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A QUANTIZATION OF COARSE SPACES
AND UNIFORM ROE ALGEBRAS

BRUNO M. BRAGA, JOSEPH EISNER AND DAVID SHERMAN

We propose a quantization of coarse spaces and uniform Roe algebras. The
objects are based on the quantum relations introduced by N. Weaver and
require the choice of a represented von Neumann algebra. In the case of the
diagonal inclusion £, (X) C B(£2(X)), they reduce to the usual constructions.
Quantum metric spaces furnish natural examples parallel to the classical
setting, but we provide other examples that are not inspired by metric
considerations, including the new class of support expansion C*-algebras.
We also work out the basic theory for maps between quantum coarse spaces
and their consequences for quantum uniform Roe algebras.

1. Introduction

Roe-type algebras, also known as closed translation invariant algebras [Roe 2003],
are operator algebras built out of metric or more general coarse spaces. Originally
introduced by J. Roe [1988a; 1988b] to obtain index theorems for elliptic operators
on noncompact Riemannian manifolds, they have since found applications in many
directions, from the Baum—Connes and Novikov conjectures [Yu 2000] to topo-
logical insulators [Ewert and Meyer 2019]. Based on a wave of recent work, we
now know that these algebras are complete invariants for the large-scale, or coarse,
geometry of the underlying spaces (see, e.g., [Baudier et al. 2022; Martinez and
Vigolo2025h)Inthisarticle we point out that the entire framework implicitly relies
on the simplest von Neumann algebras, those of the form ¢, (X), which we gener-
alize to arbitrary von INeumann algebras. This opens up a new realm of quantum

coarse spaces and their associated quantum uniform Roe algebras. Here we follow
standard usage of the adjective “quantum” (much repeated throughout the paper)
as an interpretation of [structures connected to Hilbert spaces as noncommutative
versions of classical copnterparts [Connes 1994; Weaver 2001]. The foundation for
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our approach is N. Weaver’s quantization of relations on a set [2012], as well as
G. Kuperberg and N. Weaver’s quantum approach to metric spaces [2012].

Let us review a few concepts from coarse geometry. A coarse space consists of
a set X together with a collection £ of relations which, by satisfying certain axioms,
gives a notion of boundedness. The prototype is a metric space (X, d), with £
comprising all subsets of the sets {(x, y) € X x X : d(x, y) < r}; the appropriate
well-behaved maps in this setting are those for which the expansion of distances
is controlled at the large scale. Importantly, though, the axioms for coarse spaces
allow for nonmetric examples. In fact coarse spaces are conceptually analogous to
the much older framework of uniform spaces [Engelking 1977, Chapter 8], in which
uniform continuity (controlled expansion of distances at the small scale) is general-
ized beyond the metric setting. Given a coarse space (X, £), one may construct its
uniform Roe algebra C’ (X, &) as follows. For any relation £ on X, i.e., E C X x X,
we say that an operator a € B(£2(X)) with matrix form [a,, ]y yex 1S E-controlled
if {(x,y) e X xX :a,, #0} C E. Then C; (X, £) is the unital C*-subalgebra of
B(€>(X)) obtained as the norm closure of all operators controlled by a member of £.

Our initial motivation is to propose and investigate analogues of the preceding
paragraph in which relations on a set are replaced with quantum relations. Classical
uniform Roe algebras are already noncommutative and tied to Hilbert space, so how
can they be quantized? The answer is that quantum relations rely on an underlying
represented von Neumann algebra, and quantum relations on the diagonal abelian
subalgebra £, (X) C B(£,(X)) are in one-to-one correspondence with classical rela-
tions on X. Here we define a quantum coarse space, which features an appropriate
collection of quantum relations, and we explain how to produce its quantum uniform
Roe algebra. In case the underlying von Neumann algebra is £ (X) C B(£2(X)),
this recovers the classical theory, but there is no need for it to be commutative or
atomic. And just as in the classical setting, one gets examples from the canonical
quantum coarse structure of a quantum metric space [Kuperberg and Weaver 2012],
but also as before there are nonmetric examples of interest. We develop here a new
class of C*-algebras, support expansion C*-algebras, that arise as (nonmetric) quan-
tum uniform Roe algebras. We also put in due diligence to show that many basic con-
cepts and facts for maps between coarse spaces have satisfactory quantum analogues.

We now give an overview of the paper. Let X be an arbitrary set, and fix a Hilbert
space H and a von Neumann algebra M C B(H).

In Section 2 we review the basic theory of quantum relations developed by Weaver.
A quantum relation on M C B(H) is a weak*-closed subspace V C B(H) which is
also a bimodule over M’, i.e., M’V M’ CV (see Definition 2.1). Such an object can
also be encoded by a family of pairs of projections of M ® B(¥») satisfying certain
axioms; in this form, for which no representation of M is required, it is called an
intrinsic quantum relation on M (see Definition 2.3). In the case of a diagonal
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inclusion € (X) C B(£>(X)), a third way of encoding the same information is
as a subset E C X x X ([Weaver 2012, Proposition 2.2] and Proposition 2.2),
i.e., a relation. The quantum relation corresponding to E is nothing but the set of
E-controlled operators.

In Section 3 we define a quantum coarse structure on M C B(H) as a family ¥
of quantum relations on M C B(H) satisfying some properties which mimic the
standard axioms of coarse spaces (Definition 3.1) and, analogously, we define an
intrinsic quantum coarse structure on M as a family % of intrinsic quantum relations
on M satisfying some similar properties (Definition 3.8). The pairs (M C B(H), ¥)
and (M, %) are then called a quantum coarse space and an intrinsic quantum
coarse space, respectively. These notions are canonically equivalent to each other
(Corollary 3.9) and coincide in a canonical way with classical coarse structures in
the commutative counting measure case M = £, (X). We also show that, just as
in classical coarse geometry, a quantum coarse structure is (quantum) metrizable
if and only if it is countably generated (Proposition 3.6). Immediate examples of
quantum coarse spaces come from quantum graphs and, more generally, quantum
metric spaces [Kuperberg and Weaver 2012].

Section 4 introduces quantum uniform Roe algebras (Definition 4.1), which are
simply the unital C*-algebras that arise as the closed union of all the quantum
relations in a quantum coarse space. In the case € (X) C B(£2(X)), the reader will
notice that this coincides with the usual uniform Roe algebra. Section 4.1 describes
quantum versions of connectedness and triviality (for which we amusingly find
three distinct levels; see Section 4.1.5 below), and Section 4.2 presents some basic
examples. Intrinsic quantum relations often allow for a more intuitive approach
to quantum large-scale geometry, but the construction of a quantum uniform Roe
algebra requires that M be represented. This does not muddy the waters too much,
since the representation theory of von Neumann algebras is simple. Given an
intrinsic quantum coarse structure on M, the associated quantum uniform Roe
algebra is determined up to a “change of representation” equivalence relation
(Section 4.1.2; see also Theorem 6.5(2)).

Section 5 presents a new class of examples that illustrate the flexibility of our
definitions and invite further study. The prototype of a classical coarse structure
arises from a metric; the uniform Roe algebra is the closure of the operators that do
not change the support of a vector too much in terms of displacement. Analogously:
if M C B(H) is equipped with a faithful normal semifinite trace t, we construct in
Section 5.1 a C*-algebra as the closure of the operators in B(H) that do not change
the size of subspaces affiliated with M too much in terms of measure, where the
size of a subspace is measured by applying the trace to the associated projection
in M. The explicit condition on a € B(H) is the existence of A > 0 such that for
all projections g € M,
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t(s{M(aq)), T (si@*q) < A-1(q).

(Here stM( -) denotes the left M-support, the smallest projection in M fixing the
range of the operator.) We call this C*-algebra a support expansion C*-algebra and
show in Theorem 5.5 that it is a quantum uniform Roe algebra.

In Section 5.2 we give a vector-based version of this construction. It is in some
ways simpler and produces the same C*-algebra when M is abelian (Theorem 5.10),
but in general a vector support expansion C*-algebra need not be a quantum uniform
Roe algebra at all (Theorem 5.12). In our companion paper [Braga et al. 2024] we
study the wild jungle of (vector) support expansion C*-algebras arising when M
is restricted to be abelian but the constraint functions f — meaning ‘E(Sé\/l (ag)) <
f(z(q)) —are not necessarily linear. Section 5.3 makes the observation that all
*-isomorphisms between support expansion C*-algebras associated to I1;-factors
without property I' are spatially implemented (Proposition 5.14), and we explain
how this could be a step toward rigidity-type results for quantum uniform Roe
algebras that may be pursued elsewhere.

Section 6 deals with morphisms, equivalences, and embeddings between quantum
coarse spaces — here intrinsic quantum relations provide a more suitable frame-
work. We proceed by imposing various conditions on unital weak*-continuous
*-homomorphisms M — N (“quantum functions™) so that they interact appropri-
ately with intrinsic quantum coarse structures. This leads to quantum versions
for the following terms from coarse geometry: coarse function, close functions,
coarse equivalence, bijective coarse equivalence, coarse subspace, coarse embedding,
expanding, cobounded. Of course, we are especially interested in their consequences
for quantum uniform Roe algebras. Looking back to the classical scenario once
again, we know that if there is an injective coarse map f : X — Y, then there is a
canonical embedding C}(X) < C;(Y). If f is furthermore a coarse embedding,
then the image of the embedding C}(X) < C;(Y) is a hereditary subalgebra
of Ci(Y); if f is a bijective coarse equivalence, the embedding C; (X) < C}(Y)
becomes an isomorphism. These results have quantum analogues, and we prove
them in Theorems 6.5(2), 6.6, and 6.23.

Section 6.3 recasts some of our definitions in terms of natural moduli for
quantum functions between quantum metric spaces (Propositions 6.25 and 6.27).
In Section 6.4 we define the asymptotic dimension of a (not necessarily metrizable)
quantum coarse space and show that, as in the classical setting, this notion is stable
under quantum coarse embedding (Theorem 6.31).

This paper is mostly an attempt to lay the groundwork for quantum coarse
geometry (although we believe support expansion C*-algebras are natural and
independently interesting operator algebras). We are hopeful that many compelling
examples and phenomena are yet to be discovered.
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2. Preliminaries: quantum relations

2.1. Basic notation. Given a Hilbert space H, we denote the C*-algebra of all
bounded operators on H by 5(H) and the ideal of compact operators on H by K(H).
We denote the identity element by 1, occasionally with a subscript to indicate the
scope, e.g., 1 . Given a C*-algebra A, we denote the set of its projections by Pr(A).

A measure space (X, ) is called finitely decomposable if X has a partition into
finite measure subsets, say X =| |, ., X)., so that A C X is measurable if and only if
each ANX), is measurable, and in this case u(A) =), ., H(ANX,). We frequently
identify f € Loo(X, i) with the corresponding operator of multiplication by f,
so that Lo (X, ) C B(Ly(X, i)). Given a measurable A C X, x4 denotes the
characteristic function of A, which is a projection in B(L,(X, u)). In case w is the
counting measure on X, we denote the standard unit basis of £,(X) by (§x)rex and,
given x, y € X, ey, denotes the rank-1 partial isometry on £,(X) which takes &,
t0 8y} SO, X{x} = €xx-

For a represented von Neumann algebra M C B(H), we define the M-support
of a vector & € H as the smallest projection in M fixing &, denoted by sM(£).
For a € B(H) its left M-support, written SKA/I (a), is the smallest projection g € M
with ga = a. This generalizes the range projection (M = B(H)) and is equal
to \/é cH s™M(ag). Here are some elementary properties we will use in the sequel,
where the sums are convergent in any sense:

(1 sMEE) = VsMED: s (L ay) = Vs,
2.2. Quantum relations. We recall Weaver’s quantum relations:

Definition 2.1. Let M C B(H) be a von Neumann algebra. A weak*-closed M'- M’
bimodule V C B(H) is called a quantum relation on M. We denote the set of all
quantum relations on M C B(H) by QRel(M C B(H)).

The next proposition justifies why the objects introduced in Definition 2.1
deserve to be called quantum relations: for a set X, quantum relations on the
diagonal €, (X) C B(¢2(X)) correspond canonically to relations on X.

Proposition 2.2 [Weaver 2012, Proposition 2.2]. Let X be a set and consider the
von Neumann algebra €. (X) C B(£2(X)). If E is a relation on X, then

Vi ={a € B(r(X)) : (x,y) & E implies x(xyaxy, = 0}
is a quantum relation on £oo(X). If V is a quantum relation on £ (X), then
Ey ={(x,y) € X*:3a €V for which Xixyaxiy # 0}

is a relation on X. These constructions are inverse to each other.
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In other words, E is the collection of matrix entries where elements of Vg are
allowed to be nonzero. We say that operators in Vg are controlled by E or have
support controlled by E.

Weaver also gave an “intrinsic” approach in which a quantum relation on M CB(H)
corresponds to a family of pairs of projections in M ® B(£,). This description does
not require that M act on a Hilbert space (see [Weaver 2012, Definition 2.24]).

Definition 2.3. Let M be a von Neumann algebra and consider P = Pr(M ® B({,))
endowed with the restriction of the weak operator topology. An open subset
R C P x P is called an intrinsic quantum relation on M if the following hold.

(1) (0,0) ¢ R.
(2) Given families of nonzero projections (p;);e; and (¢;) jes in P, we have
<\/ i, V qj) € R <= there exists (i, j) € I x J with (p;, g;) € R.
iel jeJ
(3) For all projections p,q € P and all b € 1, ® B({;), we have
(p.[bg]) eR < ([b*pl.q) €R.

Here square brackets denote range projection.
We denote the set of all intrinsic quantum relations on M by IQRel(M).

The correspondence between IQRel(M) and QRel(M C B(H)) is described in
the following theorem. Informally, in an associated intrinsic quantum relation the
pairs (p, q) describe corners where arrays for amplifications of operators in the
quantum relation are sometimes nonzero.

Theorem 2.4 [Weaver 2012, Theorem 2.32]. Let M C B(H) be a von Neumann
algebra and P = Pr(M ® B(£2)). If V is a quantum relation on M, then

Ry ={(p.q) € P*:3a € V with p(a ® 1)q # 0}

is an intrinsic quantum relation on M. If R is an intrinsic quantum relation on M,
then

Vr={a€B(H):(p,q) ¢ R= pla®l)qg =0}
is a quantum relation on M C B(H). These constructions are inverse to each other.

We make extensive use of the notation Vz and Ry of Theorem 2.4 in the paper.

Given two faithful representations ; : M — B(H;), j =1, 2, Theorem 2.4 tells
us that each QRel(rr; (M) C B(H})) is in correspondence with IQRel(M) and thus
with each other. This correspondence is discussed in [Weaver 2012, Theorem 2.7],
and for our use in the sequel we make it entirely explicit here. Since any isomorphism
between represented von Neumann algebras can be decomposed into an amplifi-
cation, a spatial isomorphism, and a reduction [Takesaki 1979, Theorem IV.5.5],
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it suffices to give the quantum relation corresponding to V € QRel(M C B(H))
under each of these three types of maps, which is as follows.

o Amplification by a Hilbert space K :
VR B(K) e QRelM®1x C B(H)® B(K) ~B(H ® K)).

Here we are using the normal spatial tensor product for V ® B(K), meaning the
weak™* closure of the algebraic tensor product V ® B(K) inside B(H ® K). Note
that V' is not amplified to V ® 1k but replaced with the “larger” V @ B(K).

o Spatial isomorphism via a unitary u from H to H': uVu* € QRel(u Mu* C B(H")).

e Reduction by a projection p’ € M" with full central support in M': (p'V)|,yn €
QRel(p’M C B(p'H)).!

For the last, the central support condition implies that p’ M >~ M.

The diagonal intrinsic quantum relation Ay on M is defined by (p, g) € Ay
< pq # 0. It is easy to check that when M C B(H), we have VA, = M'.
We sometimes write just A if the von Neumann algebra is implicit from the context.

2.3. Operator reflexivity. From V = Vg, in Theorem 2.4, we know that there are
sufficiently many projections in P = Pr(M ® B({,)) to determine V. Sometimes
there are sufficiently many projections already in the 1x 1 level, Pr(M). We follow
Weaver [2012, Section 2.5] in the definitions below.

Definition 2.5. For any subset V C B(H), the operator reflexive closure of V is
defined by

orc(V)={a € B(H):VYp,q € Pr(B(H)), pVg =0= pag = 0}.

This is always a w*-closed linear subspace of B(H). We say that V is operator
reflexive if V = orc(V).

It is easy to see that operator reflexive spaces are closed under intersection and op-
erator adjoint, and that orc()) is the smallest operator reflexive space containing V.

If V is an M’-bimodule, then orc()) is a quantum relation over M, and one only
needs projections in M to define it (see [Weaver 2012, Propositions 2.15, 2.18]):

orc(V)={a e B(H):Vp,q € Pr(M), pVg =0= pag =0}.

In the classic case when M = €,,(X) € B({>(X)), quantum relations are al-
ways operator reflexive (this is indeed quite immediate from the characterization
in Proposition 2.2 above). Here is a simple nonexample, with supporting lin-
ear algebra details left to the reader: identifying B(C?) with M, the subspace

IRecall that the central support of a projection in a von Neumann algebra is the smallest central
projection dominating that projection.
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{(“ b) ta,b,ce C} is a quantum relation over B(C?) c B(C?) that is not operator

reﬁeaxive. We thank N. Weaver for originally suggesting this example.

Remark 2.6. Here is the origin of the terminology. A unital operator algebra
A C B(H) is classically said to be “reflexive” if no operator outside .A preserves
all the invariant subspaces of A. In fact, this is equivalent to operator reflexivity
of A as defined above [Weaver 2012, Proposition 2.19]; the longer term is used in
[Weaver 2012] because “reflexive” already has a meaning for a (quantum) relation,
namely, that it contains the diagonal.

Example 2.7 (see [Erdos 1986]). Let M C B(H). Let ¢ be any map from Pr(M)
to Pr(M), and define

V, = la € B(H) : s{"(aq) < ¢(q), g € Pr(M)}.
Note that

2 s (aq) < 9(q) < ¢(@)ag =aq < ¢(q)"aq =0.

Then V), is an operator reflexive quantum relation on M. That it is a weak*-closed
M’-bimodule is perhaps easiest to see from the last condition in (2). For operator
reflexivity, suppose that a € B(H) has the property that pV,q = 0 implies pag =0
for all p,q € Pr(M). Since (p(q)LVK/,q = 0 for all g € Pr(M), we have that
¢(q)tag =0 as well, and then a € V.

Example 2.7 actually characterizes operator reflexive relations, as we see in the
following proposition.

Proposition 2.8 (see [Erdos 1986]). Keep the notation of Example 2.7. For any
quantum relation V on M C B(H) we have orc(V) = V,,,, where ¢y, : Pr(M) —
Pr(M) is defined by ov(q) = \/ 4y sg\/l (aq). Thus the operator reflexive relations
on M C B(H) are exactly those of the form V.

Proof. From Example 2.7 we know V,,, is an operator reflexive relation. It con-
tains V: if b € V and g € Pr(M), sé\/‘ (bg) < \/aeV sé\/‘ (aq) = py(q). This shows
orc(V) C Vy,,.

For the opposite inclusion, suppose p, g € Pr(M) are such that pVg = 0. For any
aeV, pag=0and so psé"t (aq) =0. It follows that ppy(g) =p \/ v SZM (aq)=0.
If ceV,,, then py(q) > sé\/‘ (cq), so by the foregoing psg\/l (cqg) =0and thus pcg =0.
This gives ¢ € orc(V). O

Remark 2.9. Operator reflexivity relies on the relation between Pr(M)? and B(H)
consisting of the set {((p, g), a) : pag = 0}: orc(V) is a “double-perp” or “double-
commutant” type of closure. There is a dual notion of closure in Pr(M)?2, or
equivalently in the space of maps Pr(M) — Pr(M): in the language above, the
“closure” of ¢ : Pr(M) — Pr(M) is ¢y, which is < ¢. This perspective is discussed
more in [Eisner 2021, Section 4.3].
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3. Quantum coarse spaces

The notion of quantum relations provides us with an appropriate framework to define
quantum coarse structures on von Neumann algebras, which in turn will allow us
to define quantum uniform Roe algebras in Section 4. In this section, we introduce
quantum and intrinsic quantum coarse spaces, notice that they are equivalent in a
canonical way, and discuss their metrizability. We postpone the investigation of
morphisms and equivalences in the category of quantum coarse spaces to Section 6.

3.1. Quantum coarse spaces. Recall that a coarse space is a set X together with a
coarse structure £ C P(X?) on X, i.e., £ is a family of subsets of X? containing the
diagonal Ax = {(x, x) : x € X} and which is closed under subsets, inverses, finite
unions, and c:ompositions3 (see [Roe 2003] for a detailed monograph on coarse
spaces). The elements of £ are nothing but relations on X, often called entourages
in this context.

This can be generalized to the quantum world as follows.

Definition 3.1. Let M C B(H) be a von Neumann algebra. A family ¥ of quantum
relations on M C B(H) is called a quantum coarse structure on M C B(H) if

(H) Mev,
2) Vi e¥,V, e QRel(M C B(H)), and V, C V) imply V, € ¥,
(3) V1 € 7 implies V| € ¥ (here V] indicates the set of adjoints of elements of V),
(4) V1, Vs € ¥ implies V| + ;% € ¥, and
(5) Vi, Vs € ¥ implies span”” (V| V) € ¥.
The pair (M C B(H), ) is called a quantum coarse space.

Items (1), (2), (3), (4), and (5) of Definition 3.1 are the quantum versions of a
coarse structure £ containing Ax and being closed under subsets, inverses, finite
unions, and compositions, respectively. Moreover, if M = £,,(X) and H = £>(X)
for some set X, Proposition 2.2 and [Weaver 2012, Proposition 2.5] provide a

canonical equivalence between classical coarse structures £ on X and quantum
coarse structures ¥z = {Vg : E € £} on £5(X) C Bl (X)).

Definition 3.2. We will say that a quantum coarse structure ¥, or a quantum coarse
space (M C B(H), V), is operator reflexive if orc(V) € ¥ forall V € ¥.

If U is a family of quantum relations on a von Neumann algebra M C B(H), then
the quantum coarse structure generated by U, denoted by ¥y, is the intersection of
all quantum coarse structures which contain U. If U consists of the single quantum
relation U, we may simply write ¥, instead of 7y .

2If E C X2, then the inverse of E is E-l= {(x,y):(y,x) € E}.
3IfE, F C X2, their composition is givenby Eo F ={(x,y):3z€ X, (x,z) € E and (z, y) € F}.
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3.2. Metrizability of quantum coarse spaces.

Definition 3.3 [Kuperberg and Weaver 2012, Definition 2.3]. Let M C B(H) be a
von Neumann algebra. A family V = (V;),>¢ of weak*-closed operator systems*
in B(H) is called a quantum metric on M C B(H) if

(1) Vo=M,
2) V,Vs CVyys forall t, s > 0, and
(3) Vi=(),-, Vs forallt >0.
The pair (M C B(H), V) is called a quantum metric space.

The definition of quantum metric implies that each V; is a quantum relation
on M. One thinks of V; as “distance < ¢”. The definition also implies that the
quantum coarse structure ¥y generated by (M, (V;)s>0) is nothing but

Yy ={V € QRel(M C B(H)) : 3t > 0 so that V C V,}.
Clearly, 7y is countably generated by (M, (V)72
Proposition 3.6 below).

o) (we discuss this further in

Example 3.4. A metric space (X, d) gives rise to a quantum metric on £, (X) C
B(€2(X)) by setting

Vi = {(axy)x.yex € B(la(X)) :d(x,y) >t = axy =0},
a “thickened diagonal” in B(£»(X)).

Example 3.5. A quantum relation V € QRel(M C B(H)) is a quantum graph
if M’ CV and V = V* (see [Weaver 2012, Definition 2.6]), that is, if V is a weak*-
closed operator system which is a bimodule over M’. Then the quantum coarse
structure generated by V, ¥, is called the quantum graph coarse structure given
by V. It is nothing but the quantum metric in which

YV, = spanw*(l}_-. V)
L7] times

(here the 0-fold product is interpreted as the diagonal M").
A classical graph G with vertex set X gives rise to a quantum graph on £, (X) C
B(2(X)) by taking

V = {(axy)x,yex € B(£2(X)) : x, y nonadjacent = a,, = 0}.

In other words, the corresponding relation on X is “adjacency in G”, and the
quantum graph coarse structure is the quantum metric associated to the path metric
as in Example 3.4.

4A closed subspace of B(H ) is an operator system if it is self-adjoint and contains 1.
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In classical large-scale geometry, it is well known that a coarse space is metrizable
if and only if its coarse structure is countably generated [Roe 2003, Theorem 2.55].
The next result shows that the same holds in the quantum world. We say that a
quantum coarse structure ¥ on a von Neumann algebra M C B(H) is metrizable
if ¥ = ¥y for some quantum metric V on M C B(H).

Proposition 3.6. Let (M C B(H), V) be a quantum coarse space. Then V is
metrizable if and only if it is countably generated.

Proof. As noticed before Example 3.4, if ¥ is metrizable then ¥ is countably
generated. Suppose then that ¥ is the quantum coarse structure generated by a
sequence of quantum relations (U,)°, on M; replacing each U, by Uy, + U™,
if necessary, we can assume that each U, is an operator system. We define (V)52
inductively by setting V) = M’ and, for n > 0,

Vi1 =5pan” (VyVu +Uni1).

Since both V, and U, are closed under taking adjoints, so is V,4. It is also clear
that 7 is the quantum coarse structure generated by (V)2 since the V), are in 7/,
and each U, is contained in V, .

Finally, since V,,V, C V,41 for all n > 0, it follows that V,V,, C V4, for all
n,m € NU {0}. Letting V; = V|; for all r > 0, we obtain that V = (V;);>0 is a
quantum metric on M C B(H) which generates 7. ([

3.3. Intrinsic quantum coarse spaces. Intrinsic quantum relations play a funda-
mental role in this paper, both in order to provide examples of quantum uniform
Roe algebras (Section 5) and to define morphisms between quantum coarse spaces
(Section 6). We next introduce the notion of intrinsic quantum coarse spaces,
defined via the intrinsic versions of the axioms for quantum coarse spaces. No-
tice that if R and R’ are intrinsic quantum relations, then so are R U R’ and
R~ ={(p, q) : (g, p) € R}. As for the composition of intrinsic quantum relations,
it follows from Theorem 2.4 that R o R’ should be defined as Ryvrve 5 We have
the following description, inspired by [Weaver 2012, Proposition 1.5].

Proposition 3.7. Consider intrinsic quantum relations R| and R, on M. Then the
composition

RioRa={(p,q) €P*:VreP,(p,r)€Rior(rt,q) € Ra}

is the intrinsic quantum relation corresponding to the quantum relations Vg, Vg,,
i.e., Rl o Rz = vavz-

SWe allow ourselves the following abuse of notation: given quantum relations V| and V;, we let
Ry, v, = me* ViV) and Ry, 4y, = me* . This is indeed an abuse of notation since V1V,
and V| + V), need not be quantum relations.
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Proof. To simplify notation, let V| = Vg, and V| = Vg,. By Theorem 2.4 we have
Ri =Ry, fori € {1, 2}. This will be used multiple times below.

Let (p, g) €Ry,v,. Then there must be v €V and v, €V so that p(viv,®1)g #O0.
For any r € P, we have

0# p(n® g = p1 ® Dr(wa® Dg + p(v; @ r (12, ® 1)g,

so that one of the summands is not zero. Thus either (p, r) € R; or (rt, q) € R».

Now say (p,q) € RioRy. Let K be the closure of all £ € H ® ¢, so that
pw®1)E =0 for all v € V. As V) is a bimodule over M’, it follows that K is
invariant under M’® 1. So the projection onto K, say r, must belong to M ® B({5).
By the definition of K, we must have that p(v ® 1)r = 0 for all v € V;. Therefore,
(p,r) € R1; by assumption we must have that (rt, q) € R». Hence there is v € V»
so that r+ (v, ® 1)g # 0. By the definition of K and r, there must be some v; € V;
for which

P ® Drt (2 ® 1)g #0.
Since p(v; ® 1)r =0, we conclude that p(viv; ® 1)g # 0; so (p, g) € Ry,p,. U
We can now define intrinsic quantum coarse spaces:
Definition 3.8. Let M be a von Neumann algebra and % be a family of intrinsic
quantum relations on M. The family % is called an intrinsic quantum coarse
structure on M if
(D) Apm={(p.q): pq #0} € Z,
2) R1 €%, Ry € IQRel(M) and R, C Ry imply R, € %,
3) R1 € Z implies Rl_l €EX,
4) Ry, Ry € Z implies R| UR, € Z, and
5) Ri1, Ry € Z implies R o Ry € #.
The pair (M, Z) is called an intrinsic quantum coarse space.
Theorem 2.4 provides a canonical bijection between QRel(M C B(H)) and

IQRel(M), and the discussion above shows that this bijection preserves the natural
operations on each of them. We sum this up in the following corollary.

Corollary 3.9. Let M C B(H) be a von Neumann algebra. The bijective assignment
VY € QRel(M C B(H)) — Ry € IQRel(M)
defined in Theorem 2.4 satisfies
(1) Ry = Am,
(2) if V € QRel(M C B(H)), then Ry~ = R;,,
(3) if V1, V2 € QRel(M C B(H)), then Ry, +v, = Ry, URy,, and
4) if V1, V2 € QRel(M C B(H)), then Ry,yp, = Ry, o Ry,.
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In light of Corollary 3.9, quantum coarse structures on M C B(H) and intrinsic
quantum coarse structures on M naturally correspond, and we denote by ¥ +— Zy
and Z — ¥ the assignments implementing the two directions of this correspon-
dence. We naturally say that an intrinsic quantum coarse space (M, &%) is operator
reflexive if ¥4 is operator reflexive.

Again, we may abridge notation in the commutative case: if M = Lo (X, ) for
a finitely decomposable measure space (X, ), we say that ¥ is a quantum coarse
structure on X (resp. (X, ¥') is a quantum coarse space) if ¥ is a quantum coarse
structure on Loo (X, w) C B(La(X, w)) (resp. (Loo(X, ) C B(L2(X, 1)), ¥)isa
quantum coarse space). We treat intrinsic coarse structures/spaces on commutative
algebras similarly.

4. Quantum uniform Roe algebras

The axioms for a coarse space (X, £) imply that the set of operators in B(£2(X))
controlled by at least one of the relations in £ is a unital *-algebra, so its norm
closure is a unital C*-algebra, called the uniform Roe algebra of (X, £) and denoted
by C! (X, £). Because of Proposition 2.2, this is just the closed union of the members
of the corresponding quantum coarse structure on £, (X) C B(£2(X)). We take it
as a general definition.

Definition 4.1. Let (M C B(H), ¥) be a quantum coarse space.

(1) We call C;[M, ¥]1 = Uy, V the algebraic quantum uniform Roe algebra
of (M, ¥).

(2) Wecall Ci(M, ¥) =Uyey VI I the quantum uniform Roe algebra of (M, ¥).

We have that C[M, ¥] is a *-algebra and C;(M, ¥) is a C*-algebra. Classical
uniform Roe algebras are thought of as encoding large-scale geometry, and much
of the motivation comes from metric spaces. We see analogous potential in the
quantum metric spaces, as introduced in [Kuperberg and Weaver 2012] and discussed
above. Definition 4.1 is general enough, however, to include much more than metric
inspiration. In Section 5 we present an entirely new class of examples.

4.1. Basic properties.

4.1.1. The effect of choosing a different representation of M. Given two faith-
ful representations 7; : M — B(H;), j € {1, 2}, the correspondence between
QRel(r (M) C B(H;)) and QRel (7 (M) C B(H>)) is described after Theorem 2.4.
Each quantum relation is transformed in the same way as the underlying Hilbert
space in passing from one representation to the other by an amplification, spatial
isomorphism, and reduction. As noted in [Weaver 2012, Theorem 2.7], this corre-
spondence preserves diagonals (i.e., takes 71 (M)’ to 72(M)’), inclusions, adjoints,
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and the operations (V;, V») > Vi+W* and Vi, Va) — spr”* (V1 V»). It follows
that the possible quantum coarse structures and (algebraic) quantum uniform Roe
algebras on 1 (M) C B(H;) and (M) C B(H3) also transform under change of
representation in the ways given after Theorem 2.4: from ¥ to ¥ ® B(K), u? u*,
or (p'¥ p")| . The only fact that may not be obvious is that amplification by a
Hilbert space K commutes with the quantum uniform Roe algebra construction, as
the sets involve closures in different orders:

CiM N BBE) =V @BK) =] VeBEK)"=Ci(M, 7 ®B(K)).
Vev Vev
The outside equalities are definitions. An element of the second set has the
form ) ; r (a, ; ®e;;), where the sum is w*-convergent and each g;; is the norm limit
of some {v }k C UVE 4 V. Passing to subsequences if necessary, we may assume
||v 7 —aijll < < 271=J=k "and then ) (aij ®e;;) is the norm limit of ) (v 1 ®eij), so
an element of the third set. The converse implication amounts to the observatlon
that when a matrix of operators converges in norm, so do each of the entries.
Thus, to understand the quantum coarse structures and quantum uniform Roe
algebras that can be associated to M, it suffices to work with a specific representation
of M.

4.1.2. Starting only with an intrinsic coarse space. Given an intrinsic quantum
coarse space (M, %), a representation 7 : M — B(H) gives rise to the quantum
coarse space (w (M)CB(H),?%) and quantum uniform Roe algebra C; (7 (M), 7).
Since many representations are feasible, (M, &) alone only determines an equiva-
lence class

[r(M) C B(H) D Cj;(m(M), ¥%)].

Here two such double inclusions are equivalent if one can be obtained from the
other by a change of representation of M as in Section 4.1.1. Inspecting the proof
of the classical structure theorem for *-isomorphisms of represented von Neumann
algebras [Takesaki 1979, Theorem IV.5.5 and Corollary IV.5.6], this means that
the double inclusions become spatially isomorphic after both are amplified by a
single Hilbert space whose dimension is infinite and not less than the dimension
of either of the two original Hilbert spaces. Theorem 6.5(2) treats such “alge-
braically/intrinsically identical quantum coarse spaces” from a slightly different
perspective.

4.1.3. Connectedness. A (classical) coarse space (X, &) is connected if {(x, y)} €&

for all x, y € X. In the quantum world, this can be described as follows:

Definition 4.2. A quantum coarse structure ¥ on M C B(H) is connected if
CH(M, ¥) is w*-dense in B(H). This is equivalent to triviality of C}(M, ¥)’
(which is always a von Neumann subalgebra of M, since M" C C}(M, ¥)).
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Notice that (X, £) is connected in the classical sense if and only if C} (X, ¥¢)
is w*-dense in B(£,(X)), so the definition above coincides with the classical one
for M = £ (X) C B({2(X)). For (classical) coarse structures coming from metric
spaces, connectedness means that all distances are finite. There are analogues of
“all distances finite” for the quantum coarse structures of quantum metric spaces,
one of which says that the union of all the intrinsic quantum relations is exactly
the linkable pairs of projections in M ® B({,) (see [Kuperberg and Weaver 2012,
Definition 2.11 and Propositions 2.12 and 2.13] or Definition 6.24 below).

Suppose ¥ is disconnected, and let p € C:(M, ¥)’ be a nontrivial projection.
Then every V € ¥ can be decomposed as pV & (1 — p)V, and each pV is a
quantum relation over p M p C B(pH). Writing p? for the collection of pV, in a
straightforward way we have

V=pVo(l-p7,

where the summands are quantum coarse structures on, respectively, pMp CB(pH)
and (1 — p)M(1 — p) C B((1 — p)H). Thus connectedness is the nonexistence of
a direct sum decomposition for 7.

For a classical coarse structure ¥ (that is, ¥ = ¥¢ for some coarse structure £
on a set X), the commutant C} (£, ¥)’ is a von Neumann subalgebra of £, (X),
so it has minimal projections. The minimal projections correspond to connected
classical coarse structures occurring as summands of ¥, naturally called the con-
nected components of . If ¥ arises from an extended metric space, this is the
decomposition into components where the metric is finite; if the metric arises from
a graph as in Example 3.5, this is the decomposition into connected components of
the graph.

A classical coarse structure with finitely many connected components can be
recovered from them. If there are infinitely many components, this recovery is
not generally possible: the collection {p¥},, where p runs over the minimal
projections p € C(M, ¥)’, does not generally determine #'. For general quantum
coarse structures the term “connected component” should probably be avoided, as
minimal projections in C} (M, ¥)’ may not commute or even exist at all.

4.1.4. The minimal quantum coarse structure on M C B(H). Since we require
quantum coarse structures on M C B(H) to contain the quantum relation M’, and
w*-closed sub-M’-bimodules of M’ are precisely the direct summands, we have
the following minimality result.

Proposition 4.3. For M C B(H), the collection of direct summands of M' is the
minimal coarse structure, contained in every other one. Thus M’ is the minimal
(algebraic) quantum uniform Roe algebra for M C B(H), contained in every
other one.
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4.1.5. Triviality. We now discuss natural notions of “triviality” for quantum coarse
structures. Here is a pentachotomy for a quantum coarse structure ¥ on M C B(H).

(1) Some V € ¥ is B(H); equivalently, ¥ = QRel(M C B(H)). In this case, ¥
is metrizable (generated by V = B(H)).

(2) No V € ¥ is B(H), but the algebraic quantum uniform Roe algebra is B(H).
This case is nonmetrizable and nonclassical.

(3) The algebraic quantum uniform Roe algebra is not B(H), but its norm closure
(the quantum uniform Roe algebra) is. This can happen classically.

(4) The quantum uniform Roe algebra is not B(H), but its w*-closure is.

(5) The quantum uniform Roe algebra is not w*-dense in B(H), i.e., the quantum
coarse structure is disconnected.

Next we justify the nontrivial claims above and give examples to show that all five
cases occur.

Quantum coarse structures in (2) are necessarily nonmetrizable: by the Baire
category theorem, if H is infinite dimensional, then B(H) is not a countable union
of proper closed subspaces. An example is the collection of finite-dimensional
subspaces of B(H), which is a quantum coarse structure for B(H) C B(H). This
phenomenon cannot happen for classical algebraic uniform Roe algebras: if an
operator a = (dyy)x,y on £2(X) has only nonzero coordinates, i.e., a,, # 0 for
all x, y € X, and a belongs to the algebraic uniform Roe algebra of a coarse
space (X, £),then X x X € &; so B(£3(X)) € Ve and we are in case (1).

Example 4.4. We give a classical coarse structure in case (3). Recall that a rela-
tion E on N is said to be locally finite if {m : (m,n) € E} and {m : (n, m) € E} are
finite for each n € N. The collection £ of all locally finite relations is easily seen to
be a classical coarse structure. We have C};[M, £] # B({;), because an operator
with all nonzero entries is not controlled by a locally finite relation.

On the other hand, take any ¢ > 0 and a € B(¢,). The k-th column of a has
finite £, norm, so the tail beyond some point has £, norm < &/2f*!; change all
these entries to zero. Then do the same thing for the rows of a. This produces an
operator b € C;[ M, £] with the Hilbert-Schmidt norm of a — b (which is the ¢,
norm of its entries) less than €. The Hilbert—Schmidt norm dominates the operator
norm, so C}(M, &) = B(£y).

We make no ruling on the meaning of “large-scale triviality”. There are at least
three choices:

e some V € ¥ is B(H)—case (1) in the pentachotomy;
« the algebraic quantum uniform Roe algebra is B(H) —cases (1) and (2);

« the quantum uniform Roe algebra is B(H) —cases (1), (2), and (3).



A QUANTIZATION OF COARSE SPACES AND UNIFORM ROE ALGEBRAS 179

Depending on how much detail the reader’s quantum telescope allows, he or she
may decide which of these quantizes the coarse geometer’s slogan: the structure
“looks like a quantum point from far away”.

4.2. Examples.

4.2.1. M ~{,(X). As mentioned at the beginning of this section, quantum uni-
form Roe algebras for £, (X) C B(£2(X)) are nothing but classical uniform Roe
algebras for X.

4.2.2. M ~ M,(C). Considering M acting on C", i.e., M = M,(C) = B(C"),
we have that M’ = Clge. By finite dimensionality, the quantum relations of
M C B(C") are just the linear subspaces of B(C"). Therefore, since quantum
coarse structures contain M’ and are closed under subspaces, adjoints, sums, and
products of quantum relations, every quantum coarse structure on M, (C) C B(C")
is the collection of subspaces of some unital *-subalgebra A4 C M, (C). For such a
quantum coarse structure, the quantum uniform Roe algebra is .A.

4.2.3. M ~ B(H) (infinite dimensional). Some of the analysis above applies:
with M acting on H, quantum relations are w*-closed subspaces of B(H). Any
unital *-subalgebra Ay C B(H) is the algebraic quantum uniform Roe algebra for
the quantum coarse structure consisting of the finite-dimensional subspaces of Ay.
Thus, any unital C*-subalgebra A C B(H) can be obtained as a quantum uniform
Roe algebra for M = B(H) C B(H) by choosing the quantum coarse structure
consisting of finite-dimensional subspaces of a norm-dense *-algebra 4y C A.
There may be other quantum coarse structures generating A (or Ap). We
point out, though, that including certain combinations of w*-closed subspaces
of A may make the generated coarse structure too large, in the sense that it con-
trols operators outside .4. Here is an example. Let A be the unital *-algebra
s ({odds}) 4+ c({evens}), thought of as diagonal operators on ¢>(N)—here ¢
denotes convergent sequences (the unitization of ¢p). Let V| = £, ({odds}) and
WV, = S,I)le*{ezj_l,zj_l + (€2j,2j/j)}?i1- Then V| and V, are w*-closed subspaces
of A, but V] + V2" is £oo({0dds}) + £oo ({evens)), the full diagonal.
4.2.4. Finite-dimensional M.
Proposition 4.5. Let A, M C B(H), where A is a *-algebra and M is a finite-
dimensional von Neumann algebra, both containing 1. Then A is an algebraic
quantum uniform Roe algebra for some quantum coarse structure on M C B(H) if

and only if A contains M'. When this is the case, A is automatically norm-closed,
i.e., a C*-algebra.

Proof. Since the quantum uniform Roe algebra of a quantum coarse space (M, ¥)
always contains M’, only the reverse implication requires proof. As M is finite di-
mensional, suppose M =~ @i:l M, (C),andletn = Zi:l ny. Denote by z1, ..., 2¢
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the minimal central projections of M. Since we assume that M’ C A, we have that
Zl,..-,ZEGA-

First consider a multiplicity-free representation of M on C", i.e., a minimal
faithful representation, with commutant equal to the center of M; that is,

¢
M= M, (C) c BEC").
k=1
Let ¥ be the set of all subspaces of B(C") of the form Zf j=1 Vij, where each
V;; is a subspace of z;.Az; C A. These are M'-bimodules whose union is .4, and
it is straightforward to check that they satisfy the axioms for a quantum coarse
structure (weak*-closedness follows automatically from finite dimensionality). So
CiM,7)=CiM, 7] =A.

An arbitrary representation M C B(H) can be obtained from the multiplicity-
free representation above by amplification, spatial isomorphism, and reduction.
Each of these operations preserves the relation that M’ C A, because all quantum
relations, including the diagonal quantum relation M’ and all the other quantum
relations whose union is 4, are transformed in the same way. To recall from the
discussion after Theorem 2.4: all are tensored with some B(K), all are conjugated
by a unitary with domain H, or all are reduced by a projection p’ € M’. Since
these transformations also preserve closedness, this finishes the proof. ]

Proposition 4.5 characterizes the quantum uniform Roe algebras for a finite-
dimensional M C B(H) as those C*-subalgebras of B(H) that contain M’. This
characterization is also true for M >~ B(H), as seen above in Section 4.2.3. The
reader may wonder if it is generally true. Our next example shows that this fails
already in the classical case.

4.2.5. A C*-algebra A C B({,) that contains the diagonal £, but is not a quantum
uniform Roe algebra for €., C B(€;). Notice that, a fortiori, A is not an algebraic
quantum uniform Roe algebra for £, C B(£;) either. Since this is the same as saying
that .4 is not a uniform Roe algebra in the classical sense, we use nonquantum
terminology below.

An operator x = (x;;);,j € B({3) is called a ghost if its entries x;; go to zero
as i, j — oo. Letting p, be the projection on C" with all entries 1/n (i.e., p, is the
projection onto the constant vector (1, ..., 1) € C"), we have that p=@D,, p, € B({2)
is a noncompact ghost projection. Let Eg;,e be the conditional expectation from
B(€,) onto its diagonal £, that is, Ediag((x,‘j),"j) = ()Eij),',j for all (xl‘j),"j € B(¢y),
where X;; = x;; forall i € N, and x;; =0 for all i # j. It is straightforward to check
that x — Egiag(x) is a ghost for all x in the C*-algebra A = C*(p, £oo).

Suppose towards a contradiction that A is a uniform Roe algebra, say A =
C; (N, &) for some coarse structure £ on N. Then there is an entourage E € £ and
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q € B(£y) controlled by E with ||g — p|| < 0.1. Notice that in each of the blocks
corresponding to the summands of p (except the 1x 1 block), ¢ must have a nonzero
off-diagonal entry. (Otherwise, compare the actions of p and g on the unit vector
with all entries corresponding to that block equal to 1/4/n.)

Choosing a nonzero off-diagonal entry for ¢ in each block, let x be the operator
whose entries are 1 in these places and O elsewhere. Then x is also controlled by E,
so x € A. But x — Egjag(x) = x is not a ghost.

5. A new class of examples: support expansion C*-algebras

The main inspiration for coarse geometry comes from metric spaces. The standard
example of a coarse space is a metric space (X, d), where the entourages are subsets
of some {(x, y) : d(x,y) <r} for r > 0. In the associated uniform Roe algebra, the
operators supported on an entourage are those for which there is an » > 0 such that
“no point moves more than r”. These operators could be said to have a finite scale
in the sense of displacement.

The definitions of coarse geometry, classical or quantum, are broad enough to
allow other notions of scale. In this section we present a very general class of
quantum coarse spaces in which the scale pertains not to change of location as
determined by a metric, but to expansion of size as determined by a measure. The
reader may see [Braga et al. 2024] for a detailed study of the commutative (but not
necessarily atomic) case.

Let us describe the prototype for the new class, which is a well-known classical
coarse space with classical uniform Roe algebra. A coarse structure £ on N is
said to be uniformly locally finite if for any one of its entourages E € £ there is
A > 0 such that forany x e Nboth#{ye X : (x,y) e E}and #{y e X : (y,x) € E}
are less than A. In a metric setting this says that for any r, the cardinalities of
r-balls are uniformly bounded (so-called “bounded geometry”). It is easy to see
that the collection of all entourages satisfying the above condition comprises the
largest uniformly locally finite coarse structure on N. This well-known example
is not metrizable, and the associated algebraic uniform Roe algebra consists of all
operators a € B({,) for which there is a A such that all rows and columns of the
matrix for a have no more than A nonzero elements. In other words, if (e;); is the
canonical orthonormal basis of £,, the supports of ae; and a*e; have no more than
A elements for all j € N. Taking linear combinations of basis elements, it follows
that a satisfies the condition

3) #supp(a&), #supp(a®€) < A -#supp(¢) forall & € £;.

The associated uniform Roe algebra, studied in [Manuilov 2019], is the closure of
these operators.
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We may identify subsets of N with their characteristic functions, which are the
projections in £,. The support of £ € £, which is a set, corresponds to s> (£).
Counting the support of & is then the same thing as applying the standard £, trace
to st (&). We can interpret (3) as saying that ¢ and a* do not expand the support
projection of a vector too much.

Many things about (3) allow for variation. For instance, instead of the counting
measure, we could use other measures on N, corresponding to other (possibly
unbounded) traces on £,. Similarly, we could use L, (X, ) and Lo (X, ) in place
of ¢5 and €,. We could even use an abstract H with an arbitrary von Neumann
subalgebra M C B(H ), equipped with a satisfactory notion of “size” on its projection
lattice. Precisely:

Definition 5.1. Let M C B(H) be a von Neumann algebra equipped with a faithful
normal semifinite trace t. Given A > 0, we say that a € B(H) is A-vector constrained
if it satisfies

) t(sM(a£)), t(sM(@*€)) <r-t(sM()) forall £ e H.

We say a is vector constrained if it is A-constrained for some A > 0.

Proposition 5.2. Let M C B(H) be a von Neumann algebra equipped with a
faithful normal semifinite trace t. The subset of all vector constrained operators
forms a unital *-algebra.

Proof. It is immediate that this set contains the identity and is closed under adjoint.
We need to show that if a; is A j-constrained for j € {1, 2}, then a; +a> and aja;
are constrained. These are easy computations:

t(sM((a1 + @2)8)) < t(sM(@ &) v sM(@at))
S 15 M@8) + 1M @8)) < (it + 1) T(ME)):
t(sM(a1a28)) < A1 - T(M(@28)) < MiraT(sM ().

We applied (1), from Section 2.1, at the first step of the first computation. The
inequality O is a standard deduction of Kaplansky’s law pvg—p~qg—pAgq,
sothat t(pVvqg)=1(p)+1t(9) —t(pAgqg) <T(p)+1(9). We use this freely in
the sequel. (]

Definition 5.3. Let M C B(H) be a von Neumann algebra equipped with a faithful
normal semifinite trace t. The closure of all vector constrained operators on B(H)
is called a vector support expansion C*-algebra.

Motivated by M = £, as discussed at the beginning of this section, one might
expect that vector support expansion C*-algebras are quantum uniform Roe algebras.
In many cases of interest this is indeed the case, but the general answer turns out
to be no! The issue, roughly, is that quantum uniform Roe algebras are about
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projections, and it is not always true that projections in a represented von Neumann
algebra “come from” vectors. We explain this more in Section 5.2.

For now we recast expansion in terms of projections, and we show that this does
lead to a rich class of quantum uniform Roe algebras.

5.1. Support expansion C*-algebras. Let M C B(H), and let T be a faithful
normal semifinite trace on M. For A > 0, consider, on a € B(H), the condition

(3) t(s{(aq)), T(s]M(@*q)) <r-t(q) forall g € Pr(M).

The condition above is a strengthening of (4) (see the first paragraph of the proof
of Theorem 5.10). One can use the same argument as in Proposition 5.2 to see
that the set of operators in B(H) satisfying (5) for some A is a unital *-algebra;
this is subsumed in Theorem 5.5 below, where we identify this set as an algebraic
quantum uniform Roe algebra.

Definition 5.4. Given A > 0, a function ¢ : Pr(M) — Pr(M) is A-constrained if
7(p(q)) <At(g) forall g € Pr(M).
We say ¢ is constrained if it is A-constrained for some A.

The set of constrained functions is closed under composition and join: if ¢; is
A j-constrained for j € {1, 2},

T(p2(01(9))) < X2t (91(q)) < AariT(q);
T(01(q) vV 2(q)) = t(@1(q)) + t(92(q)) = (A1 +A2)T(q).
For any pair of constrained functions ¢, ¥ : Pr(M) — Pr(M), we define
where, as defined in Example 2.7,
Vy =la € B(H) : 57" (aq) < ¢(q), g € Pr(M)}.

As noted in Example 2.7, V,,  is an operator reflexive quantum relation on M CB(H).
The main statement of the next theorem is that the quantum coarse structure gener-
ated by the V, y is simply the collection of their quantum subrelations.

Theorem 5.5. Let M C B(H) and let T be a faithful normal semifinite trace on M.
The collection

¥, ={V € QRel(M C B(H)) : there exist constrained ¢, ¥ : Pr(M) — Pr(M)
such thatV C V, y}

is an operator reflexive quantum coarse structure on M. Moreover, the algebraic
quantum uniform Roe algebra C;[ M, ;] is exactly the set of a € B(H) satisfying
(5) for some X > 0.
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Proof. Let us check that 7; has the five properties needed to be a quantum coarse
structure (see Definition 3.1). From its form, ¥; is closed under subquantum relation
and adjoint.

Diagonal: The identity Pr(M) — Pr(M) is a 1-constrained function on Pr(M).
Observe that M’ C Viq iq because for a € M’ and g € Pr(M) we have

st (aq) = s{"(qaq) < q.

Sum: Suppose a; € V,, y, for j € {1,2}. Then a1 + az € Vi, vy, .y vy, for any
q € Pr(M),

st (a1 + a2)q) < sPMaiq) v st a2q) < 91(9) V 92(q),

and a similar computation holds for sé\/‘ ((a1 +az)*q). We noted before the theorem
that ¢; V ¢ and Y| V Y, are constrained.

Product: Again suppose a; € V,, y; for j € {1, 2}. Then a1az € Vi 00, yoy,: for
any g € Pr(M),

v1(p2(g))arazg = ¢1(p2(q))ar1p2(q)azg = a12(q)axqg = a1azq,

and a similar computation holds for ¥ (¥(q))(aiaz)*q. We noted before the
theorem that ¢ o ¢» and Y, o V| are constrained.

Since the V,, y are operator reflexive, 77 is an operator reflexive quantum coarse
structure.

Finally we check that the algebraic quantum uniform Roe algebra, the union
of the V, y, is exactly the set of operators T satisfying (5) for some A. For this,
it suffices to show that T(SZ\A (aq)) < At(g) for all g € Pr(M) if and only if a
belongs to some V,, with ¢ being A-constrained. The forward implication follows
by letting ¢(q) = sé\/‘ (agq). For the reverse implication, take any ¢ € Pr(M) and
note that 7(s;"'(aq)) < t(¢(q)) < At(q). 0

The next definition should be compared with Definition 5.3 (the “vector” version).

Definition 5.6. Let M C B(H), and let t be a faithful normal semifinite trace on M.
We say that the uniform Roe algebra C (M, ;) is a support expansion C*-algebra.

From the definition of a quantum coarse structure, M’ lies inside any algebraic
quantum uniform Roe algebra. We next show that support expansion C*-algebras
also contain M yet cannot be all of B(H) unless M is finite dimensional.

Theorem 5.7. Let M C B(H), T be a faithful normal semifinite trace on M, and
¥ be the quantum coarse structure as in Theorem 5.5.

(1) The algebraic uniform Roe algebra C};[ M, ;] contains M; thus C;; (M, ¥7)
contains C*(MUM’).

(2) If M is infinite dimensional, C;; (M, ;) is not all of B(H).
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Proof. (1) We make use of the right M-support s of an operator, which is defined
analogously to sé\": sM(a) is the smallest projection ¢ € M with ag = a. Note
that the left and right M-supports of any element of M are Murray—von Neumann
equivalent via the partial isometry in the polar decomposition. Thus any a € M
is 1-constrained:

t(s{(aq)) = t(sM(aq)) < 1-t(q) forall g € Pr(M),

and analogously for a*.

(2) It follows from Section 4.1.1 that we may assume M is in “standard form”,
which we recall for the reader’s convenience. On the subspace of x € M for which
llx|l2 = +/T(x*x) is finite, this quantity defines a norm. The completion of this
normed space is denoted by L?(M, 1), and M C B(L,(M, 1)) as densely defined
left multiplication operators.

First we explain how to pick sequences (pr)ren and (gx)ken of nonzero pairwise
orthogonal finite-trace projections in M with limy 7(px)/7(qx) = 0. If T is a finite
trace, then limy t(g;) = O for any sequence (gx)ren Of nonzero pairwise orthogonal
projections in M, and we may take (px)xen to be a subsequence of any such (gx)ren
whose traces decrease quickly enough. If 7 is infinite, semifiniteness of t allows us
to find an infinite family of pairwise orthogonal projections (px)ren €ach of which
has finite trace at least 1. We can then form the sequence (gx)xen by letting each g
be an appropriate sum of disjoint subsets of (pg)ren-

Fix (pi)ren and (gi)ren as above. If p € M, we let p be p viewed as an element
in Lo(M, 7). Let b € B(L>(M, 1)) be the infinite-rank partial isometry that sends
each py to /T (pr)/T(qr) Gx and is zero off the span of { p;}. We show that for any a
satisfying (5), ||b — a|| > 1 by examining the action on unit vectors py/+/T(pi).
This implies that b & C'(M, 7).

Let s; = sZM (a- pr), where a - py € B(L>(M, 1)) means left multiplication by py
followed by a. We have (1 — sp)a(px) = (1 —s¢)(a - pr)(pr) = 0 and, from the
assumption on a, 7(sg) < At(py). In the calculation below, (x) is left multiplication
by (1—s%) and (*x) (read right-to-left) is right multiplication by gy, both contractive:

| _a< Pk )
2 IvTlgn) VT (pr)
g (1—sk)(—é" )
- Nan)

Pk
b_
H( a)(vf(l?k)>

2

2

- x _‘ Skqk
“IVT@) Il VT 2
(+%) S [ T(sk) [ AT (pr)
1— =1—- 1— 1. O
= H\/T(CIk) 2 7(qx) = 7(qx) ”
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Remark 5.8. In the construction of support expansion C*-algebras just described,
the expansion we tolerate in operators a and projection maps ¢ is constrained by
multiplication by some constant, that is, a linear function. The definitions also make
sense for other functions. Given an increasing f : [0, co] — [0, oo], we may widen
Definition 5.4 and say that a projection map ¢ : Pr(M) — Pr(M) is f-constrained
if 7(p(q)) < f(z(g)) for all g € Pr(M).

To obtain the generalization of Theorem 5.5, we need to start with a nonempty
collection of functions .% that is closed under sums and compositions. This entails
that the operators belonging to some V, y, where ¢ and ¥ are each constrained by
some member of .#, will comprise a *-algebra.

In the present paper the underlying .# is always the collection of functions
{ fo.(x) = Ax},>0, but other choices do in fact produce distinct quantum uniform Roe
algebras. One may, for instance, let .% be the collection of functions obtained from
f(x) = +/x under arbitrary repeated sums and compositions. The companion paper
[Braga et al. 2024] studies many aspects of this construction for abelian M and in
particular analyzes the wild poset of different quantum uniform Roe algebras arising
from various .# when M is L, (R) endowed with the Lebesgue integral as trace.

5.2. Vector support expansion C*-algebras. Let us recall the two conditions in
Definitions 5.3 and 5.6 on operators a € B(H), in the presence of a tracial von Neu-
mann algebra M C B(H):

4) t(sM(af)), t(sM(@*€)) <r-t(sM()) forall £ € H,
(5 t(sé\/l (aq)), ‘L'(S(EM (a*q)) <r-t(q) for all ¢ € Pr(M).

We defined the associated vector support expansion C*-algebra as the closure of
those a € B(H) that satisfy (4) for some X, while the support expansion C*-algebra
(which is a quantum uniform Roe algebra by Theorem 5.5) is the closure of those
elements that satisfy (5) for some A. In this subsection we prove that conditions (4)
and (5) are equivalent when M is abelian. In general they are inequivalent, and we
also show that there are vector support expansion C*-algebras with respect to certain
M C B(H) which are not quantum uniform Roe algebras in any way, meaning that
there is no quantum coarse structure on M C B(H) giving rise to this C*-algebra.

Example 5.9. We present a simple example showing that an operator may satisfy
(4) for some A but not satisfy (5) for the same A. For that, let M =M, act standardly
as left multiplication operators on HS,, the Hilbert space of 2x2 matrices with the
Hilbert—-Schmidt norm. For any & € HS,, s (&) is left multiplication by the matrix
projecting onto the range of &, and its nonnormalized trace is equal to the dimension
of this range. Let a € B(HS;) take (S t) to (S ’)t = (: Z) For every & € HS,,

uv uv
7(sM(a&)) = t(sM(&)) because the transpose map preserves rank (“row rank
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equals column rank”). Note also that a is self-adjoint:

€\ =tEH =1EN") =" = (&, n').

Thus «a satisfies (4) for A = 1.

Let ¢ € M be (left multiplication by) (}0). Then ag(£) is a vector of the
form (f 8), and sé\/‘ (ag) is the 2x2 identity matrix (we are looking for the least
projection such that left multiplication fixes all matrices of this form). Thus a does

not satisfy (5) for A = 1.

This example is not so bad, because a does satisfy (5) for A =2. Needing to double
A is the worst that can happen for this M C B(H), so the vector support expansion
C*-algebra still agrees with the support expansion C*-algebra. In Section 5.2.2 we
give an infinite-dimensional version of this example, supplemented by additional
analysis, showing that some vector support expansion C*-algebras are not quantum
uniform Roe algebras at all.

5.2.1. The two notions of expansion agree when M is abelian.

Theorem 5.10. Let M C B(H) be an abelian von Neumann algebra, and let T be
a faithful normal semifinite trace on M. Then conditions (4) and (5) are equivalent
for a € B(H), so that the vector support expansion C*-algebra equals the support
expansion C*-algebra C (M, ¥%).

Lemma 5.11. Let M CB(H) be an abelian von Neumann algebra and &, ...,&,€ H.

Then there are ci =1, cp, ..., ¢, € R such that
n M _/\/[ n
V s e =sM( X it )-
j=1 j=1

Proof. For n = 1 there is nothing to show. Take n > 1, and assume we have proved
the lemma for n — 1. Given &, ..., &,, apply the lemma to &, ..., &,_ to find
Ca, ..., Ch—1 With \/'};} sM(E)) = sM(Z';;} cjéj). For each ¢ € R let

Pe= [j\:/lSM(Sj)] —SM[(E Cjéj) +C§n]-

We show that the p. are pairwise orthogonal. For simplicity rename Z;’;} cj&j
as n; and &, as np. We have

pe= (M) v ™M) =M +em),
so that p.(n; + c¢n2) = 0. For ¢ # ¢’ we compute

(Pepe) (1) +c(peper)(m2) = (peper)(m +cnz) =0
= (pepe) (M +c'm) = (pepe) (M) + ¢ (peper) (12).
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As ¢ # ¢/, we must have

(Pepe)(m) = (pepe)(m2) =0.

It follows that p. p. is perpendicular to sM(n DV sM(n,), of which it is a subpro-
jection. We conclude that p.p. = 0.

Thus {p. : dc € R} is an uncountable family of pairwise orthogonal projections.
For each j all but countably many p. annihilate &;, so there must be a p. that anni-
hilates all &; and then is perpendicular to the projection \/'}:1 sM(& 7). But p. lies
beneath \/’}-:1 sM(& ;) and so must be zero. (To the conversant reader, we just used
that cyclic projections are o -finite, and the join of countably many o -finite projec-
tions is o -finite.) The proof is completed by letting ¢, be any ¢ for which p. =0. U

The lemma is not true for general M C B(H): let H be a Hilbert space containing
linearly independent vectors &1, &>, and take M = B(H).

Proof of Theorem 5.10. First assume that a € B(H) satisfies (5). Then for any & € H,
rts™ME) = o (57 as™ME)) = T(s™M @§)).

The first inequality is the assumption (5). For the second, (as™ (£))(£) =a£, so af is
in the range of as™ (&) and is therefore fixed by skM (as™M(&)). The latter is a projec-
tion in M and must therefore dominate s (a&), which is the smallest M-projection
fixing a&. This shows that (4) holds (and commutativity of M is not needed).
Next assume that a € B(H) satisfies (4). For any projection g in M,
stfag) = \/ sM@q€) = \/ sM@&) = lim \/sM(af).
EeF

finite FCqH
EeH EeqH 4

For the last equality, we used that an infinite join is the weak limit of the increasing
net of finite joins (the indices F are finite subsets of ¢ H, ordered by reverse
inclusion). By normality of ¢ we have

t(sé\/t(aq)) = sup ‘[( \/ sM(aS)).

finite FCqgH EcF

Using Lemma 5.11 we can replace \/S cF s™M(a&) by the M-support of a linear
combination of the a&, which is a single vector in g H:

1(s;'(aq)) = sup t(sM(a&)).
EeqH

The desired conclusion follows by applying (4) to the term in the last supremum:
for any £ € g H we have

t(sM(a§)) < At (sM(&)) < At (g). O
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5.2.2. A vector support expansion C*-algebra that is not a quantum uniform Roe
algebra. In the proof of Theorem 5.10, we saw that (5) implies (4), and Example 5.9
shows that the converse can fail. An infinite-dimensional version of this example,
c in the proof below, satisfies (5) for no A, even though it satisfies (4) for A = 1.
This demonstrates that the sets of constrained operators and vector constrained
operators can differ.

Establishing that a vector support expansion C*-algebra is not a quantum uniform
Roe algebra is more complicated, because closures are involved, and the proof
requires extra steps in order to handle approximations. Note that we are not merely
distinguishing the vector support expansion C*-algebra from the support expansion
C*-algebra; we are showing that it is not any quantum uniform Roe algebra at all.
The condition (5) plays no role here.

Theorem 5.12. Let M = B({;) be in standard form, that is, acting by left mul-
tiplication on the Hilbert space HS of Hilbert—Schmidt operators on €. The
associated vector support expansion C*-algebra is not a quantum uniform Roe
algebra on M C B(HS).

Proof. We first repeat some observations from Example 5.9, but in the infinite-
dimensional setting. Any element of M is left multiplication by some ¢;-operator b,
denoted by L(b); similarly elements of M’ are right multiplications R(b). Given
a Hilbert—Schmidt operator ¢ on £, we write ¢ for the associated vector in HS.
Then s™(¢) € M is left multiplication by the projection onto the range of c. Let
a € B(HS) be the transpose map ¢ +—> ¢', which is a self-adjoint isometry on HS.
Again sM(a(¢)) = sM(¢") has the same (possibly infinite) trace as s*!(¢), because
the transpose operation preserves rank. Thus a satisfies (4) for A = 1.

Denote by A the vector support expansion C*-algebra, which is the norm closure
of the vector constrained operators. Suppose towards a contradiction that A4 is a quan-
tum uniform Roe algebra, obtained as the norm closure of some algebraic quantum
uniform Roe algebra Ag. Since a € A, there is a; € Ag with |ja —a;]| < % Now Ay
is the union of weak*-closed M'—M’ bimodules, so any element of span”” M'a; M’
also belongs to Ag. The strategy of the proof is to build an element a, € A( and
show that it is not a limit of vector constrained operators.

Let I) = {1}, L ={2,3}, 5 = {4, 5, 6}, etc. Define a, € B(HS) by

ar = SOT- Z % Z R(e1)aiR(en;)

neN iel,

= R(e11)aiR(e11) + %[R(eu)alR(ezz) + R(e13)ai R(ex3)]

1
+ —3[R(€14)a1 R(e34) + R(e15)a; R(ess) + R(eig)ai R(ese)] +-- - .

/3
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Each term of the form R(ey;)a; R(e,;) has range inside the i-th column of HS.
Each sum Zieln R(eji)aiR(e,;) is the sum of n operators with norm < ||ay||
and pairwise orthogonal ranges and thus has norm < \/n||a||. This entails that
(1/5/n) Xoic; Reri)aiR(ey;) is an operator of norm < ||| that annihilates vec-
tors supported off the n-th column of HS and has range inside the columns of
HS indexed by I,,. For different n these have orthogonal left and right supports;
it follows that the partial sums converge strongly to an operator a; of norm < ||aq||.
By the remark in the previous paragraph, we have a; € Ay.
For convenience define

1
a3=SOT-3_ —=>  R(eiaR(en),
neN iel,
so that

1
<llai—al <3

1
lay — as]| = HSOT- > NG > R(ew)(ar —a)R(en)

neN iel,

by the same argument as above. The action of a3 is nice:

o

I t2 f13 -+ f

~

o O

12

/2
0

~
o

1

0
1o

S

To finish the proof we demonstrate that any d € B(HS) with ||d — ay|| < 0.1
cannot satisfy (4) for any A > 0. Suppose there are such d and A. Pick n > 2A.
By (4) at the vector éy,,,

Tr(s™(d(@1,))) < ATr(s™(é10)) = ATr(err) = A.

Let g be the projection in B(£;) such that L(g) = s™M(d(é1,)), so that ¢ has rank < A.
As L(g1)(d(é1,)) =0, we have

IL(g™)(a3(€1n)lus = 1L(g ) ((d — a3)(@1,) lus < 1(d — a3)(e1n) s
<|d—a3|| < |ld —a]| + llap —a3]| < 0.14+0.5=0.6.

On the other hand, az(é1,) is 1/4/n times a projection r of rank n. Since n > 2,
Kaplansky’s law for projections gives

r—r/\qLNrVqL—qJ‘fq = Tr(r)—Tr(r/\qL)fTr(q)

= n—Tr(rAqL)§A<%n,
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meaning r A g has rank at least %n Finally

1L @@ ‘ ("Tr> > LG L)(“’Tr) YL I

g ) as(ein))llus = |\ —= > | LrAgD)\ —F= = > —,
! NOwA NOwA Vi llus T V2

which violates the previous inequality. ]

Remark 5.13. By Section 4.1.1, the quantum uniform Roe algebras for the left
multiplication representation B(€;) C B(HS) >~ B(£, ® €>) are given by amplifying
quantum uniform Roe algebras for B(¢;) C B(€;), and, by Section 4.2.3, the latter
can be any C*-algebra. So the point of Theorem 5.12 is that the vector support
expansion C*-algebra is not of the form “(C*-algebra) ® B(£,)”, where the two
factors are acting by left and right multiplication on HS.

The mechanism of the proof makes sense from this perspective too: if the vector
support expansion C*-algebra were of this form inside B(HS), it would be closed
under strong limits and composition with right multiplications from B(¢;), which
is shown false.

Even though vector support expansion C*-algebras do not always arise from a
quantum coarse structure, we believe they are natural objects and interesting for
study in their own right.

5.3. Rigidity and spatial implementation of *-isomorphisms. A “rigidity” theorem
for uniform Roe algebras says that an equivalence at the operator algebra level
(*-isomorphism or something weaker) implies coarse equivalence of metric/coarse
spaces. See, for instance, [Baudier et al. 2024]. In this subsection we notice that a key
step in proving such results is true in a specific quantum situation (but not generally).

It is a basic fact of C*-theory that any *-isomorphism between represented C*-
algebras containing the compact operators must be spatial, i.e., of the form Ad(u) for
some unitary u# [Arveson 1976, Theorem 1.3.4 and Corollaries to Theorem 1.4.4].
Classical uniform Roe algebras of connected coarse spaces (see Section 4.1.4)
always contain the compact operators, and building on this, it was shown in [Braga
and Farah 2021, Lemma 3.1] that all *-isomorphisms between classical uniform Roe
algebras are spatial (see also [Spakula and Willett 2013, Lemma 3.1]). Spatiality is
useful for proving rigidity-type results because the implementing unitary provides
a foothold for building maps between the underlying sets.

But isomorphisms between quantum uniform Roe algebras do not need to be
spatially implemented, even when they arise from quantum coarse structures over
the same represented von Neumann algebra. For instance, the algebras

a000 a000
0a00]. 0a00].
00b0 ca,beCy, 0040 ra,beC
000%b 000©5b
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are quantum uniform Roe algebras for M = My (C) C B(C*) (Section 4.2.2). They
are *-isomorphic to C @ C and each other, but they are not spatially isomorphic.
We may still conclude spatiality for *-isomorphisms between quantum uniform
Roe algebras containing the compacts (unlike the above algebras). The next result,
which is about support expansion C*-algebras, gives a case of this. Recall that a II;-
factor M with trace t is said to have property I' if foralle >0 and all x1, ..., x, € M
there is a unitary u € M with t(u) =0 and ||x;u —ux;||; < e foralli e {1....,n}.

Proposition 5.14. Let (M, 1) C B(L2(M, 1)) and (N, t") C B(L,(N, t')) be
11, -factors that do not have property I'. Every *-isomorphism between the support
expansion C*-algebras C (M, ¥;) and C: (N, ¥¢) is spatially implemented.

Proof. As M does not have property I', [Connes 1976, Theorem 2.1] says that
K(Ly(M)) € C*(M U M). But C*(M U M) is contained in C}(M, ¥;) by
Theorem 5.7(1). Similarly (L, (N)) C C: (N, ¥4), so by the preceding remarks
all isomorphisms between these algebras are spatial. ([

Developing rigidity for quantum uniform Roe algebras would be an interesting
direction for future research.

6. Morphisms in the quantum category

The current section discusses morphisms between quantum coarse spaces. We
consider individual morphisms, various equivalences, and a notion of subspace,
and we prove additional results in case the quantum coarse space is metrizable.
In Section 6.4 we quantize the concept of asymptotic dimension and show that it is
stable under quantum coarse embeddings (Theorem 6.31).

The next terminology was introduced in [Kornell 2011] (see also [Chavez-
Dominguez and Swift 2023]):

Definition 6.1. A unital weak*-continuous *-homomorphism ¢ : M — A between
von Neumann algebras is called a quantum function.

Quantum functions are the quantum versions of ordinary functions X — Y.
Indeed, given sets X and Y, any map f : X — Y canonically induces a quantum
function @ : €oo(Y) — £oo(X) by letting ¢ (g) = g o f for all g € £,. Moreover,
any quantum function ¢ : £o(Y) — £5(X) induces a map f, : X — Y by letting
f(x)=yif xxy <@(xiy))- These two constructions are clearly inverse to each other.

Quantum functions behave well with respect to pullbacks of intrinsic quantum re-
lations. Precisely, given intrinsic quantum coarse spaces (M, #Z) and (N, 2), every
such ¢ : M — A induces a canonical map ¢* : IQRel(N) — IQRel(M) by letting

9" (Q) ={(p,q) ePM B B(£2))*: (9@ D)(p), (9@ 1)()) € Q} = (9@ 1)~ (Q)
for all Q € 2 (see [Weaver 2012, Proposition 2.25] for proof that ¢* is well defined).
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The following is the quantum version of coarse maps.°

Definition 6.2. Let (M, #) and (N, 2) be intrinsic quantum coarse spaces. We call
a quantum function ¢ : M — N quantum coarse if p*[ 2] C Z. If ( M CB(H), V)
and (N C B(K), %) are quantum coarse spaces, we define quantum coarse maps
considering the intrinsic quantum coarse spaces Z = Zy and 2 = %, .

We start by showing that quantum coarseness is equivalent to coarseness in the
classical setting:

Proposition 6.3. Let (X, &) and (Y, F) be coarse spaces and consider £oo(X)
and L (Y) endowed with the quantum coarse structures induced by £ and F,
respectively. Amap f : X — Y is coarse if and only if ¢ : Loo(Y) — £oo(X) is
quantum coarse.

Proof. Let E C X% and let Rg = Ry, 1.e., (p, q) € R if and only if there exists
(x,y) € E so that p(ex, ® 1)q # 0. Then we have that

P (Re) ={(r,s):3(x,y) € E, [(9f @ D(1)](exy ® Dl(pr ® 1)(5)] # 0}
={(r,s):3(x,y) € E,r(efu)riy ®1)s #0}
=Ryxf(E)

(the second equality above holds since ¢ is weak™ continuous, and r, s are weak™*
limits of linear combinations of simple tensors). The result then follows from
Proposition 2.2 and Theorem 2.4. ]

If f: X — Y is an injective coarse map between coarse spaces (X, £) and (Y, F),
then the isometric embedding u s : £2(X) — £>(Y) given by u r(8y) = 8 ¢(), for
all x € Y, induces an embedding Ad(us) : C;(X) — C;(Y) (this is completely
straightforward; see [Braga et al. 2020, Theorem 1.2] for details). Moreover, if f
is a bijective coarse equivalence, this embedding is an isomorphism (see [Braga
and Farah 2021, Theorem 8.1] for details). For this reason, we are interested in
understanding the quantum versions of “injective coarse maps” and “bijective coarse
equivalences”. As f: X — Y is injective if and only if ¢ : £oo(Y) — oo (X) is
surjective, in the quantum world the notion of an injective coarse map f : X — Y
is replaced by a surjective quantum coarse function M — N. Similarly, a bijective
coarse equivalence X — Y becomes an isomorphism ¢ : M — N with both ¢ and
¢! being quantum coarse.

Definition 6.4. Let (M C B(Hnq), ¥) and (N C B(Hyr), %) be quantum coarse
spaces. An isomorphism ¢ : M — N is called a quantum coarse isomorphism if

both ¢ and ¢! are quantum coarse functions.

6Recall, if (X, &) and (Y, F) are coarse spaces, amap f : X — Y is coarse if (f x f)[E] C F.
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A quantum coarse isomorphism is just a change of representation for a single
intrinsic quantum coarse space, so the next theorem follows from Sections 4.1.1
and 4.1.2.

Theorem 6.5. Let ¢ : M — N be a quantum coarse isomorphism between the
quantum coarse spaces (M C B(Hnq), V) and (N C B(Hyr), %).

(1) If ¢ is spatially implemented, then it induces a spatial isomorphism
Ci(M, V) ~Ci(N, %).
(2) In any case there is a spatially implemented isomorphism
CiM, 7)®B(K)=Ci;(MQ®1g, 7 ® B(K))
~CIN®lk,Z @B(K))=C (N, %) ® B(K)
for any Hilbert space K with dim K > max{Rg, dim H, dim Hys}.

For a simple example of the difference between the two parts of Theorem 6.5,
let M = N = C, which carries a unique intrinsic quantum coarse structure. The
identity ¢ : M — N is a quantum coarse isomorphism. If we represent M in B(C)
and NV in B(C?) as multiples of the identity, their quantum uniform Roe algebras
are C and B(C?), respectively, which are not (spatially) isomorphic until after
amplification.

We now prove the quantum version of the discrete result about embeddability.

Theorem 6.6. Let (M, V) and (N, %) be quantum coarse spaces and let ¢ :
M — N be a spatially implemented surjective quantum function. If ¢ is quantum
coarse, then Ci (N, %) spatially embeds into C5(M, V).

Proof. Let # = #y and 2 = %4 . As @ is a quantum function, there is a central
projection r € M such that ker(¢) = (1 —r) M. Hence, as g is spatially implemented,
there is a surjective isometry u : Hys — Im(r) such that ¢(a) = u*au for all a € M.
Let o : B(Hxy) — B(H)q) be the spatial embedding given by v (b) = ubu™ for
all b € B(Hy).

Claim 6.7. Let Q € 2. Then ¥ (b) € Vy+(g) for all b € Vg.

Proof. Fix b € Vg and projections p, g € M ® B({;) with (p, q) € ¢*(Q). So,
(@ 1D)(p), (9 ®1)(q)) ¢ Q and we have

[((e@D(PID® D¢ ®1)(g)]=0.
Since ¢ is conjugation by u, we claim that
WRNpuwHbRINW* @ Hqgu®1)=0.

Indeed, p and g are weak*-limits of linear combinations of simple tensors, and the
equation above is clearly true if p and g are simple tensors, or linear combinations
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of simple tensors. By the weak*-continuity of ¢, it follows for our p and ¢ as
well. We then have p(¥(b) ® 1)g = 0. The arbitrariness of p and g implies that

V(D) € Vy(g)- U

The previous claim shows that ¥/ takes (g Vo into (Uge o Vor(0)- As ¢ is
quantum coarse, ¢*(Q) € Z for all Q € 2, so ¥ takes | Joe» Vo into gy Vr-
Hence, ¢ | Ci(N, %) is an embedding of C(N, %) into C;(M, 7). O

Although a quantum coarse isomorphism M — A induces an isomorphism
between quantum uniform Roe algebras, this is not the quantum version of coarse
equivalence, since coarse equivalences do not need to be bijective.” In order to deal
with a “nonbijective quantum coarse isomorphism”, we must first introduce the
notion of closeness in the quantum setting. Recall, if (¥, F) is a coarse space and X
is a set, then maps f, g : X — Y are close if there is F € F so that (f(x), g(x)) e F
for all x € X.

Definition 6.8. Let M and N be von Neumann algebras and let % be an intrinsic
quantum coarse structure on M. Quantum functions ¢, ¥ : M — N are called
quantum close if there is R € # so that (p, g) € R for all p, g € Pr(M ® B(£»))

with (¢ ® D(p)(¥ ® D(g) # 0.

Proposition 6.9. Let X be a set and (Y, F) be a coarse space, and consider £,(Y)
endowed with the quantum coarse structure induced by F. Maps f,g: X — Y are
close if and only if o5, Vg : Loo(Y) — Loo(X) are quantum close.

Proof. Suppose ¢ and ¢, are quantum close, and let F' € F be such that Rr
witnesses that those maps are quantum close. Then, for each x € X, we have

[((pf ® 1)(ef(x)f(x) ® D] [((pg ® 1)(eg(x)g(x) Q@D]=e®1,

which implies that ((ef(x)f(x) ®1), (eg(x)g(x) ® 1)) € RF. By the definition of R,
this implies that ( f(x), g(x)) € F.

Suppose now that f and g are close, and say F € F is so that (f(x), g(x)) € F
for all x € X. Let R be the intrinsic quantum relation on £,(Y) given by F.
If p. g € Pr(loo(Y) ® B(£2)) are such that [y ® 1)(p)] [(gg ® 1)(q)] # 0. pick
x € X so that (¢r @ D(p)(exx ® D(pg @ 1)(g) # 0. Then, as ¢y and ¢, are
weak*-continuous, we must have that p(e¢ex) ® g #0, ie., (p,q) € Rp. U

We now introduce the quantum version of coarse equivalence:

Definition 6.10. Let (M, #) and (N, %) be quantum coarse spaces and ¢ : M — N
be a quantum function. We say that ¢ is a quantum coarse equivalence if ¢ is
quantum coarse and there is a quantum coarse map ¥ : N’ — M so that ¥ o ¢ and

Twe point out here that while coarse equivalences do not imply the existence of isomorphisms of
uniform Roe algebras, they do imply the existence of isomorphisms between Roe algebras.
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@ o ¥ are quantum close to the identities of M and N, respectively. In this case
(M, ¥) and (N, %) are called quantum coarsely equivalent and ¥ is a quantum
coarse inverse of ¢.

Clearly, if ¢ : M — A is a quantum coarse isomorphism, them ¢ is a quantum
coarse equivalence. We return to quantum equivalences in Subsections 6.1 and 6.4.

6.1. Quantum coarse subspaces. Besides equivalences between quantum coarse
spaces, we want to be able to talk about embeddings. For that, we must first
deal with quantum subspaces. If M is a von Neumann algebra and r € M is a
central projection, then ' = r M can be seen as a von Neumann algebra in B(K),
where K =1Im(r). If ¥ is a quantum coarse structure on M, we let

W ={rVr:Ver}?

Considering #)r as a family of quantum relations on N' C B(K), ¥) is a quantum
coarse structure on A" and we call (N, ¥\r) a quantum coarse subspace of (M, V)
(see [Kuperberg and Weaver 2012, Definition 2.35]). We denote the intrinsic
quantum coarse structure %y, on N by Z .

We now show that quantum coarseness is “independent of subspaces”. In the
classical case, a map f : X — Y between coarse spaces is coarse if and only if
f: X — Z is coarse for (any) coarse space Z with Y C Z. The next two propositions
show that quantum coarse maps satisfy the same property.

Proposition 6.11. Let (M, ¥') be a quantum coarse space and let r be a central
projection in M. The map 7w :a € M +— ra € r M is quantum coarse.

Proof. Let N =rM. Say Q € Z). So there is V € ¥ so that, thinking of »Vr as
being in ¥, Q@ = R,y,. Hence,
75(Q) ={(p,q) : (x @ D(p), (mr ® 1)(q)) € Ryvr}

={(p.q): I eV, [ D(pP)(v® DI & (g)] # 0}

={(p.q):Fv eV, (p)ror @ 1)(g) #0}

={(p,q) : v erVr,(p)(v® D(g) # 0}

=Rryr.
So, 7*(Q) = Ryyr € Zy, that is, w is quantum coarse. [l

If ¢ : M — N is a quantum function between von Neumann algebras, then
ker(p) is a weak*-closed ideal. Hence, there is a central projection r € M such that
ker(¢) = (1 —r)M. If ¥ is a quantum coarse structure on M, then we consider
M/ker(p) as a quantum coarse space endowed with the quantum coarse structure
given by the canonical isomorphism M /ker(p) = r M.

8 As the elements in ¥ are bimodules over M’ , we have that ¥y C 7.



A QUANTIZATION OF COARSE SPACES AND UNIFORM ROE ALGEBRAS 197

Proposition 6.12. Let (M, V) and (N, %) be quantum coarse spaces. Let ¢ :
M — N be a quantum function and v : M /ker(¢) — N be the map induced by ¢.
Then ¢ is quantum coarse if and only if W is quantum coarse.

Proof. Let r be a central projection in M so that (1 —r) M = ker(g), so we identify
M/ker(p) with rM. Let m : M — r M be the map given by w(a) = ra for
all a € M; so 7 is quantum coarse (Proposition 6.11) and ¢ = ¥ o . In particular,
if ¥ is quantum coarse, so is ¢. Moreover, if Q € IQRel(N), then ¥*(Q) C ¢*(Q).
Therefore, if ¢ is quantum coarse, so is V. (I

In the discrete setting, a map f : X — Y is a coarse embedding if f : X — f(X)
is a coarse equivalence. We then make the following definition:

Definition 6.13. Let (M, ¥) and (N, %) be quantum coarse spaces. A quantum
function ¢ : M — N is called a quantum coarse embedding of (N, %) into (M, ¥)
if the induced map ¢ : M/ker(¢) — N is a quantum coarse equivalence.

6.2. Expanding maps and coboundedness. Notoriously, there are two equivalent
ways of defining equivalence between coarse spaces:

(1) A coarse map f : X — Y is a coarse equivalence if there is a coarse map
g:Y — X sothat go f and f o g are close to Idy and Idy, respectively.

(2) A coarse map is a coarse equivalence if it is expanding and cobounded.’

The first one, being clearly a symmetric property, is much more natural and therefore
it was the one quantized in the previous section.

As the existence of quantum functions between von Neumann algebras is not
immediate, the reader should not expect that quantum coarse equivalences should
be equivalent to the existence of a single quantum coarse function M — N which is
also “quantum cobounded” and “quantum expanding” (see Remark 6.22). However,
as we see in this section, there are still natural generalizations of expansion and
coboundedness which are indeed implied by coarse equivalences (see Theorem 6.21).
Moreover, as we see in Theorem 6.23, those concepts are related to embeddings of
quantum uniform Roe algebras into hereditary subalgebras.

Definition 6.14. Let (M, %) and (N, 2) be intrinsic quantum coarse spaces.
We call a quantum function ¢ : M — N quantum expanding if (¢*)~'[%Z] C 2.
If (M, ¥) and (N, %) are quantum coarse spaces, we define quantum expanding
maps by considering the intrinsic quantum relations #Z = %y and 2 = Zy .

As usual, we start by noticing that this quantization of expanding functions
indeed coincides with the usual notion in the classical setting.

9A map f : X — Y between coarse spaces (X, £) and (Y, F) is expanding if (f x f)f1 [Flc¢&
and cobounded if there is F € F so that for all y € Y there is x € X with (y, f(x)) € F.
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Proposition 6.15. Let (X, £) and (Y, F) be coarse spaces and consider £oo(X)
and L (Y) endowed with the quantum coarse structures induced by £ and F,
respectively. Amap f : X — Y is expanding if and only if ¢ : £oo(Y) — Loo(X) is
quantum expanding.

Proof. Let f x f : P(X?) — P(Y?) be the map given by f x f(E) = (f x f)[E]
for all E € P(X?), and notice that f is expanding if and only if f x f~![£] C F.
Given F C Y2, let R = Ry, and notice that, as ¢ is weak*-continuous, we have

Qe (¢})”'(Rr) < there exists E € P(X*) with @ =R and ¢} (RE) = R
<= there exists E € P(XZ) with @ = R and
{(r,s) :A(x,y) € E,r(efu)f(y) ® 1)s # 0}
={(@,s):3(z,w) € F,r(e; @1)s #0}
< there exists E € P(X?) with Q=Rgand f x f(E)=F
< Qe{Rp:Ec fxfl{F}}.

So (w;)—l(RF)z{RE:Eef x fU[{F}]} forall F C Y? and the result follows. 0]

If X, Y, and Z are coarse spaces and Y C Z, thenamap f : X — Y is expanding
if and only if f : X — Z is expanding. The goal of the next two propositions is to
show that the same holds for quantum expansion.

Proposition 6.16. Let (M, V) be a quantum coarse space and let r be a central
projection in M C B(H). The map w : a € M+ ra € r M is quantum expanding.

Proof. Say R € % and pick Q € IQRel(r M) so that ¢*(Q) = R. By Theorem 2.4,
there are quantum relations V and &/ on M so that R = Ry, and, thinking of rifr as
a quantum relation on r M, we have Q = R,;. Unfolding definitions, it is straight-
forward to check that, considering rVr as a subspace of B(r H), we have Q C R,y
So Q € %y m, and 7 is quantum expanding. (|

Proposition 6.17. Let (M, V) and (N, %) be quantum coarse spaces. Let ¢ :
M — N be a quantum function and  : M/ker(¢) — N the map induced by ¢.
Then ¢ is quantum expanding if and only if r is quantum expanding.

Proof. Let r be a central projection in M so that (1 —r) M = ker(¢), and identify
M /ker(¢) with r M. For simplicity, let Z = %y, 2 = %9, and Z' = %, pq. Let
7 : M — rM be the map given by w(a) = ra for all a € M, so 7 is expanding
(Proposition 6.16) and ¢ = Y o 7.

As ¢ = ¢ o, if ¥ is quantum expanding, so is ¢. Suppose now that ¢ is
quantum expanding. Let R € #’ and pick Q € IQRel(N) with ¥*(Q) = R. By
Theorem 2.4, there is V € ¥ so that, thinking of rVr as a quantum relation on r M,
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we have R = R,y,. Let V' = rVr be considered as a subspace of B(H ). Then,
as ¥*(Q) = R,yr, we have that

(D ={(p.9): (¥ @D DI(P), (¥R D(r®DI(g)) € Q}
={(p, @) (r@D(P), r®1)(@) € ¥ (D}
={(p.q@):3a eV, p(rar ® 1)q # 0}
=Ry
As ¢ is quantum expanding and V' € 7, it follows that Q € 2. So, ¥ is quantum
expanding. U

Definition 6.18. Let (M, %) be an intrinsic quantum coarse space and N be a
von Neumann algebra. A quantum map ¢ : M — N is called quantum cobounded
if and only if there is R € # so that for all nonzero p € Pr(M ® B({5)) there is
q € Pr(M ® B(£,)) such that (p, (r ® 1)g) € R, where r is the central projection
in M so that ker(p) = (1 —r) M.

The proof of the next proposition is straightforward, so we omit it.

Proposition 6.19. Let X be a set, (Y, F) be a coarse space and consider £,(Y)
endowed with the quantum coarse structure induced by F. Amap f : X — Y is
cobounded if and only if ¢ : £oo(Y) — Loo(X) is quantum cobounded. O

Proposition 6.20. Let (M, ?) and (N, %) be quantum coarse spaces, and let
¢ : M — N and ¢ : N — M be quantum functions.

(1) If Yoo is quantum close to the identity M — M, then ¢ is quantum cobounded.

(2) If ¢ o ¥ is quantum close to the identity N — N and { is quantum coarse,
then ¢ is quantum expanding.

Proof. Let # = %y and 2 = Ry .

(1) Fix R € # witnessing that i o ¢ is quantum close to the identity M — M.
Let r € M be the central projection so that ker(¢) = (1 — )M and fix a nonzero
projection p € M ® B({). Let

q0 = luyer, — \V{g' € Pr(N ® B(£2)) : pl(¥ ® 1)(¢")] =0};
s0 gy € N ® B({,) and p < (¥ ® 1)(qo). Similarly, let
Po=luyee — \V{p € PrM ® B(£2)) : qol(¢ ® D(p")] = 0}.

So pg e M@ B(£y) and gp < (¢ ® 1)(po) = [(¢ ® 1) (r ® 1)](po). Therefore, we

have that (1 ® 1)(go) < [(¥ @ (¢ ® 1)(r ® 1)](po) and, as p < (¥ & 1)(qo), we
conclude that

Pl @D 1)(r®1)]po #0.
By our choice of R, it must follow that (p, (r ® 1) pg) € R. So ¢ is cobounded.
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(2) Fix Q € 2 witnessing that ¢ o ¥ is quantum close to the identity A" — N/, Let
R € % and pick Q' € (¢*)"'[{R}]. Let us show that Q' C Qo ¥*(R) o Q. For that,
pick (p,q) € Q and let r, s € Pr(M ® B(£)) be so that (p, r) ¢ Q and (s, q) € Q.
Let us show that (r*, s1) € ¥*(R). Indeed, by our choice of Q, the assumptions
on r and s imply that

ple@DW@D(r)=0 and ¢l DY ®1)s=0.

Therefore, as (p, g) € Q', we must have that

(@D D), (e DY 1) (sT)) e Q.

As ¢*(Q) = R, this implies that (¢ ® 1)(r1), (¥ ® 1)(s1)) € R; which in turn
implies that (rt,st) e Y*(R). The arbitrariness of r and s shows that (p, g) €
QoY*(R)o Q. Thus, as ¥ is quantum coarse, and as quantum coarse structures are
closed under subrelations, this implies that Q" € 2. So ¢ is quantum expanding. [J

We can now conclude that quantum coarse equivalence implies coboundedness
and expansion, as promised.

Theorem 6.21. Every quantum coarse embedding is quantum expanding and every
quantum coarse equivalence is quantum expanding and quantum cobounded.

Proof. If ¢ : M — N is a quantum coarse equivalence, then the result follows
straightforwardly from Proposition 6.20. If ¢ is a quantum coarse embedding, then,
by definition, v : M /ker(¢) — N is a quantum coarse equivalence and therefore, by
Proposition 6.20, it is quantum expanding. By Proposition 6.17, ¢ is also quantum
expanding. ([

Remark 6.22 (on the backwards direction of Theorem 6.21). In the beginning of
this subsection, we mentioned that the reader should have no hope that a quantum
coarse map M — N which is also quantum expanding and quantum cobounded
should be a quantum coarse equivalence. Indeed, this can be easily seen since the
inclusion C — B({;) is a quantum function and, endowing C and B(f;) with their
maximal intrinsic quantum coarse structures, i.e., Z¢ = IQRel(C) and Z5(,) =
IQRel(5(£3)), it is clear that the inclusion C — B(¢;) becomes quantum coarse,
quantum expanding, and quantum cobounded. However, there is no quantum
function B(¢,) — C.

We can however say that every surjective quantum coarse and quantum expand-
ing map is a quantum embedding, and that every bijective quantum coarse and
quantum expanding map is a quantum equivalence. Indeed, say ¢ : M — N is a
surjective quantum coarse and quantum expanding map. Then the induced map
¥ : M/ker(¢) — N is an isomorphism which, by Propositions 6.12 and 6.17, is also
quantum coarse and quantum expanding. Therefore, ¥/ ~! must be quantum coarse,
S0 ¥ is a quantum coarse isomorphism, that is, ¢ is a quantum coarse embedding.
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Theorem 6.23. Let (M, V) and (N, %) be quantum coarse spaces and let ¢ :
M — N be a surjective quantum function which is quantum coarse and quantum
expanding.

(1) If ¢ is spatially implemented, then C;(N, %) embeds into a hereditary subal-
gebra of C;; (M, V).

(2) There is a Hilbert space K with dim(K) < {Ro, dim(Hyr)} so that C: (N, %)
embeds into a hereditary subalgebra of CE(M ® 1k, V ® B(K)).

Proof. (1) Let r € M be a central projection with ker(¢) = (1 — r)M. By
Remark 6.22, the induced map ¢ : ¥ M — N is a spatially implemented quantum
coarse isomorphism. Hence, by Theorem 6.5(1), C (N, %) is spatially isomorphic
to Ci(rM, rvr) =rCi(M, ¥)r.

(2) This follows analogously, using Theorem 6.5(2) and reading the dimension esti-

mate out of the proof of [Takesaki 1979, Theorem IV.5.5 and Corollary IV.5.6]. [J

6.3. The metric case and quantum moduli. For metric spaces (X, d) and (Y, 9),
coarse maps are often defined in terms of the modulus of uniform continuity. Recall,
if f: X — Y, then its modulus of uniform continuity is given by

wyr(t) =sup{d(f(x), f(y)):d(x,y) <t} forall r>0.

One easily sees that f is coarse if and only if w ¢ (t) < oo for all # > 0. Equivalently, if

wr) =inf{d(x, y) :d(f(x), f(¥) =1},

then f is coarse if and only if lim,_, o, @(t) = oo (see [Chavez-Dominguez and Swift
2023, Lemma 3.1]). We now see that, for quantum coarse metric spaces, our defini-
tion of quantum coarseness has an analogous characterization in terms of a modulus.

We start recalling the definition of distance between projections introduced
in [Kuperberg and Weaver 2012, Definition 2.6]:

Definition 6.24. Let (M, V = (V});>0) be a quantum metric space and let p, g €
Pr(M ® B({;)). The V-distance between p and q is defined by

dy(p,q)=inf{t € [0,00) : Ja € V,, p(a® 1)q # 0}
(here we use the convention that the infimum of an empty set is 00).

Our notion of quantum coarseness can be expressed as follows for the metric
case (see Remark 6.26):

Proposition 6.25. Let (M, V) and (N, U) be quantum metric spaces and con-
sider M and N as quantum coarse spaces endowed with vV = Vy and % = 1y,
respectively. The following are equivalent for a quantum function ¢ : M — N:
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(1) The map ¢ is quantum coarse.

(2) Thereis w: [0, 00) — [0, 00) with lim;_, o w(t) = 00 such that

w(dy(p,q)) <du((e®1)(p), (¢ ®1)(q))
forall p,q € Pr(M @ B(£)).

(3) We have lim;_, o @, (t) = 00, where

wy (1) = infldy (9 ® 1 (p), (9 ® 1)(q)) : dv(p, q) > 1}
and p and q range over Pr(M ® B(£)).

Proof. Let V.= (V;);>0, U = (Us)s>0, and for each > 0, let R; =Ry, and Q; =Ry,,.

The equivalence (2) <= (3) is completely straightforward. So we only show that
(1) <= (3). For that, notice first that ¢ is coarse if and only if for all # > O there
is ' > 0 so that ¢*(Q;) C Ry. Then, if ¢, ¢’ > 0, notice that, for p and ¢ ranging
over Pr(M ® B(£,)), we have

Byt 21 < [dv(p.q) =1 = du(p@(P). (9@ (@) 2 1]
= [wenm.@en@eUo = p.oe UR|

s<t s<t’

= [(p,q) e Ue* Q) = (p.9)e U Rs]

s<t s<t’

= Ue"(Qy c URs.

s<t s<t'
As @, is increasing, we are done. ]

Remark 6.26. We point out that @, was introduced in [Chavez-Dominguez and
Swift 2023, Definition 3.2] with the small difference that there the projections p
and g are only allowed to range over projections in M. However, those two
definitions coincide for operator reflexive quantum metric spaces. Indeed, this can
be seen, for instance, from the proof of Proposition 6.25 and the fact that if V, V' €
QRel(M C B(H)) are such that (p ® 1,g ® 1) € Ry implies (p R 1, g Q1) € Ry
for all p, g € Pr(M), then Ry C Ry5.

We now turn to quantum expanding functions. As introduced in [Chavez-
Dominguez and Swift 2023, Definition 2.3], given p € Pr(M), we define the
diameter of p as

diamy (p) = sup{dy (r, s) : Ja € B(H), r(pap ® 1)s # 0}.

Although we do not have an equivalent definition for quantum expanding maps in
terms of a modulus, we can relate them with the following modulus introduced
in [Chdvez-Dominguez and Swift 2023, Definition 3.2].
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Proposition 6.27. Let (M, V) and (N, U) be quantum metric spaces and consider
M and N as quantum coarse spaces endowed with V' = Vy and % = Yy, respec-
tively. If ¢ : M — N is quantum expanding, then py;) < oo for all t > 0, where

Py (1) = sup{diamy (¢(p)) : p € Pr(M) and diamy (p) <1t}.

Proof. Let V = (V;);>0 and U = (U4;);>0. Foreacht >0, let R; =Ry, and Q; =Ry,,.
Fix t > 0. Let
Q' = U Q,
Qe(p) "[R4
S0, as a union of intrinsic quantum relations is an intrinsic quantum relation, we
have Q' € IQRel(N). Moreover, ¢p*(Q") = R;, so, as ¢ is quantum expanding, we
have Q' € 2. Pick ¢’ > 0 so that Q" C Q.
Let us show that p, (1) <t'. For each p € Pr(M), let
R(p)= U {(r,s) €Pr(M ® B(£2)) : r(pap ® 1)s # 0}
acB(H)
and
Ap)= U {(r,5) €ePr(N ® B(£2)) : r(p(plag(p) ® 1)s # 0}.
aeB(H)
So R(p) and Q(p) are intrinsic quantum relations on M and N, respectively, and
we have that

py(t) <t' < diamy(p) <t = diamy(¢(p)) <t
<~ R(p) CR; = Q(p) C Qr,

where the projections p above range over Pr(M).

Suppose R(p) C R;. By [Chavez-Dominguez and Swift 2023, Lemma 2.6],
©*(Q(p)) C R(p); s0 ¢*(Q(p)) C R;. Therefore, p*(Q(p) U Q") =R, which, by
the definition of Q', implies that Q(p) C Q'. By our choice of ¢/, Q(p) C Q. O

While the condition in Proposition 6.27 characterizes classical expansion, we do
not know if it characterizes quantum expansion.

Remark 6.28. Quantum coarse embeddings between quantum metric spaces were
introduced differently in [Chavez-Dominguez and Swift 2023]: according to
[Chavez-Dominguez and Swift 2023, Definition 3.4], a quantum function ¢ :
M — N is a quantum coarse embedding if lim,_, o @, (t) = 00 and p, (1) < oo.

6.4. Quantum asymptotic dimension. Asymptotic dimension was introduced by
M. Gromov [1993, Section 1.E], and it has since become one of the main concepts
in coarse geometry. In this section, we quantize this notion and show that, just as
in the classical setting, quantum asymptotic dimension is preserved under quantum
coarse embeddings. In the case of quantum metric spaces, the development below
coincides with [Chdvez-Dominguez and Swift 2023, Theorem 4.6].
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Definition 6.29. Let (M, %) be an intrinsic quantum coarse space.
(1) Given P C Pr(M), we say that P covers M if 1y, = \/pE7> p.

(2) Given R € Z and P C Pr(M), we say that P is R-disjoint if (p®1,g®1) € R
for all p,q € P with p #gq.

(3) Given R € #Z and p € Pr(M), we say that the diameter of p is at most R, and
we write diam(p) < R, if (r,s) € R for all r, s € Pr(M) such that there is
a € B(Hy,) with r(pap ® 1)s #0.10

(4) We say P C Pr(M) is uniformly bounded if there is R € # so that diam(p) <R
for all p € P.

If (M, ¥) is a quantum coarse space, all the definitions above are made with respect
to Zy .

Definition 6.30. Let (M, ¥') be a quantum coarse space and n € N U {0}. We
say that (M, ¥') has asymptotic dimension at most n if for all R € % there are
Po, P1, ..., Py CPr(M) so that

(1) (P)i_, covers M,
(2) each P; is R-separated, and
(3) each P; is uniformly bounded.

We say that (M, ¥') has asymptotic dimension at most n, and write asydim(M, ¥)=n,
if n is the smallest element in N U {0} satisfying the above. If no such n exists, we
say that (M, ¥') has infinite asymptotic dimension.

It is clear that the definition above coincides with the usual definition of asymp-
totic dimension of a coarse space (X, &) for M = £ (X) and ¥ = 5.

Theorem 6.31. Let (M, V) and (N, %) be quantum coarse spaces. If there is a
quantum coarse and quantum expanding map ¢ : M — N, then asydim(N, %) <
asydim(M, ¥). In particular, if (M, V) and (N, %) are quantum coarsely equiv-
alent, then asydim(N, %) = asydim(M, ¥).

Proof. Let ¢ : M — N be a quantum coarse and quantum expanding map. First
notice that if Q € #4 and P C Pr(M) is ¢*(Q)-disjoint, then ¢[P] is Q-disjoint.
Now let R € # and let Q be the union of all Q" € IQRel(N) so that ¢*(Q") C R.
As @ is quantum expanding, we have that Q € %4 . Proceeding analogously as in
the proof of Proposition 6.27, we have that if diam(p) <R, then diam(¢(p)) < O.
By the above, if Q € Z4 and Py, P, ..., Py C Pr(M) forms a ¢*(Q)-disjoint,

n

uniformly bounded cover of M, then (¢[P;])}_, is a Q-disjoint, uniformly bounded
cover of V. O

10This is a clear adaptation of the quantity diamy (p) introduced in [Chdvez-Dominguez and Swift
2023, Definition 2.3] (and used in Section 6.3) for the metrizable case.
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We finish this paper with a corollary suggested by the anonymous referee.

Corollary 6.32. Consider B(£y) endowed with its maximal quantum coarse struc-
ture. Then this space has quantum asymptotic dimension zero.

Proof. As noticed in Remark 6.22, considering C endowed with its maximal
(and unique) quantum coarse structure, the map C — B({,) is quantum coarse
and quantum expanding. So by Theorem 6.31, B({;) has asymptotic dimension
bounded by that of C. But the asymptotic dimension of the latter is zero by simply
letting Py = {1¢c}. O
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Note added in proof

Thanks to Lyudmila Turowska and Aristides Katavolos for directing us toward
the long prehistory of intrinsic quantum relations, which is primarily focused on
reflexivity. We would like to give the original attributions for a few key points here.
The idea to associate a set of pairs of projections to a weak*-closed subspace goes
back to [Loginov and Shulman 1973]. The abstract properties of such a set were
considered in [Shulman 1990], using the name bilattices, and notably developed in
[Shulman and Turowska 2004]. The paper [Magajna 1991] was the first to observe
that for bimodules over a von Neumann algebra, one loses no information by using
pairs of projections from the commutant (a fact stated after Definition 2.5 and used
in the important Theorem 2.4).
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