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Figure 1: A) Students (blue), educators (green), and researchers (red) participated in a sequence of co-design sessions discussing,
designing, and reflecting on practices that build conceptual knowledge and engagement in data and statistics for students who
are blind or have low vision (BLV). B) Throughout the co-design process, participants engaged in several inquiry-based activities
exploring introductory statistical concepts of distribution and center using both low- and high-tech tools. C) Participants then
incorporated knowledge-forming practices synthesized throughout the sessions into the design of their own learning activities.

Abstract
Statistical literacy involves understanding, interpreting, and criti-
cally evaluating statistical information in a contextually grounded
way. Current instructional practices rely heavily on visual tech-
niques, which renders them inaccessible to students who are blind
or have low vision (BLV). To bridge this gap, we formed an ex-
tended co-design partnership with a statistics teacher, a teacher
for students with visual impairments (TVI), and two BLV students
to develop accessibility-first practices for building statistical liter-
acy. Through several months of collaboration that included dis-
cussion, exploration, design, and evaluation, we identified specific
approaches to promote comprehension and engagement. The enac-
tive approaches we designed, using scaffolding and timely feedback,
fostered insights through pattern recognition and analogical reason-
ing. Additionally, inquiry-based methods promoted contextually
situated reasoning and reflection on how statistics can improve
students’ lives and communities. We present these findings along-
side participants’ experiences and discuss their implications for
inclusive learning frameworks and tools.
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1 Introduction
The rapid growth of data and computing during the digital age has
marked a paradigm shift in how we consume information. As gov-
ernments, industries, and individuals increasingly rely on data and
statistics for communication and decision-making, understanding
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these concepts is not only a practical skill but also a pathway to
greater social inclusion [28].

Although a widely recognized definition is lacking, there is broad
agreement that statistical literacy is contextual [61, 63, 128, 144,
147], transnumerative [42, 147], and hierarchical [126, 127, 142],
requiring knowledge of the language, procedures, as well as "higher-
order cognitive skills of interpretation, prediction and critical thinking"
[126]. While schools often emphasize calculations and procedures
[128, 131], there is a growing acknowledgment of the need to teach
data and statistical concepts in more cohesive [36, 129], partici-
patory [135], and contextually situated [61, 63, 128, 135, 142, 147]
ways.

Visual representations are widely used for contextualizing and
reasoning about statistical measures [110, 136, 140, 144] and are
core components of statistical learning curricula [3, 6, 7]. Data
visualizations have been shown to promote statistical reasoning
[35], particularly for novice learners on problems concerning mea-
sures of center [112]. Additionally, there is increasing interest in
using dynamic visualizations in exploratory data analysis to shift
focus from pure computations towards contextual thinking and
inferential reasoning [30, 117]. Several digital learning platforms
supporting these features, such as CODAP [1] and TinkerPlots [14],
are already being used in classrooms today [105].

However, access to graphics is limited [53, 71, 130], and inter-
active graphics are virtually nonexistent for blind and low-vision
(BLV) students [133], creating significant gaps in the pedagogical
tools available to them. Without these tools, reports have found
that teaching statistics to BLV students is significantly more chal-
lenging [80, 100, 132, 133], particularly when trying to build robust
understanding of statistical concepts [102]. Reports have found
BLV students lagging in skills to efficiently and accurately interpret
graphical information [25].

Prior research in inclusive education has investigated accom-
modations and adaptations to traditionally inaccessible methods
for teaching statistics [51, 65, 68, 69, 100, 102, 133, 134]. However,
these efforts often place limited emphasis on fostering conceptual
understanding or contextual thinking. In HCI, various systems
have been developed to support exploratory and inquiry-driven
STEM learning approaches for BLV students [54, 88, 106, 138], but
few are designed to directly address the specific knowledge and
engagement gaps observed within this population or comprehen-
sively consider the equally critical and interdependent design of
the learning activities in which these systems are embedded [20].

Curriculum instructors lack direction in adapting materials for
BLV students [24, 51, 68, 102, 133] while Teachers of Visually Im-
paired Students (TVIs), who specialize in working with BLV stu-
dents, often do not have the domain knowledge needed to adapt
materials to foster robust conceptual understanding [46, 104, 122].
There is a pressing need to identify practices and tools that promote
deep conceptual learning, interpretation, and critical evaluation of
data and statistics in context from an accessibility-first approach.

https://doi.org/10.1145/3706598.3713333
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In this work, we investigate:
• RQ1: What challenges do educators and BLV students iden-
tify in current practices and tools for learning statistics?

• RQ2: How might we design inclusive education practices
and tools that promote robust conceptual understanding,
interpretation, and critical evaluation of statistical measures
in context?

Involving the perspectives of statistics teacherswho create curriculum-
based activities, TVIs who adapt these activities, and BLV students
is essential for designing and evaluating inclusive learning practices
[54, 91, 113]. We approach our research questions through a co-
design program that solicits the combined expertise of stakeholders
directly responsible for BLV students’ education experience— a
high school statistics teacher, a TVI, and two BLV students— in the
design of tools and activities to foster statistical literacy. Spanning
multiple half-day sessions over several months, the program leads
participants through a complete cycle of the design process— from
need-finding and defining learning objectives (Session 1), to ex-
ploring educational tools and practices (Session 2), to prototyping
(Session 3) and evaluating (Session 4) learning activities.

Conversations and observations from Session 1 highlighted the
need for more engaging, exploratory, and contextually relevant
practices to help BLV students reason beyond surface-level factual
and procedural knowledge. Experimentation with various peda-
gogies and tools across Sessions 2 through 4 revealed multiple
inclusive learning opportunities to strengthen conceptual knowl-
edge in engaging ways, which we synthesize into four engagement
and eight learning takeaways. Among these are the use of enactive,
embedded, and analogical practices to build intuition and support
reasoning about measures in relation to underlying distributions
and data; as well as inquiry-based approaches to encourage con-
textually situated reasoning and reflection. We discuss the implica-
tions of our findings for activity and tool design and append the
participant-designed activities to demonstrate practical ways to
apply these approaches (Appendix A).

2 Prior Work
2.1 Data, Visualization, and Statistical Literacy
While educators have not reached a consensus on a formal def-
inition for statistical literacy, there is widespread agreement on
several essential qualities [126].

First, statistical literacy has been conceptualized as interwoven
threads of mathematical understanding and contextual engagement
[142] in a complex hierarchical construct [127, 142]. Several mod-
els have linked levels of statistical understanding with Biggs and
Collis’ Structure of the Observed Learning Outcome (SOLO) taxon-
omy [93, 142]. Notably, Watson and Callingham decompose literacy
across six levels: from idiosyncratic to critical mathematical [142].
Each level reflects increasing critical engagement with context, un-
certainty, and proportional reasoning. While factual and procedural
knowledge is traditionally easier to teach, developing higher lev-
els of conceptual knowledge has been reported to be much more
challenging [115, 143], especially for BLV students [102].

Second, statistical literacy encompasses an appreciation of con-
text [38, 61, 142], which Gal emphasizes extends beyond simply
acknowledging the use of real data; but critically examining what

meaning is conveyed by statistical measures and why that meaning
is relevant to the insights being sought from the data. As society
becomes increasingly data-driven, the importance of situating sta-
tistical literacy in context has arguably become paramount to social
inclusion [28] and modern living [62, 139].

Finally, appreciation and application of statistics in context posi-
tions statistical literacy closely with visualization literacy and data
literacy [72]. Both visualizations and statistics are powerful, comple-
mentary tools for data sense-making and inquiry [18, 136]. While
statistical measures often summarize data, they lack the ability to
convey the full scope or nuances that visualizations can effectively
communicate. Graphical representations have been shown to pro-
mote statistical reasoning [35, 112] and are increasingly integrated
into core curricula [3, 6, 7, 105].

Our work explores instructional design strategies to foster con-
ceptual understanding of statistics that are both contextually mean-
ingful and grounded in data representations. Specifically, we focus
on measures of center, among the first and most widely applied
statistical concepts introduced in public education. While many
measures exist and are newly constructed to describe data, mea-
sures of center— such as the mean or median— have an elevated
status given their broad use.

2.2 Accessible Data and Statistics Education
Most BLV students in the United States are enrolled in public
schools [13]. In these settings, the curriculum instructor develops
and selects activities that TVIs adapt for BLV students [83].

Physicalmanipulatives, such as tokens and objects, are often used
as an introductory tool to teach data and graphical concepts to BLV
students [122]. These manipulatives provide concrete experiences
that can help students connect abstract concepts to realistic contexts
[44, 70, 118]. With increased experience, students transition to more
standardized tactile representations of graphs and charts. These
representations, called tactile graphics, consist of raised lines that
BLV students can explore through touch. Effective use of tactile
graphics often takes time to learn [123].

For learning statistics, significant research has highlighted a
variety of adaptations for making activities more accessible: which
span software tools [69, 134], tactile alternatives to visual graphics
[65, 100, 102], and logistical accommodations [100, 102]. However,
this approach limits students to the adaptable subset of education
activities originally developed for general education purposes.

Contrasting prior work, we take an accessibility-first perspec-
tive that begins with identifying the conceptual and engagement
challenges of BLV students and then re-imagines tools and instruc-
tional practices to address them. This situates comprehension and
engagement (rather than adaptation) as the focus. We draw from
both visualization and statistical learning practices mentioned in
prior work [65, 100, 102, 122], and from more recent audio-tactile
systems [54].

2.3 Co-Design for Inclusion
Co-design is a collaborative practice where participants combine
their knowledge, skills, and resources to tackle a design task [153].
This approach often results in designs that are better aligned with
users’ needs [90] and encourages more original ideas [149]. For
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inclusive technologies, co-design amplifies the values, experiences,
strengths, and ideas of marginalized groups [27, 59]. Prior research
highlights the effectiveness of co-design with neurodiverse [26, 27,
81], blind and low vision (BLV) [34, 104, 148], and deaf and hard of
hearing (DHH) children [87], contributing to inclusive educational
tools such as educational science simulations [148], intelligent tu-
toring systems [27], learning games [27], collaborative robots [104],
smart objects [59], and digital devices [34, 81].

Engaging marginalized students in co-design not only produces
better-suited designs but also provides empowering experiences
[26, 81, 137] that foster self-efficacy [148]. This is particularly valu-
able for BLV children, who often face reduced opportunities for
collaborative learning and social engagement [22, 60]. Druin et
al. outline levels of involvement in design, ranging from users to
testers, informants, and, ultimately, design partners [48]. Involv-
ing students as equal design partners produces stronger alignment
with their needs, abilities, and preferences [76], but requires careful
attention to balancing and addressing asymmetries in tools and
language [92, 152]. Strategies such as assigning roles [33, 104], us-
ing crafts [33], or storytelling can further facilitate equitable and
inclusive co-design experiences for BLV participants.

As a research methodology, co-design investigates the plausi-
bility of future realities and demonstrates their existence (though
not universality) while providing insights into their impact and
relevance [153]. Our work using co-design aims to explore an
accessibility-first statistical learning reality, demonstrate its feasi-
bility through student outcomes, and synthesize takeaways and
practices that bridge current challenges to such a reality.

3 Positionality Statement
The core research team consists of five faculty members (two BLV
and three sighted), four graduate students (all sighted), and two
undergraduate students (one blind and one sighted) from schools
of information, education, and engineering. Co-design participants
who joined the team later helped shape subsequent sessions and
provided key insights that informed the research analysis and writ-
ing.

4 Methodology
We conducted a series of IRB-approved co-design sessions with a
high school statistics teacher, a TVI, and two BLV students in their
early high school years. All participants attended four half-day
sessions, totaling over 16 hours spread across several months. Each
session focused on a different theme, which was: 1) Motivating
Data and Statistics, 2) Tools and Practices for Engaging Learning, 3)
Design and Prototype, and 4) Evaluation and Reflection (Figure 2).
Two additional 90-minute meetings conducted after Sessions 2 and
3 provided educators with the opportunity to reflect and co-plan
subsequent sessions.

Six data inquiry activities related to measures of center were
interspersed throughout the sessions. These activities provided
an opportunity to identify knowledge gaps and experiment with
learning approaches. Initial activities reflected standard practices

[4, 10, 11] and provided a shared experience to promote conver-
sations surrounding current practices and needs. Subsequent ac-
tivities became increasingly embedded in the common values and
objectives synthesized by participants.

Activities also provided learning contexts for us to probe a vari-
ety of non-visual data and statistical learning technologies. These
technologies ranged from low-tech manipulatives often used in
classrooms [122] to multimodal learning prototypes that offer tun-
able instantaneous feedback [54]. They included both participant-
submitted tools (Braille notes, calculators, and tactile learning kits),
as well as researcher-created artifacts (3D-printed spinners and
dice). After using and reflecting on these tools in the early inquiry
sessions, participants were given the opportunity to select any
combination of these tools or propose their own when designing
activities in Session 3.

4.1 Participants
We recruited participants through local mailing lists and our per-
sonal network. Before the study sessions, we pre-screened partic-
ipants and gathered their access preferences during a 30-minute
Zoom call. We aimed to include participants with diverse roles and
perspectives from typical math learning environments for BLV stu-
dents. Given that public schools are the most common educational
setting for blind children [13], our selection criteria required the
general education teacher to have experience designing and teach-
ing statistics in public schools, the TVI to have at least 5 years of
experience working with BLV students, and the two BLV students
to be in middle or high school with knowledge of basic algebra.
We limited the group size to foster engagement, commitment, and
a sense of ownership over the process and outcomes. All partic-
ipants were expected to be open to collaboratively sharing ideas
and experiences.

The final group of participants included an AP statistics teacher
at a public high school, a TVI with over 48 years of experience who
also serves as a university lecturer, and two BLV freshmen from
different public high schools. These participants are referred to as
the Stats Teacher, the TVI, Student 1, and Student 2, respectively.
We also refer to the Stats Teacher and TVI together as "educators."
The TVI had worked with one student before, and the two students
knew each other but had not met in several years. Both students had
prior exposure to concepts of mean, median, and mode in middle
school math classes. They also both lost their vision shortly after
birth, which is common among blind children [96].

Throughout the co-design process, all participants primarily
served as design partners. For the data inquiry activities, the stu-
dents also acted as users for evaluating activities, testers of new in-
teractions, informants when reflecting on the activities, and design
partners in the development of the later activities [48]. Participants
were compensated $45 per hour for their participation in the co-
design sessions. Afterward, they contributed to research planning,
analysis, and writing in various capacities.

4.2 Session Design
Sessions 1 and 2 focused on exploring what to design and how
to approach the process. The initial group of researchers planned
these sessions through multiple discussions. Educators were then
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Figure 2: Progression of topics, goals, and logistics across the co-design sessions.

involved in designing Sessions 3 and 4 through follow-up Zoom
meetings, which focused on prototyping and evaluation. We used
a combination of full-group sessions for collective brainstorming,
discussion, and reflection, along with educator-only, student-only,
and mixed-pair sessions to encourage open sharing without peer
pressure or student-teacher power dynamics.

All but the two educator-only reflection studies were held in
person. Each of these sessions lasted approximately four hours
and included themed subsections with interspersed breaks. Two to
five members of the research team co-led each of the sessions. We
asked participants to bring their familiar computing and calculat-
ing devices to each session. We videotaped and audio-recorded all
sessions with participants’ consent.

4.2.1 Session 1: Motivating Data and Statistics. Before engaging
in inventive practices, we first needed to establish a shared under-
standing of learning needs from our participants’ diverse perspec-
tives. Thus, Session 1 focused on familiarizing participants with
the problem space, identifying needs, and defining learning goals
through facilitated discussions and reflective practice grounded in
data activities.

Data-centered Icebreaker: Participants and researchers in-
troduced their interests in inclusive STEM practices and shared
statistics they found surprising or interesting. Participants and re-
searchers then collaboratively constructed a set of guidelines for
healthy and inclusive discussion and collaboration.

Motivating data and statistics: Participants brainstormedways
to motivate data and statistical learning by first imagining them-
selves as teachers explaining the importance of understanding data
and statistics to BLV students, and then as students encountering
data and statistics for the first time. Next, students shared types
of phenomena they and their peers might find interesting to track.
Finally, the group reflected on common themes shared throughout
the activity.

Data Inquiry 1: Students participated in an initial inquiry ac-
tivity, which provided a shared experience to ground future discus-
sions and served as a baseline evaluation of their prior knowledge.
We adapted the first activity from common high-school data science
curricula [4, 10, 11], which asks students to compute and discuss

measures of center, compare the measures, and reason about them
through plots of distributions in context. Students chose one of
three possible topics (weather, basketball, or penguins). Plotting
was made accessible through a magnetic whiteboard, magnetized
acrylic strips to serve as frames, Braille labels, and manipulable
magnetic tokens (shown in Figure 3A) [52].

Data Inquiry 2: To further assess understanding, students com-
pleted a second activity that asked them to select the highest-rolling
die from two weighted Braille dice (shown in Figure 3B). Repeated
rolls of the dice would generate two distinct non-uniform proba-
bility distributions of different skews. We provided the measures
of center for one die, which students could not touch, and gave
students the freedom to manipulate and sample from the other die.
After choosing a die, students played a game against the researchers
in which the highest sum of 20 rolls won.

Reflection on Inquiry Experiences: Participants split into
individual student and educator sessions to reflect on their activity
experiences. The student group reflected on their engagement and
learning across the activities while the educator group reflected on
observed strategies and challenges. From those challenges, educa-
tors developed an initial set of learning goals focused on center and
distribution. The session concluded with a large group sharing of
individual group reflections.

4.2.2 Session 2: Tools and Practices for Engaging Learning. Session 2
focused on exploring tools and pedagogical approaches that support
engaging learning as a precursor to activity design in Session 3.
Facilitated discussions encouraged participants to draw on their
experiences and expertise, while data activities provided a concrete
foundation for these conversations.

Due to a scheduling conflict, Student 1 participated separately,
offering an independent perspective at the cost of collective experi-
ence. To keep the student aligned with group discussions, we shared
key points from the group session after each reflection period.

Engaging Learning Activities: Participants discussed types of
activities that made learning fun by drawing on their prior experi-
ences.

Metaphors and Analogies for Learning: Building on a sug-
gestion from the Stats Teacher to use analogies to explain statistical
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measures in Session 1, we discussed the role of metaphors and analo-
gies in teaching data and statistical concepts. The Stats Teacher
suggested demonstrating the mean as the "center-of-balance" of a
distribution. Students explored this analogy by using their fingers
to balance a distribution of magnetic tokens placed atop a magnetic
ruler (shown in Figure 3C). Students also explored the median by
examining ideas of symmetry using movable magnetic number
labels (shown in Figure 3D).

Interactive Learning Systems: While visual graphs leverage
interactivity such as layering [86] and highlighting [95] to help
sighted students discern data relationships, these benefits have
not been extended to BLV students. Addressing the need for more
engaging learning tools identified in Session 1, we explored oppor-
tunities to incorporate auditory and haptic feedback to enhance
statistical learning.

We provided participants with samples of input and feedback
methods, including token manipulation, spoken audio, audio effects,
kinesthetic feedback, and vibration, which are commonly explored
to support non-visual learning [55, 67, 108, 109, 114, 122, 124]. For
each, we encouraged participants to think aloud and reflect on ways
these methods might support data interaction or demonstrate data
concepts.

Data Inquiry 3: To illustrate how metaphors and interactiv-
ity can be integrated, participants engaged in a third data inquiry
activity using a digital multimodal statistical learning platform
developed by Fan et al. (Figure 3E) [54]. This platform provides real-
time audio and haptic feedback on statistical measures as students
construct and manipulate physical data representations. Teachers
can customize feedback to describe statistical measures as data
updates, while learners can explore concepts like the mean in em-
bodied and analogical ways. For example, by sliding a physical
fulcrum to the distribution’s mean and center of mass, students
can feel the tilt of the physical representation level. Additionally,
students can press on regions of the graph to hear information
about those regions.

The inquiry activity focused on classical composers, a topic of
interest identified in Session 1. Students created a dataset by mea-
suring their hand sizes on a portable musical keyboard. They then
engaged in inquiry activities comparing their hand sizes to classical
composers. The activity encouraged them to calculate measures of
center, explore how statistical measures changed with individual
data updates, and reflect on the sensitivity of those measures. This
involved modifying a physical representation based on hypothetical
scenarios and observing changes through various feedback mecha-
nisms. Following the inquiry, the group reflected on the platform
interactions.

Activities and Strategies for Learning: Having explored both
tools and learning methods, participants brainstormed ways to sup-
port the learning of measures of center. We introduced participants
to Bloom’s revised [89] and Fink’s [56] taxonomies as a co-design
resource and provided a table to organize thoughts across taxonomy
categories.

4.2.3 Session 2b: Educator Reflection. We conducted a 90-minute
follow-up Zoom meeting with educators to 1) further synthesize
and discuss ways to support the learning objectives from Session 1,

2) reflect on students’ experiences across the data inquiry activities,
and 3) co-plan the design and prototype portion of Session 3.

Researchers synthesized the learning objectives and practices
shared by participants at the end of Sessions 1 and 2 and pre-
populated a collaborative whiteboard with this information to guide
the discussion. We grounded reflections on students’ experiences
using the CARE methodology proposed by Mouallem et al. [107],
which assesses instruction through unproductive struggles, healthy
challenges, and rewarding experiences. Based on these reflections,
educators and researchers collaboratively defined the structure of
Session 3 to support the creation of learning activities, established
roles and responsibilities to ensure a productive and enjoyable ex-
perience for all participants, and selected materials participants
would find useful.

4.2.4 Session 3: Designing and Prototyping. After identifying what
to design in Session 1 and how to approach design in Session 2,
participants focused on creating learning activities in Session 3.
This open-ended design process allowed them to address observed
challenges and translate ideas and themes from earlier sessions
into tangible outcomes. The resulting activities served as concrete
examples of participants’ values, while discussions during their
creation revealed the intent behind each component.

Session 3 was split into separate teacher-student subgroups,
which created several opportunities. First, students would be able
to design activities for each other to evaluate during Session 4,
a motivator discussed in an earlier session. Second, designing as
student-teacher pairs provides a more active and intimate idea-
creation experience that aligns closer to the values of the particular
participants. Third, comparing activities across the pairs offers
insight into the perspectives each participant brings, such as those
of the statistics teacher compared to the TVI.

Recap of Prior Conversations: To promote continuity in activ-
ity design based on prior conversations and observations, Session 3
began with a reflection onmemorable experiences and conversation
topics from the previous sections.

Introduction to Materials: We introduced participants to var-
ious materials they could use for prototyping (shown in Figure
3F). These include craft supplies like textured paper, glue sticks,
playdough, velcro, tape, scissors, and wooden blocks, and materi-
als commonly used to teach BLV students, such as Braille labels,
tactile drawing kits, tactile diagramming materials, Wiki Stix, and
a pin board (provided by the TVI). Additionally, we included data
exploration materials from previous sessions, such as a magnetic
whiteboard, magnetic tokens, and the multimodal data platform.
Participants brainstormed potential uses for each type of material
as we introduced them.

Prototyping Statistical Learning Activities: Participants pro-
totyped activities following a backward design structure [120]. Par-
ticipants first selected and refined one of the learning objectives
identified in previous sessions, then prototyped activities to help
students achieve the objective. While participants led topic selec-
tion and activity design, the research team actively contributed by
highlighting themes from prior conversations, summarizing par-
ticipants’ ideas, and encouraging the concretization of concepts to
move the design process forward.
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4.2.5 Session 3b: Educator Reflection. We held a second 90-minute
Zoom meeting with educators to reflect on the prototyping process
and compare it to their usual activity generation and adaptation
practices. During the meeting, educators shared and provided feed-
back on the activities, allowing us to observe how they integrated
their unique perspectives and experiences. The researchers then
incorporated this feedback into the activities before Session 4.

4.2.6 Session 4: Evaluation and Reflection. In Session 4, participants
engaged in a contextual inquiry (as defined in learning contexts by
Druin et al. [48]) to critique and reflect on the effectiveness of the
activities designed during Session 3 in addressing the needs and
learning goals identified in earlier sessions.

Contextual Inquiry: Participants alternated between experi-
encing the activities designed for them and observing their peers
engaging with the activities they had created. After each activity, a
brief reflection focused on what worked well and what could be im-
proved in terms of engagement and learning. In total, participants
experienced three activities: the "TVI-Student 1" group developed
two shorter activities, while the "Stats Teacher-Student 2" group
created a single, longer activity (detailed in Appendix Section A).

Final Activity and Co-Design Reflections: Final reflections
followed the contextual inquiry. Educators and students first met
in smaller groups to discuss the activities in relation to their prior
experiences, learning goals, and the co-design process. The discus-
sion then shifted to a larger group, where participants reflected on
designing engaging learning experiences and the importance of
feedback and interactivity.

4.3 Data Analysis
We used reflexive thematic analysis [32] to analyze transcripts and
video data. Six researchers first reflected on their study notes to
identify lenses for coding the data. These lenses include: expecta-
tions about learning over time, prior needs and experiences, prior
knowledge, challenges, recommendations, interventions, learning
outcomes, activity design, and the co-design process. Transcripts
were triangulated with artifacts and video observations by multiple
investigators to promote consistency and validate findings [40].
Videos were labeled in the following formats:

• "Because (motivation), students (performed action), whichmade
them/ helped them/ led them to believe (reaction)." (i.e. “In or-
der to engage S1 in the construction activity, S2 guided S1’s
hand to x and y axis locations, which helped S2 understand
the structure of the graph.” )

• "Students encountered (challenge), but (action) led to (insight)."
(i.e. “S1 described not knowing the effect of an added data point
on the median, but by re-applying the sticky note to the point
that splits the data in half, articulated that the median does
not change.” )

We then inductively constructed sub-themes and themes from
codes and collated data using latent and constructionist approaches,
which form the subheadings and headings of Section 5. These were
deductively reviewed and refined through several constructivist-
aligned learning frameworks, including Keller’s ARCS Model of
Motivational Design [82], Krathwohl’s types of knowledge [89],
and Biggs and Collis’ Structure of the Observed Learning Outcome

Figure 3: Educational materials used to support inquiries
across Sessions 1 (A, B) and 2 (C-E); prototyping in Session
3 (F); and participant-designed activities across Sessions 3
and 4 (G-J). Materials ranged from craft supplies and passive
manipulatives to digital tools and learning platforms. Not
shown are the educational materials the TVI brought, which
include tactile drawing [15], plotting [16], and math kits [17]
produced by the American Printing House (APH), and the
personal computing devices that the students brought.

(SOLO) taxonomy [31]. Theme generation was an iterative pro-
cess involving over 4+ meetings with eight researchers, facilitated
through affinity diagramming on a collaborative whiteboard. The
team held multiple peer debriefing, analysis, and review sessions
with the input of the participants to mitigate researcher and con-
firmation bias. Our codebook is included in the supplementary
materials.

5 Results
We identified engagement (Section 5.1), conceptual reasoning (Sec-
tion 5.2), and contextual reasoning (Section 5.3) as central themes,
each encompassing multiple subthemes that structure the subsec-
tions. Within each sub-theme, we explore participants’ articulated
and observed challenges, the strategies they developed in response,
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Figure 4: List of sub-themes (left) and takeaways (right) iden-
tified for the central themes of engagement (top, beige), con-
ceptual reasoning, and contextual reasoning (bottom, blue).
Arrows relate specific sub-themes and corresponding take-
aways.

and the interventions that promoted engagement or deepened un-
derstanding. These interventions are synthesized into key take-
aways, which are woven throughout the subsections (see Figure 4
and Appendix B). Additionally, Appendix A presents participant-
created activities that illustrate how they applied these takeaways
to design more engaging and knowledge-forming practices.

5.1 Engagement Challenges and Opportunities
Maintaining focus, providing immersive content, ensuringmeaning-
ful context, and fostering self-efficacy were identified as important
components to sustaining enagement that were often lacking for
BLV students. The following subsections describe observed stu-
dent challenges, corresponding interventions, and key engagement
takeaways (labeled as ETs).

5.1.1 Maintaining Focus: During the initial group inquiry ses-
sions, we observed that access barriers produced task and pacing
misalignments that disrupted focus. In an early collaborative phys-
icalization activity with magnetic tokens (Data Inquiry 1), Student
2 took the lead in organizing and populating the plot. However, the
absence of perceptible cues for Student 1 to track task progress led
to their disengagement. The TVI explained that, without vision, “it’s
hard [for BLV students] to look at the graph and keep track of where
the other students had placed [tokens].” Despite the TVI’s efforts to
re-engage Student 1 by placing their hand on the whiteboard, the
student continued to struggle with participation.

When Student 2 noticed Student 1’s disengagement, they guided
Student 1’s hand through the plot, explained its structure, and of-
fered hints on where to place the data tokens. These efforts to clarify
the task and establish joint attention helped Student 1 re-engage
with the activity, highlighting the importance of maintaining per-
ceptibility and mutual awareness in all aspects of group work. As
a result, we became more intentional about providing audio feed-
back and clear verbal cues in subsequent activities, which fostered
greater vocal and physical engagement from both students.

ET1 (Engagement Takeaway 1): Ensure Inclusion: Per-
ceptibility and mutual awareness in all components of group
activities are important for maintaining focus.

5.1.2 Providing Immersive Content: Both students and the
TVI corroborated how BLV students often lacked sufficient access
to immersive statistical learning materials. The TVI shared that
"A lot of times, there’ll be books or documents with pictures or icons,
images, and they eliminate those. They omit them because their rules
say they don’t have to include them if it’s not pertinent to the content."
As a result, students are often inundated with "pages and pages and
pages of Braille (TVI)," which Student 2 calls "pure torture."

When designing activities, students and teachers proposed many
ideas that used haptic and auditory feedback. Haptically, students
particularly enjoyed manipulating tangible tokens during the data
inquiry activities, which allowed them to "actually feel and play
around...That’s better than having to do y equals mx plus b" (Student
2). Auditorally, participants recommended using auditory hooks
to motivate inquiry activities (TVI, Stats Teacher) and integrating
data-responsive auditory feedback (Student 2). Based on Student 2’s
idea, we programmed the digital platform to play buzzing sounds at
volumes corresponding to the number of hornets in a participant-
designed inquiry about hornets (Appendix A.1). Additionally, pair-
ing token manipulation with sonified auditory feedback led Stu-
dent 1 to spontaneously create stacks of varying heights to explore
pitch-to-data relationships. Through experimentation, students in-
tuitively grasped the correlation between data and pitch without
requiring a formal introduction to sonification.

ET2: Support Interactive Audio-Tactile Experiences:
Tangible experiences with immersive auditory feedback pro-
mote engagement and encourage experimentation.

5.1.3 EnsuringMeaningful Context: Both students shared how
their prior statistical learning experiences consisted mainly of
calculation-focused tasks rather than context-based reasoning. Stu-
dent 2 described how their prior learning consisted of "mostly just
numbers. It was just boring." The Stats Teacher shared how "drilling
is not necessarily very productive, and it will likely be flushed out of
their minds really quickly." To the Stats Teacher, drilling can easily
be avoided, explaining that "especially with statistics, it’s nice be-
cause you’re working with a specific data set. And if it’s [a] specific
data set that is interesting to them, it will be really memorable, and
you can refer back to it."

At baseline for promoting engagement, Student 2 recommended
to "always make sure to have a story." Student 1 further emphasized



Promoting Comprehension and Engagement in Introductory Data and Statistics for BLV Students CHI ’25, April 26–May 01, 2025, Yokohama, Japan

how anchoring stories around "subjects that [students] like" im-
proves engagement. Many of the interests students shared involved
auditory characteristics of natural and social environments, such as
bird sounds, voice impressions, and music; as well as audio-haptic
experiences, such as elevators, trains, and blow dryers. The TVI
reflected on how "the rest of us would go in the elevator and wouldn’t
hear anything. But [Student 1] focuses on it, so [they] pay attention to
the sounds that [they’re] hearing. And then [they] make a comparison
between the sound in this elevator and the sound in that elevator."
Students were also passionate about accessibility and particularly
attentive to accessibility features in pedestrian signals and screen
reader interactions. When students tried activities that catered to
each other’s interests (Appendix A), they naturally raised inquiry
questions, shared data-oriented stories about their experiences, and
discussed the implications of data findings.

ET3: Ground In Interest: Grounding activities in students’
interests, particularly those with interesting audio and hap-
tic features, promotes contextualization, storytelling, and
engagement.

5.1.4 Fostering Self-Efficacy: From the first session, Student
2 self-identified as being "poor at math" to a point in which the
TVI reflected on being "surprised that [they] continually would say,
I don’t have good math skills and I can’t do this. But then [they]
would turn around and demonstrate that [they] could do all of those
things and [they] did have those skills, but [they] kept, you know,
downgrading [themselves]."

When reflecting on practices for building confidence, the Stats
Teacher shared how "breaking up open-ended tasks into smaller
checkpoints can be pretty effective," as doing so "helps keep students
accountable and celebrate that they are progressing." When breaking
up tasks, the Stats Teacher recommended "try[ing] to stick with
one main thing... and try and make [activity sections] a little bit
more compact. [There might be other] softer skills that they’re always
working on, but [focus on] one hard skill that is either like new or
something that you’re trying to emphasize."

To celebrate small wins, the TVI shared how explicit praise is
particularly important for BLV students because sighted students
"can see the expression on your teacher’s face, you can see they are
happy with what you’ve done." After receiving verbal praise for
completing a sequence of tasks exploring the sensitivity of the
median to data values (Session 2), Student 2 responded with "I’m
glad I did [well] because at least I know I still have math skills."

During the design session (Session 3), students gleefully pro-
posed sound effects that could be used to validate correct responses,
such as "ding ding ding!" (Student 1). Taken together, decomposing
broader activities into more approachable, goal-oriented portions,
and providing opportunities to auditorily obtain positive feedback
on the completion of these portions can help students gain confi-
dence in their skills.

ET4: Celebrate Small Wins: Providing opportunities to
auditorily celebrate the completion of smaller, goal-oriented
objectives can help students confirm their reasoning and
build confidence

5.2 Building Conceptual Reasoning through
Active Exploration

In the initial inquiry activities, students demonstrated strong factual
and procedural knowledge. They clearly defined statistical mea-
sures, identified them as types of averages, explained calculation
methods, and performed calculations quickly and accurately, both
digitally and mentally. However, their conceptual understanding
of how statistical measures relate to data values and distributions
was limited.

The following subsections examine key aspects of conceptual
learning explored during the co-design process: promoting rela-
tional reasoning, developing generalizable insights, and supporting
contemplative experiences. Each subsection describes observed
student challenges, corresponding interventions, and key learning
takeaways (labeled as LTs).

5.2.1 PromotingRelational Reasoning: Students initially strug-
gled to reason about the relationships between statistical measures,
individual data points, and data distributions. When asked how
the addition of a hypothetical datapoint might affect the mean and
median, students could only reason using formulas, which either
proved difficult or led to errors. For example, Student 2 focused
solely on the summation in the mean formula to reason that "the
more [data] you add, the more likely the mean will grow." Students
also struggled to estimate the mean and median of a distribution
without access to the numbers. Student 1 expressed uncertainty
about what the shape of the graph revealed about statistical mea-
sures. Student 2 reasoned that it "would be hard [to estimate where
the mean is] because there are no data points...You don’t know what
those measures are." The TVI noted that BLV students’ unfamiliarity
with representation-based inquiry might be due to their limited
exposure to data presented in graphical formats. "When they pro-
duce those materials in braille, they don’t put them in charts like
[sighted] students see them; they just make lists... [because they are]
faster and easier to produce." As computation alone is a poor way
of understanding the underlying concept [115], the Stats Teacher
recommended using additional methods of reasoning.

We observed that regardless of whether digital or non-digital
tools were used, approaches that allowed students to quickly ma-
nipulate and identify patterns in data representations helped them
reason about the sensitivity of measures to data and distributions.
In one activity (Session 2), students were given a list of manipu-
lable magnetic number labels and shown how to find the median
by moving their fingers from the outside labels inward. We then
provided additional labels to replace the data. Both students quickly
and independently in separate sessions realized that changes in
edge values did not affect how their fingers converged toward the
center, leading them to conclude that the median was not sensi-
tive to changes in edge values. In another activity (Data Inquiry 3),
students received real-time auditory feedback as they adjusted a
data physicalization by moving tokens on a digital platform. The
physicalization allowed students to enclose their hands around
the representation and feel how individual points related to the
aggregate. After several brief manipulation-feedback sequences,
students independently concluded that higher values increase the
mean, while lower values decrease it. The Stats Teacher appreciated
how this approach de-emphasized calculations, allowing students
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to focus on higher-level relationships. Both students enjoyed the
hands-on experimentation and took the initiative to test their own
hypotheses about how different values affect statistical measures.
As Student 2 shared, "It’s fun how you see different patterns."

LT1: Embed Enactivism: Embedded and enactive ap-
proaches provide engaging ways for students to quickly
experiment with and identify patterns in data sensitivity.

5.2.2 Developing Generalizable Insights: Manipulation and
feedback alone however did not help students generalize their ob-
servations. When asked what types of values would not change the
mean, Student 1 could not provide a guess, and Student 2 mistak-
enly guessed zero, despite recognizing that higher values increase
the mean and lower values decrease it. To help students generalize
insights, we observed ways the Stats Teacher further scaffolded
questions along categories of insights. When trying to help Student
1 generalize types of changes that would affect the median, the
Stats Teacher divided the data into a lower (below the median)
and higher (above the median) zone, and asked students to explore
whether changes within zones or across zones would change the
median. This helped Student 1 generalize how cross-zone changes
are likely to change the median, while inner-zone changes would
likely not unless the change involved a point bordering the median.

LT2: Scaffold Along Insights: Scaffolding exploration
along categories of insights can help students develop more
generalized understandings.

Enabling students to enact analogies offered additional ways for
them to extrapolate from experimentation and reason about how
measures of center are influenced by data and distribution shape.
We explored incorporating analogies through two mechanisms:
having students enact the analogy in a representation-embedded
way, and providing analogical feedback.

Enacting analogies in a representation-embedded way provided
avenues for students to apply analogical reasoning to validate their
understanding. Initially, Student 1 had trouble abandoning their
intuition that the median must change with changes in values, even
when verbally reminded that the median splits the data in half.
When asked how changes in a low boundary value might affect
the median, Student 1 reasoned that "The median [will] decrease
a little bit...From, like, slightly above 3 million to slightly below 3
million." By having students physically place a divider (in our case,
a folded up sticky-note) at a point that divides the dataset evenly,
they corrected themselves by recognizing through touch that the
divider continued splitting the data in half after an edge value was
modified. After the activity, the student reflected on how they "like
the divider, [it] really illustrated the median."

Providing continuous analogical feedback prompted students to
reason about data sensitivity while manipulating data. When stu-
dents interacted with the digital platform, which uses tilt feedback
to analogically tie the mean to the center of mass, both students
were able to use the concept of weight to reason about and predict
changes: "When we shifted everything to the tall side, it went higher.
I have a good feeling that if we do the same thing to the low side
because of weight distribution, they might get low" (Student 2).

However, while students were able to reason about the effect of
weight on tilt, students had more difficulty predicting new fulcrum
locations to balance distributions, particularly for asymmetrical
distributions. We observed this difficulty both through the interface
and through passive props, such as balancing tokens on a ruler
and wooden blocks on a beam. We hypothesize that this may be
because blind students may lack the same exposure to perceiving
the fulcrum’s position relative to the geometric weight distribution
of an object that sighted individuals can holistically see.

LT3: Facilitate Analogical Reasoning: Enacting, phys-
icalizing, and embedding analogical thinking can provide
additional methods of reasoning, validation, and problem-
solving, but are limited by students’ understanding of ana-
logical concepts.

5.2.3 Supporting Contemplative Experiences: When feed-
back from the digital platform became too readily available, we
observed students relying on guess-and-check strategies instead
of using the analogical properties of the physical representation to
reason about statistical measures. For example, when asked what
value would not change the mean using the digital platform, the
students tried placing a token at every x-label until they found
a location in which they perceived the platform to be balanced.
To both students, using the platform felt like "cheating" when it
produced immediate feedback.

Having observed these challenges, the Stats Teacher reflected
on how "instantaneous feedback should be earned...If it just automat-
ically gives them that information, then they don’t have the opportu-
nity to think about it and develop their own answer." Based on the
Stats Teacher’s recommendation of having students "make up their
own mind[s] first and then check," we modified the digital platform
so students must first guess the mean by sliding an emulated ful-
crum to it, then press a button to receive feedback and reflect on
their performance. In response to this feature, Student 2 described
that they "had to wake [their] brain up. . . this is a great feature." After
students demonstrate proficiency in distribution-based statistical
reasoning, instantaneous feedback can be reintroduced to facilitate
quicker pattern-finding.

LT4: Structure Feedback for Reflection: Confirming
rather than retrieving solutions through feedback provides
space for critical reasoning and reflection.

5.3 Building Contextual Reasoning through
Inquiry-Based Learning

Along with a limited conceptual understanding of the relation-
ships between statistical measures, data values, and distributions,
students initially struggled to apply and reason about the use of
different measures in context.

The following subsections examine key aspects of contextual rea-
soning explored during the co-design process: applying learning in
context, developing reasoning across measures, and demonstrating
real-world relevance. Each subsection describes observed student
challenges, corresponding interventions, and key learning take-
aways (labeled as LTs).
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5.3.1 Applying Learning in Context: Students initially had
trouble properly applying and validating calculations in context,
likely due to the lack of contextual information emphasized in prior
learning experiences (Section 5.1.3). For both mean and median,
Student 2 performed statistical computations on the labels that
make up the x-axis rather than the data values themselves. In an-
other example, Student 2 divided the total number of data values
by the data range when asked to compute the mean of a weather
and temperature dataset (Data Inquiry 1), resulting in a significant
underestimation of the average temperature. When asked what the
computed value represents, the student was unable to use context
to reason about why such a value was not a likely temperature and
could not possibly represent the mean.

The Stats Teacher on several occasions recommended anchoring
activities back to the "underlying goal that reminds us what we’re do-
ing. That’s important." For example, the Stats Teacher recommended
framing the exercise through contextually-motivated goals: "Instead
of [asking] what is the average of this data set? You could say: what
predictions can we make about the temperature based on this data.".
Throughout the inquiry activities, we observed how framing ques-
tions around broader goals can help students apply and refine their
use of different statistical measures to accomplish various tasks.
Even simple interventions, such as prompting students to recall
how the median splits data in half, enabled Student 2 to self-correct
and compute the median of data values rather than axis labels.

LT5: Use Goal-Oriented Framing: Framing questions
around inquiry goals can encourage reasoning about the
proper application of statistics in context.

We learned through participants’ reflections and design ideas
that story-based instruction can be a powerful way to contextualize
and model the application of different statistical measures. When
prototyping data activities, participants created characters with
goals aligned to different statistical measures, such as individuals
who wanted to avoid or seek out hornets in an inquiry about a
hornet epidemic (Appendix A.1). They then designed questions
where learners help characters make decisions based on their goals.
Additionally, they recommended incorporating "random events" to
provide more contextually situated opportunities for exploring the
sensitivity of various measures. These story components enabled
students to use context as a way to reason about why different
statistical measures might be applied. For example, after Student
1 completed a story-based activity involving an outbreak of giant
hornets across Washington towns (Appendix A.1), they reflected
on learning that the median "is basically the middle number of how,
like, severe the town is. . . [and] allowed us to put [them] into zones,
like a [more severe] and [less severe] zone.".

LT6: Reason Using Stories: Stories offer a powerful and
engaging way to motivate statistical measures, encourage
contextual reasoning about their significance, and demon-
strate their application across a variety of scenarios.

5.3.2 Developing Reasoning Across Measures: Story scenar-
ios also helped students make comparisons across measures, a skill
they initially struggled to demonstrate due to a lack of proficiency

in relational reasoning (Section 5.2.1) and applying measures in
context (Section 5.3). For example, a story event showed a surge
in giant hornets in the highest outbreak cities that left the median
unchanged. Students calculated updated measures of center based
on the event and were asked to reflect on how citizens of Wash-
ington might interpret the data if presented with only one of the
measures. Student 1 concluded the mean, unlike the median "actu-
ally [lets citizens] all know if changes were made." In another story
task, students role-played as characters cherry-picking statistics to
sway public opinion. This exercise prompted Student 1 to reflect
on how statistics can be used to mislead.

LT7: Compare Measures Using Stories: Using story sce-
narios can help students compare and reason across different
measures of center by contextualizing their advantages and
limitations in real-world scenarios.

5.3.3 Demonstrating Real-World Relevance: All participants
emphasized the need for students to understand how statistical
knowledge can help explain natural phenomena and inform decision-
making. The TVI highlighted the importance of "helping [students]
realize that [they] learned this information and [they] can apply it to
[their] lives directly." Over the course of the co-design, we observed
how engaging them in a variety of inquiry-based activities, includ-
ing case-based learning [85], scientific discovery learning [47], and
problem-based learning [23], can help cement different ways statis-
tics might be used to enhance their lives and communities. In one
activity that a group of participants designed (Appendix A.2), the
learner was tasked with using summary statistics to compare and
draw conclusions about a real-world phenomenon. Student 2, who
evaluated the activity, reflected on how they learned that they can
apply statistics to investigate "some of the most random everyday
things we do!...they’re based off of real trials instead of just random.
So we actually tried them out and gave them real measures instead
of just doing estimates and assumptions." In another participant-
designed activity (Appendix A.3), students were given a dataset of
crosswalks with Accessible Pedestrian Signal (APS) features and
asked to identify interesting questions to explore. After the activity,
Student 1 reflected on how such a dataset could help BLV indi-
viduals "find a city with the most APS features," while Student 2
considered its social impact, noting "It could show us how to improve
our environment and make the world more welcoming for everyone."
Having performed multiple inquiries, Student 1 summarized, "when
you learn more about the data and how to calculate it, it will help
you improve and expand on what you’ve learned in general." The
TVI further emphasized the opportunity to promote empathy by
including sighted students in accessibility-based inquiries, which
would also "help them develop awareness of their classmates."

LT8: Experience Diverse Inquiries: Engaging students in
various forms of inquiry can help them understand how to
apply statistics to improve their lives and communities.

6 Discussion
In this section, we situate our findings within prior research to draw
broader insights, offer recommendations, and propose directions for
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future research. We begin by examining how the identified engage-
ment and comprehension needs (RQ1) stem from broader structural
barriers, highlighting the need for creative solutions beyond simple
adaptations. We then revisit the embodied and inquiry-based ap-
proaches identified in the study (RQ2) to discuss their implications
for the design of inclusive learning tools and practices.

6.1 The Need to Promote Reasoning and
Understanding

From the early stages of our co-design, the experiences and reflec-
tions shared by the diverse stakeholders in our participant group
quickly directed our focus toward the engagement and comprehen-
sion challenges BLV students experience (RQ1). Several, including
low self-efficacy (Section 5.1.4) and conceptual understanding (Sec-
tion 5.2) align with findings from prior research [102, 119, 122].
Study participants highlighted several structural barriers that con-
tribute to these challenges.

6.1.1 Structural Barriers to Inclusive Education. Both the TVI and
students noted that BLV students often lack access to engaging
and effective learning tools beyond those that are easily adaptable
(Section 5.1.2), a finding consistent with prior research [24, 102, 119,
133]. As a result, we observed that students’ reasoning tends to be
confined to explicit learning experiences that are relatively easier
to adapt, such as factual knowledge conveyed by educators and
computations supported by Braille and talking calculators. This
becomes especially problematic in data and statistical education,
which often rely on visual aids to foster engagement and build
conceptual knowledge through spatial reasoning [21, 58]. The TVI
shared how graphical explanations, which leverage our innate spa-
tial reasoning abilities to understand concepts [141], are often not
adapted for BLV students [24] (Section 5.2.1). Furthermore, refresh-
able graphical tools that can communicate the direct relationship
between changes in data and statistical measures non-visually are
not available in practice. There is a need for tools that both promote
robust conceptual understanding [102, 122] and foster engagement
for BLV students (Section 5.1.2).

Additionally, the TVI explained that BLV students often miss
out on incidental learning opportunities [24, 102]. These students
not only encounter data representations less frequently than their
sighted peers, but also have limited exposure to peer work, as ob-
served in our study (Section 5.1.1). Moreover, their ability to benefit
from learning analogies is limited by their perceptual experiences
(LT3). These gaps highlight the need to recognize how exposure
and experiences shape learning and to intentionally broaden the
experiences of BLV students.

6.1.2 The Need for Equivalent Learning Experiences. As we began
co-developing materials to deepen reasoning, we drew significant
inspiration from the Universal Design for Learning Guidelines [121].
Yet, we found the recommendation to "ensure that key information
is equally perceptible to all learners" insufficient but a good start to
promoting more inclusive learning experiences. Our concern was
that simply translating key information may not support the same
depth of critical thinking and reasoning. Prior research on inclusive
STEM education tends to emphasize access and adaptations [51,
65, 68, 69, 100, 102, 133, 134], while reasoning is underexplored.

We propose that, beyond perceptibility, sensorimotor adaptations
should strive to support the same quality and depth of reasoning,
taking into account prior knowledge and experiences of learners.

Toward this goal, many open research questions remain for
teaching statistics non-visually. Among them include: how might
we enable the extended cognition benefits [39] that visual diagrams
and digital platforms afford with non-visual representations? In
our co-design, we explored this question through the interplay of
enactivism and analogical thinking.

6.2 Design of Learning Tools
Enactivism (LT1) and analogical thinking (LT3) played key roles
in building conceptual knowledge in our study by facilitating ex-
perimentation and supporting reasoning about the relationship
between statistical measures and data points (RQ2). These features
are often associated with educational technologies, particularly
those involving tangible user interfaces (TUIs) [19, 20, 74, 75, 77, 97,
111, 151, 154]. After exploring a variety of learning tools with par-
ticipants, we reflect on how these features can enhance statistical
learning for BLV students and propose guidelines and directions
for tool development and future research.

6.2.1 Benefits of Enactive Learning. In our work, we observed sev-
eral benefits of using action and reflection to engage BLV students
in data and statistical learning.

First, tightly integrating manipulation and feedback can enable
learners to focus on identifying patterns and relationships (LT1), a
finding consistent with prior research [97, 111, 151]. We found that
this integration can be particularly impactful for BLV students, who
often must perform additional steps to access conceptually relevant
information. In our study, participants initially accessed statistical
measures through manual calculations or sequential screen-reader
commands, which made connecting data variations to statistical
outcomes difficult. In contrast, tangible tools that directly couple
manipulation with feedback promoted experimentation and pattern
recognition. The three-dimensional properties of the physicaliza-
tions students created also served as cognitive aids, enabling them
to reference individual data points in relation to aggregate distri-
butions by physically enclosing specific regions with their hands
(Section 5.2.1). While screen reader support is often prioritized in
learning tools for BLV students, tools that simplify interactions
to focus on conceptually relevant actions can reduce extraneous
cognitive load and streamline enactive sense-making.

Second, simple and adaptable components that can be config-
ured in versatile ways can support diverse learning scenarios and
foster flexible and robust interpretations, as highlighted in prior
research [52, 77, 78, 97, 116, 125, 154]. In our study, tokens func-
tioned as a flexible medium, supporting various data mappings,
tasks, and representations. Participants leveraged this versatility
to design diverse scenarios (LT6, LT7) and forms of inquiry (LT8)
that highlight the wide-ranging insights that data and statistics can
provide. These findings emphasize that keeping tools extensible
and adaptable allows educators and students to customize them to
their specific interests and needs.

Finally, providing students with opportunities to physically enact
concepts can make implicit reasoning explicit, revealing inconsis-
tencies, conflicting beliefs, and incorrect assumptions, as noted in
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prior research [99, 111, 154]. A notable example from our study
occurred when Student 1 used the placement and referencing of a
partitioning sticky note to correct their intuition about the types
of changes that affect the median (Section 5.2.2). The knowledge
"expressed" through students’ actions also enabled educators and
researchers to identify gaps in reasoning, such as the students’
limited intuition about where to place the fulcrum to balance a
system. There is potential for intelligent systems to analyze these
actions, infer gaps in reasoning, and provide targeted interventions
or generate reports for educators to better understand students’
thought processes.

6.2.2 Reasoning Using Analogical Thinking. Embedding analogies
into exploratory systems can provide additional ways for students
to reason about data measures, such as tilting the physical represen-
tation to illustrate the mean as the center of mass (LT3). In doing so,
we observed students using analogical thinking to deepen their un-
derstanding of statistics, such as reasoning that high values shift the
mean by redistributing weight. These observations support prior
theories suggesting that using conceptual metaphors to structure
interaction mappings can facilitate the learning of abstract concepts
[20]. However, considering students’ prior exposure to analogical
concepts is important (LT3). When relating the statistical mean to
a distribution’s center of mass, the lack of visual experience with
how a fulcrum’s position affects balance may limit students’ ability
to estimate the mean’s location based on the distribution’s shape.
These observations underscore the importance of co-designing with
BLV students. Gaining a deeper understanding of the naturalistic
interactions of BLV students with their everyday environments, as
explored by Chundury et al. [43], could help integrate analogical
thinking more effectively into the learning process.

We also observed that engaging with conceptual metaphors
rooted in image schemas can facilitate the learning of abstract
concepts (LT3), consistent with prior work [20, 79]. For instance,
having students physically split data with a divider reinforced their
understanding of the evolution of data and statistical measures.
Other actions performed with tokens during the data inquiries—
such as adding, subtracting, arranging, and grouping— also closely
mirrored data operations. However, as students transition to more
complex datasets that cannot be easily represented with physical
tokens, BLV students relying on screen readers often lose access
to the schemas associated with these data operations. In contrast,
operations like addition, subtraction, arrangement, and splitting
remain visibly accessible for sighted learners in interactive visual-
izations. Exploring non-visual methods, such as haptic or auditory
feedback, to evoke action-based image schemas offers a promising
avenue for research. Advancing these approaches could enable BLV
students to retain the cognitive benefits of embodied interactions
while engaging with more complex datasets.

6.2.3 Cues for Supporting Learning. While investigating enactivism
and analogies in explorable systems, we experimented with differ-
ent forms of cues that supported learning in different ways.

Inclusive cues, drawing from Universal Design for Learning
(UDL) [121], ensure that activities are perceptible to all group mem-
bers (ET1). For example, the sound of a spinning coin, which could
be directly heard by everyone (Appendix A.2), noticeably increased
engagement compared to the collaborative plotting activity (Data

Inquiry 1), where Student 1 could not perceive the changes made
by Student 2.

Immersive cues incorporate sensory and narrative elements
that engage learners. This type of cue, supported by multimedia
learning principles [101], includes diegetic elements such as story
hooks, voice impersonations, audio recordings, and data-responsive
audio feedback. Students enjoyed both designing and perceiving
them throughout the co-design (ET2, ET3).

Learning cues provide students with specific, constructive guid-
ance that supports reasoning and conceptual understanding. These
cues can take multiple forms. Analogical demonstrations, such as
tilting the distribution to the mean, can support additional modes
of reasoning by helping students map familiar concepts to abstract
statistical principles [64] (LT3). Information shortcuts, such as verbal-
izing changes in statistical measures as data updates, can streamline
complex reasoning and allow students to focus on broader patterns.
However, these information shortcuts should be earned only after
students have demonstrated proficiency in foundational concepts
(LT4). Confirmation of student accomplishments, such as a celebra-
tory chime for correct responses, can reinforce positive behavior
and boost student motivation [73] (ET4).

Considering a variety of cues in learning tools can provide holis-
tically engaging experiences while fostering deeper understanding.

6.3 Design of Learning Activities
Although we initially adopted a technology-centric approach fo-
cused on tool design, the experiences and reflections of participating
stakeholders quickly highlighted the equally critical and interde-
pendent need to design the learning activities in which these tools
are embedded, an area often underexplored [20]. We observed that
the careful design of tasks and exercises is essential not only to
provide BLV students with sufficient scaffolds to engage in effective
learning (LT2), but also to create opportunities to critically engage
with the underlying contexts, a core component of statistical liter-
acy [38, 61, 142] (LT5-LT8) (RQ2). Here, we reflect on our learnings
and their implications on the design of inclusive statistical learning
activities.

6.3.1 Scaffolding of Critical Problem-Solving. Special education
teachers on the research team and in the study shared the im-
portance of explicitly demonstrating concepts first before having
students problem-solve on their own, particularly as the lack of
incidental learning opportunities commonly requires topics to be
explicitly introduced. The "I do, we do, you do" mantra, popular-
ized within the Gradual Release of Responsibility (GRR) framework
[57], describes a learning process in which responsibility gradually
shifts from the teacher to the student. However, modeling from
demonstration limits opportunities for BLV students to develop
problem-solving skills— experiences that the TVI also identifies
as critically lacking. Throughout the co-design process, many in-
stances highlight how with goal-driven framing (LT5), adequate
learning tools, and proper scaffolding, BLV students have tremen-
dous problem-solving capabilities.

Co-design participants address these tensions by designing a
story with enough structure to guide learners through problem-
solving while illustrating how fictional characters might use sta-
tistical measures to reason about their environments (Appendix
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A.1)(LT6, LT7). The subsequent participant-design activities pro-
gressively shift responsibility to students to define, frame, and
conduct their own investigations (Appendix A.2, A.3) (LT8).

6.3.2 Structuring Learning Using Stories. When engaging with sto-
ries, students naturally reasoned about and applied statistical mea-
sures, even with limited prior experience making decisions with
these concepts (LT6, LT7). Building on prior work that uses data sto-
rytelling to motivate inquiry and enhance communication [50, 94],
our findings highlight how specific story elements can actively
shape students’ statistical reasoning. We identified three key design
elements that directly connect statistical learning goals to story
constructs:

(1) story characters with goals that directly embody statistical
concepts (i.e. one official wants to split the data in half, an-
other official wants to inflate perceived severity through
statistics).

(2) decision-making opportunities in which learners select ac-
tions for characters based on their goals.

(3) events that encourage ongoing exploration and reflection
that reflect realistic and dynamic changes in data.

Embedding statistical reasoningwithin these narrative structures
can make data more concrete, interpretable, and memorable for
learners.

6.3.3 Learning as a Way to Care. Participants also emphasized
the importance of connecting learned knowledge to the learner’s
life, a core aspect of Fink’s taxonomy of significant learning ex-
periences [56] (Section 5.3.3). The activities they designed reflect
this principle on multiple levels— from motivating and providing
opportunities to reflect on each statistical concept in context, to
demonstrating and facilitating discussions on how statistical in-
quiry can help inform decision-making and broaden understanding
of individuals and communities (LT8). Additionally, our students,
like many BLV students across the world, are deeply passionate
about topics relating to accessibility and inclusion. Their choice
to anchor an activity on Accessible Pedestrian Signals (Appendix
A.3) and engagement with the activity highlights opportunities to
motivate inquiry through a critical lens [98]. Having students learn
data and statistical knowledge that is framed by questions such as
"what data can do to us, what we and others can do with data, and
what kind of world we can create with data" has the potential to
position students as capable agents of social change.

6.3.4 Structuring Activities for School Settings: Similar to our co-
design, small-group problem-based learning [2, 5, 9, 12, 29, 45] has
gained popularity for promoting student involvement, indepen-
dence, and deeper learning in math classrooms [84, 146]. These
methods are particularly effective in inclusive, mixed-ability en-
vironments [84, 133], especially when they emphasize social ac-
ceptance [84] and provide accessible learning materials that foster
meaningful collaboration [133, 145], both elements our participants
touched on.

To promote social acceptance, participants suggested framing
inquiries around the lived experiences of underrepresented and
marginalized students (Section 5.3.3) to amplify their perspectives

and foster empathy among peers. During the co-design, brain-
storming meaningful topics, planning data collection, and inves-
tigating pedestrian signal accessibility in real-world settings fos-
tered perspective-taking and empathetic communication among
sighted and blind members of the research team (Appendix A.3).
Engaging mixed-ability students in similar collaborative projects—
from inquiry design and hands-on data collection to analysis and
discussion— can deepen empathy, enhance perspective-taking, and
promote understanding of diverse lived experiences. To ensure
these activities are sensitive and effective, educators should consult
privately with students beforehand to avoid approaches that might
single them out.

With regard to accessible learning materials, enactive, analogical,
and embedded tangible experiences explored in this work (LT1-
LT4) align well with the emphasis on active experimentation in
cooperative problem-based learning. However, as observed in the
collaborative construction activities, maintaining joint attention
and mutual awareness can be challenging for blind students who
may not see the actions of their peers (ET1). Ensuring that group
members are attentive to these challenges and explicit about their
actions is necessary for promoting an inclusive learning environ-
ment. Meaningful ways for enabling the non-visual perception of
changes during collaborative activities is an important area of active
research [103].

7 Limitations and Future Work
Purposive sampling enabled us to select participants who we felt
had sufficient prior experience and expertise to provide rich per-
spectives on the topic of inclusive math learning. We selected two
students who were already acquainted, one of whom was also fa-
miliar with the TVI. These prior relationships likely promoted a
more comfortable sharing and co-design environment, though at
the risk of increasing the representation of experiences shared by
familiar individuals. However, the fact that the two students attend
different public schools, along with the TVI’s extensive experience
working with a diverse range of students likely helped broaden
insights.

Based on the students’ prior knowledge and the needs expressed
by participants, our investigation prioritized building conceptual
knowledge with a focus on reasoning and application in context,
rather than on teaching basic definitions and procedures. This em-
phasis was expressed as a critical need by our educators and in
prior work for both BLV [102] and sighted students [115, 143]. Our
takeaways therefore assume that students already have a basic
understanding of definitions and procedures.

Both student participants are early-blind and attend public schools,
which is common of blind children in the US [13, 66]. However,
it is essential to acknowledge the diversity of abilities and prior
experiences within the BLV population. Though we do not foresee
any of the takeaways and practices to exclude participants with
working vision and believe that the pedagogical framings our take-
aways derive from may benefit students of diverse abilities, this
work does not deeply explore how visual cues and prior visual
experiences might alter learning experiences. In line with existing
inclusive education guidelines [8, 96], it remains crucial to observe,
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recognize, and tailor learning approaches to the individual needs
and preferences of students.

We anchored the co-design process around four participants.
While this sample size may seem small, it is consistent with prior
research involving children in participatory design [34, 37, 41, 49,
148, 150] and with studies that deeply examine the challenges and
experiences of BLV students learning math [24, 102, 138]. The
close collaboration enabled us to deeply engage with each par-
ticipant’s needs, create space to discuss and address learning chal-
lenges, and foster a stronger sense of ownership over their ideas.
While generalizability is not guaranteed to broadly extend, thematic
alignment between our insights and those identified by prior work
[24, 102, 104, 119, 122, 133] suggest that the insights are not idiosyn-
cratic, but represent how broader inclusive learning challenges and
strategies manifest in statistical contexts. Adapting and evaluating
our takeaways for classroom settings with a broader set of students
with mixed abilities remains an important area of future work.

8 Conclusion
Through an extended co-design partnership, we explored instruc-
tional practices aimed at fostering robust conceptual understanding,
interpretation, and critical evaluation of statistical measures for BLV
students. Central to this process was incorporating "data-doing" as
a recurring and intentional practice that allowed us to continually
uncover, refine, and validate insights directly from participants’
experiences. This recurring structure also provided students oppor-
tunities to alternate between user and designer roles, which helped
them reflect more concretely on prior experiences and apply those
insights to their next design.

Through these practices, we found that enactive, embedded, and
analogical methods of exploration with deliberate scaffolding and
well-timed feedback helped students learn and reason about the
relationship between statistical measures to the underlying distribu-
tion and data. Inquiry-based approaches encouraged contextually
situated reasoning and reflection on ways statistics may be ap-
plied to students’ lives and communities. Additionally, sustaining
inclusion, providing immersive multimodal interactions, grounding
inquiry in student interests, and celebrating small wins all promote
engagement. Co-designed with a dedicated group of stakeholders,
these results lay the initial groundwork for an accessibility-first
approach to non-visual statistics education.
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A Participant-Designed Activities: Integrated
Examples

We summarize the three learning activities that participants de-
signed for each other in Session 3 to demonstrate how the engage-
ment and learning takeaways can be incorporated in practice. Upon
the TVI’s recommendation to first provide students with the "oppor-
tunity to take some data and manipulate it into graphs or categorize
it... then, to select or to gather their own data... and then do the same
activity with things that they’ve gathered," we sequenced the activi-
ties from a structured to more open-ended approach. The activities
begin with a story-based inquiry as a concrete demonstration of
ways to reason about and apply statistics in context (LT6, refer
to Appendix B for a quick reference of the takeaways). Students
then progress to a scientific inquiry, a slightly less structured ap-
proach, to demonstrate how statistics can be used to analyze and
compare real-world phenomena. Students conclude with an open-
ended, self-driven activity in which they choose a real-world topic
they are passionate about, plan and conduct data collection, and

explore ways to analyze and communicate the data to deepen their
understanding and/or drive social change (LT8). Participating stu-
dents were able to complete and meet the learning objectives for
all activities during Session 4.

A.1 A Story of Giant Hornets in Washington
Learning Objective: Understand the purpose of measures of
center and ways to reason about their sensitivity using a his-
togram.

This investigation explores an infestation of giant hornets in
the state of Washington, a topic students expressed interest in
(ET3). As an engaging hook, the activity begins with a news clip
describing the event (ET2). Students are provided with a fictitious
dataset of hornet populations across eight cities in Washington. If
working in groups, students should agree upon a shared strategy for
organizing data and communicating changes before plotting (ET1).
As awarm-up exercise, two characters are introduced through voice-
acted self-introductions: one who is allergic and wants to avoid
hornets and one who is an entomologist tasked with studying these
hornets (LT6). Students must recommend cities for the characters
to move to (LT6). A small celebration plays when students provide
recommendations with reasonable justifications (ET4).

Additional characters are introduced one at a time to represent
different statistical measures (LT6). First, a hornet eradicator is
tasked with constructing a special trap that must just fit a city’s
hornet population to be effective. With the goal of eradicating
hornets in most cities, students must reason about what size trap
(in terms of hornet population) would help them accomplish this
goal (LT5). Students then reflect on which measure of center (mode)
aligns with their reasoning and what must occur for the mode to
change (LT6).

Second, a state official would like to divide cities into equally
sized green zones and red zones representing the most and least
severe cities respectively (LT5). Students must help the official by
placing a physical divider at a point on the distribution that splits
the cities in half (LT3) and select a measure of center (median) that
meets their objective (LT6). A set of story events causes hornet
populations to change, and students must 1) update the represen-
tation to demonstrate the change (LT1) and 2) explore changes to
the median using the divider (LT3). The questions are scaffolded in
a way that reflects categories of observations that might or might
not change the median (LT2). Students are asked to generalize on
types of changes that would affect the median.

A third character would like a measure that helps them under-
stand changes in outliers, and students must select a measure that
meets this objective (mean) (LT5). Students are introduced to the
center-of-balance analogy for the mean (LT3), and students must
first estimate the mean based on the distribution, and then reflect on
their estimation (LT4). Students can either perform the calculation
mathematically, or use the digital platform (LT1) (shown in Figure
3G). Like with the median, a series of data changes motivated by
story events encourage students to explore mean sensitivity along
generalizable categories of scenarios (LT6). Students are celebrated
for each correct question (ET4).

To motivate comparisons across the different measures, students
select one of two characters who are trying to choose measures that
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purposefully inflate or deflate the perceived severity of the hornet
outbreak across Washington (LT7). Students flick a spinner (shown
in Figure 3G) to trigger a random event that prompts a change they
must make to the representation (ET2). Students, depending on their
character, select and record a measure that provides the highest or
lowest value. A facilitating teacher or peer selects and records for
the other character. After several events, students reflect on their
strategies for selection, how measures differed across events, and
how statistics of the same data might be used to persuade people
to feel differently about a topic.

A.2 What factors might affect coin spinning
duration?

Learning Objective: Understand ways of applying measures of
center to compare factors in daily phenomena.

The activity investigates factors that affect the duration of coin
spinning, an activity that students found to be tactilely and audito-
rily engaging (ET2) and perceptible at a distance (ET1) in that they
can hear the coin spinning even as others spin the coin. Students are
taught how to spin coins, prompted to consider factors that might
affect the spin duration, and asked to choose a factor to anchor the
exploration.

To facilitate reasoning about sample size, students perform one
to two spins under each factor to compare the factors. Students then
reflect on how much they trust their judgment and what action
(collecting more samples) might help them trust the data more.
Students construct a table collecting additional samples of the data.

After data collection, students are provided with physical tokens
to create distributions comparing the factors (shown in Figure 3H).
If working in groups, students should agree upon a shared strategy
for organizing data and communicating changes before plotting
(ET1). Students must use the shape of the distribution to interpret
the data (LT1).

Students then develop metrics to help them compare the chosen
factors (LT5). Finally, students reflect on how statistics might be
used to learn about natural phenomena around them and ways to
structure data inquiry to facilitate this learning (LT5).

A.3 Accessible Pedestrian Signals
Learning Objective: Discuss ways of using data and statistics
to broaden understanding and enact social change.

This activity investigates city crosswalks for accessible pedes-
trian signals (APS), a socially significant topic that students were
passionate about (ET3). Students first brainstorm aspects of the
topic they find interesting, discuss types of data they need to col-
lect, and plan methods of collecting the data (whether in person or
through searching databases). If collecting the data in person, stu-
dents are encouraged to take video clips of interesting crosswalks
as a way to contextualize the data points (ET2) (shown in Figure
3H).

After gathering data, students share stories about their experi-
ences and revisit the questions they might be interested in learning
having collected data (LT6). Collected video clips can be played
back to help students communicate their experiences (ET2). A set of
scaffolded tasks helps students structure a data inquiry (LT5), such
as: Are there numbers we care about? How might we organize the

data to answer these questions? Can we plot the data in a certain
way? What do we learn about data from plotting this way? What
types of measures or statistics would help us better understand this
information? The instructor prepares several backup questions in
case students are unable to formulate inquiry questions at first.

Finally, students reflect on their findings in broader contexts
(LT5). Students discuss whether the learnings might be interest-
ing for others in their community and how they might present
their findings to interested parties. The activity concludes with a
reflection on how knowledge of data and statistics might help them
better understand the world.
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B Takeaways

Theme Sub-theme Takeaway
5.1 Engagement Chal-
lenges and Opportuni-
ties

5.1.1Maintaining
Focus

ET1: Ensure Inclusion: Perceptibility and mutual awareness in all components of
group activities are important for maintaining focus.

5.1 Engagement Chal-
lenges and Opportuni-
ties

5.1.2 Providing
Immersive Content

ET2: Support Interactive Audio-Tactile Experiences: Tangible experiences with
immersive auditory feedback promote engagement and encourage experimentation.

5.1 Engagement Chal-
lenges and Opportuni-
ties

5.1.3 Ensuring
Meaningful Con-
text

ET3: Ground in Interests: Grounding activities in students’ interests, particularly
those with interesting audio and haptic features, promotes contextualization, story-
telling, and engagement.

5.1 Engagement Chal-
lenges and Opportuni-
ties

5.1.4 Fostering
Self-Efficacy

ET4: Celebrate Small Wins: Providing opportunities to auditorily celebrate the
completion of smaller, goal-oriented objectives can help students confirm their rea-
soning and build confidence.

5.2 Building Con-
ceptual Reasoning
Through Active Ex-
ploration

5.2.1 Promoting
Relational Reason-
ing

LT1: Embed Enactivism: Embedded and enactive approaches provide an engaging
way for students to quickly experiment with and identify patterns in data sensitivity.

5.2 Building Con-
ceptual Reasoning
Through Active Ex-
ploration

5.2.2 Developing
Generalizable In-
sights

LT2: Scaffold Along Insights: Scaffolding exploration along categories of insights
can help students develop more generalized understandings.
LT3: Facilitate Analogical Reasoning: Enacting, physicalizing, and embedding
analogical thinking can provide additional methods of reasoning, validation, and
problem-solving, but are limited by students’ understanding of analogical concepts.

5.2 Building Con-
ceptual Reasoning
Through Active Ex-
ploration

5.2.3 Supporting
Contemplative
Experiences

LT4: Structure Feedback for Reflection: Confirming rather than retrieving solu-
tions through feedback provides space for critical reasoning and reflection.

5.3 Building Contextual
Reasoning through
Inquiry-Based Learning

5.3.1 Applying
Learning in Con-
text

LT5: Use Goal-Oriented Framing: Framing questions around inquiry goals can
encourage reasoning about the proper application of statistics in context.
LT6: Reason Using Stories: Stories offer a powerful and engaging way to motivate
statistical measures, encourage contextual reasoning about their significance, and
demonstrate their application across a variety of scenarios.

5.3 Building Contextual
Reasoning through
Inquiry-Based Learning

5.3.2 Developing
Reasoning Across
Measures

LT7: Compare Measures Using Stories: Using story scenarios can help students
compare and reason across different measures of center by contextualizing their
advantages and limitations in real-world scenarios.

5.3 Building Contextual
Reasoning through
Inquiry-Based Learning

5.3.3 Demonstrat-
ing Real-World
Relevance

LT8: Experience Diverse Inquiries: Engaging students in various forms of inquiry
can help them understand how to apply statistics to improve their lives and communi-
ties.
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