast computation of hopsets for directed graphs and
shortcut sets that preserve pairwise reachability, rather than distances, while reducing the
diameter. These have gained attention particularly due to their application in parallel
reachability and directed shortest path computation [68, 14, 15, 13, 41, 54]. More recently,
hopsets and shortcut sets have been studied from an extremal (or existential) point of view.
In particular, for (1+ €)-hopsets, there are almost (up to 1/e factors) matching upper bounds
[36, 52] and lower bounds [2] in undirected graphs. One trade-off that is widely used in
(14 €)-approximate single-source shortest paths applications is that for any graph, there exists
a (1 + €)-hopset of size n'*t°(1) with hopbound n°Y). On the other hand, [2] showed that
there are instances in which this trade-off is tight. For larger stretch, better size/hopbound
trade-offs are known.

In directed graphs there are polynomial gaps between existential lower bounds and upper
bounds, both for approximate hopsets and shortcut sets. A widely used folklore sampling
approach implies an 6(11) size for exact hopset and shortcut sets, with hopbound O(y/n) L.
A breakthrough result of [57] went beyond this long-standing bound by constructing shortcut

! The upperbounds for directed hopsets and shortcut sets give a smooth trade-off between size and
hopbound. For simplicity, we discuss the important linear-size regime.

69:5

ICALP 2025

69:6

Approximation Algorithms for Optimal Hopsets

sets of size O(n) with hopbound O(n!/3). Later, [9] showed that the same upper bound
also holds for directed (1 + €)-hopsets (up to log factors in weights and aspect ratio). More
on these existential bounds can be found in Section 4.3, where we trade them off with our
approximation algorithms, and in the full version [29]. Another line of work focused on
obtaining subsequently better existential lower bounds for directed graphs [49, 53, 58, 70].
The current best known lower bound for a linear size shortcut set is Q(n'/4) [11, 70].

Another recent result [11] showed that for exact hopsets both in directed and undirected
weighted graphs, the folklore sampling (see Section 4.3) is existentially optimal, implying
that the separation between approximate hopsets for directed and undirected graphs, does
not hold for exact hopsets.

On the approximation algorithms side, most relevant to hopsets are the weighted pairwise
spanner algorithms [42], 2-hop covers [26], and multicriteria spanners [44]. In particular,
weighted pairwise spanners (like hopsets and unlike k-spanners) do not have n as a trivial lower
bound on OPT, and hence some of the difficulties encountered when designing algorithms
are similar. Additionally, when we do not have distance bounds—that is, when stretch is co
for all demand pairs—weighted pairwise spanners captures the hopset problem.

Approximation algorithms for 2-hop covers [26], hub labelings [26, 4], and 2-spanners
[60, 31] in particular are closely related to our hopbound 2 regime (see full version [29]). In
all of these problems, the requirement of covering using 2-paths leads to algorithms that are
essentially solving some variant of Set Cover. Our situation is similar, so we can use similar
techniques, but our Set Cover variant is slightly different from these other problems, most
notably because we do not “pay” for edges that already exist in the graph.

Multicriteria spanners were recently introduced by [44]; they also rely on a modification
of the junction tree framework to give an approximation algorithm. While their junction
tree framework works for our setting, we present a different framework tailored to hopsets
that yields better approximations for our setting than their framework gives. Other related
problems are optimizations for other variants of spanners, including traditional directed k-
spanner (unit edge costs, all-pairs demands) [31, 6], buy-at-bulk spanners [43], and transitive
closure spanners [10, 17]. In addition to transitive closure spanners, [17] shows hardness of
bicriteria approximation for shortcut sets (where they allow the hopbound to be violated).

2 Preliminaries

Going forward, we will generally operate on what we call the weighted transitive closure of
G, defined as follows. Let dg(s,t) denote the distance in G from s to t.

» Definition 2 (Weighted Transitive Closure). The weighted transitive closure of a graph
G, denoted by Gy = (V, En), is the weighted graph obtained by first taking the transitive
closure of G, then assigning weight dg(u,v) to each edge (u,v) in the transitive closure. We
use E = En \ E to denote the set of edges in the weighted transitive closure that are not
provided in the input G.

Formally, we consider the following problem:

» Definition 3 (GENERALIZED 8-HOPSET). Given a directed graph G = (V, E), edge weights
(or “lengths”) £: E — {1,2,3,...,poly(n)}, a set of vertex pairs D CV x V, and a distance
bound function Dist : D — N>q, find the smallest set of edges H C E such that for each
vertex pair (s,t) € D, it is the case that dg(s,t) < dgf&G(s,t) < Dist(s,t). In other words,
there must be an s —t path P in H U G such that |P| < 3 and) . p{(e) < Dist(s,t).

M. Dinitz, A. Koranteng, and Y. Nazari

If G is directed, we say that the problem of interest is directed GENERALIZED (-HOPSET;
otherwise it is undirected GENERALIZED 3-HOPSET. Additionally, if for all (s,t) € D we have
that Dist(s,t) = k - dg(s,t) for some k, then this is the stretch-k GENERALIZED [3-HOPSET
problem. Note that GENERALIZED [-HOPSET is a generalized version of the traditional
hopset problem: all of our results hold for any set of vertex demand pairs, and many of our
results hold for arbitrary distance bound functions.

We will use OPT to refer to the cost of the optimal solution to the GENERALIZED (-
HOPSET problem instance. That is, OPT will refer to the number of edges in the optimal
hopset. A path is an i-hop path if there are exactly 7 edges on the path. We also say that a
demand (s,t) € D is settled or satisfied by a graph G (or an edge set F) if there is a path
from s to t in G (in F) with at most 8 hops and distance at most Dist(s,t). Otherwise,
demand (s, t) is considered unsettled or unsatisfied.

Note that the weighted transitive closure of a graph can be found in polynomial-time.
When working in the weighted transitive closure, we will generally assign costs to the edges
in Gps: edges in E will have cost 0, while edges in E will have cost 1. It is easy to see that
GENERALIZED B-HOPSET on G is equivalent to finding a min-cost subgraph of Gj; that
settles all demand pairs. We will use ¢(F) to denote the cost of an edge set F'; namely,
¢(F) = |[FNE| is the number of edges in F not provided in the input. Finally, we will assume
each edge (u,v) € E in the input is a shortest path from « to v in G.

3 LP Relaxation

In this section, we state and solve a cut-covering linear program (LP) for GENERALIZED
B-HOPSET. A few of our approximation algorithms will randomly round the solution to this
LP as a subroutine.

Let P ; be the set of paths from s to ¢ that have at most 3 hops and path length at
most Dist(s,t). We will refer to these paths as “allowed” or “valid” paths. The natural flow
LP for our problem requires building enough capacity to send one unit of (non-interfering)
flow along valid paths for each demand; this is the basic LP used in essentially all network
design problems, and was introduced for spanners by [31]. An equivalent LP, which is what
we will use for GENERALIZED [-HOPSET, is obtained through the duality between flows and
fractional cuts (of valid paths). This version of the LP for spanners was studied by [33], and
strengthens the anti-spanner LP of [6].

In more detail, for a graph G = (V, E), we say that an “s — ¢ cut against valid paths” is a
set of edges F' such that in the graph G \ F, there are no valid paths from s to ¢. In the cut
covering LP we will use, the constraints will ensure that any feasible solution must “cover”
every cut against valid paths; that is, any feasible solution must buy an edge in each of these
cuts. This leads to our LP relaxation, which we call LP(Hopset). The LP has a variable .
for every edge e € E);. Note that because edges in F—edges from the input graph—do not
contribute to the cost of the solution, we can assume without loss of generality that . =1
for all e € E. Let Z,; = {z € [0,1]'Fl : VP € Py, , 3 .cp2e > 1} be the set of vectors
representing all fractional cuts against valid s — ¢ paths. For each demand, our LP requires
any feasible integral solution to buy at least one edge from every cut against valid paths.

69:7

ICALP 2025

69:8

Approximation Algorithms for Optimal Hopsets

min g Te

ecl

st Y zewe > 1 Y(s,t) € D, Vz € Z,, (LP(Hopset))
e€E
z, >0 Ve € By

As written, LP(Hopset) has an infinite number of constraints. Consider the polytope
Z, for some demand (s,t). Due to convexity, we only need to keep the constraints that
correspond to the vectors z that form the vertices of of Z,;. Since there are only an
exponential number of these constraints, we can assume the LP has exponential size. It is
easy to see that LP(Hopset) is a valid LP relaxation of GENERALIZED (3-HOPSET; see the
full version for a proof [29].

3.1 Solving the LP

Some of our algorithms for GENERALIZED B-HOPSET involve some flavor of random LP
rounding, so in this section we will (approximately) solve LP(Hopset), our LP of interest. The
LP has an exponential number of constraints, so we must solve it using the ellipsoid algorithm
with a separation oracle. To do so, we start by defining another LP, LP(Oracle 1), that
captures the problem of finding a violated constraint of LP(Hopset). To solve LP(Oracle 1),
we find yet another (approximate) separation oracle. This second oracle boils down to
solving a hopbounded version of the Restricted Shortest Path problem. We show that this
problem admits an FPTAS, and that this ultimately translates to a (1 + €)-approximation
for LP(Hopset). More formally, we will prove the following:

» Theorem 4. There is a (1 + €)-approzimation to the optimal solution of LP(Hopset) for
any arbitrarily small constant € > 0.

3.1.1 Oracle 1

As noted, LP(Hopset) has exponential size, so we find a separation oracle in order to run
ellipsoid. To do so, we must determine if there is a fractional cut z that is not covered by
the LP solution x—that is, given x (satisfying the non-negativity constraints), we want to
find z € Z,;, for some demand (s,t) € D, such that ZeEEM zeZe < 1. We can find such a
violated cut-covering constraint by solving the following LP for each demand (s,t) € D.

min Z Zele
eeEn

st Y ze>1 VP e P, (LP(Oracle 1))
ecP
2e >0 Ve € Ey

3.1.2 Oracle 2: Hopbounded Restricted Shortest Path Problem

LP(Oracle 1) is also exponential in the number of constraints, so we use the ellipsoid algorithm
again, with yet another separation oracle. Given an LP solution z, we must determine whether
there is some valid s — ¢ path that is not fractionally cut (or, covered) by z. Specifically, we

M. Dinitz, A. Koranteng, and Y. Nazari

need to find a violated constraint of the form Zee p %e < 1 for some path P € P, ;. Observe
that we now have three separate metrics: the z metric (given by a solution to LP(Oracle 1)),
our original distance metric from the input, and a hop metric (where each edge has hop
“length” 1). We only care about valid s — ¢ paths; namely, paths with length at most D(s,t)
in our original distance metric and with length at most 8 in our hop metric. Thus, our goal
is to find the shortest path in the z metric that respects these upper bounds in the distance
and hop metrics.

When there are only two metrics—that is, when the goal is to find the shortest path in one
metric subject to an upper bound in the other—this is the Restricted Shortest Path problem,
defined as follows.

» Definition 5 (Restricted Shortest Path Problem). Let G = (V, E) be a graph such that each
edge e € E is associated with a cost z. and a delay {.. Let T be a positive integer, and
s,t € V be the source and target nodes, respectively. The Restricted Shortest Path problem is
to find a path P from s to t such that the delay along this path is at most T, and the cost of
P is minimal.

The Restricted Shortest Path problem is well studied [47, 69, 66, 71, 51]. The problem
admits an FPTAS, meaning there exists a polynomial-time (1+¢)-approximation for the
problem [63]. Since our problem of interest has a third metric (the hop metric), we refer to it as
the Hopbounded Restricted Shortest Path problem. We modify the Restricted Shortest Path
FPTAS algorithm of [63] to give an FPTAS for the Hopbounded Restricted Shortest Path
problem, thus giving a (1 + €)-approximate separation oracle for LP(Oracle 1). We formally
define the Hopbounded Restricted Shortest Path problem with respect to LP(Oracle 1):

» Definition 6 (Hopbounded Restricted Shortest Path problem). Let Gy = (V, Ep) be a
graph such that each edge e € E is associated with a cost z. and a delay, or length, £.. Let
T = D(s,t), and s,t € V be the source and target nodes, respectively. The Hopbounded
Restricted Shortest Path problem is to find a path P from s to t with at most 8 hops, such
that the length along this path is at most T', and the cost of P is minimal.

3.1.3 Hopbounded Restricted Shortest Paths Algorithm

At a high level, the Restricted Shortest Path algorithm works as follows. The algorithm runs
multiple binary searches to find good upper and lower bounds on the cost of the optimal
solution, then uses these bounds to scale and discretize (or “bucket”) the costs of the edges.
They then give a pseudo-polynomial time dynamic programming algorithm on the problem
with bucketed edge costs, which they show is a (1+ ¢)-approximation for the original problem.

To get this algorithm to work for the Hopbounded Restricted Shortest Path problem, we
simply modify the DP algorithm to take our hop metric into account, adding a factor 3 to
the runtime (see the full version for the algorithm and analysis [29]). The arguments of [63]
generally also hold for our algorithm, so we have that our algorithm is a (1+ ¢)-approximation
of the Hopbounded Restricted Shortest Path problem.

» Lemma 7. The Hopbounded Restricted Shortest Path problem admits an FPTAS.

3.1.4 Proof of Theorem 4

With an FPTAS for the Hopbounded Restricted Shortest Path problem (by Lemma 7), we
have an approximate separation oracle for LP(Oracle 1). Using the ellipsoid algorithm with
this oracle, we find a solution z for LP(Oracle 1). While z may not be feasible, it only violates

69:9

ICALP 2025

69:10

Approximation Algorithms for Optimal Hopsets

each constraint by a factor of at most (1 + €). That is, z satisfies (1 +¢€) > . p2ze > 1 for all
P € P, ;. Thus if we scale z by (1+¢), we get a feasible solution. Let z’ be this scaled solution,
where 2z, = (1 4 €)z. for all e € Ej;. We then also have that z’ is a (1 + €)-approximation
for LP(Oracle 1). This is implied by the fact that for any feasible solution z”” of LP(Oracle 1),
the value of the objective on z is at most the value of the objective on z’”” (the entire feasible
region satisfies the (1 + €) “approximate” constraints, and therefore the feasible region is

ce By PeTe < ZeeEM zlx, for all
feasible solutions z”’. Thus we have a (1 + €)-approximation for LP(Oracle 1). By similar

in the search space of the ellipsoid algorithm). That is,)

arguments, which we describe in the full version [29], this also implies a (1 + €)-approximation
for the hopset LP.

4 Approximation Algorithms for General Hopbounds

Continuing the connection to spanners, there is a reduction from GENERALIZED 3-HOPSET to
the directed pairwise weighted spanner problem (where “weighted” refers to edge costs). The
most general version of this problem, studied by [42], allows for any demand set, any positive
rational edge costs, integer edge weights in poly(n), and arbitrary distance bound functions.
The reduction starts with the transitive closure Gy, and builds a layered graph with g+ 1
copies of each node in Gy, and 8 copies of each edge (see Section 4.1.2 for a more detailed
description of the reduction). Since [42] achieved an O(n*/5+¢)-approximation for directed
pairwise weighted spanners, this reduction immediately gives an O((8n)*3+¢)-approximation
for GENERALIZED $-HOPSET.

In this section, we improve upon this result and get an 6(714/ 5+¢)_approximation for
GENERALIZED [-HOPSET, removing the dependence on . We will give approximation
algorithms in terms of n, 5, OPT, and “local neighborhood size.” All of our algorithms are
based on spanner algorithms, and we must modify them (and provide different analyses)
to accommodate the hop constraint. We will then trade these algorithms off with known
existential hopset results to get approximations (in terms of n and) in many regimes.

Our first algorithm, the junction tree algorithm of Section 4.1, will perform best when
£ and OPT are relatively small. Our second and third algorithms, the star sampling and
randomized LP rounding algorithms of Section 4.2, will together give better approximations
as OPT gets larger. We also give an O(logn)-approximation for hopbound 2, which we defer
to the full version [29].

4.1 Junction Tree Algorithm

In this section, we prove the following theorem for directed GENERALIZED [-HOPSET.

» Theorem 8. There is a polynomial-time 5(5716 - OPT)-approzimation for directed GENER-
ALIZED (-HOPSET.

To prove the theorem, we give an algorithm similar to a subroutine of the directed
pairwise weighted spanner algorithm of [42], where “weighted” refers to edge costs. In the
pairwise weighted spanner subroutine of [42], they define a variant of the junction tree (the
“distance-preserving junction tree”). Junction trees are rooted trees that satisfy demands,
and good junction trees satisfy many demands at low cost; that is, they have low “density.”
Junction trees have been used in several spanner approximation algorithms (e.g. [42, 22, 44]).
In [42], they give an algorithm that iteratively buys their version of low density junction
trees until all demands are satisfied. Our algorithm will follow the same structure. The main
technical work in this section is in showing that low-density hopbounded junction trees exist
in our setting, and that we can use the subroutine of [42] to find these hopbounded junction
trees, even though their subroutine does not have any hop guarantees.

M. Dinitz, A. Koranteng, and Y. Nazari

We note that the junction tree framework developed by [44] for multicriteria spanners
also works for our setting. Their framework implies an 6(|D|6 - f)-approximation for finding
the hopbounded minimum-density junction tree, and thus a 6(ﬂ2 -|DJ¢ - OPT)-approximation
for directed GENERALIZED B-HOPSET. By tailoring our framework to hopsets, we achieve an
O(n®)-approximation for finding the hopbounded min-density junction tree (note the lack of
dependence on), implying our main result of this section (Theorem 8), a 6(5 -n - OPT)-
approximation overall. By using our hopbounded junction tree framework, we lose a factor 3
in our overall approximation compared to what is implied by [44].

We first define a hopbounded variant of the junction tree, which we call an (4, j)-distance-
preserving hopbounded junction tree. We parameterize by i, j, where i + j < 3, to ensure
that both “sides” of the rooted tree-the in-arborescence and the out-arborescence that make
up the tree—are hopbounded by ¢ and j, respectively, so that all paths in the tree have at
most 3 hops.

» Definition 9 ((7, j)-Distance-Preserving Hopbounded Junction Tree). An (i, j)-distance-
preserving hopbounded junction tree, where ¢ + j < 8, is a subgraph of Gy that is a union
of an in-arborescence and an out-arborescence, both rooted at some vertex r € V, with the
following properties: 1) every leaf of the in-arborescence has a path of at most i hops to r, 2)
for every leaf w in the out-arborescence, there is a path of at most j hops from r to w, and
3) for some node s in the in-arborescence and some node t in the out-arborescence, there is
an s —t path through r with distance at most Dist(s,t). The density of an (i,j)-distance-
preserving hopbounded junction tree T is the ratio of the cost of T to the number demands
settled by T'.

Going forward, we will refer to the (i, j)-distance-preserving hopbounded junction tree as
simply an “(, j)-junction tree.” Our algorithm will find and remove a low-density hopbounded
junction tree from Gy, add its edges to the current solution, and repeat, until all demand
pairs are settled. We will give an O(n¢)-approximation for finding these low-density junction
trees. The algorithm will return a subgraph with total cost of 5(52716 . OPTQ).

4.1.1 Existence of Low-Density Junction Trees

Let D be the set of unsettled vertex pairs at some iteration of the algorithm. We first use an
averaging argument to show that a hopbounded junction tree with density O(3 - OPT?/ |D|)
always exists (at any iteration), where OPT is the cost of the optimal solution to the problem
instance. We defer the proof to the full version [29].

» Lemma 10. For any set of unsettled demands D, there exists an (i, j)-junction tree with
density O(8 - OPT?/|D)).

4.1.2 Layered Graph Reduction

We want to show that we can find a junction tree with low enough density at each iteration
of the algorithm. To do so, we will use the junction-tree finding subroutine provided in [42].
Their subroutine, however, finds non-hop-constrained junction trees. We therefore transform
our input graph in order to use their subroutine to find (7, j)-junction trees. We build the
following B-layered graph out of Gy.

69:11

ICALP 2025

69:12

Approximation Algorithms for Optimal Hopsets

4.1.2.1 Layered Graph Construction

To construct the layered graph Gp = (Vi,FEr) with costs ¢, : Er — {0,1}, weights
lr B —{1,2,...,poly(n)}, demand set Dy, and distance bounds Disty, : Dj, — Nxg, we
first create B 4+ 1 copies of each vertex u € V so that u corresponds to vertices ug, u1,...,ug
in V. For each edge (u,v) € Epy we add edges {(u;, viy1) : @ € [0, — 1]} to EL. For each
edge e = (u;,vi41) of this type, we set £z (¢) = £(u,v). We also set cp(e) = 1 if (u,v) € E;
otherwise we set cr,(e) = 0. For each vertex in Vy,, we also add edges {(u;, ui4+1) : 4 € [0, 5—1]}
to Er, and set their costs and weights to 0. Finally, we add a demand (so,¢g) to Dy, for
demand each (s,t) € D.

By design, (7, j)-junction trees in Gy correspond to (4, j)-junction trees in G, (and vice
versa) with the same density. The proof of this is straightforward, and is deferred to the full
version [29]. We say that MIN DENSITY (4, 7)-JUNCTION TREE is the optimization problem
of finding the minimum density (7, j)-junction tree in an input graph, over all possible values
of 7, 7.

» Lemma 11. If there is an a-approzimation algorithm for MIN DENSITY (i, j)-JUNCTION
TREE on Gy, then there is also an a-approzimation algorithm for MIN DENSITY (i,j)-
JUNCTION TREE on Gyy.

4.1.3 Junction Tree-Finding Subroutine

We now show that we can find low-density junction trees at each iteration of the algorithm.
Although (4, j)-junction trees are hopbounded by definition, we can now use the following
length-bounded junction tree-finding subroutine of [42] to find hopbounded junction trees,
thanks to the reduction to the S-layered graph Gp,.

» Lemma 12 (Lemma 16 of [42]). For any constant ¢ > 0, there is a polynomial-time

approzimation algorithm for finding the minimum density distance-preserving junction tree.

That is, there is a polynomial time algorithm which, given a weighted directed n-vertex

graph G = (V, E) where each edge e € E has cost c¢(e) € R>o and integral length ¢(e) €

{0,1,...,poly(n)}, terminal pairs D CV x V, and distance bounds Dist : D — N for each

terminal pair (s,t) € D, approzimates the following problem to within an O(n¢) factor:
Find a non-empty set of edges F C E minimizing the ratio:

min ZeEF c(e)
reV [{(s,t) € D:dp,(s,t) < Dist(s,t)}]|

where dp(s,t) is the length of the shortest path using edges in F' which connects s to t while
going through r (if such a path exists). We call this problem MIN DENSITY LENGTH-BOUNDED
JUNCTION TREE.

This gives an O(n®)-approximation algorithm for finding the min-density (¢, j)-junction
tree on Gps. The proof of the following lemma can be found in the full version [29)].

» Lemma 13. There is an O(n®)-approximation for MIN DENSITY (i,5)-JUNCTION TREE
on Gr.

» Lemma 14. There is a polynomial-time algorithm that finds an (i, j)-junction tree with
density O(Bn® - OPT?/|D|), where D is the set of unsettled demands in G.

Proof. By Lemma 10, there exists an (i, j)-junction tree with density O(3 - OPT?/|D|).
We can run the O(n¢)-approximation algorithm (Lemma 13) on G, which outputs an
(4, j)-junction tree with density O(8n¢ - OPT?/|D|). <

M. Dinitz, A. Koranteng, and Y. Nazari

4.1.4 Proof of Theorem 8

By iteratively buying these low-density (¢,j)-junction trees, we get an O(fn¢ - OPT)-
approximation for GENERALIZED 3-HOPSET. We defer the proof to the full version [29].

4.2 Star Sampling with Randomized LP Rounding Algorithm
In this section we prove the following theorem.

» Theorem 15. There is a randomized algorithm for directed GENERALIZED S-HOPSET with
expected approximation ratio O(n lnn/\/OPT).

The pair of algorithms we give closely follow the 6(n2/ 3)- and 5(\/75)—approximations
for the unweighted k-spanner problem, given by [31] and [6], respectively. The k-spanner
algorithm is a trade-off between two algorithms: an arborescence sampling algorithm for
settling a class of edges (or demands) that they call “thick,” and a randomized LP rounding
algorithm for settling “thin” edges. For hopsets we will settle these thick demands by sampling
directed stars instead of arborescences, and for thin demands we will use a similar LP rounding
approach. Although our hopset algorithms are similar to the k-spanner algorithms, we get
a different approximation (O(n /VOPT) for hopsets versus O(y/n) for spanners). This is
because [31, 6] take advantage of the fact that for spanners, OPT > n — 1. This is not the
case for hopsets so we get a different approximation out of the algorithms, in terms of OPT.
This approach is also similar to that of [22] for pairwise distance preservers, where again,
Q(n) is not a lower bound for OPT.

We note that our O(nlnn / v OPT)-approximation is achieved by trading off the two
aforementioned algorithms (star-sampling and randomized-rounding). To later achieve the
optimal trade-off with other algorithms, one should a priori treat each of these two algorithms
as separate, with their own individual approximation ratios. It is however equivalent to
trade these two algorithms off first and treat them as one combined algorithm, which we do
going forward. This is because these are our only algorithms that will depend on the “local
neighborhood size” parameter.

To define thick and thin demands, we must first define subgraphs G*'* for all demands
(s,t), as in [31, 6]:

» Definition 16. For a demand (s,t) € D, let Gt = (V5! E%) be the subgraph of G
induced by the vertices on paths in Pst. We call |[V*!| the local neighborhood size.

» Definition 17 (Thick and Thin Demands). Let b be a parameter in [1,n]. If [V > n/b
then the corresponding demand (s,t) is thick, otherwise it is thin. We shall always assume

that b = vVOPT.

Let Dinick and Dypin be the set of all thick and thin demands, respectively. We will
run two algorithms to build two edge sets, £’ and E”, such that all thick demands are
settled by E’ and all thin demands are settled by E”. The set E’ will have cost O(bnlnn)
in expectation, while E” will have cost O((n/b)Inn - OPT) in expectation. The optimal
tradeoff of these algorithms has b = vVOPT, so each edge set will have cost O(nInn - vVOPT)

in expectation.

4.2.1 Star-Sampling Algorithm for Thick Demands

We describe the random sampling subroutine for constructing the edge set E’, which will
settle all thick demands (Algorithm 1).

69:13

ICALP 2025

69:14

Approximation Algorithms for Optimal Hopsets

Algorithm 1 Star-Sampling Algorithm.
Input: Graph Gy = (V, Ey)
Let B/ <0, S« 0 // Set S is only used for the analysis

foreach indexi=1,2,...,blnn do
v < a uniformly random element from V'

Té" < inward star of G rooted at v
Tou « outward star of G rooted at v
E' + E'UTmuTo, S« Su{v}
foreach unsettled demand (s,t) € Dipick, do
| E'+ E'"U(s,t)
Return £’

This algorithm is nearly identical to that of [31]. The only difference is that, since we
operate on the weighted transitive closure of G, we build directed in- and out-stars as opposed
to the shortest path in- and out-arborescences used for the spanner setting.

We now show that E’ has the desired cost in expectation. While [31] proves this for
spanners, it is easy to see that a near identical argument also holds for hopsets in G;. We
restate the proof in the full version for completeness [29].

» Lemma 18 ([31]). Algorithm 1, in polynomial time, computes an edge set E' that settles
all thick demands and has expected cost O(bnlnn). If b = vVOPT, then the expected cost is
O(nlnn-+vOPT).

4.2.2 Randomized LP Rounding Algorithm for Thin Demands

We now give the algorithm for finding a set E” to settle thin demands. [6] introduces the
notion “anti-spanners,” which is crucial for the algorithm and analysis for settling thin
demands. In particular, they formulate an anti-spanner covering LP that captures the
problem of settling all thin demands. They then solve the LP (with high probability) by
constructing a separation oracle that utilizes randomized rounding. We also use randomized
LP rounding, though instead of rounding the solution to an “anti-hopset” covering LP, we
will round based on LP(Hopset). Our LP is stronger than the “anti-hopset” covering LP,
since our LP is for fractional cuts against valid paths, while the anti-hopset covering LP is
only for integer cuts.

Going forward, we assume without loss of generality that we know the value of the optimal
solution—-OPT is in {0,1,...,n2}, so we can just try each of these values for OPT and return
the smallest hopset found over all tries. We can therefore replace the objective function
of LP(Hopset) with the following:

> w. <OPT (4)

eEE

We use this modified version of LP(Hopset) for the randomized rounding algorithm.
Given a fractional solution x* to LP(Hopset), our algorithm will return an edge set E” that,
with high probability, will cost at most 20PT - 2(n/b) Inn and satisfy all thin demands (see
Algorithm 2). We say that the algorithm fails if ¢(E”) > 20PT - 2(n/b)Inn or if E” doesn’t
satisfy all thin demands.

We now show that the probability is exponentially small that the algorithm fails. The
argument is very similar to that given by [6] for spanners; we state it in the full version for
completeness [29].

M. Dinitz, A. Koranteng, and Y. Nazari

Algorithm 2 Randomized LP Rounding Algorithm.

Input: Graph Gy = (V, Ep), LP(Hopset) fractional solution x*
Let B <0

// sample edges into E”
foreach edge e € E); do
Let p. < min(1,2(n/b)Inn - z¥)
Add e to E” with probability p,

if B settles all thin demands then
| Return E”

else
| Return Eyp \ F

» Lemma 19 (Theorem 2.2 of [6]). The probability that Algorithm 2 fails is exponentially
small in n.

4.2.3 Proof of Theorem 15

Proof. All thick demands can be satisfied by running Algorithm 1 to build E’, which has
expected cost O(nlnn - vOPT) (by Lemma 18) and runs in polynomial time. The thin
demands can be satisfied by running Algorithm 2, which runs in polynomial time. Algorithm 2
fails with exponentially small probability (in which case we return all possible hopset edges,
E), and thus the expected cost of E” is at most OPT - 2(n/b)Inn + o(1) = O(nlnn - v/OPT)
(Lemma 19). Thus the overall approximation ratio is O(nlnn/vOPT). <

4.3 Trade-Offs with Existential Bounds

There are a number of constructive existential results for hopsets that we trade off with our
junction tree-based algorithm from Section 4.1 (an O(3n¢-OPT)-approximation) and our star-
sampling/randomized-rounding algorithm from Section 4.2 (an O(n/+/OPT)-approximation)
to give approximations in several regimes. Our junction tree algorithm gives much better
approximations than all other existential results when OPT and § are relatively small, so
it will be used in the trade off for all regimes. The star-sampling/randomized-rounding
algorithm gives improved approximations over the junction tree algorithm as OPT gets larger.

We trade off a folklore existential result for directed, exact hopsets, along with the
existential results of [9] (directed, (1 + €)-stretch), [37] (undirected, (1 + €)-stretch), and [67]
(undirected, odd stretch) to get improved approximations over the general problem in these
regimes. We also note that a trade off can be done with the existential results of [5] for
improved approximations in the constant stretch, Q(logn)-hopbound regime for undirected
graphs. Further discussions of each trade-off can be found in the full version [29].

4.3.1 Directed Graphs with Arbitrary Distance Bounds

We trade off our junction tree and star-sampling/randomized-rounding algorithms with the
folklore construction to achieve the following for directed GENERALIZED S-HOPSET:

» Theorem 20. There is a randomized polynomial-time 6(77,4/ 5+€)_approzimation for directed
GENERALIZED 3-HOPSET.

69:15

ICALP 2025

69:16

Approximation Algorithms for Optimal Hopsets

Where € > 0 is an arbitrarily small constant. When S is smaller, the folklore construction
gives worse approximations than the trade-off between our other algorithms. In this regime,
we achieve a better approximation:

» Theorem 21. When 8 = 6(n2/5), there is a randomized polynomial-time 6(61/3 -n2/3%e).
approzimation for directed GENERALIZED 3-HOPSET.

We also get improved approximations in the large /3 setting by trading off just the junction
tree algorithm with the folklore construction:

» Theorem 22. When 8 = Q(n2/%), there is a randomized polynomial-time O(n'*</\/B)-
approxzimation for directed GENERALIZED 3-HOPSET.

4.3.2 Directed Hopsets with Small Stretch

Using the existential bound of [9], we get an improved approximation for directed GENERAL-
1ZED B-HOPSET when we restrict to (1 4 €) stretch.

» Theorem 23. When § > 20logn and € € (0,1), there is a randomized polynomial-time
O(n3/4+6/ . e_i)-appromimation for directed stretch-(1 4+ €) GENERALIZED [3-HOPSET, where
€ > 0 is an arbitrarily small constant.

4.3.3 Undirected Hopsets with Small Stretch

Let Wy(z) be the principle branch of the Lambert W function, which is upper bounded by
Inz — (1/2)Inlnx when = > 3. With the existential bound of [37], we get the following:

» Theorem 24. Let n = |fY/Wonf)| 5 gt/(nnp—ynnlnB) (ineayality holds for 5 > 3).
When g = 5(71%_%), there is a randomized polynomial-time 5(\/3-n%+ﬁ+el)-appmximation
for undirected (1 + €)-stretch GENERALIZED (3-HOPSET, where € € (0,1), and ¢ > 0 is an
arbitrarily small constant.

For some insight into the behavior of 7, note first that for all 5 > 3, n > 6. Additionally, the
n function grows faster than In 8, but much slower than (3.
4.3.4 Undirected Hopsets with Odd Stretch

Trading off with the existential result of [67], we get the following;:

» Theorem 25. Let k > 1 be an integer. When § = 5(k’1/2~ n%’ﬁ), there is a polynomial-
time O(\/kf - n2+ 25 t¢)-approzimation for undirected stretch-(2k — 1) GENERALIZED -
HoPsET, where € > 0 is an arbitrarily small constant.

—— References

1 Amir Abboud and Greg Bodwin. Reachability preservers: New extremal bounds and approxima-
tion algorithms. STAM Journal on Computing, 53(2):221-246, 2024. doi:10.1137/21M1442176.

2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive
spanners. SIAM Journal on Computing, 47(6):2203-2236, 2018. doi:10.1137/16M1105815.

3 Ingo Althofer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse span-
ners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. doi:10.1007/BF02189308.

4 Maxim Babenko, Andrew V. Goldberg, Anupam Gupta, and Viswanath Nagarajan. Algorithms
for hub label optimization. ACM Trans. Algorithms, 13(1), November 2016. doi:10.1145/
2996593.

https://doi.org/10.1137/21M1442176
https://doi.org/10.1137/16M1105815
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/2996593
https://doi.org/10.1145/2996593

M. Dinitz, A. Koranteng, and Y. Nazari

10

11

12

13

14

15

16

17

18

19

20

Uri Ben-Levy and Merav Parter. New («,) spanners and hopsets. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1695-1714. STAM,
2020. doi:10.1137/1.9781611975994.104.

Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Improved approximation for the directed spanner problem. In Proceedings
of the 38th International Colloquim Conference on Automata, Languages and Programming
- Volume Part I, ICALP’11, pages 1-12, Berlin, Heidelberg, 2011. Springer-Verlag. doi:
10.1007/978-3-642-22006-7_1.

Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental sssp and approximate min-cost flow in almost-linear time. In 62 Annual IEEE
Symposium on Foundatios of Computer Science (FOCS 2022), 2021.

Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approximate
shortest paths under deletions. In Proceedings of the twenty-second annual ACM-SIAM sym-

posium on Discrete Algorithms, pages 1355-1365. STAM, 2011. doi:10.1137/1.9781611973082.

104.

Aaron Bernstein and Nicole Wein. Closing the gap between directed hopsets and shortcut sets.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 163-182. STAM, 2023. doi:10.1137/1.9781611977554.CH7.

Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners, 2008. arXiv:0808.1787.

Greg Bodwin and Gary Hoppenworth. Folklore sampling is optimal for exact hopsets: Con-
firming the \/n barrier. In 20238 IEEFE 6/th Annual Symposium on Foundations of Computer
Science (FOCS), pages 701-720. IEEE, 2023.

Greg Bodwin, Gary Hoppenworth, and Ohad Trabelsi. Bridge girth: A unifying notion in
network design. In 2023 IEEFE 64th Annual Symposium on Foundations of Computer Science
(FOCS), pages 600-648. IEEE, 2023. doi:10.1109/F0CS57990.2023.00043.

Nairen Cao and Jeremy T Fineman. Parallel exact shortest paths in almost linear work and
square root depth. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 4354-4372. STAM, 2023. doi:10.1137/1.9781611977554.CH166.
Nairen Cao, Jeremy T Fineman, and Katina Russell. Efficient construction of directed hopsets
and parallel approximate shortest paths. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 336-349, 2020. doi:10.1145/3357713.3384270.
Nairen Cao, Jeremy T Fineman, and Katina Russell. Improved work span tradeoff for single
source reachability and approximate shortest paths. In ACM Symposium on Parallelism in
Algorithms and Architectures, 2020.

Keren Censor-Hillel, Michal Dory, Janne H Korhonen, and Dean Leitersdorf. Fast approximate
shortest paths in the congested clique. Distributed Computing, 34:463-487, 2021. doi:
10.1007/S00446-020-00380-5.

Parinya Chalermsook, Yonggang Jiang, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Shortcuts and transitive-closure spanners approximation, 2025. doi:10.48550/arXiv.2502.
08032.

Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 170-181. IEEE,
2018. doi:10.1109/F0CS.2018.00025.

Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed steiner network problem. ACM Trans. Algorithms, 7(2),
March 2011. doi:10.1145/1921659.1921664.

Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEFE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612-623.
IEEE, 2022. doi:10.1109/F0CS54457.2022.00064.

69:17

ICALP 2025

https://doi.org/10.1137/1.9781611975994.104
https://doi.org/10.1007/978-3-642-22006-7_1
https://doi.org/10.1007/978-3-642-22006-7_1
https://doi.org/10.1137/1.9781611973082.104
https://doi.org/10.1137/1.9781611973082.104
https://doi.org/10.1137/1.9781611977554.CH7
https://arxiv.org/abs/0808.1787
https://doi.org/10.1109/FOCS57990.2023.00043
https://doi.org/10.1137/1.9781611977554.CH166
https://doi.org/10.1145/3357713.3384270
https://doi.org/10.1007/S00446-020-00380-5
https://doi.org/10.1007/S00446-020-00380-5
https://doi.org/10.48550/arXiv.2502.08032
https://doi.org/10.48550/arXiv.2502.08032
https://doi.org/10.1109/FOCS.2018.00025
https://doi.org/10.1145/1921659.1921664
https://doi.org/10.1109/FOCS54457.2022.00064

69:18

Approximation Algorithms for Optimal Hopsets

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Eden Chlamtac and Michael Dinitz. Lowest-degree k-spanner: Approximation and hardness.
Theory Comput., 12(1):1-29, 2016. doi:10.4086/T0C.2016.V012A015.

Eden Chlamtac, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed steiner forest: Upper and lower bounds. ACM Trans. Algorithms,
16(3):33:1-33:31, 2020. doi:10.1145/3381451.

Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via
dense subgraphs. In 58rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 758-767. IEEE Computer
Society, 2012. doi:10.1109/F0CS.2012.61.

Eden Chlamtac, Michael Dinitz, and Thomas Robinson. Approximating the norms of graph
spanners. In Dimitris Achlioptas and Lészlé A. Végh, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019,
September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, volume
145 of LIPIcs, pages 11:1-11:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019.
doi:10.4230/LIPICS.APPROX-RANDOM.2019.11.

Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. Journal of the ACM (JACM), 2000.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338-1355, 2003. doi:10.1137/
S0097539702403098.

Emilio Cruciani, Sebastian Forster, Gramoz Goranci, Yasamin Nazari, and Antonis Skarlatos.
Dynamic algorithms for k-center on graphs. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3441-3462. STAM, 2024. doi:10.1137/1.
9781611977912.123.

Erik D Demaine and Morteza Zadimoghaddam. Minimizing the diameter of a network using
shortcut edges. In Scandinavian Workshop on Algorithm Theory, pages 420-431. Springer,
2010. doi:10.1007/978-3-642-13731-0_39.

Michael Dinitz, Ama Koranteng, and Yasamin Nazari. Approximation algorithms for optimal
hopsets, 2025. doi:10.48550/arXiv.2502.06522.

Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and the
hardness of approximating basic k-spanner. ACM Trans. Algorithms, 12(2):25:1-25:16, 2016.
doi:10.1145/2818375.

Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC
’11, pages 323-332, New York, NY, USA, 2011. Association for Computing Machinery. doi:
10.1145/1993636.1993680.

Michael Dinitz and Yasamin Nazari. Massively parallel approximate distance sketches. OPODIS,
2019.

Michael Dinitz, Yasamin Nazari, and Zeyu Zhang. Lasserre integrality gaps for graph spanners
and related problems. In Approximation and Online Algorithms: 18th International Workshop,
WAOA 2020, Virtual Event, September 9—10, 2020, Revised Selected Papers, pages 97-112,
Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-80879-2_7.

Michal Dory and Shaked Matar. Massively parallel algorithms for approximate shortest paths.
In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 24, pages 415-426, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3626183.3659978.

Michael Elkin and Ofer Neiman. Near-optimal distributed routing with low memory. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM, 2018.
Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. SIAM Journal on Computing, 2019.

https://doi.org/10.4086/TOC.2016.V012A015
https://doi.org/10.1145/3381451
https://doi.org/10.1109/FOCS.2012.61
https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2019.11
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1137/1.9781611977912.123
https://doi.org/10.1137/1.9781611977912.123
https://doi.org/10.1007/978-3-642-13731-0_39
https://doi.org/10.48550/arXiv.2502.06522
https://doi.org/10.1145/2818375
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1145/1993636.1993680
https://doi.org/10.1007/978-3-030-80879-2_7
https://doi.org/10.1145/3626183.3659978

M. Dinitz, A. Koranteng, and Y. Nazari

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism in Algorithms and
Architectures, pages 333-341, 2019. doi:10.1145/3323165.3323177.

Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets, a unified
view. arXiv preprint arXiv:2001.07477, 2020. arXiv:2001.07477.

Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory
Comput. Syst., 41(4):69177297 2007. doi:10.1007/S00224-006-1266-2.

Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. Journal of Computer and System Sciences, 78(1):279-292, 2012.
d0i:10.1016/J.JCSS.2011.05.009.

Jeremy T Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
457-470, 2018. doi:10.1145/3188745.3188926.

Elena Grigorescu, Nithish Kumar, and Young-San Lin. Approximation Algorithms for Directed
Weighted Spanners. In Nicole Megow and Adam Smith, editors, Approzimation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023),
volume 275 of Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1-8:23,
Dagstuhl, Germany, 2023. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/
LIPIcs.APPROX/RANDOM.2023.8.

Elena Grigorescu, Nithish Kumar, and Young-San Lin. Directed buy-at-bulk spanners, 2024.
do0i:10.48550/arXiv.2404.05172.

Elena Grigorescu, Nithish Kumar, and Young-San Lin. Multicriteria spanners — a new tool for
network design, 2024. doi:10.48550/arXiv.2412.05526.

Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online directed spanners and steiner
forests. In Mary Wootters and Laura Sanita, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August
16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference),
volume 207 of LIPIcs, pages 5:1-5:25. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2021. doi:10.4230/LIPICS.APPROX/RANDOM.2021.5.

Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms for
decremental approximate shortest paths: Faster and simpler. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2522—2541. STAM, 2020. doi:
10.1137/1.9781611975994 . 154.

Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations Research, 17(1):36-42, 1992. doi:10.1287/MO0R.17.1.36.

Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-
source shortest paths on undirected graphs in near-linear total update time. In 2014 IEEFE
55th Annual Symposium on Foundations of Computer Science, pages 146-155. IEEE, 2014.
doi:10.1109/F0CS.2014.24.

William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 665-669, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644216.

Gary Hoppenworth, Yinzhan Xu, and Zixuan Xu. New separations and reductions for directed
hopsets and preservers. In Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 4405-4443. STAM, 2025. doi:10.1137/1.9781611978322.150.
Marké Horvath and Tamdés Kis. Multi-criteria approximation schemes for the resource
constrained shortest path problem. Optimization Letters, 12(3):475-483, 2018. doi:10.1007/
S11590-017-1212-7Z.

Shang-En Huang and Seth Pettie. Thorup—zwick emulators are universally optimal hopsets.
Information Processing Letters, 142:9-13, 2019. doi:10.1016/J.IPL.2018.10.001.

69:19

ICALP 2025

https://doi.org/10.1145/3323165.3323177
https://arxiv.org/abs/2001.07477
https://doi.org/10.1007/S00224-006-1266-2
https://doi.org/10.1016/J.JCSS.2011.05.009
https://doi.org/10.1145/3188745.3188926
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.8
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.8
https://doi.org/10.48550/arXiv.2404.05172
https://doi.org/10.48550/arXiv.2412.05526
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.5
https://doi.org/10.1137/1.9781611975994.154
https://doi.org/10.1137/1.9781611975994.154
https://doi.org/10.1287/MOOR.17.1.36
https://doi.org/10.1109/FOCS.2014.24
http://dl.acm.org/citation.cfm?id=644108.644216
https://doi.org/10.1137/1.9781611978322.150
https://doi.org/10.1007/S11590-017-1212-Z
https://doi.org/10.1007/S11590-017-1212-Z
https://doi.org/10.1016/J.IPL.2018.10.001

69:20

Approximation Algorithms for Optimal Hopsets

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts. SIAM Journal on Discrete Mathematics, 35(3):2129-2144, 2021. doi:
10.1137/19M1306154.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Parallel reachability in almost linear work
and square root depth. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1664-1686. IEEE, 2019. doi:10.1109/F0CS.2019.00098.

Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 1997.

Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower
bounds for hopsets. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 766-777. IEEE, 2022. doi:10.1109/F0CS54457.2022.00078.

Shimon Kogan and Merav Parter. New diameter-reducing shortcuts and directed hopsets:
Breaking the barrier. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1326-1341. STAM, 2022. doi:10.1137/1.9781611977073.55.
Shimon Kogan and Merav Parter. Towards bypassing lower bounds for graph shortcuts. In 31st
Annual European Symposium on Algorithms (ESA 2023). Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, 2023.

Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432-450, 2001.
doi:10.1007/500453-001-0021-Y.

Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222-236,
1994. doi:10.1006/JAGM.1994.1032.

Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput.,
27(5):1438-1456, 1998. doi:10.1137/S0097539794268753.

Jakub backi and Yasamin Nazari. Near-optimal decremental hopsets with applications. In
49th International Colloguium on Automata, Languages, and Programming (ICALP 2022).
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.

Dean H. Lorenz and Danny Raz. A simple efficient approximation scheme for the restric-
ted shortest path problem. Oper. Res. Lett., 28(5):213-219, June 2001. doi:10.1016/
S0167-6377(01) 00069-4.

Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems
via dynamic graph algorithms. In Proceedings of the forty-second ACM symposium on Theory
of computing, pages 121-130, 2010. doi:10.1145/1806689.1806708.

Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms
for spanners and hopsets. In Proceedings of the Symposium on Parallelism in Algorithms and
Architectures. ACM, 2015.

Cynthia A. Phillips. The network inhibition problem. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, STOC 93, pages 776-785, New York, NY,
USA, 1993. Association for Computing Machinery. doi:10.1145/167088.167286.

Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, January
2005. doi:10.1145/1044731.1044732.

Jeffery Ullman and Mihalis Yannakakis. High-probability parallel transitive closure algorithms.
In Proceedings of the second annual ACM symposium on Parallel algorithms and architectures,
pages 200-209, 1990.

Arthur Warburton. Approximation of pareto optima in multiple-objective, shortest-path
problems. Oper. Res., 35:70-79, 1987. doi:10.1287/0PRE.35.1.70.

Virginia Vassilevska Williams, Yinzhan Xu, and Zixuan Xu. Simpler and higher lower bounds
for shortcut sets. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2643-2656. STAM, 2024. doi:10.1137/1.9781611977912.94.
Guoliang Xue, Weiyi Zhang, Jian Tang, and Krishnaiyan Thulasiraman. Polynomial time
approximation algorithms for multi-constrained qos routing. IEEE/ACM Transactions on
Networking, 16(3):656-669, 2008. doi:10.1109/TNET.2007.900712.

https://doi.org/10.1137/19M1306154
https://doi.org/10.1137/19M1306154
https://doi.org/10.1109/FOCS.2019.00098
https://doi.org/10.1109/FOCS54457.2022.00078
https://doi.org/10.1137/1.9781611977073.55
https://doi.org/10.1007/S00453-001-0021-Y
https://doi.org/10.1006/JAGM.1994.1032
https://doi.org/10.1137/S0097539794268753
https://doi.org/10.1016/S0167-6377(01)00069-4
https://doi.org/10.1016/S0167-6377(01)00069-4
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/167088.167286
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1287/OPRE.35.1.70
https://doi.org/10.1137/1.9781611977912.94
https://doi.org/10.1109/TNET.2007.900712

	1 Introduction
	1.1 Our Results and Techniques
	1.1.1 Upper Bounds
	1.1.2 Lower Bounds

	1.2 Related Work

	2 Preliminaries
	3 LP Relaxation
	3.1 Solving the LP
	3.1.1 Oracle 1
	3.1.2 Oracle 2: Hopbounded Restricted Shortest Path Problem
	3.1.3 Hopbounded Restricted Shortest Paths Algorithm
	3.1.4 Proof of Theorem 4

	4 Approximation Algorithms for General Hopbounds
	4.1 Junction Tree Algorithm
	4.1.1 Existence of Low-Density Junction Trees
	4.1.2 Layered Graph Reduction
	4.1.3 Junction Tree-Finding Subroutine
	4.1.4 Proof of Theorem 8

	4.2 Star Sampling with Randomized LP Rounding Algorithm
	4.2.1 Star-Sampling Algorithm for Thick Demands
	4.2.2 Randomized LP Rounding Algorithm for Thin Demands
	4.2.3 Proof of Theorem 15

	4.3 Trade-Offs with Existential Bounds
	4.3.1 Directed Graphs with Arbitrary Distance Bounds
	4.3.2 Directed Hopsets with Small Stretch
	4.3.3 Undirected Hopsets with Small Stretch
	4.3.4 Undirected Hopsets with Odd Stretch

