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ABSTRACT. Given an immersed, Maslov-0, exact Lagrangian filling of a Legendri-
an knot, if the filling has a vanishing index and action double point, then through
Lagrangian surgery it is possible to obtain a new immersed, Maslov-0, exact La-
grangian filling with one less double point and with genus increased by one. We
show that it is not always possible to reverse the Lagrangian surgery: not every
immersed, Maslov-0, exact Lagrangian filling with genus g > 1 and p double points
can be obtained from such a Lagrangian surgery on a filling of genus ¢ — 1 with
p+1 double points. To show this, we establish the connection between the existence
of an immersed, Maslov-0, exact Lagrangian filling of a Legendrian A that has p
double points with action 0 and the existence of an embedded, Maslov-0, exact La-
grangian cobordism from p copies of a Hopf link to A. We then prove that a count
of augmentations provides an obstruction to the existence of embedded, Maslov-0,
exact Lagrangian cobordisms between Legendrian links.

1. INTRODUCTION

An important problem in smooth topology is to understand the 4-ball genus and the
4-ball crossing number of a smooth knot. Through a variety of techniques, including
Heegaard Floer homology, gauge theory, and instanton homology [OS16, KM21], the
4-ball genus and crossing numbers have been calculated for all prime knots with
crossing number 10 or less. Less is known about these invariants for connect sums;
see, for example, [LVC18|. In general, the 4-ball genus and crossing numbers give
information about what combinations of genus and double points can be realized by
surfaces in the 4-ball with a fixed knot as their boundary: a transverse double point
can be resolved at the cost of increasing the genus of the surfaces, and sometimes a
disk that intersects the surface transversely along its boundary allows one to reduce
the genus at the cost of increasing the number of double points.

One can study analogous problems when the knot and surface satisfy additional
geometric conditions imposed by symplectic geometry. The development of sym-
plectic field theory [EGHO00] motivated the study of Lagrangian cobordisms between
Legendrian submanifolds; these are embedded Lagrangian submanifolds in the sym-
plectization of a contact manifold that have cylindrical ends over the Legendrians,
see Figure 3 for a schematic picture. Lagrangian fillings occur when the bottom
Legendrian is the empty set.
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For a fixed Legendrian knot, obstructions to the existence of embedded, exact La-
grangian fillings arise from classical and non-classical invariants of the Legendrian;
see, for example, [ChalO, Ekh12, DR16, ST13]. Legendrians that admit embedded,
Lagrangian fillings are relatively rare and Lagrangian fillings that do exist are known
to be more topologically rigid than their smooth counterparts: an embedded, ori-
ented, exact Lagrangian filling will always realize the smooth 4-ball genus of the
knot [Chal0)].

Immersed Lagrangian fillings are more plentiful: any Legendrian with rotation
number 0 will admit an immersed Lagrangian filling, see, for example, [Chal0, Re-
mark 4.2]. Currently, there are fewer known obstructions for immersed Lagrangian
fillings. Classical invariants, linearized contact homology, and generating family ho-
mology can give some insight into the possible combinations of genus and double
points that can be realized in an immersed, Maslov-0, exact Lagrangian filling of
a Legendrian knot, [Chal(, Pez18, PT22, PR22|. Sometimes the existence of one
such immersed filling will lead to the existence of another: if A admits an immersed,
Maslov-0, exact Lagrangian filling of genus g with p > 1 double points such that one
of the double points has “index and action equal to 0”7 (see Section 2 for definitions),
then through Lagrangian surgery it is possible to construct a new immersed, Maslov-
0, exact Lagrangian filling of genus g + 1 with p — 1 double points. In this paper we
address the following question: is it always possible to “reverse” the surgery process?
Namely, can every immersed, Maslov-0, exact Lagrangian filling with genus g > 1
and p double points be obtained by Lagrangian surgery on an action-0 and index-0
double point of an immersed, Maslov-0, exact Lagrangian filling of genus g — 1 with
p + 1 double points? See Figure 1 for a schematic of this question.
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FicURE 1. Asking if a filling arises from Lagrangian surgery is asking
if it is possible to decrease ¢ at the expense of increasing p.

We answer this question by first translating the existence of an immersed, Maslov-0,
exact Lagrangian filling with action-0 double points to the existence of an embed-
ded, Maslov-0, exact Lagrangian cobordism from a disjoint union of Hopf links to
A. We then construct new obstructions to the existence of embedded, Maslov-0, ex-
act Lagrangian cobordisms between Legendrian links in R, through the theory of
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augmentations. Finally, we apply our obstruction techniques to find families of Leg-
endrian knots admitting immersed, Maslov-0, exact Lagrangian fillings that do not
arise from Lagrangian surgery as defined in Definition 3.3.

1.1. Immersed to embedded Lagrangian cobordisms. In [Chal5, Theorem 1.3]
Chantraine showed that the existence of an immersed, exact Lagrangian filling of A
with a single action-0 double point implies the existence of an embedded, exact
Lagrangian cobordism from a Hopf link to A. We give an extension of this result to
more general cobordisms, more double points, and higher dimensions; Definition 2.5
defines A%, the Hopf link with Maslov potential induced by the integer k.

Theorem 1.1. Suppose Ay are Legendrian links in Rifd_l, n > 2. If there exists
an immersed, Maslov-0, exact Lagrangian cobordism L* from A_ to Ay with genus
g and p double points, m of which, x1,...,x,, have action 0, then there exists an
immersed, Maslov-0, exact Lagrangian cobordism L of genus g with (p — m) double
points from | |-, Ai}’f UA_ to Ay, where the Maslov potential on the Hopf links are
induced by the indices iy, of x;, .

As a corollary, we see that if each of the p double points of L* has action 0, then we
can conclude the existence of an embedded, Maslov-0, exact Lagrangian cobordism
L of genus g from LF_ Ay UA_ to AL.

Remark 1.2. The hypothesis that all the double points of the immersed exact La-
grangian cobordism have action 0 is not generic. Indeed, it corresponds to the as-
sumption that all Reeb chords in the Legendrian lift L of the Lagrangian cobordism
have length 0. One can instead generalize to consider a contractible double point,
which is a double point X whose corresponding Reeb chord cy is contractible, i.e.,
its length can be shrunk to 0 without the front projection of L needing to undergo any
moves; see [EHK16, Definition 6.13] for a precise description of a contractible Reeb
chord. The notion of multiple action-0 double points can be generalized to multiple
“simultaneously contractible” double points. The Legendrian Hopf link from Figure 9
illustrates that two individually contractible Reeb chords need not be simultaneously
contractible: here, the two interstrand Reeb chords b; and by are not simultaneously
contractible since they cobound a disk. For any immersed, exact Lagrangian filling
we can apply a Legendrian isotopy so that all Reeb chords in the Legendrian lift have
nonzero length without any births or deaths of pairs of Reeb chords; such a Legen-
drian isotopy on the Legendrian lift can be realized by a safe Hamiltonian isotopy of
the Lagrangian filling, see [CDRGG]|. However, in general there are obstructions in
going from a set of contractible Reeb chords to a set of action-0 double points.

Remark 1.3. Theorem 1.1 can be extended beyond transverse double points to
more general singularities of exact Lagrangians. In particular, we can consider any
Lagrangian singularity f such that the boundary of a Darboux ball centered at the
singularity, or a real morsification of the singularity, intersects the exact Lagrangian
as a Legendrian and the primitive is constant on the Legendrian. See [Cas22] for
some examples of such singularities.
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1.2. Obstructions to embedded exact Lagrangian cobordisms. For a Legen-
drian link A in the standard contact manifold R2,, the Chekanov-Eliashberg DGA
[Che02, Eli98] (A(A), 0) is a powerful invariant that arises from symplectic field the-
ory [EGHO00]. An augmentation € of A(A) to a unital, commutative ring F is a DGA
map € : (A(A),0) — (F,0), where (F,0) is a DGA with F in degree 0 and differen-
tial identically 0. Let Aug(A;F) denote the set of augmentations of A(A) to F. An
embedded, Maslov-0, exact Lagrangian cobordism L from A_ to A, induces a DGA
map from A(A;) to A(A_) [EHK16] that by composition with an augmentation of
A(A_) induces a map

(1.1) Fr : Aug(A_;F) — Aug(A;F).

Let Aug(A;F)/ ~aug, denote the set of augmentations up to the equivalence re-
lation ~ 4,4, given by the natural equivalence given in the augmentation category
Augy (A), see Definition 5.1 | or equivalently with respect to split-DGA homotopy,
see Definition 5.3 and Proposition 5.5. We will use |Aug(A;F)/ ~auq, | to denote
the cardinality of the set Aug(A;F)/ ~aug, -

Theorem 1.4. Let Ay be Legendrian links in R, such that there exists an embedded,
Maslov-0, exact Lagrangian cobordism L from A_ to A. Suppose F is a commutative
ring; if F does not have characteristic 2 we further assume that L is spin. Given
augmentations €1, €5 € Aug(A_,F), if Fr(e1), Fr(€e2) are equivalent with respect to
~ Aug, , then €1, €3 are equivalent with respect to ~ ayq. . In particular,

(1.2) |Aug(A_;F) /) ~aug, | < JAug(ALF) /) ~aug, |-
If A1 are single component Legendrian knots or F = Z,, the map
(13) .FL : Aug(A,,IF)/ ~ Augy 7 Aug(A+,IF)/ ~ Aug,

exists and is injective.

Although the map F;, on the set of augmentations (see Equation 1.1) always exists,
the map F7, on the set of equivalence classes of augmentations (see Equation 1.3) does
not exist for multi-component links or when F # Z,. See Remark 5.7. The fifth author
[Pan17] proved a result that implies Theorem 1.4 when A, are Legendrian knots. We
will see that equation (1.2) provides a practical way to obstruct the existence of
embedded cobordisms when F = Z,. When F is not of characteristic 2, then, as in
[CDRGG20, EES05b, Kar20, Sei08], rigid holomorphic disks in the moduli spaces
that arise in the proof of Theorem 1.4 are counted with signs.

Fillings induce augmentations, and so one of the many reasons to consider aug-
mentations to a more general F is that they can give information on the number
of fillings of a Legendrian link. It is known that Hamiltonian isotopic, embed-
ded, Maslov-0, exact Lagrangian fillings induce ~ 4,4, equivalent augmentations to
Z, [EHK16, Kar20]. Examples of Legendrian links that have an infinite number of
distinct fillings up to Hamiltonian isotopy were first given in [CG22] and later also
in [CZ22, GSW20b, GSW20a, CN21, CS21]. From the existence of a Legendrian with
an infinite number of distinct fillings distinguished by augmentations to Z, we can
apply Theorem 1.4 to deduce the existence of more such Legendrians.



OBSTRUCTIONS TO REVERSING LAGRANGIAN SURGERY 5

Corollary 1.5. (c.f. [CN21, Proposition 7.5, Remark 7.6]) Let N € NU {oo}. Sup-
pose A_ is a Legendrian link that has N augmentations to Z up to ~ a4, equivalence
that are induced by embedded, Maslov-0, exact Lagrangian fillings, and there exists
an embedded, Maslov-0, exact Lagrangian cobordism from A_ to A, then A, admits
N embedded, Maslov-0, exact Lagrangian fillings that are distinct up to Hamiltonian
150t0PY.

Proof. Consider two embedded, Maslov-0, exact Lagrangian fillings of A_ that in-
duce augmentations €1,65 € Aug(A_,Z) that are not equivalent with respect to
~ Aug, - Concatenating these fillings with the cobordism L from A_ to A, produces
two embedded, Maslov-0, exact Lagrangian fillings of A ; the augmentations in-
duced by these fillings agree with Fp(e1), Fr(€e2) € Aug(Ay,Z). By Theorem 1.4,
Fr(er), Fr(e2) are not equivalent with respect to ~ 4,4, , and thus the fillings of A
are not Hamiltonian isotopic. 0

In the case when A, are knots, Theorem 1.4 was derived in [Panl7] from studying
the augmentation category Augy(A), which is an A,.-category associated to a Leg-
endrian A, see [NRST20]. The objects of Aug, (A) are augmentations € : A(A) = F
and morphisms Hom (¢!, €?) are modules over Reeb chords between A and its “push-
off7. When Ay are knots, the functoriality of the DGA under cobordisms naturally
extends the map Fy, from Equation (1.1) to a functor

(FL)+ + Augy (A) = Augy (Ay)

between the augmentation categories. In [Panl7] it is proved that Fj, is injective
on equivalence classes of objects when AL are knots by showing that the functor
(F1)+ induces an isomorphism on the degree 0 cohomology of morphism spaces; i.e.
H°Hom, (¢!, €*) = HHom  (F(e'), Fr(€?)). However, this latter statement fails for
links. Moreover, the functor (F7)4 is not even well-defined for cobordisms between
links. Instead, we employ the machinery of wrapped Floer theory for Lagrangian
cobordisms developed in [CDRGG20] (see Section 6), to argue that if Fr(e'), Fr(€?)
are equivalent, then €', €% are equivalent, where equivalence is with respect to ~ 4y, .
To do this, we construct “wrong-way” maps, namely maps in direction opposite to
those induced by (Fr)+,

v 2 H*Hom, (Fp ('), Fr(€%)) — H*Hom, (€', ).

Combining the work of the second author [Leg20] and wrapped Floer theory, we show
that ¢ is unital and preserves the product structure on H*Hom

In Section 7.4, we build two additional obstructions to the existence of embed-
ded, Maslov-0, exact Lagrangian cobordisms in terms of linearized contact homology
LCHS(A) (see Section 4.2) and the ruling polynomial Rj(z) (see Equation (8.1),
which are Legendrian invariants that are associated to augmentations. These results
are extensions of parallel results in [Pan17].

Proposition 1.6 (see Proposition 7.5). Assume F is a field, Ar are Legendrian
links in R3, € is an augmentation of A_, and L is an embedded, Maslov-0, ezact
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Lagrangian cobordism from A_ to Ay, which we further assume to be spin if F does
not have characteristic 2. Then,

(1.4) LOH™(AL) =~ LCH{(AL)
for k<0 and k > 1.

Proposition 1.7 (see Corollary 7.8). Let L be a spin, embedded, Maslov-0, ezxact
Lagrangian cobordism from A_ to A.. Then,

Ry (¢ = q7%) < g XB2Ry (¢? — 7%

for any q that is a power of a prime number.

1.3. Obstructions to reversing Lagrangian surgery. We apply Theorem 1.1
and Theorem 1.4 to find examples of Legendrian knots in R?,; admitting immersed,
Maslov-0, exact Lagrangian fillings that do not arise from Lagrangian surgery. We
say that an immersed, Maslov-0, exact Lagrangian filling F? of a Legendrian A with
genus ¢ and p double points does not arise from Lagrangian surgery if there does
not exist an immersed, Maslov-0, exact Lagrangian filling F 5:1 with genus g — 1 and
p+ 1 double points where the indices and actions of p of the double points agree with
those of F? and there is an additional double point of action and index 0 that could
be surgered to produce F?; see Definition 3.3.

As a simple illustration of our techniques, consider the Legendrian knot Az, in
Figure 2(a), which is the maximal-tb representative of the knot 7,. Using known
construction techniques, described in Section 8, we know that A7, admits an em-
bedded, Maslov-0, exact Lagrangian filling of genus 1; we prove this filling cannot
be obtained by applying Lagrangian surgery on an immersed, Maslov-0, exact La-
grangian disk filling with one double point. Indeed, if it was the case, A7, would
admit an immersed, Maslov-0, exact Lagrangian disk filling with a double point of
action 0 and index 0. By Theorem 1.1 the existence of such an immersed filling is
equivalent to the existence of an embedded, Maslov-0, exact Lagrangian cobordism
from the Hopf link AY to A;,. However, since we can compute

|Aug(AY; Zs)/ ~aug, | =3, and [Aug(Ar,;Zs)/ ~aug, | =1,

by Theorem 1.4 such an embedded cobordism does not exist. In fact, for this specific
example, there is an underlying smooth reason that such an immersed Lagrangian
disk filling does not exist for A7,: it has been shown in [OS16] using Heegaard Floer
homology that the smooth knot 7, does not have any smooth, immersed disk filling
with 1 double point. The following theorem gives examples of Legendrian knots with
obstructed immersed Lagrangian fillings, where there is no smooth obstruction. The
Legendrian knot shown in Figure 2(b) is an example of a Legendrian in Theorem
1.8 (1), and the Legendrian shown in Figure 2(c) is an example of a Legendrian in
Theorem 1.8 (2).

Theorem 1.8. (1) Forallk > 1, there exists a Legendrian knot Ay, with Ay being
a Legendrian 9,5 knot, that admits an immersed, Maslov-0, exact Lagrangian
filling EF, which has genus k and k double points, that does not arise from
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FIGURE 2. Legendrian knots admitting fillings that do not arise from
Lagrangian surgery. (a) Az,; (b) Aglr=1 = Ag,,; (¢) the clasped checker-
board Aj.

Lagrangian surgery, even though Ay admits a smooth filling of genus (k — 1)
with (k+ 1) double points.

(2) Given g € Z*, and p € Z7°, there is a Legendrian knot AP that has an
immersed, Maslov-0, exact Lagrangian filling F?, which has genus g and p
double points, that does not arise from Lagrangian surgery.

The family A? in Theorem 1.8(2) generalizes A7,: A} = Az,. Other than A9, the
knots in this family have crossing numbers that are at least 11 and can be arbitrarily
large: a SnapPy calculation shows that A} is the smooth knot 11495, and, to the best
of our knowledge, this and the others in the family do not have smooth obstructions.

Remark 1.9. The Poincaré polynomial for the Legendrian contact homology of Ag,,
is t71 4+ 2+ 2t, [CN13]. Using the techniques of generating families, this implies that
any immersed, gf-compatible (and thus Maslov-0 and exact) Lagrangian disk filling of
Ay, must have at least two double points, of indices 0 and 1 [Pez18, PT22]. With the
techniques of this paper, we obstruct the case where both the double points must sat-
isfy the additional action-0 hypothesis, or the equivalent “contractible” formulation
described in Remark 1.2.

We end this introduction with the following observation. The fact that the im-
mersed Lagrangian fillings in Theorem 1.8 are not obtained from Lagrangian surgery
on other fillings tells us about the non-existence of particular Lagrangian disks. As
explained in Section 3, after a change of coordinates and the removal of a cylindrical
end, an exact Lagrangian filling L of a Legendrian A in the symplectization of R?,,
becomes a compact, exact Lagrangian filling L in (B*, wyy) of A C S

We will call an essential, embedded curve v C L is a pre-singularity loop if it
is obtained by the transversal intersection of a Lagrangian disk D C (B*, wsy) with
the interior of L. As shown in [Yaul3], given a pre-singularity loop, it is always

possible to reverse Lagrangian surgery. Thus, we obtain the following corollary to
Theorem 1.8.

Corollary 1.10. Let A be one of the Legendrian knots from Theorem 1.8 that admits
an immersed, Maslov-0, exact Lagrangian filling FY with genus g and p double points
that cannot be obtained by Lagrangian surgery. Then the filling F? does not admit a
pre-singularity loop.
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Remark 1.11. Given an embedded, orientable, exact Lagrangian filling L with a
pre-singularity loop v C L that bounds a Lagrangian disk with interior disjoint from
L, one can shrink the Lagrangian disk to a point and perform Lagrangian surgery
in one of the two ways, as explained in Section 3, to obtain two embedded exact
Lagrangian fillings L; and L,. Note that L; and Ly are smoothly isotopic but not
Hamiltonian isotopic. This has been employed to great effect in the construction of
infinitely many orientable embedded exact Lagrangian fillings for certain Legendrian
links up to Hamiltonian isotopy by [CZ22, Theorem 4.21]. Obstructing the existence
of pre-singularity loops allows one to understand when such constructions are not
possible. The obstruction tools that we construct however do not determine which
curves in L are pre-singularity loops. They also only provide an upper bound on the
number of pre-singularity loops v in L.

Outline: In Section 2, we define immersed, Maslov-0, exact Lagrangian cobordism-
s and the action and index of double points. In Section 3, we review Lagrangian
surgery and prove Theorem 1.1 by employing the theory of Liouville and Weinstein
structures. We then review concepts that are used in proving Theorem 1.4 including
the Chekanov-Eliashberg DGA, the augmentation category, and the wrapped Floer
theory for cobordisms, in Sections 4, 5, and 6, respectively. In Section 5, the equiv-
alence relation ~ 4,4, is reviewed and the new definition of split-DGA homotopy is
introduced. In Section 7, we integrate everything together and prove Theorem 1.4
as well as the other obstructions provided by Propositions 1.6 and 1.7. Finally, in
Section 8, we apply Theorem 1.1 and Theorem 1.4 to prove Theorem 1.8: for one of
the families we count augmentations directly while for the other family we apply the
theory of rulings to count augmentations.
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thank Roger Casals, Georgios Dimitroglou-Rizell, Lenny Ng, Brendan Owens, and
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2. ACTIONS AND INDICES OF DOUBLE POINTS

In the first subsection, we define immersed, exact Lagrangian cobordisms between
Legendrian links and the action of a double point. In the second subsection, we define
the index of a double point.

2.1. Immersed Lagrangian cobordisms and the action of a double point.

Let A be a Legendrian knot or link in the standard contact manifold RS&H =
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(R*+1 ker o), where o = dz — Zyz dr; and (z1,...,Zn,Y1,--.,Yn, %) are the co-
i=1

ordinates of R?"*!. There are two useful projections of A: the Lagrangian projec-
tion 7,,(A) where 7, : R — R?" (x,y,z) — (X,y), and the front projection
Teo(N) where 7., : R — R"FL (x)y, 2) — (X, 2), where x and y are (z1,...,7,)
and (y1,...,y,). We will always assume that A is chord generic, meaning that
the self-intersection points of 7,,(A) consists of a finite number of transverse double
points.

Now we define immersed, exact Lagrangian cobordisms between Legendrian links,
which are immersed manifolds with “cylindrical ends” over Legendrian links; see
Figure 3. This extends the definition of embedded, exact Lagrangian cobordisms
of [EHK16, Definition 1.1].

Definition 2.1. Let Ay be Legendrian links in R%,'. An immersed, exac-
t Lagrangian cobordism L from A_ to A, is an immersed, Lagrangian sub-
manifold in the symplectization, L = i(X) for a Lagrangian immersion i : ¥ —
(R; x R*! d(e'a)), such that for some N > 0,

(1) LN ([=N, N] x R?1) is compact,

(2) LN ([N,00) x R*"71) = [N, 00) x Ay,

(3) LN ((—o0,—N] x R 1) = (-0, —N| x A_, and

(4) there exists a function f : ¥ — ]R and constants ¢+ such that i* (e'a) = df,

where f|i-1((—oo—Njxa_) = ¢, and fli-1((v,00)xay) = €1

FIGURE 3. A schematic picture of an immersed, exact Lagrangian
cobordism L from A_ to A, with genus 1 and two double points.

Remark 2.2.

(1) The function f in condition (4) in Definition 2.1 is a primitive of L. Since
AL are Legendrian, it follows that on the ends of L, the primitive f is locally
constant. The condition (4) enforces that when A_ (or A ) is not connected,
the constant ¢_ (or ¢, ) does not vary from component to component. By the
addition of a constant, we can always assume that ¢ = 0; this will be the
convention that we use in Section 6.
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(2) Generically all immersion points of L are isolated, transverse double points. In
this paper, when we write L for an immersed exact Lagrangian cobordism we
implicitly assume that it comes as the image of an immersion i : ¥ — RxR?"~!
satisfying the conditions in Definition 2.1 and that all the immersion points
are isolated and transverse double points.

Given an immersed, exact Lagrangian cobordism L C R x R?"~! from A_ to A,
the primitive f guaranteed by Definition 2.1(4) allows one to construct the Leg-
endrian lift of L, defined as L = {(i(¢q), —f(q))|¢ € T} in the contactization of
(R x R?"! d(e')), which is the contact manifold ((R, x R*"7!) x Ry, du + e'a).
Double points of L are in one-to-one correspondence with Reeb chords of Z, which
are trajectories of the Reeb vector field 6 that begin and end on L.

The action of a double point X of L is defined to be the length of the
corresponding Reeb chord cx of L starting at ¢~ € L and | ending at ct e L
which is given by u(c¢™) — u(c™) > 0. From our construction of L, if X is the image
of p1,ps € X the action of a double point X is the absolute value of the difference of

the primitives at py, and po: |f(p1) — f(p2)].

Remark 2.3. For an immersed, exact Lagrangian cobordism L = i(X), the primitive,
as defined in Remark 2.2, is defined on ¥, f : ¥ — R. When all the double points of
L have action 0, the primitive is a well-defined function f : L — R.

2.2. Maslov class and index of a double point. We now clarify what we mean by
the index of a double point in an immersed, Maslov-0, exact Lagrangian cobordism.
Briefly, the index of a non-zero action double point will be defined in a standard way
using the Conley-Zehnder index of the corresponding Reeb chord (of strictly positive
length) in the Legendrian lift. We then define the index of an action-0 double point
of an immersed Lagrangian.

2.2.1. Maslov index of a loop of Lagrangians and Maslov class of a Lagrangian. First,
notice that our Lagrangian cobordisms live in (R x R2n—1 d(etoz)) which is equiva-
lent via an exact symplectic diffeomorphism to (RQ”, > dg; N dpi). Then, there is a
standard way of associating an integer, known as the Maslov index, to a smooth
loop on an immersed, Lagrangian submanifold in R?"; see, for example, [EES05a,
Section 2.2]. All examples of Lagrangian cobordisms that we consider in this paper
have Maslov class 0 (denoted Maslov-0), meaning that all loops have Maslov index
0. In particular, this implies that the Lagrangians are orientable since the Maslov
class modulo 2 is the first Stiefel-Whitney class. In general, Maslov-n ensures a well-
defined Z,-grading for generators of the Chekanov-Eliashberg DGA (Section 4.1) and
generators of the Cthulhu complex (Section 6.2); all augmentations and chain maps
are also Z,-graded.

2.2.2. Index of a double point. Consider an embedded, connected Legendrian A C
R?" ! and its Lagrangian projection m,,(A) C R*". Given a Reeb chord ¢ of A, a
capping path v along A from the point corresponding to the end of the Reeb chord
¢ to the start of the Reeb chord ¢~ together with a standard closure, as defined in
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[EES05a], gives rise to a smooth loop of Lagrangian subspaces. The Maslov index of
this loop defines the Conley-Zehnder index of the Reeb chord ¢, denoted C'Z,(c).
When the Maslov class of the Lagrangian m,,(A) is 0, the Conley-Zehnder index does
not depend on the choice of the capping path along A, and so we denote it C'Z(c).
Given this, if L is an immersed, Maslov-0, exact Lagrangian with embedded, Maslov-
0, Legendrian lift L, a double point X of L lifts to a Reeb chord cx, and we define
the index of X as

(2.1) ind(X) = CZ(cx) — 1.

For low-dimensional Legendrians, there is a combinatorial way to compute the
Conley-Zehnder index of a Reeb chord of A using a Maslov potential on the front pro-
jection, m,,(A). Let A denote an embedded Legendrian knot in R?,, (resp. R?,,) with
generic front projection, and let Ay, be the subset of A where the front projection
is not an immersion, i.e. the preimage by 7., of the set of cusp points (resp. cusp
edges and swallow tails). If the Lagrangian 7,,(A) has Maslov class 0, a Maslov
potential is a locally constant map

e N Aging = Z,

such that near a cusp point, or cusp edge, the Maslov potential of the upper sheet
is 1 more than that of the lower sheet. The Maslov potential is well defined up to
a global shift by an integer. Now let ¢ be a Reeb chord of A from ¢~ to ¢™. In a
neighborhood of ¢ (resp. ¢7), A is the 1-jet of a Morse function f, (resp. f;) defined
on a neighborhood of 7, (c), and 7, (c) is a critical point of the function f,; := f, — fi.
Given a Maslov potential p on A, we have

(2.2) CZ(c) = p(u) — p(l) +indy,, (m.(c)),
where u and [ are the sheets of A containing ¢* and ¢~ respectively, see [EES05a,
Lemma 3.4].

In the case when A is not connected, there is no capping path for Reeb chords
between two different components, so we need to make additional choices, as explained
in, for example, [EHK16, Section 3.1]. In particular, the capping paths involve the
choice of points in each component of A as well as paths between the corresponding
Lagrangian tangent spaces at these points. The Conley-Zehnder index of a particular
Reeb chord between components depends on these choices, but for two such Reeb
chords, the difference is independent of the choices. One can again compute the index
of a Reeb chord combinatorially using Equation 2.2; the paths determine “the jump”
of Maslov potential between the two components A; and A;.

The above definition of the index of a Reeb chord applies to the case where the
Legendrian A is embedded, and so ¢* are distinct points of A for each Reeb chord
c. In other words, the double points of the Lagrangian projection m,,(A) are all of
strictly positive action. When A is immersed and c¢ is a Reeb chord of length 0,
meaning ¢© = ¢~ (by assumption this Reeb chord still corresponds to a transverse
double point in the Lagrangian projection), the Conley-Zehnder index may depend
on the choice of capping path even if m,,(A) has Maslov class 0. Indeed, for any
non-trivial path « : [0,1] — A from ¢ = ¢* to itself starting on one sheet of A and
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coming back to ¢ along the other sheet, both v and its reverse —~ are capping paths
for the Reeb chord ¢. Since in a neighborhood of ¢, A consists of two sheets meeting
tangentially at ¢, using Equation 2.2, we find that

CZ_(c)=n—-CZ,(c),

where n is the dimension of the Legendrian. Thus if X is an action-0 double point of
an n-dimensional, exact Lagrangian L, and cx denotes the associated length 0 Reeb
chord in the Legendrian lift, then comparing a capping path v and its reverse, we
have that

ind,(X)=CZ,(cx)-1=(n—-CZ_,(cx))—1=n—-1-CZ_,(cx) =n—2—ind_,(X).

In particular, when n = 2, the index of X using a capping path ~ or its reverse differs
by a sign:
ind,(X) = —ind_,(X).

Definition 2.4. Suppose X is an action-0 double point in an n-dimensional, im-
mersed, Maslov-0, exact Lagrangian. The index of X is defined to be the greater of
ind, (X) and ind_,(X), for any capping path vy for cx. When n = 2, we have that
ind(X) = |ind, (X)].

The index of a double point arises when considering Legendrian Hopf links.

Definition 2.5. The (n — 1)-dimensional Legendrian Hopf link A% is given by
the intersection of the standard local model of an index-k double point of an n-
dimensional Lagrangian submanifold (namely, R™ UiR™ C C") and the unit sphere
S2n=1 with its standard contact structure.

For n = 2, we can give a more specific description of the 1-dimensional Legendrian
Hopf link A¥,.

Example 2.6 (Hopf links). When n = 2, consider the Hopf link Af given by the
intersection of the local model for an index-k double point of a Lagrangian surface
(R?U4R? C C?) and S3. We claim that, potentially after a Legendrian isotopy, there
is a front projection of A} as shown in the leftmost diagram in Figure 9, where the
Maslov potential, near the right cusps, from bottom to top, on the four strands is
given by 0,1,k + 1 and k + 2 (up to a global addition of an integer). To see this
correspondence for AY, we will observe in Lemma 3.2 that in order to get a Maslov-
0 exact Lagrangian cobordism from another Maslov-0, immersed, exact Lagrangian
cobordism on which we perform Lagrangian surgery, the index of the double point
we surgered must be 0. The Hopf link corresponding to this double point (link of the
singularity) will thus admit an embedded, Malsov-0, exact Lagrangian filling. From
consideration on augmentations and using the Seidel’s isomorphism, see Example 4.3,
one can check that AY is the only Hopf link that bounds an embedded, Maslov-0, exact
Lagrangian filling. Then, if the double point is of index k, the difference in Maslov
potential of the two components of R? UiR? must be k. Therefore, the boundary A%
inherits the required Maslov potential from that of the surface R? UiR2. An explicit
Legendrian isotopy via Legendrian Reidemeister moves shows that A% and Aﬁk are
Legendrian isotopic.
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3. LAGRANGIAN SURGERY

We start this section by reviewing the Lagrangian surgery operation on immersed
Lagrangian submanifolds, which was first defined for Lagrangian surfaces by Lalonde
and Sikorav in [LS91] and then generalized to higher dimensions by Polterovich
[Pol91].  We then prove Theorem 1.1, which translates the existence of immersed
fillings into the existence of embedded cobordisms with the double points of action 0
being replaced by Hopf links.

3.1. Lagrangian surgery construction. In this subsection, our goal is to prove
the following:

Proposition 3.1. If a Legendrian link A C R2,; admits an immersed, Maslov-0,
exact Lagrangian filling L of genus g with p double points such that one of the double
points has index 0 and action 0, then A also admits an immersed, Maslov-0, exact
Lagrangian filling L' of genus g + 1 with p — 1 double points.

To resolve a double point X of a Lagrangian, we remove a small neighborhood of
X and glue back in a Lagrangian handle. In the setting where the Lagrangian L is
exact, we can understand Lagrangian surgery in terms of the Legendrian lift L of
L. This is the approach taken in [CMP19, Section 6.2] where Casals-Murphy-Presas
give explicit parametrizations of two Lagrangian handles that can be constructed to
replace an action-0 double point. The Legendrian lift of one of these handles can be
seen as a “cusp-sum”, and the Legendrian lift of the other can be seen as a “cone-
sum”; see Figure 4. These two Lagrangian surgeries are smoothly the same [Pol91,
Proposition 2]. Observe that L’ obtained from either of these surgeries is necessarily
exact since it is constructed through its Legendrian lift. The proof of Proposition 3.1
then follows immediately from the next lemma that tells us that if the double point
has index 0, the Maslov-0 condition is preserved under surgery.

Lemma 3.2. (¢f. [Pol91, CMP19]) Suppose L is an immersed, Maslov-0, exact
Lagrangian surface that contains an action-0 double point X ; let L' denote an exact
Lagrangian obtained from one of the two Lagrangian surgeries that correspond to the

Legendrian “cusp-sum” or “cone-sum” resolutions of the lift described above. If the
index of X 1s 0, then L' has Maslov class 0.

Proof. The Maslov class of L’ is 0 if and only if its Legendrian lift L’ admits a (Z-
valued) Maslov potential. Before surgery, L has Maslov class 0 so its lift L admits
a Maslov potential p. In the lower left model shown in Figure 4, denote the upper
and lower sheets of L by u and £ respectively. For both the cusp edge and the cone
singularity cases, the Maslov potential 1 can be “extended” after surgery to L’ if and
only if p(u) — pu(€) = 1, (see also [DR11, Figure 3] for the cusp edges arising after
perturbing the cone). The condition u(u) — u(¢) = 1 is equivalent to the condition
ind(X') = 0 according to Definition 2.4 and Formulas (2.2) and (2.1). O

Definition 3.3. Let F} denote an immersed, Maslov-0, exact Lagrangian filling F?
of a Legendrian A with genus g and p double points of indices 74, ...,%, and actions
ai,...,ap. We say that F} arises from Lagrangian surgery if there exists an
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FIGURE 4. On the top row, left side, are schematized 7, slices of the
Lagrangian L C R, x R3 in a neighborhood of a double point, and on
the top right are slices of the Lagrangian obtained after the two pos-
sible handle attachments. The bottom row, left side, schematizes the
Legendrian lift L € R, x R* x R,, of L and on the right the Legendrian
lifts of each handle attachment.

immersed, Maslov-0, exact Lagrangian filling F 5:1 of A with genus ¢ — 1 and p+ 1
double points such that

(1) p of the double points have indices i1, ..., 4, and actions ay, ..., a,,

(2) there exists a double point zy of index 0 and action 0, and

(3) the Lagrangian surgery corresponding to the Legendrian cusp-sum or cone-
sum at xo produces FP.

If there is no such Lagrangian filling F ffll , then we say that '}’ does not arise from
Lagrangian surgery.

3.2. Proof of Theorem 1.1. In [Chal5, Theorem 1.3] Chantraine showed that the
existence of an immersed, exact Lagrangian filling of A with a single action-0 double
point implies the existence of an embedded exact Lagrangian cobordism from a Hopf
link to A. In this section, we prove Theorem 1.1, which generalizes this result to
more general cobordisms, more double points, and higher dimensions.

The proof of Theorem 1.1 will use the theory of Liouville structures. Below we
briefly describe some of the key terms. See, for example, [CE12, Chapters 11 and 12]
for more details. A 1-form A on a manifold M such that w = dX is symplectic is called
a Liouville form; the associated w-dual vector field V', defined by iyw = A, is the
Liouville vector field of A\. A Liouville domain, (W,w, V), is a compact manifold
with boundary, W, equipped with an exact symplectic structure w = d\ such that
the associated Liouville vector field V' points outward along OW. The boundary oW
is a contact manifold with contact form « := Apw. A Liouville manifold is a
manifold M together with a Liouville form A, equivalently a triple (M,w = dA, V),
such that V is complete and M admits an exhaustion M = U,W* where (W* w, V)
are Liouville domains. The skeleton of a Liouville manifold (M,w = d\, V) is the
isotropic set of points that do not escape to infinity under the Liouville flow. More
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concretely, Skel(M,w, V) = U2 Niysg ¢~ L(WF), where U, W* is an exhaustion of M,
and ¢ : M — M is the flow along V for time ¢. A Liouville manifold is obtained
from a Liouville domain W by attaching the semi-infinite cylinder ([0, 00) x OW) to
W and extend the Liouville form by e’«. For example,

2n o . 1 - a 8
(3.1) (R » Wstd = Zd%‘ N dpiy Viad = B} Z %8_% +pic9_pz-

1=

is a Liouville manifold. In a Liouville manifold (M, w, V'), any hypersurface ¥ <M
transverse to V is a contact manifold, with contact form given by a = i*\. For any
Legendrian A C X, flowing A along V' defines a Lagrangian that is cylindrical over
A. Weinstein domains are Liouville domains with a compatible Morse handlebody
decomposition. For £ < n, a 2n-dimensional Weinstein handle of index £ has
underlying Liouville domain given as (]B%’~C X B2 W, Vk) , where

k

= 0 0 1 & 0 0
Wstd = ;d(h Ndpi, Vi = ; (_qia_qi + 2pi8_pi> + 5 z‘—kz_i,_l (qza_% +P¢a—pi) :
The core (respectively, cocore) of the k-handle is B* x {0} (respectively, {0} x
B?"~*) and the handle has attaching sphere given by the boundary of the core,
Sk=1 x {0}. It is possible to build Weinstein cobordisms via attaching handles by
gluing the isotropic attaching sphere to isotropic spheres in the contact level sets,
[CE12, Proposition 11.13].

Proof of Theorem 1.1. Let L™ be an immersed, Maslov-0, exact Lagrangian cobor-
dism from A_ to A, with p double points, m of which, x4, ..., x,,, have action 0. By
Definition 2.1, we know that the value of the primitive is constant along all compo-
nents of A_. For the reader’s convenience, we outline the argument.

(1) Map (R; x R?"7! d(efa)) to (R?™ — {ray}, wsq = > dg; A dp;) C (R*™ wyq)
with an exact symplectomorphism so that L* is sent to an exact Lagrangian
L* that is cylindrical outside of By (p) and inside By (p—), where By(p) is the
standard Euclidean ball centered at 0 of radius p.

(2) Change the Liouville structure on R*" from (wsg, Vraq) to a Liouville structure
(wWsta, V) so that a “multi-dumbbell region” Dy C Bo(p_) has a Liouville
structure obtained from attaching m “exterior” Weinstein 0-handles to a “cen-
ter” Weinstein 0-handle via m Weinstein 1-handles. _

(3) Apply a Hamiltonian isotopy to drag the double points of L* to the center of
the exterior O-handles of Dy and move L™ to agree with standard intersecting

Lagrangian disks near each double point. Now LN 0Dy = A_ consists
of the disjoint union of m Legendrian Hopf links and the Legendrian link
corresponding to A_.

(4) By modifying V/*? inside D, we change the Liouville structure from (wgq, V4*)
to (wsta, Vo) so that Vi only vanishes at the origin. Furthermore, we also en-

sure that on a small ball By(e) C Int(Dy), Vi agrees with the radial Liouville
structure. The flow of the Liouville vector field V; over the Legendrian A_
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defines an exact Lagrangian cylinder Ly,. We construct a new, immersed,
Maslov-0, exact Lagrangian cobordism L with only (p —m) double points by
replacing L* N Int D, with the Lagrangian Ly, N (D \ {0}). Since 9(By(e))
is transverse to Vo, A_ = LNA(1hy(By(e)) is Legendrian consists of £(A_) and

~

m copy of Hopf link. The Legendrian A_ is the new negative end of L even
though the primitives on x(A_) and the Hopf links may not agree with each
other. R

(5) Sard’s Theorem guarantees the existence of a trajectory of Vj that avoids L.
This allows us to map the Lagrangian cobordism L back to an immersed,
Maslov-0, exact Lagrangian cobordism L C (R; x R*"~! d(e'a)) with only
(p — m) double points. By applying another Hamiltonian isotopy, we can
guarantee that the primitive agrees with the same constant on all components
of the negative end.

We now give more details for these steps.
Step 1: As shown in, for example, [Gei08, Proposition 2.1.8] there is a contacto-
morphism

1
Kk (R*™ ! kera) — <SQ”_1 — {pt}, ker (5 (Z qidp; — piqu»))) :

This contactomorphism lifts to an exact symplectomorphism between the symplecti-
zations:
k(R x R d(ela)) — (R2" —{ray}, wsqg = Z dg; A dpi>
K(t,p) = e'k(p).

We can view the image of % as a subset of the Liouville manifold (R?", w4, Vyad),
as defined in Equation (3.1). Then, L* := %(L*) is an immersed, Maslov-0, exact
Lagrangian surface that is cylindrical over the Legendrians x(AL) with respect to the
radial Liouville vector field V,,4. In particular, if L* is cylindrical outside ¢4, there
exist py such that L* is cylindrical outside By (p4) and inside By (p_), which are balls
with respect to the standard Euclidean metric of radius p4 centered at the origin.

Step 2: Choose yi,...,Um € Bo(p—), and consider balls B,,,..., B, C By(p-)
centered at y1,...,ym, and attach each of these balls via radial paths dy,...,d,, to
a disjoint center ball By C Bg(p_) centered at the origin. View the balls By and
By, k=1,...,m, as Weinstein 0-handles and construct m Weinstein 1-handles with
core 0. Thus, it is possible to glue these Weinstein structures together to obtain a
Weinstein structure on a neighborhood of a dumbbell region D, [CE12, Proposition
11.13]; see Figure 5 for a schematic picture. Let (Dy, wsq, Vi) denote the resulting
Liouville domain. Now we define a new Liouville structure (R®",wgq, V#;“d) that
agrees with (wstq, Vyea) outside a neighborhood of D and with the Liouville structure
(wsta, V) on Dy. Let N(Dy) denote a contractible neighborhood of Dy where Vy is
defined. Let A\,4q and Ay denote the Liouville 1-forms for V.4 and Vi in (R*™ wyy).

Since d(Ag — Arad) = wsta — wsta = 0, and all closed 1-forms on N(Dy) are exact, we
know Ay — A\qq = dH for some function H : N(D4) — R. Let 0 be a smooth bump
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function for Dy supported on N(Dy): o(p) =1 for all p € Dy, and suppo C N(Dy).
Then consider )\;fd = Aaa +d(cH). On Dy, )\;fd = Az, while on the complement of
N(Dy), )\;fd = Arad- By construction, )\;fd is a Liouville 1-form of (R*", wgy), so it
provides a uniquely defined Liouville vector field V;*? on (R*", wgq). By construction
of )\;‘jd, L is still exact in the new Liouville manifold (R*™, Wa, V#ad).

Step 3: By the n-transitivity of Hamiltonian isotopies, see for example [Boo69,
Theorem A], we can assume that after applying a compactly supported Hamiltonian
isotopy the double points z; are at the point y; for £ = 1,...,m. By Moser’s
arguments (as in, for example, [MS95, Section 3.3]), we can further assume that, after
applying a Hamiltonian isotopy, the immersed L* agrees with standard intersecting
Lagrangian disks passing through y; parallel to R™ and ‘{R™. Then A_:=1*nN 0Dy
consists of m Legendrian Hopf link and the Legendrian x(A_), and the immersed
L* is cylindrical over the Legendrians k(A4). By exactness of Lx, )\j;d] fx = df, for
]?: Y>> — R, where L* is the immersed image of . Observe that on the intersecting
Lagrangian disks at y, )\;Zd = 0. Thus fis constant on each of these disks, and this

constant must agree with f(yx). Letting f(yx) = ¢k, k = 1,..., m, we then know that
the primitive restricts to the constant ¢, on the k-th Hopf link in A_. By hypothesis,
f is constant on the Legendrian x(A_) C 0By N 0Dy; we denote this constant by co.

FIGURE 5. A schematic of the dumbbell region D, C Int By (p_).

Step 4: First, we construct a new Liouville vector filed V5. By construction, the
skeleton of V¢, Skel(V;*?), consists of the origin, the points y,, and the paths
between the origin and y; for k = 1,...,m. Choose ¢ > 0 such that By(e) C Int Dy,
and fix an open neighborhood Ny C Int Dy containing Skel(V;?) U By(e). We will
change the Liouville structure from (R?", wyy = dAgq, V#“d) to (R wya = dXo, Vo)
where V agrees with the radial Liouville vector field V,,4 (colored in blue) on Nj,
and Vj agrees with V* (colored in black) on R*" \ Int Dy as shown in Figure 6.

Since both A,.,q and )\;fd are Liouville 1-forms for (R*", wgy), then, as argued
in Step 3, Aag — )\;fd = dH, for some function Hy : R*® — R. An important
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FiGURE 6. The Liouville
vector field V{ consists of
three parts that are colored
in blue, green and black re-
spectively.

FIGURE 7. The Lagrangian
L is constructed in two part-
s: part of L* colored in red
and Ly, colored in green.

observation is that Hy is only determined up to a global shift. Let oq : R*" — [0, 1]
be a smooth bump function for Ny supported in Int Dy : oo(p) = 1 for all p € Ny,
supp oy C IntDy. Now consider g = Nj#* + d(coHp). On No, Ao = Arqq, while on
the complement of Int D, we have that Ay = )\;fd. By construction \g is a Liouville
1-form of (R*", wyy) so it provides a uniquely defined Liouville vector field Vy on
(RQn, wstd) .

We now show that on Dy, we can choose Ay and H, well enough so that V|, vanishes
only at the origin. First observe that on Ny, Vy = V,.q and thus V; only vanishes
at the origin within this subset. All that remains to be shown is that, with a good
choice of Ay and Hy, we can ensure Vj # 0 on Dy \ Ny. Observe that, with respect to
the standard almost complex structure J, t_ ;v (soHo)Wstd = d(ooHp). Also note that
V#ad = Vy on Dy \ Ny. Hence, to show Vy = Vi — JV(09H,) does not vanish, we
only need to show V. # JV(09Hy) on Dy \ Ny. A calculation for the right side shows
that

—JV(O'()H()) = _UOJVHO - H()JVO'O = O-O(‘/;ad — V#) + HQ(—JVO'()), on ]D# \ NO

where the last equation follows from the fact that ¢_jvp,wsiq = dHp = A\pag — A O
Dy \ No. We can choose oy such that Vo is parallel to —V, and thus —JVoy is
parallel to —JVy. Our goal is to show that no point p in Dy \ Ny satisfies 0o(V,aa —
Vu)+Hy(—JVoy) = —Vy, which implies that at p the following three properties hold
at the same time.

(1) Viga— Vi is in the 2-plane spanned by V. and JV,, and thus V.4 is contained
in the 2-plane spanned by Vx and JV,
(2) (00(Viad — Vi), Vi) = —[[V?, and
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(3) <0'0(V;~ad - V#), JV#>JV# + HO(—JVUO) =0.
Note that conditions (1) and (2) are closed conditions and thus the set of points in
D, \ Ny that satisfy the first two conditions is a bounded closed set. By globally
shifting Hy by some constant, we can ensure that all points in D \ Ny that satisfy
the first two conditions can not satisfy the third one. Thus, we finish proving that
Vo only vanish at the origin in Dy.

Next, we construct a new, immersed, Maslov-0, exact Lagrangian cobordism L in
(R*, wyq = d)o) by replacing L* N Int D, with a Lagrangian Ly, formed by the
trajectories of —V; in Dy — {0} through A_ C 9Dy, see Figure 7. The fact that Ly
is Lagrangian implies that \g = 0 on T'Ly, since \g(w) = wsta(Vo, w) = 0 for any
vector w € T'Ly,. Thus Ly, is exact and so is L. Since J0(Bo(e)) is transverse to Vg,
A_ = LN O(By(e)) is Legendrian. The fact that Ao|rry, = 0 implies the primitive
of Ly, is constant on each connected component and thus evaluates to the same
constants cg, c1, ..., ¢, on the components of A (as was the case for the evaluation
of the primitive fon all components of the Legendrian A of Zx) Moreover, since
the Maslov potential of the k-th Hopf link Ai’f is inherited from the Maslov potential
of ZX, replacing part of the surface does not affect the Maslov-0 condition.

t

A
5 L 9
i
<32 A e\

FIGURE 8. A schematic picture for the map 7.

Step 5: We now send L from in (R2",wyy = dAg) back to (R, x R2"! d(eta)).
Similar to the map « in Step 1, we have a contactomorphism

Ko : (R kera) — (0(Bo(e)) — {pt}, ker o).

This contactomorphism lifts to an exact symplectomorphism between the symplecti-
zations via the flow lines ¥}° of Vj:

Ko (Ry x R*" d(efa)) — (]RQ" — {0}, wsta = d)\g)
Ro(t, p) — ¥ (k(p)),
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where 7 is a trajectory of V4 over the point taken from 9(By(e€)), see Figure 8. Thus
to send L back through %, ', all we need to do is to find a trajectory o of V4 that
does not intersect L. R

We can ensure the existence of 7y for the following reason. Note that L is a
Lagrangian immersion i(X) for i : 3 — R?** — {0}, where 2 is an n-dimensional
embedded surface. We can project L to 9(By(e)) though the flow line of Vj and get
a smooth map from ¥ to S?"~!. By Sard’s Theorem, this map cannot be surjective
for n > 1, and therefore we can always find a point ¢ on 9(By(¢)) that is not on
the image of ¥ and thus the preimage vy of ¢ does not intersect L. Once back in
(R; x R*"~1 d(e')), by a Hamiltonian isotopy we can adjust the primitives to be the
same constant on all components at the negative end (see, for example, [CDRGG20,
Section 10.1]). Thus we get an exact, Maslov 0, Lagrangian cobordism L with genus
g and p —m double points from | | Ai}’f UA_to A,. U

4. LEGENDRIAN CONTACT HOMOLOGY

In this section we recall the definition of Legendrian contact homology, which
was originally formulated by Chekanov [Che02] and Eliashberg [Eli98]. We recall
also the definition of augmentations and of linearized and bilinearized Legendrian
contact homology. Throughout this section, we follow notations and conventions of
[CDRGG20] and refer to this paper for more details. More details about the situation
when coeflicients are taken in a field can be found, for example, in [EES05b] or [EN19].

4.1. Chekanov-Eliashberg DGA. Here we give the key definitions and set the
notation that we will use. A careful description of the Chekanov-Eliashberg DGA
can be found, for example, in [EN19, CDRGG20).

The Chekanov-Eliashberg differential graded algebra (DGA) of A, (A(A), 0)
is the unital, graded algebra over a commutative ring [F generated by Reeb chords of
A. Let R(A) denote the set of Reeb chords of A. The grading on A(A) is defined on
the Reeb chord generators by

(4.1) le| =CZ(c) — 1,

where C'Z(c) is as described in Section 2.2.2. The differential 0 on A(A) is defined by
a count of rigid pseudo-holomorphic disks in the symplectization (R; x R3, d(e'a)),
with boundary on R x A. For any Reeb chords a,by,...,b, € R(A), and any al-
most complex structure J which is a cylindrical lift of an admissible almost com-
plex structure on R? (see [CDRGG20, Section 2.2]), define the LCH moduli space
MBA(a;by, ..., by) to be the space of J-holomorphic maps u : (D2,,,0D2_,) —
(R x R3, R x A), with a positive asymptotic to the Reeb chord a and negative asymp-
totics to the Reeb chords by, .. ., b,,, up to conformal reparametrization of the domain;
see [CDRGG20, §3.2.3]. This moduli space admits an R-action by translation along
the symplectization direction; we let

M]EQXA(a; bi, ..., bm)
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denote the quotient of MH}XA(CL; bi,...,byn) by R. A disk u € M5 (a;by,...,b,) is

called rigid if dim MI!}RXA(CL; bi,...,b,) = 0. Compactness results ensure that there
are finitely many rigid holomorphic disks, which are used to define the differential 0:
d(a) = > IMEA (a3 by, o by) by b

dim (M5 (asb1,-.-,bm) ) =0

The Legendrian contact homology of A, denoted LC'H,(A), is the homology of
(A(A),0).

a

k+2

Q+l S
1 by b2
0

az

FIGURE 9. The front and Lagrangian projections of Af.

Example 4.1 (DGA of Hopf links). Consider the Hopf link A¥ whose front and
Lagrangian projections as well as Maslov potential are depicted in Figure 9. The
algebra A(AF) is generated by four Reeb chords ay, as, by and by with |a;| = 1 and
|b1| = —|b2| = k. Using results of [DR16], the differential as described above can
be computed in a combinatorial way (see for example in [Che02, EN19]), and the
non-trivial part of the differential is given by da; = b1bs and das = bob;.

4.2. Augmentations. In this section, we review how augmentations, first used in
[Che02], can be used to construct a variety of “linearizations” of Legendrian contact
homology.

First observe that a commutative ring ' can be considered as a DGA, where all
elements of F have degree 0 and the differential is identically 0. Then an augmen-
tation of A(A) to F is a DGA-morphism, which is a graded algebra homomorphism
that preserves the differential. In particular, € : (A(A),d) — (F,0) is a chain map
such that ¢(1) = 1, and for any element a of nonzero degree, €(a) = 0.

Definition 4.2. Aug(A;F) will denote the set of augmentations of A(A) to F. As
shown in [EHK16], an embedded, Maslov-0, exact Lagrangian cobordism L from A_
to A4 induces a DGA map ¢y : A(A;) — A(A-) and thus a map:

Fr : Aug(A—;F) — Aug(Ay; F),
e_—~e_ody.

As above, let R(A) denote the set of Reeb chords of A, and then let C'(A) denote
the graded F-module generated by elements in R(A), where the grading is as in
Equation (4.1). Given an augmentation € of A(A), the linearized Legendrian
contact homology of A, denoted LCHE(A), is the homology of the chain complex
(C(A),0°) with

0°(a) = > M5 (a; pba)[e(p)e(q)b,

dim(M%X A (a;pbq)) =0
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where a,b € R(A), and p, q are words of Reeb chords.

Example 4.3 (Augmentations of Hopf Links). Continuing with Example 4.1, one
computes that the Hopf link A% admits three augmentations to Z, defined by sending
the pair of chords (b1, b2) to (0,0), (1,0) and (0, 1), while the Hopf links A% for k& # 0
admit only the augmentation sending all chords to 0. One can now complete the
explanation of the claim in Example 2.6, namely that AY is the only Hopf link ad-
mitting an embedded, Maslov-0, exact Lagrangian filling. If a Hopf link Ag bounds a
connected, embedded, Maslov-0, exact Lagrangian filling L, then by Seidel’s isomor-
phism [Ekh12, DR16] the Poincar polynomial of the Legendrian contact homology
linearized by the augmentation induced by L must be of the form ¢+ 2¢(L)+ 1, where
g(L) is the genus of L. The LCH polynomial of A is 2t +t* +¢~* when k # 0 and is
2t +2 or t + 1 when k£ = 0 (depending on the choice of augmentation). Thus, when
k = 0, Seidel’s isomorphism obstructs the existence of a connected, embedded, exact,
Maslov-0 Lagrangian filling of Af.

In fact, one can use two augmentations to linearize: given augmentations €', €2 of
A, the bilinearized Legendrian contact homology LCH¢ < (A), defined first in
[BC14], is the homology of (C(A),d< "), where

0" (a) = > M5 (a; pba) e’ (p)e* ()b

dim(M%XA (a;pbq)):o

In Section 5 and 6, we will be using moduli spaces that are defined using a partition
of a Legendrian link into components. In the case A = A' U A%, where A, A? are
Legendrian links, denote R(A?, A7) the set of Reeb chords from AJ to A’ If ¢ €
R(A?, A7) with i # j, we call ¢ a mixed Reeb chord, otherwise we call ¢ a pure
Reeb chord. Denote C(A!;A?) the graded F-module generated by elements in
R(A'; A?). Augmentations €' of A' and € of A? induce an augmentation € = (¢!, )
of A' U A? that agrees with € on pure chords of A?, for i = 1,2, and vanishes on
mixed Reeb chords. Then, the differential of the Legendrian contact homology of
A linearized by ¢, and restricted to mixed Reeb chords in R(A', A?) is defined via a
count of J-holomorphic disks in mixed LCH moduli spaces:

€ Rx(ATUAZ2
0 (a"?) = Z |MJX( u )(a12;p11b12q22)|61(p11)e2(q22)b12,
dim(M%X(AIUAQ)(a12;p11b12q22)):0

where a'?,0'? € R(A', A?), p'! is a word of Reeb chords of A, and q*? is a word of
Reeb chords of A%. Note that (C(A',A?), fC(Al’AQ)) is a subcomplex of (C'(A), 0°).

5. THE AUGMENTATION CATEGORY

In this section, we give a brief summary of the augmentation category mainly fol-
lowing [NRST20]. We then define a new notion of split-DGA homotopy for augmen-
tations of multicomponent links. This gives rise to a simple criterion, Corollary 5.6,
to determine when two augmentations are not equivalent in Aug, , which will be used
frequently in Section 8 when applying Theorem 1.4.
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5.1. Definitions. Let A be a Legendrian knot or link in R3,,. Assume that the
Lagrangian projection 7,,(A) has Maslov class 0 and that each connected component
of A is decorated with a base point.

The augmentation category Aug, (A) is an A,.-category whose objects are elements
of Aug(A;F), namely augmentations of the Chekanov-Eliashberg DGA A(A) to F.
In order to define the morphisms in Aug, (A), we use the DGA of a 2-copy of A,
denoted by 2A = A!' U A%2. The copy A! is a perturbed push-off of A? in the z-
direction, perturbed via a positive Morse function f : A — R" having one maximum
and one minimum on each component of A, located near its base point as in Figure
10. Both A! and A? have the same Maslov potential. The Lagrangian projection of
2A for the max tb right-handed (positive) trefoil is shown in Figure 11.

For any two objects €', €2 € Aug(A;F) of Aug, (M), the morphism space from €' to
€2, denoted Hom, (€', €?), is the graded F-module generated by the Reeb chords in
R(A', A?) of 2/, with the grading of generators shifted up by 1, commonly denoted
as

Hom (¢!, ?) := C (A, A*)[1].
We use | -| to denote the gradings in the F-module C'(A

), as given in Equation (4.1),
and | - |4 to denote the shifted gradings in Hom, (!, €?).

FicureE 10. The local model near the
base point * of each component of A,

with the arrow representing the orienta- FIGURE 11. The Lagrangian projec-
tion of A, and x (y) denoting the maxi- tion of the 2-copy 2A, where A is a
mum (minimum) of the function f. max tb positive trefoil.

Taking a closer look at the generator set of Hom (¢!, €?), we note that for each
Reeb chord a of A, there is a corresponding mixed Reeb chord a'? € R(A!, A?) of 2A
with grading given by

|a?|y = |a] + 1.
The other generators of Hom (¢!, ¢*) are the Morse Reeb chords, corresponding to
the critical points of the Morse function f. Assume A has m components, and
denote the Morse Reeb chords corresponding to the maxima of f by z}? and the ones
corresponding to the minima of f by y!? for i = 1,...,m. By Equations (4.1) and
(2.2), we find

(51) |ZL‘1-12|+ = ]-7 and |yz2|+ = 0.

As a graded module, the morphism space Hom, (¢!, €?) does not depend on €' or
€2, but the A, operators, called compositions,

my, : Hom o (", ™) @ Homy (", ") ® - @ Hom, (', €?) — Hom, (e, ")
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do depend on the choice of augmentations €', ..., e""!. These A, operators m,, can
be defined using the DGA of an (n + 1)-copy of A. The (n + 1)-copy is perturbed
in such a way that every Reeb chord generator of Hom, (¢!, €?) has corresponding
versions on consecutive pairs of the (n + 1)-copy; see [NRST20, Figure 6]. We recall
below the definitions of the operators m; and my that will be used in this paper; see
[INRS*20, Section 4] for details of this construction.

e The operator m; : Hom, (¢!, e?) — Hom, (¢!, €?) is defined by a count of
rigid holomorphic disks with boundary on R x 2A = R x (A' U A%) with one
positive asymptotic and one negative asymptotic to Reeb chords in R(A', A?)
and possibly some other negative asymptotics to pure Reeb chords. Indeed,

1 A2
ml(b12) _ Z |M]R><(A UA )((I12; pllbl2q22)|€1(p11)€2<q22)a12’
dim(M (a2;p11b12¢22))=0

where 0'% a'? € R(A',A?), and p!', g** are words of pure Reeb chords in
R(A'Y) and R(A?), respectively. The operator m; is a degree 1 map that
satisfies m? = 0, and we denote H*Hom_ (€', €?) the cohomology of the com-

plex (Hom, (€', €%),my). In addition, one has the following isomorphism from
[INRS*20, Corollary 5.6]:

H*Hom (', %) = LC’Hfl_’f(A).

e To define the operator my : Hom, (e?,¢3) @ Hom, (e',e?) — Hom, (e, ),
we first consider the 3-copy 3A = A' U A? U A3, where 3A is constructed such
that for any i < j, the DGA of A’ U AJ is canonically identified with the
DGA of 2A; see [NRST20, Figure 6]. The operator my counts rigid holomor-
phic disks with boundary on R x 3A, with a positive asymptotic to a Reeb
chord in R(A', A?), two negative asymptotics to Reeb chords in R(A', A?) and
R(A?, A3) respectively, and possibly additional negative asymptotics to pure
Reeb chords. More precisely,

m2<C23, bl?) — Z ’MRXSA(CLlB; p11b12q22023r33) ‘61 (p11>€2(q22)63(1‘33) (ng,
dim (M (al3;pl1p12¢22c23¢33))=0
where a'3 € R(AY, A3),012 € R(AY,A?),c® € R(A? A3), and p'!, g%, 13 are
words of pure chords. The operator ms is of degree 0 and induces a product
structure on the cohomology H*Hom.:

my : H'Hom (€%, %) @ H' Hom, (', €*) — H'"" Hom, (¢!, €?).
5.2. Unital A, category. A key property of Aug, (A) is that it is a strictly unital

A, category: for any e, there is an element e, € Hom (¢, ¢€) with |e.|; = 0 such
that

o my(e.) =0;
o for all a € Hom, (¢,€') and b € Hom (€, ¢€),

ma(ee,b) =b, ma(a,e) = a; and

e any higher order composition, m, for n > 3 vanishes when e, is one of the
inputs.
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In fact, if A has m components, the unit is given by
Zy € Hom, (¢, ¢€),

for yi? as defined in Equation (5.1). It follows that the induced cohomology category
H*Augy(A) is a unital category. This allows us to define a notion of equivalence of
two objects.

Definition 5.1. Two augmentations €' and 62 of A(A) are equivalent in the aug-
mentation category Aug, (A), denoted by €' ~ 4, ; €2, if they are isomorphic in
H* Aug, (M), that is, if there exist [a] € H'Hom, (¢!, €?) and [3] € H Hom, (€%, €')
such that

TTLQ([O&], [6]) = [662] € H0H0m+<€27 62)7 and m?([ﬁ]a [Oé]) = [661] S H0H0m+(61761>7
where [e.] is the unit in HHom (', €') for i = 1, 2.

It can be difficult to show that two augmentations of A are not equivalent using
Definition 5.1. However, by relating this definition of equivalence to the notion of
DGA-homotopic augmentations, there is an easier criterion for distinguishing non-
equivalent augmentations; see Corollary 5.6.

An augmentation is a DGA morphism, and there is an established notion of a homo-
topy between DGA morphisms; see, for example, [K&l05, Section 2.3] and [NRS*20,
Definition 5.15]. It is proved in [NRST20, Proposition 5.19] that if A is a Legendrian
knot, then two augmentations are DGA-homotopic if and only if they are equivalent
in Augy(A). In order to obtain a similar result in the case where A is a Legendrian
link, we use the fact that the DGA of a Legendrian link has a “homotopy splitting,”
which was first defined by Mishachev [Mis03]. Before we explain this splitting of
the DGA for a Legendrian link, we give the general definition of a split DGA and
morphisms of split DGAs.

Definition 5.2. A (unitary) split DGA (A.., 0.) over F is an algebra A,, over F
such that A.. = @} ;,_1Aj,j,, where

(1) each Aj,;, is a module over F,
(2) there are bilinear multiplication maps Aj, ;, X Aj,;, — Aj,j, that are 0 unless

.j2 :j37

or all j, A;; contains an element e; that acts as the identity under multipli-
3) for all j, Aj; tai 1 t e; that act the identity und Itipli

cation, and

(4) O.. respects the splitting, namely 0. : Aj,j, — A;,, for all 1 < j1, 752 < n.
Given two split DGAs, (GB?J 1./42],6) and (@” 144;],8’), a split-DGA morphism
f:(ar = 1A, 0) = (8721 Aj;, 0') is a DGA morphism such that for all 4, j, there

exist i, j' such that f(A4; ) - .A - Observe that (IF,0) can be viewed as a split DGA
with no splitting.

The following is a new definition, which extends the definition of DGA homotopy
given, for example, in [NRST20, Definition 5.15].
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Definition 5.3. Given a unital, commutative ring IF, let F* denote the set of units.
Two split-DGA morphisms fi, fo : (O} ;21 Aiy, 0) — (B2 Aj;, 0') are split-DGA

ij=1"%ij>
homotopic if there exists K : @};_; A, = &f_ A}; such that:
(1) K is split, F-linear, and degree 1,

(2) for all 7, j there exists a;, a; € F* such that for all a € A,
a;fi(a) — ajfa(a) = 0'K(a) + Kd(a), and
(3) K(z-y) = K(x)- foly) + (=D fi(x) - K(y), for all 2,y € &,_, Ajj.

Remark 5.4. (1) If oy = 1 for all i or F = Z,, then Definition 5.3 agrees the
usual definition of DGA homotopy.
(2) If A has a single component, and €', € are two augmentations of A(A), then

the existence of a DGA homotopy between €', €? is equivalent to the exis-

tence of a split-DGA homotopy between €', €2, It is immediate to see that
a DGA homotopy implies the existence of a split DGA homotopy. In the
other direction, a split DGA homotopy implies the existence of K and o € F*

satisfying
afi(a) —afsy(a) =0 K+ K9, forallac A
Then K’ = o~ 'K is the desired DGA homotopy.

Given a Legendrian link A = (A',...,A™), we can split what is essentially a
submodule of the Chekanov-Eliashberg DGA into m? pieces that are invariant under
Legendrian isotopy as has been shown in, for example, [Ng03, Definition 2.18] and
[NTO04, Section 2.4]). Let A;; be the module generated by words of Reeb chords that
begin on A" and end on A7, i.e. Reeb chords in R(AJ, A?). If i = j we also add in an
indeterminate e;. The differential 0., is defined on the generators a as follows: if the
Reeb chord a begins and ends on distinct components of A, then 0..(a) = d(a); if a is
a Reeb chord that begins and ends on the same component A’ of A, then replace any
occurrence of 1 in d(a) by e;, that is, every holomorphic disk with boundary on A;
with positive asymptotic to a and no negative asymptotics contributes e; to Ou(a).
Then 0,. extends to A,. by applying the Leibniz rule and setting 0..(e;) = 0, for
all 7. Augmentations € : (A,0) — (FF,0) are in bijective correspondence with split
augmentations ¢, : (A, d) — (F,0): on any Reeb chord generator a, €(a) = €,.(a)
and €(1) = 1 = €,.(e;), for all j.

Using Definition 5.3, a slight modification of the proof of [NRS™20, Proposition
5.19] gives the following proposition, whose proof is given in Appendix A.

Proposition 5.5. Given a Legendrian link A C R2,,, two augmentations €', €* :

A(AN) — F are equivalent in Augy(A) if and only if the corresponding split augmen-
tations €1, and €2, are split-DGA homotopic.

Proposition 5.5 gives us a simple way to determine if two augmentations are not
equivalent in Aug, (A).

Corollary 5.6. Suppose that the Legendrian link A = (A', ..., A™) does not have any
degree —1 Reeb chords. Then any two augmentations €' and €2 of A are equivalent
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in Augy(A) if and only if for all i,j € {1,...,n} there exist a;,; € F* such that
aie'(a) = aj€e*(a), for all degree O Reeb chords a € R(A,A"). If F = Zy, then two
augmentations are equivalent in Augy(A) if and only if they are identically the same.

Proof. Recall that the support of an augmentation is contained in the degree 0 portion
of A(A). By Proposition 5.5, it suffices to show that when a Legendrian A does not
have any degree —1 Reeb chords, ¢!, €% : (A(A),d) — (FF,0) are split-DGA homotopic
if and only if for all 4, j there exist oy, a; € F* such that oe'(a) — aje*(a) = 0, for
all degree 0 Reeb chords a € R(A7, AY). Suppose €', €? are split-DGA homotopic via
K : (A(A),0) — (F,0). Since K is degree 1 and F is in degree 0, K is supported in
the degree —1 portion of A(A), which since there are no —1 degree Reeb chords is
spanned by monomials of words length at least 2. Then an induction argument using
the condition (3) of Definition 5.3 tells us that K = 0. It follows that for an arbitrary
degree 0 Reeb chord a € R(AJ, AY), aye'(a) — aje*(a) = 0. For the other direction, if
for all 4,5 € {1,...,n} there exist a;,a; € F* such that ae'(a) — aje*(a) = 0, for all
degree 0 Reeb chords a € R(A?, AY), by setting K = 0, we get the desired split-DGA
homotopy. U

Remark 5.7. Recall the map F : Aug(A_;F) — Aug(A;F) in Definition 4.2,
induced by an embedded, Maslov-0, exact Lagrangian cobordism L from A_ to A,.

(1) It is known that this map descends to
Fr o Aug(A—;F)/ ~pca nom— Aug(A;F)/ ~pca nom

where ~paa nom denotes the equivalence relation defined by DGA homotopy:
if K_ is a DGA-homotopy between two augmentations €' and €2 of A_, then
K_o®; is a DGA-homotopy between Fy (') and F(e?). Thus, as observed
in Remark 5.4 if Ay are Legendrian knots or if AL are Legendrian links and
F = Z3, ~ gug, is the same as ~paga hom, and the map

FL : Aug(/\_,F)/ NAung_) Aug(A-‘r?F)/ ™~ Augy

exists.
(2) In general the map Fj does not descend to augmentations defined up to
equivalence by split-DGA homotopy. See the following example for details.

Example 5.8. In this example, we show that there exists an embedded, Maslov-0,
exact Lagrangian cobordism L from a Hopf link to the trefoil such that the Hopf link
has two augmentations over Z that are split-DGA homotopic, while their images un-
der Fy, are not (split-)DGA homotopic augmentations of the trefoil. See [ENS02] for
a combinatorial definition of the DGA over Z[tE!, ... tF!], and Section 4.2 of [CN21]
for a combinatorial definition of the DGA maps induced exact by pinch moves.

Let L be the exact Lagrangian cobordism from the Hopf link A_ to the max-
tb trefoil A, given by pinching the Reeb chord b; as shown in Figure 12. The
DGA A(A,) is a Z[t*'] tensor algebra generated by the Reeb chords ay, az, by, b, b
and the DGA A(A_) is a Z[t*!, s*!] tensor algebra over aj,ag, ba, by as labeled in
Figure 12. The differentials . and the DGA map @ induced by the cobordism are
described in Figure 12. Note that augmentations ey, €5 of A(A_) that send (¢, s, by, b3)
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Oyay; =t~1 4 by + bg + bybobs

A+ /\/ ¢ 8+a2 =1- bl — bg — bngbl
by b2 b3

N Bpb; =0

(I)L(bl) =S
i3 )
@L(bg) = bz — S

& (x) = x for © # by, by

~
—_—
h
P

s / 0_a1 = 1 + S(]. + bed)
) 2 8_(12 =1- (bgbg =+ 1)3
N N d1b; =0

FI1GURE 12. Example of a cobordism from a Hopf link to a trefoil and
the corresponding DGA differentials and DGA map.

to (—1,1,1,0) and (—1,1,—1,0), respectively, are split-DGA homotopic. Indeed,
since by is a mixed Reeb chord, and 0_by = 0, then we can choose units a; = 1 and
oy = —1 such that

arer(by) — anér(by) =1 —1=0,

so €1 and €y are split-DGA homotopic. On the other hand, their induced augmenta-
tions Fr (€1), Fr(€2) are augmentations of A(A ) that send (¢, by, b, b3) to (—1,1,0,0)
and (—1,1,—2,0). Since by is a pure Reeb chord of A, and 0,.by = 0, then Fp(e;)
and F,(e2) are DGA-homotopic only if Fp,(e1)(b2) — Fr(€2)(b2) = 0, which is not the
case.

6. WRAPPED FLOER THEORY

In this section we review the setup and some properties of Floer theory for La-
grangian cobordisms as developed in [CDRGG20] for our setting of interest. Namely,
we consider the Cthulhu complex Cth(L', L?) over a unital, commutative ring F as-
sociated to a pair of transverse, embedded, Maslov-0, exact Lagrangian cobordisms
L', L2, If F is not characteristic 2, we further assume the cobordisms L! and L? are
spin. Without loss of generality, we assume that the constant value of the primitive
of any cobordism we consider vanishes on the negative end, i.e. ¢. = 0; see Re-
mark 2.2. We review the result established in [Pan17] that we can construct an iso-
morphism ¢, between the cohomology of a quotient complex of the Cthulhu complex,
H*(C_wo,d_w), and H*Hom (el , €2), see Equation (6.3). In fact, the cohomology
groups on both sides of this isomorphism possess a product structure, m, >, my , and
we review the fact, from [Leg20], that ¢, preserves the product structure, see Propo-
sition 6.3. Understanding the definition of m; > will be important in Section 7 where
we will establish in Proposition 7.2, the key result needed to prove Theorem 1.4.
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6.1. A special pair. Let L be an embedded, Maslov-0, exact Lagrangian cobordism
in the symplectization of R?,; from A_ to A,. Consider a perturbed 2-copy of L,
2L = L' U L?, where L' is a push-off of L? := L in the positive z-direction via a
Morse function F : L — RT such that L' U L? on the two cylindrical ends agrees with
a cylinder over the 2-copies AL UAZ in the corresponding Aug, categories; for details
see [Pan17]. In particular, the Morse function F' on [N, 00) x A, and (—oo, —N| x A_
agrees with e'fy, where fi are Morse functions on A; that have the same critical
points as the ones used in the construction of 2AL in Aug,(AL); see Section 5.1.
Moreover, we assume that on ([—N, N] x R?) N L the value of the Morse function F'
on each point is less than the cobordism action of any pure Reeb chord v of A_, given
by e~V fv «. Such an assumption is necessary in order to get the identifications of
complexes in Proposition 6.2 below.

Remark 6.1. We refer to [CDRGG20, Section 3.4.2] for more details on the relation
between the energy of pseudo-holomorphic disks with boundary on L' U L? and the
action of intersection points and Reeb chords. In our special pair case, intersection
points in L' N L? are in one-to-one correspondence with critical points of the Morse
function F, and the action of p € L' N L? is given by the value of I at p € L.

The particular type of perturbation used on the cylindrical ends implies that the
algebras A(AL) and A(A%) are canonically isomorphic: there are canonical iden-
tifications of Reeb chords and the differentials agree under this identification. An
augmentation e_ of A(A?%) gives under this identification an augmentation of A(A!).
Moreover, if the cobordisms L' and L? are sufficiently C'-close, then they induce
the same augmentation of A(AL) and A(A2), i.e. e o ®pi = e_ o D2, under the
canonical identification of generators, see [CDRGG15, Theorem 2.15].

6.2. The Cthulhu complex Cth(L!, L?). Given the special pair of cobordisms
L', L* as above, for i = 1,2 suppose that ¢’ is an augmentation for A(A%) and
€. = Fri(e") is the augmentation of A(A’) induced by € through L. The C-
thulhu complex Cth(L', L?) can be described as follows. It is a graded F-module
generated by three types of generators:

Cth(L',L*) = C (L', L*) @ Co(L*, L*) @ C_(L', L?),
where

o CL(LY L?) = C(AL,A3)[2] is the F-module generated by Reeb chords from
A% to AL with a grading shift, i.e. a Reeb chord a € C (L', L?) has grading
la|ctn, = |a| + 2, for |a| as in Equation (4.1).

o C_ (L', L?) = C(AL,A?)[1].

e Cy(L', L?) is the F-module generated by intersection points in L' N L% The
grading of intersection points is given by the Conley-Zehnder index of the
corresponding Reeb chords in the Legendrian lift, which is the same as the
grading in Lagrangian intersection homology.

We use the shortened notation Cth(L',L?) = C, & Cy ® C_. The fact that the
Morse function F' is positive implies, by energy restrictions, that the differential d on
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Cth(L', L?) is upper triangular [CDRGG20, Lemma 7.2]:

diy dyo dy-
d= 0 doo do- |,
0 0 d__

where each component is defined by a count of rigid pseudo-holomorphic disks with
boundary on L' U L? that we now describe. Let J% 7™ be respectively the sets
of cylindrical and admissible almost complex structures on (R x R3, d(e'a)), defined
as in [CDRGG20, Section 2.2].

(1) The maps dii are the bilinearized codifferentials with respect to (el ,€2),
as reviewed in Section 4.2, and therefore count rigid holomorphic disks with
boundary on R x (AL UA2%) with one puncture positively asymptotic and one
puncture negatively asymptotic to mixed Reeb chords in R(AL, A%). More
explicitly,

Rx (AL UA2
das (D) = D MG (12, p B 1222 | (plh)e2 (g2)

. Rx (AL uAZ)
dim (MJ:I: 0 (ag;pilb%qu)) =0

where J£ € J% b'% al? are generators in C., and p}!, and q%* are words of
pure Reeb chords of AL and A% respectively.

(2) The maps d;; from C; to C;, for (i,7) = (+—),(+,0),(0,0) or (0,—), are
defined by a count of rigid holomorphic disks with boundary on L! U L?
with a puncture positively asymptotic to a generator c, of C;, a puncture
negatively asymptotic to a generator c_ of C;, and possibly other punctures
negatively asymptotic to pure Reeb chords of AL UA? | as shown in Figure 13.
We use (!, €%) to augment the Reeb chords at the negative pure punctures.
The definition of such moduli spaces is similar to the definition of mixed LCH
moduli spaces in Section 4.2 except that the Lagrangian boundary condition
is not cylindrical anymore. This means that there is no R-action, and so we
need a path J, of almost complex structures in J%™ to ensure transversality
(see [CDRGG20, Section 3] for more details):

1 2
dij(co) = > IMEVE (e pte_a®) el (pM)e? (a®) ¢y,
dim(MJ9E (eqpte-q?2) ) =0

We can identify some subcomplex and quotient complex of (Cth(L', L?),d) with
cochain complexes defined in Section 5.

Proposition 6.2 ([Panl7, Theorem 5.1]). The top and bottom cochain complezes
admit the following identifications

(Cpodiy) = (Hom (¢, E)Ami),  (Cod_) = (Hom (¢ &), my).

and (Cy,dyy) 1s the cochain complex of the Morse cohomology for F with differential
counting Morse flow lines of F.

12
ay,
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Cy Cy

Lt L?
C_
(a) (0)
Cy Cy
Lt L? Lt L?
C_

FIGURE 13. (a) — (d) are the types of holomorphic disks counted by
d; ; for (i,7) = (+—), (+,0),(0,0) and (0, —), respectively, where c, is
a generator of C; and c_ a generator of Cj.

Observe that the Cthulhu complex (Cth(L', L?),d) is the cone of ¢ := d o+ dy_.
The long exact sequence induced by the cone together with the fact that the complex
is acyclic [CDRGG20, Theorem 6.6] implies that ¢ induces an isomorphism

(61) Qb* . H*(C_oo, d_oo) — H*+1(C+, d++),
where

® vk * _ dOO dOf
C'o=CidC*, and d_ = ( 0 d_ > .

Note that ¢, may depend on the perturbation F'. We have also that C'_, is the cone
of dy_. The long exact sequence induced by a cone together with the isomorphism
¢, and the identifications in Proposition 6.2, give the following long exact sequence:
(6.2)

oo = HY(L,A_) — H*Hom, (e}, €%) — H*Hom (L, €) — H*" (L, A_) — - -

6.3. Product structure. The isomorphism ¢, from Equation (6.1) together with
the identification of H**(C\y,d; 1) = H*Hom, (el , €%) given by Proposition 6.2 gives
an isomorphism

(6.3) Gs H (Cnoyd_oo) — H*Hom (e}, €%).

As recalled in Section 5.1, there is a product structure on H*Hom, given by the
map my in the category Aug,(A;). There is also a product structure m;> on
H*(C_w,d_o) defined by the second author of this paper [Leg20]. In fact, the iso-
morphism ¢, preserves the product structures; see Proposition 6.3.
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Let us give a more detailed overview of the construction of m;° in the case of

a 3-copy 3L = L' U L? U L? such that any pair (L%, L7) for i < j has the same
Cthulhu complex as 2L; that is, for i < j, the cobordism L’ is a push-off of L7 using
a positive Morse function F¥ satisfying the same conditions as the Morse function F.
In particular, the Morse functions F'“ are chosen so that the action of any intersection
point in the Cthulhu complex Cth(L’, L?) is less than the action of any pure Reeb
chord of A_ and that the top and bottom cylinders of 3L agree with the cylinder over
AL in Augy(Ay).

For i = 1,2, 3, given augmentations €" of A(A_), the induced augmentations ¢’ of
A(AL), and a domain dependent almost complex structure J, with values in J%4™,
the operator

my™ O (L L) @ C_oo(L', L) — C_o(L', L?)

counts rigid holomorphic disks with a puncture positively asymptotic to a generator
of C_(L', L?), two punctures negatively asymptotic to a generator of C_ (L', L?)
and a generator of C_,(L? L3), and punctures negatively asymptotic to pure Reeb
chords of 3A_ that are augmented by €’ . The operator m, > can be decomposed as
the sum of the maps

puls o Ci(L? L%) @ Cy(L', L) — Cy(L', L?)
for i, j, k € {0, —}, satisfying the following;:

(1) In the special setting we consider here, namely the 3-copy 3L, energy restric-
tions guarantee that if one of the inputs of m;°° is in Cp, then the output is
in Co, i.e. pg; = p; =0, fori,5 =0,—.

(2) The map p~ _ agrees with the usual m;, of Aug, (A_).

(3) For the rest of the cases, (i,j,k) = (—,0,0),(0,—,0),(0,0,0),(—,—,0), the
map uﬁ ; counts rigid holomorphic disks with boundary on 3L:

uﬁj(c%,blz) _ Z |M£UL2UL3 (a13;p1_1b12 2_20231313)\el_(pl_l)eQ_(qQ_2)e:i(r§3) al3,
dim My, (a3;p'b12q2%c23r3)=0
where a'? is a generator of Ci(L', L?), b'? is a generator of C;(L, L?), ¢® is

a generator of C;(L?, L3), and p'!, q*2, 13 are words of pure Reeb chords of

AL, A% A3 respectively.

In [Leg20, Section 5.2], it is shown that m; > commutes with the differentials d_
and thus induces a product map on cohomology

my > H"O_o(L*, L?) @ H"C_o(L', L?) — H™™"C_ (L', L?).
Moreover, we have the following proposition:

Proposition 6.3 ([Leg20, Theorem 2]). The map ¢. from Equation (6.3) preserves
the product structures, i.e.

¢» 0 my ™ ([al, [B]) = m3 (¢:[al, ¢ [b])
for[a] € H*C_o(L?, L?) and [b] € H*C_ (L', L?).
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Remark 6.4. Note that we abuse the notation of ¢, here, for simplicity of notation.
This isomorphism ¢, is defined on each pair of cobordisms 2L in 3L and could be
different for the different 2-copies. A more rigorous way of writing the identity in the
proposition above would be

Le) (€2,€2) (ele2)

o= omy ([al. o) = mi (o lal. o= 1))

7. OBSTRUCTIONS TO EXACT LAGRANGIAN COBORDISMS BETWEEN LINKS

In this section, we give an obstruction to the existence of embedded, Maslov-0,
exact Lagrangian cobordisms through a count of augmentations of the bottom and
top Legendrian links. We will count augmentations up to ~ 4,4, , the equivalence
in Aug; (A1) (Definition 5.1), which by Proposition 5.5 is the same as the split-
DGA homotopy equivalence (Definition 5.3). The obstruction through a count of
augmentations is proven in Section 7.1, with the proofs of key propositions provided
in 7.2 and 7.3. Section 7.4 provides other obstructions in terms of linearized contact
homology and ruling polynomials.

7.1. Proof of Theorem 1.4. Throughout this subsection, we suppose that e_ is an
augmentation for A(A_) and e, = Fp(e_) is the augmentation of A(A,) induced
by e_ through L. Since we will be counting augmentations up to equivalence in
Augy(Ay), we first define maps ¢ : H'Hom (¢',¢,.) — H Hom (" ,€’), for i,j €
{1,2}. Consider the special pair of cobordisms 2L as described in Section 6.1 and the
isomorphism ¢, : H*(C_o,d_n) — H*Hom, (€, ¢}) in Equation (6.3). Note that
(Co, dno) is a subchain complex of (C_.., d_,). Combining this fact with Proposition
6.2, it follows that the quotient map 7 : C'_,, — C_ induces a map on cohomology:

Tyt H¥(C_oo,d_og) — H*Hom, (€, €).
Precomposing with ¢! gives a map

L=m,o¢; b H*Hoer(eﬂr,ei) — H*Hom (¢ ,€).

The next proposition shows that ¢ is “natural”: although ¢, may depend on the
Morse perturbation function F' used to construct 2L, ¢ does not. The proof of this
proposition can be found in Section 7.2.

Proposition 7.1. The maps ¢ : H*Hom, (¢, ¢},) — H*Hom, (¢ ,¢’) are indepen-

dent of the choice of the Morse perturbation function F', up to compactly supported
homotopy.

The following properties of the + map are used in the proof of Theorem 1.4, and
are proved in Section 7.3.

Proposition 7.2. The map ¢ : H*Hom, (€', €}) — H*Hom, (" ,¢’) satisfies the
following properties:

(1) ¢ preserves the product structures, i.e.
my (c[a], ¢[b]) = o(m3 ([a], [B]))
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for [a] € H*Hom (2, €%) and [b] € H*Hom (el ,e2), where my are the

products in the augmentation categories Aug, (A1),
(2) ¢ is unital, meaning that when €} = €5 = ey, we have ([e.,]) = [e._].

Proof of Theorem 1.4. Let L be an embedded, Maslov-0, exact Lagrangian cobordism
from A_ to A,, and €', €% be two augmentations of A(A_). To show that

|Aug(A s F) /) ~aug, | < [Aug(Ay;F)/ ~aug, |

we show that if the induced augmentations €}, = F(e') and €5 = F (e ) are equivalent

then ! and €2 are also equivalent. Since €l , €% are equivalent, there exist [a] €

H°Hom (e,€2) and [8] € HHom (€%, €.) such that
m (o], [8) = lea] € HOHom.(2, ), and m(8). [a]) = [ea] € HOHom, (e, ),
where [e, ] is the unit in H°Hom (€', €' ), for i = 1,2. By Proposition 7.2,

my (dlal, o[B]) = e(m3 ([a], [B]) = ulea]) = le].

Analogously, one can prove that my (¢[5], t[a]) = [ea ]. It follows that €& and €2 are
equivalent, as desired. U

If Ay are Legendrian knots or if Ay are Legendrian links and F = Z,, as mentioned
in Remark 5.7(1), the map

Fr : Aug(A_;F)/ ~ Augy 7" Aug(Ay;F)/ ™~ Augy

exists; the above argument shows that F is injective.

7.2. Proof of Proposition 7.1.

Proof of Proposition 7.1. Following the construction in Section 6.1, suppose that F
and F” are two Morse functions on L, homotopic through a homotopy with compact
support, and let 2L = L' U L? and 2L = LY U L? denote the corresponding 2-
copies. The homotopy between F' and F’ induces a compactly supported Lagrangian
isotopy between 2L and 2L’; note that the isotopy keeps the two cylindrical ends
fixed. According to [CDRGG20, Proposition 6.4], the isotopy induces a chain map

¢ : Cth(L',L?) — Cth(L",L?).

Following [Ekh12], we will show that the map ¢ is the identity map on C' (L', L?) —
C, (LY, L?). Along a generic isotopy {L!}scjo1) from L} := L' to L} := LY, one can
assume that except for a finite number of distinct points 0 < sp < 51 < --- < s, < 1,
the cobordisms L! and L? are transverse and the moduli spaces contributing to the
differential of Cth(L}, L?) are transversely cut out. At the points s;, two different
situations can occur:

(1) The birth/death of a pair of intersection points, ¢1, co € Cy with |¢1| = |eo|+1;
(2) The appearance of a (—1)-disk u € M(cy; pcaq) with boundary on the non-
cylindrical parts of the cobordisms.
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Moreover, one can assume that these two cases do not occur simultaneously. Hence,
from now on, let us assume that sg € (0, 1) is the only point in the isotopy when situa-
tions (1) or (2) can occur. Suppose first that case (1) occurs, and denote the Cthulhu
chain complex with (resp. without) the pair of intersection points by (C[+],d[+])
(resp. (C]—],d[—])). We have d[+](c2) = ¢1 + v where v does not contain ¢;. The in-
duced chain map C[+] — C|[—] corresponding to the death of the pair of intersection
points ¢y, co maps ca — 0, ¢; — —v and other elements to themselves. The induced
chain map C[—] — C[+] corresponding to the birth of ¢, ¢y sends an element ¢ to
¢ — c;(d[+]c)ca, where ¢} is the dual element for ¢;. Note that both ¢; and ¢, are
intersection points, thus the induced chain maps are identity maps on C,. In the
second case, a (—1)-disk u € M(c;; peaq) appears. The induced map ¢ sends ¢y to
co + Acqy, for some number A, and all other elements to themselves. Since the negative
puncture ¢, is not in C', the induced chain map is the identity on C,.
Denote ¢_ ., the component

Pt (Cooe(L L%),doce) = (C-oe(LY, L%), d)

The fact that ¢ is a chain map and fixes C'; implies that ¢_. is a chain map, i.e.
Yoo 0d oo =d_ 0p_o. Let us then denote ¢, the component

@y Cth(L', L*) — C (LY, L?)
The fact that ¢ is a chain map implies that for any cycle ¢ € C_ (L', L?) one has

pro(¢+do)(c) =d\y opi(c) + ¢ 0p oc)

Using the fact that ¢ is the identity map on Cy and d_..(c) = 0, this equation
becomes,

d(c) =d\, opy(c) + ¢ op_o(c).
It follows that

[@(c)] = [0/ 0 p-o(e)] € H'(CH(LY, L?)) = H* Hom, (€, €}).

In order to show that ¢ := m, 0 ¢! = 7l o (¢.)™' =: //, where m and 7’ are the
projection maps from C'_,, — C_ for the two cases, respectively, we will prove that
(7.1) if c € C_oo(L", L?), then 7(c) = 7’ 0 p_o(c).

Again, it suffices to understand how ¢ _., behaves when either case (1) or (2) occurs
in the isotopy. If a (—1)-disk u € M(c1; peaq) occurs, the positive puncture ¢
can be an element in C; or Cy, and by definition of ¢_., we only need to consider
disks v with ¢; € Cy. Then, the induced chain map ¢_.,, sends any element ¢ to
c+m for m = 0 or m € Cy. If case (1) occurs, and we have a birth/death of
intersection points ¢, ¢z in Cjp, denote the chain complex with (resp. without) the
pair of intersection points by (C_[+], d—so[+]) (resp. (C_oo[—],d-x[—])). Suppose
that d_o[+](c2) = ¢1 +v. Since the differential of C'"_, is upper triangular, we know
that v is in Cy. Thus, the map from C_[+] to C_.[—] maps ¢; to Cpy and ¢ to 0.
If we have a birth of intersection points, the map from C'_,[—] to C_,[+] sends an
element ¢ to ¢ — ¢f(d_u[+]c)ca, which is also in Cy. In both cases we have shown
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(7.1) is true and can conclude that the map ¢ does not depend on the choice of Morse
function F. 0

7.3. Proof of Proposition 7.2. To prove the first statement of Proposition 7.2, first
recall that © = m,0¢, ! and that ¢! preserves the product structures; see Proposition
6.3. Thus Proposition 7.2 (1) follows immediately from

Lemma 7.3. The map 7, : H*(C_oo,d_o,) — H*(C_,d__) preserves the products.

Proof. Recall that ms>°(a,b) € Cyif a or bis in Cy. Thus the component of m; *(a, b)
with values in C_ only comes from m; (m(a), 7 (b)), i.c.

™o my>(a,b) = my (m(a), 7(b)).
O

In order to prove Proposition 7.2 (2), we need that for any augmentation e_ of
A(A_) and its induced augmentation e, of A(A,), the map

v: H'Hom (ey,e) — H Hom, (e_,¢_)

preserves the unit. Note that ¢! is an isomorphism that preserves the product struc-
tures and thus sends the unit [ey] of H'Hom, (e4,€,) to a unit [e_o] of H(C_.).
In order to show 7,([e_wo]) € HHom, (e_,€_) is the unit [e_| of H'Hom  (e_,¢_),
we only need to prove the following lemma.

Lemma 7.4. There is an element e = e_ +eg € C_,o, where eq is an element in Cy,
such that d_.(e) = 0.

Proof of Proposition 7.2. With Lemma 7.4 in hand, the fact that m, preserves the
product structure, and the fact that [e_] and [e_] are the units of H*(C_) and
H°Hom. (e_, e_) respectively, we have that

me(le—ce]) = my (le-], mu(le—oo])) = my (male], me(le-o]))

= omy < ([e], [e-]) = m[e] = [e-].

Thus, «([e4]) = 7 0 ¢ ([e4]) = mu(le-oc]) = [e-]. 0

Proof of Lemma 7.4. Recall that the unit e_ of HomS (e_,e_) is given by e_ =
— >yt where y}? are the Reeb chord of 2A_ corresponding to the Morse mini-
ma of the Morse function f_ used to define 2A_. Let ey be negative of the sum of all
the intersections that corresponds to the minima of the Morse function F', and then

let e = eg + e_. We have that
d_oo(€e) = doo(eo) + do—(e—) +d__(e_).

The fact that e_ is closed in Homy(e_,e_) implies d__(e_) = 0. It follows from
Proposition 6.2 that dy, counts negative Morse flow lines of the Morse function F'.
We need to interpret the holomorphic disks counted by dy_(e_) in terms of Morse
flow lines of a Morse function F' that agrees with F' in the main part but also encodes
the Morse function f_ on the bottom cylinder. This can be done by concatenating a
cobordism from the bottom and comparing the Cthulhu complexes of the two pairs
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of cobordisms using a transfer map defined in [CDRGG20]. The remainder of the
proof is dedicated to describing doy(eg) and dy_(e—) in detail.

Recall that Al is a push off of A2 using a very small positive Morse function f_.
Let A € RT be twice the maximum value of f_. Consider the cylinder R x Al and
push the negative end of the cylinder in the —z direction by A. Denote this new
Legendrian in the negative end by Al — A. Thus, we get a cobordism W1 from
AL — A to AL as shown in Figure 14. Concretely, consider a non-increasing Morse
function §(¢) : R — R which is 0 when ¢ > —N — 1 and is equal to the constant A
when ¢ < N’, for some N’ < —N — 1. Note that Xy = —§(t)0/0z is a Hamiltonian
vector field, and denote its time 1 flow by ®g. Tt follows that W1 := &5 (R x Al) is
an exact Lagrangian cobordism. Denote by W? the cylinder R x A2 .

R x AL wl

C
R x A2 / W2

— ¢ —

FiGURE 14. A schematic picture of wrapping the negative end of a
cobordism.

Observe that there is a natural bijection between Co(W!, W?) and the Morse Reeb
chords in C'\ (W, W?) with degree shifted up by 1. Moreover, we can show that
d%ng sends an intersection point to the corresponding Morse Reeb chord, as follows.
First, the projection map 7, : R x R* = R,, sends W'UW? to m,, (AL UA%). Then,
according to [DR16, Proposition 5.11], the projection map also sends holomorphic
disks with boundary on W!'UW? to holomorphic disks with boundary on 7, (AL UA?%).

Suppose that a disk u € MWlUWQ(a, p''bq??) contributes to d%l’WQ, i.e. ais a mixed
Reeb chord of AL UA? , b is an intersection point in W'NW?2 and p*!, q*? are words of
pure degree 0 Reeb chords of AL — A and A2, respectively. The rigidity of u implies
that |a| — |b] = 1 using the grading in the Cthulhu complex. Projecting down to the
zy-plane, we have that 7., (u) € M(my(a); pHm,(b)g?*?) is a holomorphic disk with
boundary on 7., (AL UA?). Comparing the grading in the Cthulhu complex and the

grading in A(A* U A?), we have
la] = |mey(@)|Lon + 2 and [b] = [y (D) [ Lon + 1.

It follows that |7y (a)|Lom — |T2y(b)|Lcm = 0, or in other words, the expected di-
mension of M(my,(a); pt7,, (b)g??) is —1, which implies that 7., (u) is constant and
thus |,y (a)| = |74y (b)|. Therefore, we have proved that d%l’vw sends an intersection
point in W' N W? to the corresponding Morse Reeb chord of A1 UA2.

Consider now the Cthulhu complex of the pair of concatenated cobordisms (W' ®
L', W?® L?). Tts generators can be decomposed into four types.

Cth(W' e L', W2 o L?) = C_ (W', W?) @ Co(W', W?) @ Co(L', L*) @ C.(L*, L?)
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According to [CDRGG20], there is a chain map
W Cth(Wr © LY W? o L?) — Cth(L*, L?)

which is d_%l’WQ on Co(Wh W?), is d:/f/_l’WQ on C_ (W' W?) and is the identity on
Co(L*, L?) ® C, (L', L?) (in the case of the special pair of cobordisms we are consid-
ering in this paper). Due to action restrictions, Morse Reeb chords do not show up
in the image of dfrv,l’wz but only in the image of d%l’w2.

Denote the intersection point in W' N W?2 corresponding to a Morse Reeb chord ¢

of AL UA2% by ¢, as shown in Figure 14. Due to the description of d%l’wz, the chain
W s . . . WloL! W2eL2

map V" identifies the holomorphic disks counted by d, (¢) such that the
positive puncture is in Cy(L!, L?), with the holomorphic disks counted by dOLi’LQ(c).
Thus, we can describe dOLi’LQ(e_) through dgngLl’WQQLQ (e_), where €. = — > 7; and
¥; are the intersection points corresponding to the Morse Reeb chords 1; of AL UA2.

Observe that W' ® L! happens on a small neighborhood of W? ® L? = L? and
thus can be described as a push-off of L? along a Morse function F. Note that the
Morse function F agrees with F' on ([—=N, N] x R3®) 1 L2 but has also minima at ;
and saddle points at ;. Since W' ® L' and W?2® L? are close enough, the differential
d}fngLl’WQGLZ) counts the negative Morse flow lines of F. Let € = ¢_ + ey be the

dggl oL W2eL? (E)

negative sum of all the minima of F. Observe that = 0 since each

saddle point of F has two Morse trajectories flowing down with the opposite sign and
they have to approach some minima. It follows from ¥" being a chain map that

d00(60> + do_(e_) = 719 © dLl,LQ o \I/W(g) = T o \I/W o dWl@Ll’WQGLQ(g) _ 0’
where g is the projection map: Cth(L', L?) — Co(L', L?). O
7.4. Other obstructions. In this section, we give two additional obstructions to the

existence of exact Lagrangian cobordisms in terms of linearized contact homology and
ruling polynomials, which generalize the results in [Panl7].

Proposition 7.5. Assume IF is a field and let L be an exact Lagrangian cobordism
from A_ to Ay with Maslov-0. Suppose that €_ is an augmentation of A_ and e, is
the induced augmentation of A,. Then we have that

(7.2) LCH,*(Ay) =2 LCH, (A-)
for k<0 and k > 1.
Proof. From Equation (6.2), we have a long exact sequence
oo HY(L,A) = H"Homy (¢4, ey) — H"Hom, (e_,e_) — H"™(L,A_) — -+ .

Note that H*(L,A_) = 0 when k < 0 and k > 2. For k = 2, we know that H*(L,A_)
is 0 because any two components of A_ cannot bound a closed surface in L, i.e. a
Lagrangian cap of two components of A_. Otherwise we get a cobordism from a
subset of A_ (that admits an augmentation restricted from e_) to the empty set,
which is a contradiction by [DR15, Corollary 1.9].
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The long exact sequence implies that
HYHom, (e_,e_) = H"Hom (e, €. ),
for k < —1 and k > 1. Recall that H*Hom, (e,¢) = LCH{_, (M), so we get
LOH* (Ay) = LOH (A),

for k > 2 and k < 0.
The isomorphism for £ = 2 comes from the Sabloff duality [EES09], which gives a
long exact sequence:

oo — H*(A) — LCHF(A) — LCH®(A) — HF™ (A) — - -

The fact that H¥(A) vanishes unless k = 0 or 1 implies that LOH®, (A) = LCH*(A)
for k > 1 and k < —1. Note that LCHf(A) are vector spaces over a field F. It follows
from the universal coefficient theorem that dim LCH®(A) = dim LCHE(A). Thus,
we have that dim LCH€ ,(A) = dim LCHf(A) for k > 1. Since the isomorphism (7.2)
holds for k£ = —2, the dimension of the LCH homologies are the same for £ = 2,
which implies the isomorphism for k£ = 2 as they are vector spaces over F. 0

We do not get the relation between the LCH’s on degree 0 and 1 as Pan did for
cobordisms between knots in [Panl7, Corollary 1.4].

Example 7.6. Take F = Z, and consider two exact Lagrangian cobordisms L', L?
from the Hopf link AY to the trefoil obtained by pinching the chords b; and by of the
trefoil, respectively, as shown in Figure 15. Let €, resp. €2, be the augmentation of
AY which sends the two Reeb chords (c1, ¢3) to (0,0), resp. (0,1). Both augmentations
", induce through L for i = 1,2 the augmentation of the trefoil e, which sends the
three Reeb chords (b1, be, b3) to (1,1,0). However, the Legendrian contact homology
of AY linearized by €! has rank one in degrees 0 and 1, while linearized by €* it

has rank 2 in degrees 0 and 1. Thus, the data (L,A;, A_,e;) cannot determine
LCH(A_).

(a) (b)
FIGURE 15. Part (a) and (b) shows two cobordisms obtained by doing
pinch move on b; and bs, respectively.
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Another way to count the number of augmentations in the augmentation category
is the homotopy cardinality [NRSS17|, which is defined by

Z 1 |H*Hom (e, €)| - |H 3Hom. (¢, €)| -

AT =
WZQAU9+< ; q) |Aut(e)| |H—2H0m+(e’e)|-|H—4H0m+(€,€)|...?

[l Augy (AFq)/~

where [€] is the equivalence class of € in the augmentation category and |Aut(e)| is
the number of invertible elements in H°Hom, (e, €).

Proposition 7.7. Let L be a spin exact Lagrangian cobordism from A_ to A, with
Maslov number 0. Then for any finite field Fy, we have that

>0 AugL (Ap;Fy)* > o Augy (A Fy)™

Proof. For each equivalence class in Aug,(A_;F,), we take a representative ¢_ and
compare the term of [e_] in the sum with the term of the induced augmentation
e, for Aug,(Ay;F,). It follows from Proposition 7.5 that the H*Hom, spaces
are isomorphic between e_ and e, for £k < 0. Moreover, it follows from The-
orem 1.4 that if an element [a,] € HYHom,(e;,e.) is invertible, then i[a,]| €
H°Hom  (e_,e_) is invertible. Thus H°Hom(e_,e_) may have more invertible el-
ements than H°Hom_ (e, e, ). Tt follows that for each equivalent class represented
by e_, the term in the summand for e, is bigger than or equal to the term for e_.
Moreover, there may be more equivalence classes in Augy(Ay) than in Aug, (A_).
Thus the proposition follows. O

The homotopy cardinality is related to the ruling polynomial Ry(z), a combinato-
rial invariant of Legendrian knots that is easily computed, in the following way:

WZO-AUQ.;_(A, ]Fq)* = qtb(A)/QRA(ql/Q . q_l/z).

See Section 8.3 for more details on the ruling polynomial. Thus we have the following
corollary.

Corollary 7.8. Let L is a spin exact Lagrangian cobordism from A_ to A, with
Maslov number 0. Then, we have that

RA, <q1/2 . q—1/2) S q_X(L)/2RA+(q1/2 - q—1/2)

for any q that is a power of a prime number.

8. EXAMPLES OF OBSTRUCTED FILLINGS

In this section, we will prove Theorem 1.8. To prove that certain immersed La-
grangian fillings of a Legendrian knot A do exist, we will use the “decomposable”
moves described below to prove the existence of embedded Lagrangian cobordisms
from a disjoint union of Legendrian Hopf links to A. Recall that, by definition, the
Legendrian Hopf link A¥ admits an immersed, Maslov-0, exact Lagrangian filling
with one action-0 double point of index k. We will prove that certain types of La-
grangian fillings of A cannot exist by applying Theorems 1.1 and 1.4. Throughout
this section, we consider DGAs over Zy and augmentations to Zs. For the family Ay
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in Theorem 1.8(1), we will count augmentations directly, while for the family A? in
Theorem 1.8(2), we will employ the theory of rulings to count augmentations.

All of the embedded, Maslov-0, exact Lagrangian fillings and cobordisms that
we construct in this section are decomposable in the following sense. It is known
that there exists an embedded, Maslov-0, exact Lagrangian cobordisms between two
Legendrian links AL if A, differs from A_ by Legendrian isotopy, pinch moves, and
the death of a max tb unknotted component. Figure 16 illustrates the local front
projections of an orientable downward in time pinch move and the downward in
time death of a max tb unknot. In order to produce an orientable surface, the
pinch move can only be performed on strands with opposite orientations, and in
order for the Lagrangian to be Maslov-0, pinch moves can only be performed on
strands whose upper branch has a Maslov potential 1 greater than that of the lower
branch, as shown in Figure 16. A Lagrangian cobordism L from A_ to A, is called
elementary if it arises from isotopy, a single pinch move, or a single disk filling.
A Lagrangian cobordism is decomposable it is obtained by stacking elementary
cobordisms. The elementary moves that make up decomposable cobordisms were
introduced by Ekholm, Honda, and Kélmén in [EHK16, Section 6].

1+1

| |
v )

FIGURE 16. Local front projections of a merge/pinch move (topolog-
ically a saddle cobordism/1-handle) and the birth/death of a max tb
unknot (topologically a disk/0-handle). The red arrows represent the
positive t direction and the labels on the strands indicate the Maslov
potential.

As we apply Theorem 1.4, it will be useful to have the following augmentation
count.

Lemma 8.1.

3, k=0
| Aug(Ai Z2)/ ~pug, | = {O’ o
Moreover,
| Aug( A3 Zo)/ ~ g, | = 3%,
i=1,....m

where Z = |{i : k; = 0}

Proof. As explained in Example 4.3, the Hopf link A¥ has 3 augmentations when
k = 0 and no augmentations otherwise. When k = 0, there are no degree —1 chords,
and thus, by Corollary 5.6, the count of augmentations up to the equivalence relation
~ Aug. 18 the same as the count of augmentations. ]
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8.1. Proof of Theorem 1.8(1). We construct the family of Legendrian knots Ay
such that A; = Ag,, as follows. Consider the tangle 7" in Figure 17. Arrange k copies
Ty, ..., T, of T'in arow and connect them by a tangle sum; then perform the standard
rainbow tangle closure after introducing 1 more crossing, as shown in Figure 17. The
resulting Legendrian Ay admits a Maslov potential whose values on each strand is
also indicated in the figure. When £ = 1, the Legendrian knot obtained this way is a
9,8 knot; its front projection is shown in Figure 18 and its Lagrangian projection in
Figure 19.

O N

FIGURE 17. Left: front projection of the tangle T’; right: front projec-
tion of Ax. The numbers indicate the Maslov potential.

Proposition 8.2. Ay admits an immersed, Maslov-0, exact Lagrangian filling F¥ of
genus k with k double points, each of which has action 0 and index 1.

Proof. When k = 1, by performing a sequence of pinch moves as indicated by the red
lines in the Figure 18 and Reidemeister moves, we obtain an embedded, Maslov-0,
exact Lagrangian cobordism from the Hopf link Aj; to Ag,,. For & > 2, by performing
pinch moves on each copy of the tangle 7" as in the case of Ag,,, we obtain an
embedded, Maslov-0, exact Lagrangian cobordism of genus k from UzA} to Ag. Each
Al has an immersed, Maslov-0, exact Lagrangian filling with a double point of action
0 and index 1. Stacking these Lagrangian cobordisms produces the desired filling F}*

FIGURE 18. Sequence of three pinch moves that prove the existence of
an embedded, Maslov-0, exact Lagrangian cobordism of genus 1 from
the Hopf link Al; to Ag,,.

Proposition 8.3. A, does not admit an immersed, Maslov-0, exact Lagrangian disk
filling F,ffll with k+1 double points, all of action 0 and k of index 1 and one of index
0.
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The proof of this proposition will follow easily once we prove the following count
of augmentations.

Lemma 8.4. For all k > 1, |Aug(Ag; Zs)/ ~aug, | = 1.

Proof. When k = 1, the DGA A(Ay,,) is generated by a;,t =1,---6, b;,i =1,--- 7,
¢, = 1,2 with grading |a;| = 1,|b;] = 0,|c;] = —1 as shown in Figure 19. The

FIGURE 19. A Lagrangian projection for Ag,,.

differential is given by
aal =1+ b7<bg + Cl(l5) 8b2 = Clb6b4 + b3b662

day =1+ asbecaby + bsbsby  Obs = c1(1 + bgbs)
8(13 =1+ blclbgaﬁ + b1b3b6 8b4 = (1 + b5b6>02

8a4 =1+ (b4 + aﬁc2)b7 (%z = 0, for ¢ 7A 2, 3,4
8(15 =1+ b6b5 862- = 0, for ¢ = ]_, 2.
8@6 =1+ b5b6

There are two augmentations €y and €; of A(Ag,,) to Zy with €;(b2) = 4, and €;(b;) =1
for j # 2,4 = 0, 1. These two augmentations are DGA homotopic since eg—e; = K00,
where K sends ¢; to 1 and the other Reeb chords to 0. Since F = Z,, By Proposi-
tion 5.5 and Remark 5.4, equivalence with respect to DGA homotopy is the same as
equivalent with respect to ~ 4,4, , and thus we have that |Aug(Ag,y; Z2)/ ~aug, | = 1.

F1GURE 20. Lagrangian projections of the tangle T" and the Legendrian Ay.
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The calculation for k > 2 is similar. Label the Reeb chords in the jth tangle of Ay
by b;;,a;; and ¢;; following a similar labeling scheme as for Ay,, see Figure 20. Let

b7, a; and a4 denote the Reeb chords of Ay not contained in any of the k& tangles, and
such that |b;| = 0 and |@;| = |as| = 1. Then, one can find that any augmentation
€ of Ay to Z, takes the following values: e(b;) = 1, €(b;,) = 1 for any i; # 2;, and
e(by,) € {0,1}. Therefore, for any Ay we have 2% augmentations to Z,. Suppose that
€1 and € are two augmentations of Ay such that e;(by;) — €2(ba;) = 1 for j contained
in some subset J C {1,...,k}. Then, there exists a DGA homotopy K from € to e
where K (ci,) =1 for j € J, and which maps all other Reeb chords to 0. Therefore,
the Legendrians A, have a unique augmentation to Zs up to DGA homotopy and
thus up to ~ 4y, - O

Proof of Proposition 8.3. By Theorem 1.1, the existence of the filling F, ,ffll is equiv-
alent to the existence of an embedded, Maslov-0, exact Lagrangian cobordism from
UgAf; U AY to Ag. By Lemma 8.1 and Lemma 8.4,

| Aug(UeAiy U AR Zo)/ ~aug, | =3, and |Aug(Ai; Za)/ ~aug, | =1,

and thus by Theorem 1.4 such an embedded cobordism from LizAj LAY to Ay does
not exist. O]

We now have all the ingredients to prove our first part of Theorem 1.8.

Proof of Theorem 1.8(1). Fix Aj. Proposition 8.2 shows the existence of the im-
mersed, Maslov-0, exact Lagrangian filling Fj with genus k that has k double points,
each with action 0 and index 1. Proposition 8.3 shows there does not exist an im-
mersed, Maslov-0, exact Lagrangian disk filling F; ,ffll with (k + 1) double points, all
of action 0, k of index 1, and one of index 0. Thus, by Definition 3.3, Ff does not
arise from Lagrangian surgery.

For the smooth comparison, A; = Ag,, admits a smooth disk filling with one
immersed point [OS16, Section 4.6], and thus it also admits a disk filling with p
immersed points, for any p > 1. One can more easily see that by two “unclasping”
moves, 945 has an unknotting number of 2: it follows that there exists a smooth disk
filling of Ag,, with 2 double points. Similarly, when k£ > 2, by performing unclasping
moves in each of the k tangles, we see that Ay admits a smooth disk filling with 2k
double points, and thus by smooth surgery a smooth genus j filling with 2k — j double
points for all 0 < j < k. ]

8.2. Proof of Theorem 1.8(2). For all ¢ > 1 and p > 0, we will show the existence
of a Legendrian knot A? that has an immersed, Maslov-0, exact Lagrangian filling F?,
which has genus g and p double points of action and index 0, that does not arise from
Lagrangian surgery. The construction of AL is an example of the Mondrian diagrams
of [Ng05].

To construct the Legendrian checkerboard knot AS, g > 1, begin with a (2¢ +
2) x 4 shaded checkerboard, with the lower left square shaded. For every shaded
square, replace the right (resp. left) edge with a right (resp. left) cusp. If two shaded
squares share a vertex, replace the vertex with a crossing, and otherwise replace the
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vertex with a smoothing of the vertex. An example is given in Figure 21. We can
directly check that Ag has a single component, for all g > 1.

NI SR Dl
h O < ;
Vs L) >

14;4 NI NV N

FIGURE 21. The Legendrian A§ constructed by starting with a (2(3)+
2) x 4 shaded checkerboard; the red lines denote the pinches used in
the construction of Fy.

For p > 1, the Legendrian knot AP will be constructed by applying Legendrian
Reidemeister I moves and adding p clasps to Ag, as shown in Figure 22. To form
A;, for g > 1, start with the two shaded regions corresponding to the bottom row,
first and third columns in the shaded (2g +2) x 4-checkerboard used to construct Ag.
Perform one downward Reidemeister I move on each portion of Ag corresponding to
these two shaded regions, and clasp the pair of cusps facing each other as schematized
on Figure 22. We form Aﬁ by again starting with the two bottom left shaded regions
of A(g], performing 6 Reidemeister I moves, and then forming 2 clasps in the shaded
tiles of the plane. Similarly, for all p > 1, we can form the clasped checkerboard
Legendrian AP, by starting with AS, performing 4p — 2 Reidemeister moves, and
adding p clasps, as shown in Figure 22. Observe that Al has a single component.

29 +2 29 +2
{><{ - &4 < |
r 4 - S 4 = (<
o AN = AN

pinch
RK— B 35— ¥
2 2
L P
0
FIGURE 22. Construction of the clasped checkerboard Legendrian A?,

p > 1, and a schematization of pinch moves around each clasp that
shows the existence of a cobordism from L, Af U AJ to AP,

Proposition 8.5. For all g > 1 and p > 0, the Legendrian knot AY admits an
immersed, Maslov-0, exact Lagrangian filling FY of genus g with p double points,
each of which has action 0 and index 0.
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Proof. First fix Ag, for some g > 1. By performing pinch moves on each pair of
strands that correspond to the top and bottom edges of each shaded square in the
(2g+2) x4 shaded checkerboard that was used to constuct A), we obtain an embedded,
exact, Lagrangian cobordism from a disjoint union of max tb Legendrian unknots to
Ag; see an illustration in Figure 21. The Maslov potential on the strands on which
we perform the pinch moves ensures that this cobordism has Maslov class 0. Each
Legendrian unknot can be filled with a disk to obtain F g, an embedded, Maslov-0,
exact Lagrangian filling of Ag. As we perform %(29 + 2)4 pinch moves and obtain
4+ (29 + 1) unknots, we see that this filling does indeed have genus g, as desired.
Now fix AP, for p > 1. By performing pinch moves along the red dash lines besides
the clasps as schematized in Figure 22, we build a genus 0 embedded, Maslov-0, exact
Lagrangian cobordism from U,A% U A) to AP, The A has an embedded, Maslov-0,
exact Lagrangian filling of genus g, while each Hopf link AY% can be filled by an
immersed, Maslov-0, exact Lagrangian filling with one double point of action 0 and
index 0. By stacking this Lagrangian cobordism and these fillings, we obtain the
desired F}. 0

Proposition 8.6. The Legendrian knot AD does not admit an immersed, Maslov-0,

exact Lagrangian disk filling ngfll with p+ 1 double points, all of action 0 and index
0.

The proof follows easily from the following calculation, which will be proved in
Section 8.3.

Lemma 8.7. |Aug(AL; Zs)/ ~ aug, | = 37

Proof of Proposition 8.6. By Theorem 1.1, the existence of the filling F’ 5:1 is equiva-
lent to the existence of an embedded, Maslov-0, exact Lagrangian cobordism of genus
g from U, 1 AY to AP. By Lemma 8.1 and Lemma 8.7,

| Aug(Up 1A% Z2)/ ~ aug, | =371, and |Aug(AP; Zs) [ ~aug, | = 37,

and thus by Theorem 1.4 such an embedded cobordism from I_IpHA% to Ax does not
exist. ]

Proof of Theorem 1.8(2). Proposition 8.5 shows the existence of the immersed, Maslov-
0, exact Lagrangian genus g filling F} of AP that has p double points of action 0 and
index 0. Proposition 8.6 shows there does not exist an immersed, Maslov-0, exact
Lagrangian genus (g — 1) filling F 5:1 of AP with (p+1) double points, all of action 0
and index 0. Thus, by Definition 3.3, F? does not arise from Lagrangian surgery. [

It remains to prove Lemma 8.7, which we do in the next subsection.

8.3. Proof of Lemma 8.7. As opposed to the more direct counting strategy we em-
ployed in Lemma 8.4, here we count augmentations of these arbitrarily high crossing
knots AP using the theory of rulings. So we begin with some background on rulings,
first defined in [PC05, Fuc03], and review the definition of the ruling polynomial.
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Following [Sab20], a (graded, normal) ruling of a Legendrian knot A is a set of
crossings (called switches) such that resolving the switches yields a link of unknots
Ay, ..., A, such that

(1) At each switch, the two strands have the same Maslov potential;

(2) Each A;, i = 1,...,m, is a Legendrian unknot with 0 crossings and 2 cusps
that bounds a ruling disk D;;

(3) Exactly two components are incident to any switch;

(4) Near each switch, the incident ruling disks D; bounded by A; are either nested
or disjoint as shown in Figure 23.

For each ruling R of a Legendrian A, denote the number of switches and disks by
s(R) and d(R), respectively. For a Legendrian A, the ruling polynomial R,(z) is
the polynomial

(8.1) Ry(z) =) 2*dm),
R

>
o
>

F1GURE 23. Around a switch, the possible nested or disjoint configu-
rations of the incident disks.

Rulings and augmentations are related: the existence of one implies the existence
of the other [Fuc03, FI04, Sab05]. The following lemma shows how we can use the
ruling polynomial to find our desired count of augmentations.

Lemma 8.8. Let A be a Legendrian knot with no negative degree Reeb chords. Then
(8.2) | Aug(A; Zo)/ ~aug. | = 2XVPRA(27172),
for x(A) = Z(—l)kak, where ay, is the number of Reeb chords of degree k.

k>0

Proof. Under the assumption of the lemma, following [HR15, Remark 3.3(ii)] the
number of augmentations |Aug(A;Zs)| is related to the ruling polynomial Rx(2) in
the following way:

27XN2| Aug(A; Zo)| = Ra(2'/? — 271/3),

where x(A) is the Euler characteristic of (A(A),d), defined as x(A) = 37, (=1)*ay,
where ay, is the number of generators of A(A) of degree k. By Corollary 5.6, we know
that |Aug(A; Zs)| = |Aug(A; Zs)/ ~ aug, |, and our result follows. O

Proof of Lemma 8.7. First consider the checkerboard Legendrian knot Ag. Observe
that Ag has a unique ruling that switches at every crossing: one can check this by
considering the shaded regions in the top row of A(g): the left cusp of each shaded
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square has to match with the right cusp of that same shaded square, thus it forces
the crossings at the bottom vertices of these shaded squares to be switches. Similarly
for the second topmost row, the right cusp of each shaded square has to match with
the left cusp of the same shaded square forcing the crossings at the bottom vertices
of these shaded squares to be switches. Thus, by considering Ag from top to bottom
we can conclude that every crossing in Ay is a switch. In this unique ruling R, using
Equations (2.2) and (4.1), we see that all Reeb chords in A(Aj) have degree 0 or 1.
Furthermore, s(R) — d(R) = x(A)) since there is a switch at each degree 0 chord
and a one-to-one correspondence between disks and right cusps (which correspond to
Reeb chords of degree 1). Then applying Lemma 8.8, we find

|Aug(A2;ZQ)/ ~ Augs | = Qx(Ag)/zRAg(Q—l/Q) _ 2X(Ag)/z<2—1/z)x(/\g) —1

Now consider A7, for p > 1. As shown in Figure 22, the first clasp in the construc-
tion AP introduces four new degree 0 Reeb chords (two from the Reidemeister moves,
two in the clasp region), and two rulings. With just one clasp, the ruling polynomial

changes from Rjo(z) = X(89) to

Rpi(2) = zX<A§)(z*2 +1).

Each additional clasp introduces 6 new degree 0 Reeb chords (4 from Reidemeister
moves, 2 in the clasp region). Considering rulings, each new chord coming from a
Reidemeister move must be a switch and then one can either switch at both or neither
of the two crossings in the clasp region. Thus, the ruling polynomial becomes

Rpp(2) = (M) (72 4 )P,
Using Equation (8.2), we find that the number of augmentations of A? to Z, is 3”:

| Aug(AL: Z)/ ~ug, | = 222 (27%)72 1y = 37

APPENDIX A. EQUIVALENCE IN Aug,(A) FOR LEGENDRIAN LINKS

In this appendix we will provide the proof of Proposition 5.5 following the proof for
the case of single component knots in [NRS™20]|Proposition 5.19]. We start by setting
some basic notation. Let A = U ;A;, be a Legendrian link with m link components.
For a mixed Reeb chord a that starts on an ith link component A; and ends on the
jth link component A;, that is a € R(A;, A;), we let ¢(a) =4 and r(a) = j.

Let A% denote the n-copy of A that has been perturbed by a Morse function f with
a single maximum and minimum as in [NRS*20]. Note that if A = UL, A, is a link
with m link components, then A} = U}, UL, Al is a link with mn link components.
Given a Legendrian link A, and its perturbed two copy A2 = A' U A2, for any Reeb
chord a € R(A', A?), there is a corresponding element @ € Hom. (¢!, €?) with degree
|a|+ = |a| + 1. Observe that this is a different notation convention than what we use
in Section 5.
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Let (¢',..., ") be a tuple of augmentations of (A(A), ). Define ((A(A}))<, o)
as follows Let A(A”“)) (A(A”“)@IF)/(tk = ¢(ty)) and set 9" = ¢ 00" o,
where ¢.(a) = a + e( ). Then, the composition maps

My : Hom o (", "™ ® --- @ Hom, (€2, €3) @ Hom(e',€*) — Hom (', ™),
are given by

Mol v@1) = (<1)7 Y - Coeffypap g (97 Tal ™)

a€RUz, Uyg

where «; € {a1,...,a,,T1,.. ., T, Y1,--.,Ym} for each i, and 0 = n(n — 1)/2 +
Zp<q |é‘p|+|dq|+ + |dn—1|+ + |dn—3|+ +o

Proposition A.1 ([NRST20, Proposition 4.14]). Let A C R3,, be a Legendrian
link with m link components, one basepoint t; per link component and Reeb chords
R ={ai,...,a,}. The DGA of the perturbed n-copy of A, A%, is generated by

(1) (tz)i1f0r1<z<n 1 <k <m, with [t}] = 0;

(2) @ for1<i,j<n, and1<h<r with |a| = |as|;

(3) x;j for1<i,j7<n, and1 <k <m, with |x§3| =0;

(4) v for1<i,j<n,1<k<m, with |y7| = 1,
and satisfies the relations ti (i)™ = (ti)7'ti =1 for each i and k. The differential
of A(A},0") can be described as follows. Assemble the generators of A(A},0") into

n x n matrices: A, = (a), Ay = Diag(ty, ..., t}),
1 22 . xén 0 y2 ... yén
0 1 ... z2» 0 0 .- g2
Xe=1. . . L andvi = . o
0o 0 --- 1 0 0 --- 0

where 1 <k <m, and 1 < h <r. Then, applying 0" to matrices entry-by-entry, we
have

9"(An) = ‘1’( (an) + Yo(am An + (1)1 4, Y0,
O"(Xk) = ALY ALXy — X3V,
(V) =Y¢

where ® : A(N) — Mat(M,A") is a ring of homomorphism such that ®(a,) =
Ap, ®(t) = A X, @(t, 1) = X, A

The following Lemma A.2, and Proposition A.3 are generalizations of Lemma 5.16,
Proposition 5.17 and Proposition 5.18 in [NRS*20]. Lemma A.2 is an immediate con-
sequence of Proposition A.1 which allows us to compute m; and my from (A(A%), 9?)
and (A(A3),0%).

Lemma A.2. Let A C R, be an m component Legendrian link with one basepoint

tr, per link component, Reeb chords R = {ay,...,a,} and augmentations €', e*. In
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Hom (e, %), we have that

——RxA .
Z Opan 0l (M (s by o, bo) € (b -+ bimy )€ (B -+~ by )
1<i<n

ma (i) = (€ (te) "€ (te) — iy + > Elan)an

ap€{a€R|c(a)=k}
+ Y (=D (a)a,
ac{a€R|r(a)=k}

my(&x) € spang{ay ..., a,} forke {1,...,N}.

where b; € spang{ay,...,art1,...,tn}, and o, € {£1} denotes the product of all

orientation signs at the corners of the disk uw. We also have that fori,j5 € {1,...,m},
and 1 < h, W <,
- ~Ui =] . —e'(t) )T if =
m i Yj) — p o . mol\Ti,Yj) = p o .
2(Ti, Uj) {0 if i+ j o(Z4,7;5) {0 if i 4

0 ifi#] 0 if clan) #1i

ma(an, ¥;) = {;ah Zj :EZ:; ;z

ma (Y, L) = {_xi Z:f Z :j: mo(Yi, ap) = {_ah if cap) =i

ma(an, an ), mo(Zi, Tj), ma(&;, ap), me(an, ;) € spang{as, ..., a,}. Moreover, If we
assume that the Reeb chords of A are labeled by increasing height, h(a1) < h(az) <
- < h(ay), then mo(ap, an) € spang{a; | > max(h, h’) 1< h,n <r}
Pr0p051t10n A.3. Consider an element o« € Hom" (€', €?) of the forma = =377 cpiin—
> hor K(an)an
where K : (A(A),0) — (F,0) is an F linear map. Then, my(a) = 0 if and only if
K is a split DGA homotopy from € to €.

Proof. First, observe that

Z K(an)ma(an)

A .
—ZK ) S G 5 @i, )€ (b b)) (bt - b))

1<i<n

_Z Z Sy (— 1)1 01| (M RXA(ah’;b1a~-->bn)|€1<bl"'bl—l)K(bl)Ez(bH-l"'bn)]ah’

h=1 1<i<n

= Z Ko 8(ah)éh
h=1
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where the last equality follows from the fact that K(¢7) = 0 for all k € {1,...,m}.
Therefore, using Lemma A.2, we know that

—my () = m1(z CrlYk + Z K(an)ar)

k=1 h=1
= > el () e () — Dk + Y [eeqan € (an) + (=11 ey, € (an)]an
k=1 h=1

Thus, my(a) = 0 if and only if K 0 d(az) = —Ceay)e(an) — (—1)1%F e, 0, e (an)
for all h € {1,...,7}, and (e'(tx)'e*(tx) — 1) = 0 for all k € {1,...,m}. Note
that F is supported in grading 0, and therefore €!(a,) = (—1)lale!(ay,) for all h
since €! is supported in grading 0. If A(A) has a Z, grading, and ¢! is an n-graded
augmentation, recall that the grading is defined mod n. Therefore, K o d(ay) =
Crian € (an) = Ce(ay)€*(an), and €' and € are split DGA homotopic via the operator

K. U

Proof of Proposition 5.5. Suppose that ¢! and €? are equivalent in Aug, (A). Then,

as stated in Definition 5.1, there exist cocycles & € Hom (€', €?), and B € Hom (€2, ¢')
such that [ma(a, 8)] = — >0 [Uk] € H'Homy (€', €?). That is, ma(a, B) + > e, U =
my () for some v € Hom, (€%, €%). By Lemma A.2 and the fact that v € Hom., (€2, €?),
we know that (mq(7), gx) = 0 and (my(7), Zx) = 0. Therefore, my(y) = >, _; K(ap)ay
for some F linear map K : (A(A),0) — (F,0) which is naturally split. We can now
write mo(a, B) = — > 0, Uk + 9 p—y K(ap)a,. Again by Lemma A.2 and the fact that
la|; = |8+ =0, while ||+ = 1, we know that

o= (ca)rli+ Y Kalan)in

k=1 =1
B= (caliin + > _ Kalan)an
k=1 =1

such that (ca)k, (cg)r € F* and (ca)x(cg)r = 1 for each k, and for some F linear maps
K, ,Ks: (A(A),0) — (F,0). Both o and § are cocycles so by Proposition A.3, K,
and Kz are DGA homotopies between €' and €.

Suppose that €' and €2 are split DGA homotopic, such that for any Reeb chord a,

cc(a)el(a) — cr(a)eg(a) = Kod(a)

for constants ¢; € F* and some split DGA homotopy K : (A(A),0) — (F,0). We
know that K(a) = 0 for any Reeb chord a such that |a| # —1. By Lemma A.3,
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a=>7" (ca)rlu+ Y n_y K(an)ap is a cocycle in HYHom. (', €%). We now construct
cocycles 8,7 € Homy(e',e?) such that |8]. = |7+ = 0, ma(B, ) = ma(a,v) =

— >0, k. This implies that [8] = [y] € H'Hom. (€', €%) is the multiplicative inverse
of [a] in Aug,(A). The construction of v is similar to the construction of 5 which
we now provide.

Suppose that the Reeb chords {as,...,a,} are ordered by height. Then we can
write @ = Y, (¢a)rlr + A where A € spang{as,...,a.}. Let §=3"," (cs)rlk + B
where (cq)i(cg)p = 1for 1 <k <m, B € spang{as,...,a,} and is defined inductively
to satisfy B = A+my(B, A). Then, mo(B, ) = — >, k. To verify that /3 is a cocycle
note that the A, relations on Aug,(A) imply that

ZQ = ma(my(f, o) = ma(ma(B), ) + ma(8,m1(a)).

We know that m (g ) = 0forall 1 <k < m and that m;(a) = 0 so ms(5, mi()) = 0.
Therefore, ms(my (B), a) = 0.

We will show that if X € spang{ai,...,a,&1,..., TN, U1,---,Un}, thenma(X, ) =
0 implies that X = 0. Note that ms(X, A) € spang{ay, ..., ar T1, - Tm, Y1y -+ Um }
by Lemma A.2. Then,

0=mo(X,a) = X,Z Co)kUrk + A) = X,Z (Ca)rTr) +mao(X, A)
k=1 k=1
Thus, ma(X, > 1o (ca)kUx) = ma(X, A). Note that mo(X, A) € spang{ay, ..., a,}
because A € spang{ay,...,a,} by Lemma A.2. Therefore, we know that (X, i) =
(X,gr) = 0 for all 1 < k < m, and so X € spang{as,...,a,}. Moreover, by
induction on the height of Reeb chords, and Lemma A.2, we know that (X, a,) =0
for all 1 < h < r. Thus, for X = my(5) € span{ay,..., 0, T1,. ., Emy 1y Um}s

since mo(my (), ) = 0 as shown above, we can conclude that m,(5) = 0. O
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