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ABSTRACT 
Successful stimulation therapies of the central nervous system for chronic neurological disorders 
have been based so far on electric pulses that have equal amplitude and are delivered at constant 
intervals. Recent advancements, however, have shown that irregular and time-varying sequences 
of pulses may be equally effective in treating chronic disease conditions. This suggests that both 
the temporal arrangement and the waveform of the pulses are important factors in determining the 
therapeutic merit of a stimulation protocol in the treatment of neurological disorders and can be 
used to address the tradeoff between therapeutic effectiveness, amount of charge delivered per unit 
of time, and efficiency of neural stimulators. Accordingly, a wide range of computational ap-
proaches have been developed to optimize this tradeoff, and novel nonregular pulse trains have 
been designed. Optimization, adaptive control, and machine learning have been rapidly integrated 
into the design process of stimulation therapies, leading to highly efficient solutions but also dra-
matically increasing the complexity of the design process. This chapter will review the most sig-
nificant advancements in optimization-based design for neural stimulation, along with the compu-
tational challenges, methodological innovations, and the most promising clinical applications for 
the treatment of the central nervous system. 
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INTRODUCTION 
Neuromodulation of the central nervous system via electrical impulses and implantable devices 

is a well-established therapeutic approach to treat chronic neurological conditions such as move-
ment disorders, psychiatric disorders, epilepsy, and sensory impairment [1-4]. Despite numerous 
innovations introduced over the past thirty years pertaining to the technology of the implantable 
devices, the design of the stimulation protocol, and the selection of anatomical targets, all clinically 
recognized neurostimulation therapies share three common traits, i.e., they (i) use trains of charge-
balanced pulses that are equal in duration and shape, (ii) aim to keep the amplitude of the electric 
pulses during anodic and cathodic phases as constant as possible, and (iii) arrange the electric 
pulses according to a predetermined temporal sequence that is repeated periodically. Historically, 
these traits originate from a common design principle, which focuses on ensuring that the pulse 
trains can evoke strong, periodic responses in a critical mass of neurons or axons around the loca-
tion where the electrodes of the implantable device are placed [5]. Evoking a strong and repetitive 
response over time is expected to induce a prolonged and consistent modulation of the activity 
along nerves and neural ensembles, which would eventually help mitigate one or more symptoms 
of a chronic condition.  

As converging evidence, e.g., [6-8], has recently pointed out, though, the span of stimulation 
protocols that can evoke a prolonged and consistent modulation of the neural activity while being 
safe (i.e., within regulatory safety guidelines for clinical use [9, 10]) far exceeds the set of stimu-
lation protocols that strictly exhibit traits (i)-(iii). Furthermore, several studies have shown that 
significant advantages, both technologically and clinically, may be gained from relaxing traits (i)-
(iii) in the design of stimulation protocols while still maintaining the therapeutic merit of the treat-
ment via electric stimulation, e.g., see [11] for a review. Hence, interest has grown in recent years 
on how to design stimulation protocols that relax traits (i)-(iii). 

Relaxing traits (i)-(iii), though, poses significant methodological challenges, as the admissible 
combinations of pulse amplitudes, shapes, and temporal patterns to be explored dramatically in-
crease. Accordingly, a need has emerged for novel design techniques that may explore a vast space 
of stimulation parameter settings in a smart, efficient, and yet thorough way. Such design tech-
niques should also provide tools to identify surely and timely the clinical merits of a stimulation 
protocol and to rank several stimulation protocols according to quantitative criteria, as this would 
steer the selection of the most promising stimulation settings. A stimulation protocol obtained as 
the outcome of one of these novel design techniques is defined “optimal” as it combines two traits, 
i.e., it is feasible (i.e., safe, and effective) and the best possible option according to the assigned 
criteria. This chapter will present the mathematical framework and several design techniques that 
have been recently introduced to design optimal stimulation protocols, both open loop and closed 
loop (i.e., adaptive).  

The concept of optimality is appealing to the design of neural prostheses, especially neurostim-
ulation systems, because it determines a significant paradigm shift in how the stimulation settings 
are investigated and stimulation protocols are ultimately defined. A schematic of the conceptual 
transition to optimal stimulation is depicted in Figure 1. For sake of graphical visualization, it is 
assumed that a stimulation protocol is uniquely defined by selecting two parameters, which are 
generically called 𝑥φ and 𝑥ϵ. Symbols Ω and Ω֏ denote the space of all pairs (𝑥φ, 𝑥ϵ) that would 
result in viable stimulation settings, i.e., settings within established safety constrains (Fig. 1A), 
and the subset of parameter values that would lead to regular stimulation protocols (inset in Fig. 
1A), respectively. Current guidelines and algorithms to program neurostimulation protocols 



typically consist of (1) sampling the subset Ω֏, with the selection of samples being informed by 
one or more criteria derived from clinical studies, (2) testing the sampled settings in a patient to 
determine the resultant clinical outcomes, and (3) choosing the specific settings (e.g., red star in 
Fig. 1A) among the tested ones that may produce the most effective therapeutic outcomes. 

 
Figure 1. Schematic of the framework for optimal stimulation protocol design. A) Pulse sequences identify neurostimulation protocols. For sake 
of visualization, sequences are assumed to depend on two parameters 𝑥φ and 𝑥ϵ, with Ω and Ω֏ denoting the space of parameters that define viable 
sequences (blue area) and the subset of parameters that define regular sequences (red area), respectively. Current programming protocols sample 
the subset Ω֏ differently for every patient according to a trial-and-error paradigm. For every patient, these protocols eventually settle on one set of 
parameters (e.g., rest star) that shows some effect on the patient’s symptoms. Inset: Pulse sequence defined by the parameters indicated by the red 
star, with anodic and cathodic phases shown together. B) Schematic of the design process for optimal stimulation: A convex cost function ӿ(𝑥φ, 𝑥ϵ) 
is introduced to assign a merit value to every pair of parameters in Ω, with the merit being inversely related to the cost associated with the pulse 
sequence univocally identified by the parameters, i.e., better pulse sequences have lower cost. According to ӿ , the pulse sequence chosen in A) 
(red star) has suboptimal cost (red circle) and is outperformed by other sequences outside Ω֏. The optimal pulse sequence minimizes ӿ(𝑥φ, 𝑥ϵ) and 
can be reached using a gradient-descent-based algorithm [12] from an initial guess (black cross marker, labelled as (0)), which is associated with 
an initial cost (yellow cross marker). A sequence of intermediate parameter values (black dots, sequentially labelled as (1) through (4)) is iteratively 
formed moving away from the initial guess and following the direction of maximum descend along ӿ  until the optimal solution, yellow star, labelled 
as (5), is achieved. The sequence of parameters (0), (1), …, (5) corresponds to cost values (yellow dots) forming the steepest descending trajectory 
(red dashed curve) from the initial cost along ӿ  and is the only subset of parameters in Ω that is explored to converge onto the optimal solution. 

While the scenario depicted in Fig. 1A mainly follows a heuristic approach, optimal stimulation 
protocols are designed by introducing a mathematical function of the stimulation parameters, 
which is defined as ӿ(𝑥φ, 𝑥ϵ) in Fig. 1B (see a description in section 2) and is known as cost func-
tion. This function is defined on the entire set of viable parameters, Ω, and assigns a value or “cost” 
to every pair of parameters (𝑥φ, 𝑥ϵ) based on the expected impact of the resultant stimulation pro-
tocol. The cost function, in fact, quantifies the value that a stimulation protocol may have when 
clinically used, and the optimal solution is defined as the stimulation protocol that minimizes the 
value of the cost function over the entire set Ω, e.g., yellow star in Fig. 1B. The following sections 
will present several techniques that have been proposed to determine the optimal solution, either 
mathematically, i.e., in closed form, or numerically, given the set Ω, a formulation of the cost 
function ӿ(⋅), and, eventually, a mathematical model of the neural ensembles or nervous fibers that 
are stimulated.  



As discussed in detail in this chapter, designing stimulation protocols by solving a mathematical 
problem that involves a parameter set Ω and a cost function is a paradigm shift from established 
heuristic approaches because it allows to systematically pursue two major goals. First, it makes 
the entire design process less empirical and allows to identify stimulation protocols that may be 
applicable to a wider class of conditions than those determined by heuristic programming guide-
lines. Secondly, an approach based on optimization facilitates the identification of stimulation pro-
tocols that can have therapeutic effects on multiple patients, despite the intrinsic variability that 
exists across patients. 
 
1. THE PATH TO OPTIMAL STIMULATION 

The first embodiments of electrical stimulation of the central nervous system (CNS), that even-
tually led to clinical applications, trace back to the late 1960s [13, 14], and it is since 1997 that the 
electrical stimulation of deep brain structures (deep brain stimulation, DBS) has been approved by 
the US Food and Drug Administration (FDA) to treat movement disorders, including Parkinson’s 
disease, tremor, and dystonia [15]. In addition, implantable devices for electrical stimulation have 
been approved by the US FDA over the years to target nerves outside the CNS, including the vagus 
nerve for the treatment of epilepsy (vagus nerve stimulation, VNS) [16] and the sacral nerve for 
the treatment of urinary voiding dysfunctions [17, 18]. Finally, neuromodulation therapies based 
on implantable stimulation devices are currently investigated for the treatment of severe psychiat-
ric disorders [3]. 

A 2018 survey of public regulatory databases [19] reported that over 150 neuromodulation em-
bodiments, i.e., implantable devices or therapies, had received some level of premarket approval 
by the US FDA. A follow-up review of the regulatory databases (URL: https://www.fda.gov/med-
ical-devices/device-advice-comprehensive-regulatory-assistance/medical-device-databases, last 
accessed on July 15, 2020) showed that 30 unique stimulation devices had received pre-market 
approval (PMA) for 22 distinct clinical applications (i.e., unique product codes) at the date of July 

1, 2020, see Table 1. A full list of these devices is reported in Table 2. Moreover, 167 products 
for the electrical stimulation of the spinal cord had received 501(k) clearance, of which 17 are 
implantable neurostimulators, and one of the PMA systems in Table 2, i.e., Medtronic Active®, 
had received humanitarian exemption for the treatment of behavioral and psychiatric disorders. 
Four additional stimulation devices were listed as recipient of an exemption for the treatment of 
incontinence and apnea, but did not eventually reach pre-market approval, see Table 1. 

Indication or 
Disease 

US FDA 
Product Code Description No. of 

PMA 
No. of 
501(k) 

No. of 
HDE 

Incontinence EZW Stimulator, Electrical, Implantable, for Incontinence 3 - 2 

Respiration / 
Apnea 

GZE Implanted Diaphragmatic/Phrenic Nerve Stimulator 1 - - 
MNQ Stimulator, Hypoglossal Nerve, Implanted, Apnea 1 - - 

OIR Diaphragmatic/Phrenic Nerve Laparoscopically Im-
planted Stimulator - - 2 

PSR Implanted Phrenic Nerve Stimulator for Central Sleep 
Apnea 1 - - 

Pain 

GZB Stimulator, Spinal-Cord, Implanted (Pain Relief) 1 138 (16) - 
GZF Stimulator, Peripheral Nerve, Implanted (Pain Relief) - 29 (1) - 

LGW Stimulator, Spinal-Cord, Totally Implanted for Pain Re-
lief 6 - - 

PMP Dorsal Root Ganglion Stimulator for Pain Relief 1 - - 

Hearing Loss MCM Implant, Cochlear 7 - - 
PGQ Hybrid Cochlear Implant 1 - - 



Movement 
Disorders 

MHY Stimulator, Electrical, Implanted, for Parkinsonian 
Tremor 2 - - 

MRU Implanted Subcortical Electrical Stimulator (Motor Disor-
ders) - - 1 

NHL Stimulator, Electrical, Implanted, for Parkinsonian Symp-
toms 2 - - 

PJS Stimulator, Electrical, Implanted, for Essential Tremor 1 - - 

Epilepsy LYJ Stimulator, Autonomic Nerve, Implanted for Epilepsy 1 - - 

PFN Implanted Brain Stimulator for Epilepsy 1 - - 

Behavior / 
Depression 

MFR Stimulator, Brain, Implanted, for Behavior Modification - - 1 
MUZ Stimulator, Autonomic Nerve, Implanted (Depression) 1 - - 

OLM Deep Brain Stimulator for Obsessive Compulsive Disor-
der  - - 1 

Obesity PIM Neuromodulator for Obesity 1 - - 
Unspecified GZC Stimulator, Neuromuscular, Implanted 1 - - 

Table 1. Number (No.) of Implantable Neural Stimulation Devices Approved by the US FDA for Use in Human Subjects. 
Devices are grouped according to the product code assigned by the US Food and Drug Administration (FDA) and the indication of use for which 
US FDA clearance was obtained. Legend: PMA: Pre-Market Approval; 501(k): Granted 501(k) clearance; HDE: Humanitarian Device Exemption. 
The number of devices granted 501(k) clearance is reported according to the format X (Y), where X is the total number of cleared devices under 
each product code and Y is the subset of devices that are neural stimulators. Information is current as of July 1, 2020. 

PMA ID Applicant First 
Approval Product / Device Name Latest 

Approval 

FDA 
Product 

Code 

P860026 AVERY BIOMEDICAL 
DEVICES, INC. 01/05/1987 DIAPHRAGMATIC PACEMAKER 

PHRENIC NERVE STIMULATOR 11/04/2019 GZE 

P080025 MEDTRONIC  
NEUROMODULATION 03/14/2011 

MEDTRONIC INTERSTIM SACRAL 
NERVE STIMULATION THERAPY 

SYSTEM 
10/04/2016 EZW 

P180046 
P190006 

AXONICS MODULATION 
TECHNOLOGIES, INC. 11/13/2019 AXONICS SACRAL  

NEUROMODULATION SYSTEM 07/10/2020 EZW 

P970004 MEDTRONIC  
NEUROMODULATION 09/29/1997 

MEDTRONIC INTERSTIM  
THERAPY SYSTEM FOR 

URINARY CONTROL 
02/06/2017 EZW 

P950035 BIOCONTROL  
TECHNOLOGY, INC. 08/15/1997 NEUROCONTROL FREEHAND 

SYSTEM(R) 01/18/2002 GZC 

P010032 ABBOTT MEDICAL 11/21/2001 
GENESIS AND EON FAMILY  
NEUROSTIMULATION (IPG)  

SYSTEMS 
07/29/2019 LGW 

GZB 

P030017 BOSTON SCIENTIFIC 
CORP. 04/27/2004 PRECISION SPINAL CORD  

STIMULATION(SCS) SYSTEM 11/14/2017 LGW 

P130022 NEVRO CORPORATION 05/08/2015 NEVRO SENZA SPINAL CORD 
STIMULATION (SCS) SYSTEM 01/04/2018 LGW 

P130028 NUVECTRA  
CORPORATION 11/20/2015 ALGOVITA SPINAL CORD  

STIMULATION SYSTEM 05/05/2020 LGW 

P800040 CORDIS CORP. 04/14/1981 
CORDIS PROGRAMMABLE  

NEURAL STIMULATOR MODELS 
900A 

03/22/1988 LGW 

P840001 MEDTRONIC  
NEUROMODULATION 11/30/1984 

ITREL(R) TOTALLY  
IMPLANTABLE SPINAL CORD 

STIM. SYS 
07/29/2019 LGW 

P970003 LIVANOVA USA, INC. 07/16/1997 VNS THERAPY SYSTEM 05/13/2020 LYJ 

P000025 MED-EL CORP. 08/20/2001 COMBI 40+ COCHLEAR IMPLANT 
SYSTEM 10/15/2019 MCM 

P830069 COCHLEAR AMERICAS 11/26/1984 3M BRAND COCHLEAR IMPLANT 
SYSTEM/HOUSE DESIGN 05/22/1986 MCM 

P840024 COCHLEAR AMERICAS 10/31/1985 
NUCLEUS MULTICHANNEL  

IMPLANTABLE HEARING  
PROSTHESIS 

03/29/1991 MCM 



P890027 COCHLEAR AMERICAS 06/27/1990 
NUCLEUS 22 CHANNEL  

COCHLEAR IMPLANT SYS / 
CHILDREN 

05/07/1999 MCM 

P940022 ADVANCED BIONICS 
CORP. 03/22/1996 CLARION(TM) MULTI-STRATEGY 

COCHLEAR IMPLANT 09/23/2002 MCM 

P960058 ADVANCED BIONICS 06/26/1997 CLARION MULTI-STRATEGY 
COCHLEAR IMPLANT 09/23/2002 MCM 

P970051 COCHLEAR AMERICAS 06/25/1998 NUCLEUS 24 COCHLEAR  
IMPLANT SYSTEM 07/02/2020 MCM 

P140009 ABBOTT MEDICAL 06/12/2015 BRIO NEUROSTIMULATION  
SYSTEM 11/19/2019 

MHY 
NHL 
PJS 

P960009 MEDTRONIC INC. 07/31/1997 MEDTRONIC ACTIVA TREMOR 
CONTROL SYSTEM 07/29/2019 MHY 

P130008 INSPIRE MEDICAL  
SYSTEMS 04/30/2014 INSPIRE II UPPER AIRWAY  

STIMULATOR 03/02/2020 MNQ 

P970003 LIVANOVA USA, INC. 07/16/1997 VNS THERAPY SYSTEM 05/13/2020 MUZ 

P150031 BOSTON SCIENTIFIC 
CORP. 12/08/2017 VERCISE DEEP BRAIN  

STIMULATION (DBS) SYSTEM 06/29/2020 NHL 

P100026 NEUROPACE INC 11/14/2013 NEUROPACE RNS SYSTEM 04/06/2020 PFN 

P130016 COCHLEAR AMERICAS 03/20/2014 NUCLEUS HYBRID L24  
COCHLEAR IMPLANT SYSTEM 02/21/2020 PGQ 

P130019 RESHAPE LIFESCIENCES, 
INC. 01/14/2015 MAESTRO RECHARGEABLE  

SYSTEM 02/15/2019 PIM 

P150004 ABBOTT MEDICAL 02/11/2016 AXIUM NEUROSTIMULATOR 
SYSTEM 07/01/2020 PMP 

P160039 RESPICARDIA 10/06/2017 REMEDE® SYSTEM 12/23/2019 PSR 

Table 2. List of Implantable Neurostimulation Systems with Pre-Market Approval from the US FDA. 
Systems are reported along with the unique ID assigned by the US Food and Drugs Administration (FDA) to the Pre-Market Approval (PMA), the 
date of the first granted PMA, the approved FDA product code, and the company filing the PMA application. Since a revised PMA must be sought 
after amendments or modifications, the date of the most recently granted PMA is also reported for every system in the list. Information is current 
as of July 1, 2020. 

Altogether, this evidence suggests that the electrical stimulation of nerves and neurons, espe-
cially in the CNS, is perceived as a mature and safe option. A major contributor to this scenario is 
the fact that the primary safety-related concern about neural stimulation is tissue damage [20], 
which, despite a few exceptions discussed in [19], can be efficiently mitigated by adopting short, 
charge-balanced pulsatile stimuli with strict limitations on the amount of charge density and charge 
per phase of every pulse [9, 10].  

Electrical stimulation-based therapies that have successfully translated into clinical applications 
thus far abide to the safety guidelines determined in [9, 10] and share a common design principle, 
i.e., they are designed to evoke strong, periodic responses in a critical mass of neurons or neural 
fibers around the location where the probes are implanted [21]. This response can be either a supra-
threshold depolarization or a prolonged hyperpolarization of the cells, depending on the frequency 
of stimulation (e.g., see differences in [22, 23] between high- and low-frequency stimulation) and 
the ion channel expression of the neuronal membranes [24-26]. Regardless of the polarity, though, 
the response is always expected to be strong enough and sufficiently consistent over time to pro-
duce a prolonged effect. This effect is then expected to modulate the activity along nerves, cells, 
and neural ensembles and eventually mitigate one or more symptoms of a chronic condition. An 
extended review of the relationship between the modulatory effects of electrical stimulation on 
neurons in deep brain structures and behavioral outcomes can be found in [27].  

Interestingly, all neurostimulation therapies that use implantable devices to reach some level of 
clinical merit exhibit three common traits, i.e., 



(i) The stimulation paradigm must involve trains of charge-balanced pulses, with pulses having 
equal duration and shape. 

(ii) The amplitude of the electric pulses during each phase (i.e., anodic, or cathodic) must change 
as little as possible and remain constant across all pulses. 

(iii) The electric pulses must be arranged in a predetermined temporal sequence that is repeated 
periodically over time [28, 29].  

A typical embodiment of these traits is the stimulation protocol approved for DBS, which is 
reported in Figure 2 and used to treat both movement disorders and psychiatric disorders (“regu-
lar” open-loop DBS profile in Fig. 2A, panel a). Overall, these traits identify a subset of the larger 
group of stimulation protocols that satisfy the safety guidelines established for neural stimulation 
[9, 10]. Protocols in this subset are characterized by regularity in the temporal arrangement of the 
pulses, uniformity in shape and duration across consecutive pulses, and low programming com-
plexity, as these protocols can be uniquely defined by manually selecting a handful of program-
ming parameters in the neurostimulation devices, i.e., inter-pulse interval, pulse duration, and 
pulse amplitude [30, 31]. 

 
Figure 2. Examples of pulse arrangement in electrical stimulation protocols for DBS. A) Pre-programmed (i.e., open loop) pulse arrangements 
for DBS. Panel a) shows the regular DBS protocol, which is approved by the US FDA to treat movement disorders. Panels b-c) show two experi-
mental protocols that were tested in (Brocker et al., 2013) and improved the motor symptoms of patients with Parkinson’s disease (PD). Pulses in 
b) and c) are equal in amplitude and drawn from a uniform distribution and a log-uniform distribution, respectively, thus resulting in irregular pulse 
arrangements (IPF: instantaneous pulse frequency). B) Time-varying stimulation protocols for DBS obtained via closed-loop control (closed loop 
DBS). Panel a) shows the stimulation profiles applied to a PD patient in (Little et al., 2016) via a bilateral closed loop DBS device (red: right 
hemisphere [R aDBS]; blue: left hemisphere, [L aDBS]). The closed-loop scheme in a) measures a neural proxy of PD and decides in real time 
when the stimulation is ON or OFF, thus resulting in irregularly spaced bursts of pulses and a time-varying pulse rate. Panel b) shows the time-
varying profile of the pulse amplitude in a PD patient treated with a closed loop DBS protocol from (Velisar et al., 2019). The control scheme in 
b) measures a neural proxy of PD and decides the amplitude of the next voltage-controlled pulse while keeping the pulse rate constant over time. 
Panels a)-c) in A) and panel b) in B) are reproduced with permission from [7] and [32], respectively, © 2013 and 2019 Elsevier. Panel a) in B) is 
reproduced from [33] under the terms of the Creative Commons CC BY 4.0 license, © 2016 BMJ Publishing Group Ltd. 

 
1.1. The Emerging Merit and Challenges of Irregular Stimulation Protocols 

The range of viable stimulation protocols that can evoke strong, consistent, and repeatable re-
sponses in neurons and neural fibers while satisfying the safety guidelines in [9, 10] encompasses 
and far exceeds the set of stimulation protocols that strictly exhibit traits (i)-(iii). This  has become 
evident in recent years, as new software interfaces have been introduced to program sophisticated 
time-varying pulse trains in new and existing implantable neurostimulators, e.g., see [34]. 

By using these interfaces, several studies have investigated whether stimulation protocols that 
relax traits (i)-(iii) may still be effective in treating neurological conditions while providing some 



advantage over existing, US FDA-approved regular stimulation protocols. For instance, studies [7, 
35, 36] introduced stimulation protocols in open loop for DBS that, differently than the regular 
protocols depicted in Fig. 2A, panel a, involve the periodic repetition of finite sequences of irreg-
ularly arranged pulses, Fig. 2A, panels b-c. These protocols were tested in patients with severe 
movement disorders and demonstrated promising therapeutic outcomes despite the temporal irreg-
ularity while using, on average, just 30% of the electric pulses used by regular DBS (average pulse 
rate: 45 pulses per second in [7, 35, 36] versus 130-180 pulses per second for regular DBS proto-
cols in [30, 31]). Similarly, phase-locked stimulation protocols [8, 37] and adaptive DBS protocols 
for Parkinson’s disease [6, 32, 33, 38] have provided proof-of-principle evidence of the fact that 
abrupt, non-periodic variations in the instantaneous frequency and amplitude of the electric pulses 
(Fig. 2B, panels a-b, respectively) may result in therapeutic effects as relevant as clinically ac-
cepted regular DBS. As for irregular open-loop DBS, the pulse arrangements obtained under 
closed-loop DBS protocols [6, 8, 32, 33, 37, 38] are time-varying and can use fewer pulses per 
unit of time than regular DBS, thus resulting more energetically efficient, safer, and long-term 
manageable. 

Altogether, the investigation of time-varying and irregular stimulation patterns has suggested 
that traits (i)-(iii) may pose unnecessary limitations to the span of neural stimulation with thera-
peutic merit. It has also suggested that more advantageous stimulation protocols may be obtained 
by relaxing traits (ii) and (iii). However, expanding the range of eligible stimulation patterns poses 
remarkable methodological challenges regarding the design of actual stimulation protocols.  
 

1.1.1. Challenges in Designing Irregular Stimulation: A Wide Parameter Space 
The combination of traits (i), (ii), and (iii) in section 1 has the important advantage of dramati-

cally reducing the space of parameters that can be considered to program a stimulation protocol. 
A train of regularly spaced, equal-amplitude pulses, in fact, is uniquely identified by three param-
eters, i.e., the pulse amplitude (Ӷ, either in voltage or current, depending on the technology of the 
stimulator), the pulse width, ԅԌ , and the interval between consecutive pulses, ӾԅӾ. Moreover, 
even though there are thousands of different triplets (Ӷ,ԅԌ, ӾԅӾ) that meet the safety requirements 
in [9, 10] and can be programmed in clinically used implantable neurostimulators (e.g., 12,964 
distinct triplets were estimated in [39] for the Medtronic DBS neurostimulators), the boundaries 
of the subset of parameter values that can actually result in positive therapeutic outcomes are well 
characterized for most applications, e.g., see [30, 40, 41]. Finally, depending on the application, 
reliable procedures and practical guidelines have been developed to assist clinicians and techni-
cians in probing the space of admissible parameters and personalize the parameter values to every 
patient, e.g., see [28, 29, 31, 42].  

Relaxing requirements (ii) and/or (iii), instead, increases the number of parameters that must 
be chosen to program an implantable device, which translates into a combinatorial expansion of 
the space of admissible stimulation settings to be investigated. With more viable options to be 
considered, the time and effort devoted to programming a stimulation protocol may significantly 
increase, without necessarily guaranteeing convergence to stimulation protocols that improve over 
the existing regular ones. This has led to the need for new ways of probing the space of parameters. 
 

1.1.2. Challenges in Designing Irregular Stimulation: Lack of Practical Guidelines 



Practical guidelines and algorithms established in [28, 29, 31, 42] for regular stimulation pro-
tocols were derived from clinical studies such as [30, 40, 41]. These studies tested several combi-
nations of parameters Ӷ, ԅԌ , and ӾԅӾ empirically to extrapolate an input-output relationship be-
tween these parameters and the clinical outcomes of the stimulation. As the arrangement of electric 
pulses is varied over time, though, this relationship loses predictive value and hardly applies to the 
response evoked by irregular stimulation patterns. Accordingly, guidelines and algorithms derived 
for regular stimulation hardly generalize to irregular and time-varying stimulation patterns, thus 
creating a need for new approaches to the design of effective stimulation protocols.  

These challenges are further amplified by recent innovations in the design of the hardware for 
implantable neurostimulation, which have introduced directional neuromodulation devices and 
electrode leads consisting of hundreds of contacts [43-45]. These innovations have added further 
degrees of freedom to the design of effective stimulation protocols, including the possibility of 
selecting the configuration of electrodes to be activated at any time.  

Altogether, these innovations, along with the relaxation of requirements (ii)-(iii) in section 1, 
have contributed to define a novel and challenging set of requirements: 
a) A stimulation protocol must be designed by exploring a vast space of parameter settings, which 

is larger than the space created by constraints (i)-(iii) in section 1. The exploration of this space 
must be smart, efficient, and yet thorough. 

b) Stimulation settings that have some clinical merit must be identified surely within a reasonable 
amount of time. 

c) As numerous stimulation settings are explored, quantitative criteria are needed to sort the ex-
plored settings objectively and rapidly, thus steering the selection of the most promising set-
tings in a deterministic and repeatable way.  

These requirements can hardly be addressed by the protocols and guidelines set in [28, 29, 31, 
42] and have led to the need for novel design methodologies. The bulk of new methodologies 
introduced in recent years to address requirements a), b), and c) consists of approaches based on 
optimal control and optimization methods. Accordingly, in this chapter, an optimal stimulation 
protocol is the outcome of anyone of the design processes that have been proposed to simultane-
ously satisfies conditions a), b), and c). Here, the term “optimal” means that the stimulation is not 
just a feasible option with some level of expected therapeutic outcome – which are traits obtained 
by addressing requirements a) and b) – but it is the best possible option according to the criteria 
defined in c). 
 

1.2. Optimality and Cost Functions Can Aid Irregular Stimulation Design 
The notion of optimality defined by condition c) above is achieved by introducing a cost func-

tion (Fig. 1 and Introduction) as the cost functions, when paired with minimum-seeking numerical 
routines [12], can steer the search among several stimulation protocols, reduce the number of can-
didate protocols to be assessed, and contribute to the definition of deterministic, repeatable proce-
dures to select an optimal stimulation protocol. Accordingly, cost functions are an important factor 
towards the definition of a paradigm shift regarding how stimulation settings are investigated and 
ultimately chosen. 

This occurs because the notion of “cost function”, whose implications in neuroscience are 



discussed in further details in [46], is more general than the measures of therapeutic outcome used 
in practical guidelines [28, 29, 31, 42]. The cost function summarizes the overall value that a stim-
ulation protocol may have with respect to several conflicting objectives, where an “objective” is a 
goal that is desired for the stimulation protocol. Examples of objectives may include: 
- Suppressing a specific, measurable symptom of the neurological condition for which the stim-

ulation protocol is designed, 
- Reducing the amount of stimulation delivered at any time, or 
- Restoring specific statistical characteristics of the neural activity in and around the site of stim-

ulation.  
Table 3 exemplifies how objectives are typically formulated mathematically and reports com-

mon examples of cost functions that combine competing objectives and are used for the design of 
optimal stimulation protocols. Examples of these cost functions in clinical applications are then 
discussed in section 5.  

Cost Function Application Reference 

ӿ(𝑥) = ௷ ෯(ԣ)ԓԣ֓

Ј
+ Ԧᅮ(𝑥). 

The function is defined for a pulse train and is used to choose the best pulse width (𝑥 = ԅԌ ). 
The function weights two competing objectives, i.e., (i) to minimize the instantaneous power 
of the pulse train, ෯(ԣ), and (ii) avoid the penalty, Ԧ, which applies if the pulse train fails to 
elicit action potentials (ᅮ(𝑥) = 1) in the target neural ensemble. 

DBS, movement 
disorders [47] 

ӿ(𝑥) = ௷ 𝑥ϵ(ԣ)ԓԣյ

Ј
. 

The function is defined for a single pulse, whose shape, 𝑥(ԣ), over an assigned interval [0, ԉ ] 
must be chosen. The function weights a single objective, i.e., to minimize the pulse energy. 

No specific 
application [48, 49] 

ӿ(ډ) = ం Ԧք ভంӽिmaxिӸքӴֆډी − ᅫीն

ֆ=φ
ম։

ք=φ
. 

The function is used to find the optimal combination of contacts on a multi-contact electrode 
probe that must be activated to evoke a response in axons in an assigned volume. The vector 
 contains the pulse amplitudes assigned at the contacts, and ԝ is the count of competing ډ
objectives that must be satisfied, which are weighted according to weights Ԧք. An objective 
in this function consists of maximizing (or minimizing) the predict number of axons activated 
by the stimulation in one of ԝ distinct anatomical regions. For each region, the predict number 
is given by counting how many estimated axons (i.e., 1, 2, …, Ԋ) receive a stimulus high 
enough to evoke action potentials, where the number of estimated axons is derived from CT 
scans. ӽिmaxिӸքӴֆډी − ᅫी is a binary indicator saying whether axon Ԛ in the anatomical re-
gion Ԙ is activated, where ӽ is the Heaviside function, ӸքӴֆ projects the electrode configura-
tion onto the activation function of axon Ԛ in region Ԙ, and ᅫ is an activation threshold. 

DBS, Parkinson’s 
disease [50, 51] 

ӿ(𝑥) = 1
2ᅺ ௷ ज़𝑥(ᅲ)५𝑥(ᅲ) − ᅶԏ(ᅲ + ᆈ+)६ − ᅶΔωड़ϵᇎ

Ј
ԓᅲ. 

The function is used to find a periodic stimulus 𝑥(ᅲ), which is defined in the phase space ᅲ ∈
[0,2ᅺ[ and then repeats, that can entrain an ensemble of spiking neurons. Neurons in the en-
semble spike periodically according to a natural frequency, which is different than the fre-
quency, ᆂ∗, of the desired entrainment. Hence, ∆ᆂ is the difference between the natural spik-
ing frequency and ᆂ∗. Also, ԏ(⋅) is the phase response curve (PRC, see definition in section 
3.2) of the spiking neurons, ᅶ is a Lagrange multiplier [12], and ᆈ+ is the phase that maxim-
izes the mean value (computed with respect to ᅲ) of ԏ(ᅲ + ᆈ)𝑥(ᅲ). The cost function ad-
dresses the trade-off between (i) minimizing the energy of the stimulus (i.e., the integral of 
𝑥ϵ(ᅲ)) and (ii) minimizing the distance, Δω, between the natural frequency of the spiking 
neurons and the desired frequency of entrainment. 

No specific  
application [52-54] 

Table 3. Examples of Cost Functions Used to Design Optimal Stimulation Protocols in Clinical Applications. 
This collection exemplifies how competing objectives are mathematically formulated in cost functions. Variations of the cost functions reported in 
this table are found in additional studies beyond those cited in this table. These studies, along with the examples in this table, are discussed in this 
chapter. Legend: “No specific application” means that the cost function was used in a study that was not directly applied to a clinical application. 



The combination of multiple objectives quantifies the overall, multifaceted impact that a stim-
ulation protocol is expected to carry and, in doing so, objectives assist with the fulfillment of re-
quirement b) (section 1.1.2) and help define the geometrical shape of the cost function (e.g., the 
shape of ӿ(⋅) in Fig. 1B), thus constraining the search for an optimal solution.  

The importance of cost functions in designing irregular stimulation protocols is twofold. First, 
cost functions provide a mathematical formulation for the tradeoff between objectives and, even 
though costs may be informed by clinical data, cost functions are not limited to input-output em-
pirical relationships as those established in [30, 40, 41]. Hence, design methods for neurostimula-
tion based on cost functions may have a practical advantage over traditional heuristic approaches 
because, under mild constraints, the cost function may be changed (i.e., the objectives and/or the 
tradeoff among objectives may be varied) without affecting how the optimal solution is computed, 
which makes the entire stimulation design process more flexible and easier to translate across ap-
plications.  

Secondly, by carefully designing the cost function (e.g., by making it convex), the optimal so-
lution can be obtained using one of many well-established numerical algorithms drawn from the 
theory of optimization, e.g., see [12] for an introduction to the most common algorithms. A graph-
ical intuition of the advantage that may stem from using convex cost functions is depicted in Fig. 
1B: because of the convexity of the cost function ӿ(⋅), the search for optimal parameters can start 
from any initial combination of values (black cross-shaped marker) and, by using a gradient-de-
scent-based algorithm [12], different parameter settings (black dots) will be sequentially identified 
along the direction of maximum reduction of the cost function (yellow dots) until a global mini-
mum (yellow star) is achieved. Interestingly, in this example, the minimization of the cost function 
leads to selecting parameter settings along a specific trajectory (red dashed curve in the figure), 
which provides a strong guidance on how stimulation settings must be chosen and lowers the num-
ber of settings to be considered during the search, thus satisfying requirement a) in section 1.1.2 

Finally, it should be emphasized that the notion of optimality discussed here has a precise math-
ematical interpretation (see section 2) and is relative to the definition of the cost function and the 
support set Ω. Accordingly, a stimulation protocol may be “optimal” and yet result ineffective in 
the treatment of a specific neurological condition. This would happen if the solution were obtained 
using a cost function that does not explicitly account for the effects of stimulation on the neuro-
logical condition of interest. This indicates the importance of using problem-specific cost functions 
(e.g., disease-specific, or patient-specific), which will be further discussed in the rest of the chapter 
through specific examples. 
 
2. A THEORETICAL FRAMEWORK FOR OPTIMAL STIMULATION 

The definition of optimality provided by conditions a-c) in section 1.1.2 is aligned with the 
definition given in Mathematical Programming [12] and formalizes a scenario where one or more 
decisions must be taken based on the decisions’ expected effects. A common representation is: 

min۵∈ျ ӿ(ډ)
subject to ԕք(ډ) ≤ ԑք,     Ԙ = 1, 2, 3, … ,Ԝ                    (1) 

where the objective of the decision-making process is to select a specific vector ډ∗ (e.g., in Fig. 
1B, ډ = [𝑥φ, 𝑥ϵ]յ  is a set of stimulation parameters) that minimizes a certain cost function ӿ(ډ). 



The cost is a mathematical expression quantifying the effect of an undesirable outcome [12], while 
the mathematical expressions ԕք(ډ) ≤ ԑք provide a set of Ԝ > 0 constraints that must be simulta-
neously satisfied by the optimal solution. The number Ԝ, the functions ԕք(ډ), and the bounds ԑք 
depend on the application and help capture the conditions that would make solutions feasible and 
of any practical value, i.e., they contribute to define the support set Ω. In case of neural stimulation, 
constraints are typically used to impose that the stimulation is pulsatile and to keep the amount of 
charge per stimulation phase below a safety threshold [55]. Hence, the solution of the optimization 
problem is a vector ډ∗ such that ӿ(ډ∗) ≤ ӿ(ډ) for any ډ satisfying the constraints ԕք(ډ) ≤ ԑք.   

Depending on the specific problem, a single decision might be required, and the vector ډ will 
be kept constant at the optimal value ډ∗ thereafter, or several decisions must be taken sequentially. 
In the latter case, the vector ډ is rather a collection of values that a certain variable Ԧ must take at 
the time of consecutive decisions, i.e., we have ډ = [ԦЈ, Ԧφ, Ԧϵ,… , Ԧֆ,… ,Ԧկ−φ]յ , where ԃ  is the 
number of decisions and ԃ → ∞ in case decisions must be taken continuously over time.  

If a sequence of decisions must be made, the formulation of the problem may require additional 
constraints. This would occur because the outcome of each decision may not be fully predictable 
and must be anticipated to some extent before the next decision is made. Also, the cost function 
must be reformulated to ponder the cost of every decision, and each decision may need to balance 
the desire for low present cost with the undesirability of high future costs. To account for these 
additional conditions, the problem is typically reformulated as follows [56]: 

min۵∈ွ ӿ(ډ) = Ӻ ঱Ԗկ + ం Ԗֆ(Ԧֆ)
կ−φ

ֆ=Ј
ল

subject to ډ ∈ Π,
                               (2) 

where Ӻ{⋅} indicates the expected value, Ԗֆ(Ԧֆ) denotes the cost associated with the Ԛ-th decision, 
Ԧֆ, Ԗկ  is the final cost associated to the condition reached when an entire sequence of decisions 
ډ = [ԦЈ, Ԧφ, Ԧϵ,… ,Ԧկ−φ]յ  has been completed, and Π is the set of admissible sequences ډ, with 
Π being defined by boundary conditions as in (Eq. 1). The symbol Π is used here instead of Ω to 
emphasize the fact that ډ is a sequence of decisions, with every decision being constrained to a 
specific feasibility set Ω. The cases of optimal stimulation discussed in the following sections can 
all be casted according to (Eq. 1) or (Eq. 2).  

Algorithms of increasing complexity and computational efficiency are available to solve prob-
lems defined as in (Eq. 1) numerically and have been used to design optimal stimulation protocols. 
See [12, 57] for a presentation of the most effective algorithms for convex cost functions and 
nonconvex functions, respectively. A solution to problems defined as in (Eq. 2), instead, is found 
by applying the Bellman’s principle of optimality [56], and Dynamic Programming (DP) is an 
efficient technique to compute the solution. To use DP, though, the space of admissible decisions 
at any time Ԛ must be known to some extent. This condition is typically formalized by introducing 
a state variable ڋ and an evolutionary model of the state ڋֆ+φ = ӻֆ(ڋֆ, Ԧֆ), i.e., the problem de-
fined in (Eq. 2) is recast as 

min۵∈ွ ӿ(ډ) = Ӻ ঱Ԗկ(ڋկ) + ం Ԗֆ(ڋֆ, Ԧֆ)
կ−φ

ֆ=Ј
ল

subject to ֆ+φڋ = ӻֆ(ڋֆ, Ԧֆ),     ډ = [ԦЈ Ԧφ …Ԧկ−φ]յ ∈ Π
              (3) 

Here the state variable ڋֆ accounts for the possible evolution leading to those feasible options 



that are available at time Ԛ, and the mathematical function ӻֆ(. ) estimates the next state value that 
will be reached from the state ڋֆ because of the decision Ԧֆ. 

Altogether, by formulating the stimulation design problem as an optimization problem of one 
of the types reported in (Eq. 1), (Eq. 2), or (Eq. 3), three major goals are pursued, i.e.,  
(i') To make the entire design process less empirical. 
(ii') To derive solutions that may be applicable to a wider class of conditions than those covered 

by current programming guidelines [28, 29]. This is a consequence of the modular nature of 
the optimization procedure. 

(iii') To identify stimulation protocols that may have therapeutic effects on multiple patients, de-
spite the intrinsic variability that exists across patients. This can be pursued by selecting cost 
functions and state evolution models that focus on the average effects of stimulation over 
multiple patients. 

Finally, this optimization framework is insensitive to the nature of the evoked response (i.e., 
excitation or inhibition) that is expected by stimulating the nervous tissue. Hence, depending on 
the clinical applications, the same framework may be used to define electrical stimulation that aims 
to block the activity of nerves, as in the treatment of bladder oversensitivity [58, 59], modulate the 
response of nerves to exogenous stimuli, as in the treatment of neuropathic pain [60], or evoke a 
tonic response in neurons, as in the treatment of movement disorders via DBS [24, 25]. The opti-
mization framework would remain invariant to the type of evoked response because different neu-
ral responses would be translated into specific sets of constraints in the formulations (Eq. 1), (Eq. 
2), or (Eq. 3), i.e., the framework would not change even if further conditions of the form ԕք(ډ) ≤
ԑք were added to account for the expected type of response or additional constraints.  

For instance, blocking the nerve conductance or the modulatory effect of mechanosensory stim-
uli on neural fibers can be translated into lower bounds on the stimulation frequency, as shown in 
[58, 59] and [60] in case of peripheral nerve stimulation and spinal cord stimulation, respectively. 
This means that tools and procedures available to solve an optimization problem remain valid and 
applicable with minimum changes as the specific therapeutic domain varies.  

Despite the generality of the framework, though, most optimal stimulation problems considered 
in the neuromodulation community thus far have primarily dealt with evoking patterned responses 
in neurons and neural ensembles. Accordingly, the approaches presented in the following sections 
mainly resulted in sequences of depolarizing electrical stimuli, while little effort has been devoted 
thus far to extending these approaches to the design of inhibitory stimuli. 

 
3. OPTIMAL STIMULATION FOR SINGLE NEURONS 

Neurons encode sensory stimuli and higher order information by modulating the discharge of 
action potentials [61, 62]. Depending on the information value, the response to a stimulus such as 
a sound or a visual cue may be a brief burst of action potentials fired at high frequency or a se-
quence of spikes arranged according to a recurrent temporal pattern. The neuronal response de-
pends on the presynaptic stimuli reaching the neuron as well as the neuron’s own intrinsic dynam-
ics and can be altered by adding external stimuli such as optical and electric pulses [63, 64].  

This has led to a fundamental question: how to drive a neuron to output a desired spike train 
with temporal precision, given existing physiological constraints? This problem naturally falls into 



the realm of constrained optimization, as the solution would be an exogenous stimulus that max-
imizes the neuron’s precision in tracking a desired firing pattern.  

The problem may have modest practical relevance because of the limited span of applications 
(mostly in vitro but see ref. [65] for in vivo optogenetic applications using optical stimuli) requiring 
direct stimulation of single neurons. Nonetheless, the problem has been intensively investigated in 
recent years, as it has both theoretical and translation relevance. From a strictly theoretical view-
point, solutions to this problem have established the mathematical foundations and algorithmic 
tools that were later instrumental to find optimal stimulation protocols for more complex scenarios, 
such as scenarios involving large ensembles of neurons and neural tissues. From a translation 
viewpoint, the problem deals with the manipulation of the encoding abilities of individual neurons 
[66], and the solutions to this problem may therefore directly inform the design of rehabilitative 
technologies for brain-machine interface. The rationale for using optimal stimulation of individual 
neurons to restore encoding capabilities is illustrated in Figure 3. 

 
Figure 3. Schematic of the optimal stimulation problem for single neurons. A) Exogeneous stimuli and commands can be encoded via sequences 
of action potentials in a neuron, and action potentials are transmitted between neurons via synapses (red arrows). Synapses are formed between the 
terminal buttons of transmitting neurons (blue area) and the dendrites of the target neuron. A target neuron may respond to presynaptic stimuli (red 
arrows) with a sequence of action potentials, i.e., a “spiking pattern” (inset), that is measured at the soma or at the axon. Statistical properties of 
the temporal arrangement of spikes in a spiking pattern can be univocally related to the synaptic input and can be used to encode/decode stimuli. 
B) Neurological conditions may affect the encoding capability of a neuron by altering the spiking pattern due to presynaptic stimuli. For instance, 
postsynaptic activity may be lacking (gray terminal buttons) in the target neuron because of a neurological condition. If so, a sequence of charge-
balanced electric pulses may be delivered to the neuron via an electrode probe (white bar) to restore the neuron’s encoding capability. An optimi-
zation problem is often solved to select the timing of the pulses in the sequence. In this problem, the objective is to ensure that, by delivering pulses 
(1), (2), …, (6) (red arrows), the target neuron will generate a spiking pattern that is as close as possible (in a specific mathematical or statistical 
sense) to the original pattern in A). 

Neurons naturally translate presynaptic stimuli into precise sequences of action potentials (i.e., 
spiking patterns, Fig. 3A) and, since these stimuli bear critical bits of information about higher 
order inputs such as sensory stimuli, cognitive states, or commands, it is commonly accepted that 
the statistical and temporal properties of a neuron’s spiking pattern responding to presynaptic stim-
uli contribute towards a reliable representation of higher order inputs. See [67] for an introduction 
to the most common techniques of neural decoding.  

Neural injuries and synaptic dysfunctions can impair the ability of neurons to respond to syn-
aptic stimuli and therefore deteriorate the representation of higher order inputs [67]. In this case, 
electric pulses can be delivered concurrently with higher order inputs to elicit spiking patterns that 
exhibit more naturalistic statistical and temporal properties (Fig. 3B), which help restore the proper 
encoding of these inputs. Duration, amplitude, and timing of the electric pulses must be designed 



to enforce the desired spiking patterns while satisfying several constraints, which usually account 
for safety requirements and limitations to the neuron’s actual response, e.g., refractoriness and ion 
channel dynamics may pose limitations to the slope and firing rate of the response that is evoked.  

Optimization methods appear a natural option to explicitly address the tradeoff between resto-
ration of neural representation and constraints on neural response. The solutions discussed in Sec-
tion 3.2-3.5 summarize the ample range of formulations that have been introduced over the years 
to account for the tradeoff. These solutions usually rely on conductance-based models of neurons 
to constrain the optimal stimulation to the dynamics of ion channels and transmembrane voltages, 
and the resultant optimal pulse sequences are either determined offline and applied with no adap-
tation over time (i.e., open loop solutions, section 3.2-3.4) or updated periodically online based on 
real-time feedback about the neuron’s ongoing behavior (i.e., closed loop solutions, section 3.5). 
 

3.1. Steps to Solve the Optimal Stimulation Problem: A Case Study 
A formalization of the problem depicted in Fig. 3B was first provided in ref. [68]. In this study, 

the objective is to control the firing rate of a neuron over time by enforcing that the interval be-
tween any two consecutive spikes is as close as possible to a predetermined value ԉց > 0. The 
sequence of steering pulses is applied at the presynaptic terminals and is expected to interact with 
the ongoing presynaptic stimuli, which are unknown and must be characterized stochastically. Un-
der these assumptions, the problem must determine the sequence of steering pulses to be applied 
right after an action potential to maximize the chance of evoking another action potential ԉց  mil-
liseconds after the first one. Denoted with ԣ = 0 the time of the first action potential and using the 
notation introduced in Section 2, the variable to be optimized is the rate ᅶ(ԣ) of the steering pulses 
over the interval ि0, ԉցी, i.e.,  ډ(ԣ) = ᅶ(ԣ). The function ډ(ԣ) is then repeated after every action 
potential to control the firing rate. Figure 4 provides a schematic of the design problem. 



 
Figure 4. Schematic of the optimal stimulation problem in ref. [68]. A train of pre-synaptic electric pulses with instantaneous rate ᅶ(ԣ) must be 
designed over an assigned interval ि0, ԉցी to guarantee that the post-synaptic neuron (target) fires one action potential right at the end of the interval. 
The rate ᅶ(ԣ) must be designed under the assumption that the neuron also receives concurrently pre-synaptic stimuli from neighbor neurons. The 
timing and amplitude of these pre-synaptic stimuli are unknown but the resultant cumulative input to the target neuron is hypothesized to be standard 
(mean zero, variance ԣ at time ԣ) Brownian motion ӷ(ԣ). 

Although the mathematical formulation in ref. [68] is simplistic from a neurophysiologic stand-
point, the solution offers useful insights about the steps of the optimization procedure and the 
potential benefits of this approach to design stimulation protocols. Hence, the main steps in ref. 
[68] are discussed here to clarify the procedure leading to an optimal stimulation protocol.  

First, the solution to the optimization problem must be constrained. Constrains are required here 
to account for the important fact that the response of a neuron to presynaptic pulses varies over 
time, depending on the dendritic arborization, the ion concentration in the extracellular environ-
ment, and the amount of synaptic release [69-71], see Fig. 4. Since these factors can be elusive and 
challenging to track individually, the approach proposed in [68] constrains the optimal solution by 
introducing a stochastic model for the generation of action potentials. Specifically, the impact of 
elusive factors is lumped into a Brownian model describing the synaptic currents to the neuron: 

ԓӾ֎֔։ = Ԑ(1 − ԡ)ᅶ(ԣ)ԓԣ + Ԑఉ1 + ԡϵᆿᅶᆿ(ԣ)ԓӷ(ԣ)                        (4) 

where Ӿ֎֔։ is the synaptic current to the neuron, ԓӷ(ԣ) is standard Brownian motion (i.e., zero 
mean and variance equal to ԣ at time ԣ), Ԑ > 0 is the magnitude of every excitatory postsynaptic 
potential, which typically measured in vitro, 0 < ԡ < 1 is the ratio between inhibitory and excita-
tory synaptic inputs, ᅶ(ԣ) is the rate of pulses to be applied, and ᅫ > 0 is a parameter to be deter-
mined, i.e., a parameter that depends on the specific type of neuron to be controlled.  



The synaptic current Ӿ֎֔։ is then applied to a leaky integrate-and-fire (LIF) model [72] of the 
neuronal transmembrane voltage: 

ԓԋ (ԣ) = − ԋ (ԣ) − ԋ֍ր֎֏ᅭ ԓԣ + ԓӾ֎֔։                               (5) 
where ԋ  is the transmembrane voltage, ԋ֍ր֎֏ is the transmembrane voltage at rest, and ᅭ is the 
decay time constant. The LIF neuron is a hybrid model, i.e., (Eq. 5) holds for ԋ < ԋ֏փ֍տ, where 
ԋ֏փ֍տ is the threshold for the generation of an action potential, and ԣ > 0. Once ԋ  crosses the thresh-
old ԋ֏փ֍տ from below, a spike is generated, and ԋ  is reset to ԋ֍ր֎֏.  

As a result of the stochastic representation in (Eq. 4)-(Eq. 5), ԋ  is a random variable, and the 
objective of evoking an action potential at ԉց > 0 can be translated into the constraint Ӻृԋ िԉցीॄ =
ԋ֏փ֍տ, which follows the general form of constraints in (Eq. 1), and the cost ӿ(ډ) = varृԋ िԉցीॄ, 
where Ӻ{⋅} and var{⋅} denote mean and variance operators, respectively, ԋ िԉցी is the transmem-
brane voltage at time ԣ = ԉց , and ԋ िԉցी depends on the sequence ډ(ԣ) = ᅶ(ԣ). Accordingly, the 
optimization problem is a special case of the general form given in (Eq. 1) in Section 2, i.e., 

minᇊ∈ျ varृԋिԉԕीॄ
subject to Ӻृԋिԉԕीॄ = ԋԣℎԡԓ,                              (6) 

where Ω the set of admissible rate functions ᅶ(ԣ), and the optimal solution is the function ᅶ∗(ԣ) =
arg minᇊ varृԋ िԉցीॄ. Interestingly, the solution to the problem in (Eq. 6) does not ensure that an 
action potential will be generated exactly at time ԣ = ԉց , as this would be unfeasible, given the 
presynaptic arrangement of the applied pulses and the stochastic nature of the synaptic current. 
However, the solution guarantees that, on average over time, the conditions for an action potential 
at time ԣ = ԉց  will be satisfied, and the chance of having ԋ िԉցी < ԋ֏փ֍տ (i.e., no action potential) 
will be minimal. 

Second, the combination of the model and objective in (Eq. 4), (Eq. 5), and (Eq. 6) leads to a 
convex optimization problem, whose solution is determined analytically and results in (Eq. 7) be-
low, where ᅮ(ԣ) is Dirac’s delta function. 

ᅶ∗(ԣ) =

⎩৖
৖৖
৖৖
⎨
৖৖
৖৖
৖⎧ 2(ᅫ − 1)ԋ֏փ֍ expগ ԉց − ԣ

ᅭ(2ᅫ − 1)ঘ
(2ᅫ − 1)Ԑᅭ গ1 − exp গ2ԉց(ᅫ − 1)

ᅭ(2ᅫ − 1) ঘঘ
ᅫ > 1 2⁄ , ᅫ ≠ 1

ԋ֏փ֍տԐԉց
exp গԉց − ԣ

ᅭ ঘ ᅫ = 1
ᅮ(ԣ)

ᅮ(ԣ − ᅽ), ᅽ ∈ ॅ0, ԉց ॆ
ᅫ = 1 2⁄
ᅫ < 1 2⁄

            (7) 

While the mathematical derivation of (Eq. 7) is beyond the scope of this presentation and can be 
found in [68], the existence of an analytical solution clarifies the important role that mathematical 
models have in optimization. Although simplistic, the model in (Eq. 4), (Eq. 5) allows to derive an 
explicit formula for the solution ᅶ∗(ԣ) and, more importantly, to express ᅶ∗(ԣ) as a function of 
known parameters of neuronal activity, i.e., ԋ֏փ֍տ, Ԑ, and ᅭ. These parameters, in fact, have a clear 
biophysical interpretation and are typically estimated for neurons from recordings either in vitro 



or in vivo.  
Altogether, the steps leading to the solution ᅶ∗(ԣ) emphasize an important benefit of the opti-

mization framework, i.e., the solution to an optimization problem can result in a parametric stim-
ulation protocol that can be rapidly adjusted to the properties of the recipient neurons. Moreover, 
the solution in (Eq. 7) provides useful insights about the dynamics of the neuron under stimulation. 
Specifically, parameter ᅫ in (Eq. 4) determines the randomness of the presynaptic inputs to the 
neuron, with larger values of ᅫ indicating more randomness [73]. For ᅫ = 1 2⁄ , the input ԓӾ֎֔։ is 
derived from a Poisson process, while the cases ᅫ > 1 2⁄  and ᅫ < 1 2⁄  lead to processes with larger 
variance and lower variance than a Poisson process, respectively. Accordingly, (Eq. 7) indicates 
that the optimal pulse rate has a smooth, time-varying profile when ᅫ > 1 2⁄ , which is easily pro-
grammed in current neurostimulation devices. Larger values of ᅫ would indicate higher random-
ness in the presynaptic input, and this would require a faster presynaptic stimulation to better con-
trol the response of the neuron, i.e., the average value of ᅶ∗(ԣ) grows with ᅫ, when ᅫ > 1 2⁄ . As the 
value of ᅫ decreases, instead, (Eq. 7) indicates a degeneration of the optimal stimulation. In fact, 
as ᅫ approaches φϵ, the optimal stimulation concentrates at the onset of the stimulation interval, i.e., 
ԣ = 0, and becomes purely impulsive for ᅫ = 1 2⁄ . More importantly, as the synaptic inputs become 
sub-Poisson (i.e., ᅫ < 1 2⁄ ), the optimal solution is not unique, as the application of a Dirac’s func-
tion at any time ᅽ ≤ ԉց  would reduce the variance of ԋ िԉցी to zero. The interpretation of the case 
ᅫ ≤ 1 2⁄  is straightforward from a physiological standpoint, i.e., as the noise (i.e., randomness) of 
the presynaptic inputs decreases, it becomes possible to elicit an action potential with a single 
pulse, provided that the pulse’s amplitude is sufficiently high, and therefore the optimal stimula-
tion protocol consists in delivering one single impulse. 

Altogether, these results indicate that an optimal solution aims to adapt the stimulation protocol 
to the expected dynamics of the target neuron, i.e., an optimal solution accounts for the limitations 
that a neuron may have in responding to exogenous stimuli and determines stimuli that can maxi-
mally exploit the underlying dynamics of the neuron. 
 

3.2. Solutions in Open Loop with State-Space Representation 
The solution in [68] controls the firing rate of a neuron by modulating the instantaneous rate of 

presynaptic pulses. However, no boundaries were set on the amplitude of these pulses, and this led 
to an impulsive rate function (i.e., a Dirac’s delta function) when the neuron is excited by Poisson 
and sub-Poisson processes. Since the intensity of the applied stimuli is a critical factor in deter-
mining the feasibility of a stimulation protocol [9, 10, 20], numerous variations to the problem 
defined in (Eq. 6) have been considered in recent years to explicitly limit the amount of stimulation 
delivered over time.  

Studies [48, 74, 75] focus on stimulating a neuron by injecting a current directly into the neu-
ron’s soma and formulate the optimization problem using the amplitude Ӿ(ԣ) of this current as the 
control variable, i.e., ډ(ԣ) = Ӿ(ԣ), while the cost function to be minimized is the total energy of the 
injected current over an assigned horizon ԉ > 0, i.e., ӿ(ډ) = ∫ Ӿϵ(ԣ)ԓԣյ

Ј . 

In [48], the optimization problem deals with finding a minimum-energy stimulus waveform that 
surely evokes an action potential within an assigned temporal interval [0, ԉ ], with no specific con-
straints on the exact onset time of the action potential. Accordingly, authors formulated the prob-
lem using non-stochastic conductance-based neuron models (i.e., FitzHugh-Nagumo and 



Hodgkin-Huxley models) and proposed an iterative algorithm derived from the gradient-descent 
formula to compute the optimal waveform.  

The interest in the approach proposed in [48] is twofold. Firstly, the proposed solution provided 
an efficient way to search a large, nonparametric body of supra-threshold current waveforms and 
identify non-pulsatile, charge-balanced stimulation profiles, which indicates a potential advantage 
of using optimization methods instead of more empirical approaches. Figure 5 reports an example 
of non-pulsatile optimal waveform obtained in [48]. 

 
Figure 5. Optimization of stimulus waveforms. A) An optimal pulse waveform is proposed in (Chang & Paydarfar, 2014) by solving a minimum-
energy stimulation problem. Waveforms are constrained to be suprathreshold for an assigned conductance-based neuron model. B) Action potential 
generated by the neuron model in response to the optimal pulse in A). The pulse smoothly changes over several milliseconds before the threshold 
for an action potential (dashed blue line) is met at time ԣց . Image reproduced with permission from [48], © 2014 Springer Nature. 

As shown in Fig. 5A, these optimal profiles smoothly vary the amount of charge delivered over 
time to avoid tissue damage during pulse phase transitions [20]. The charge modulation lowers the 
slope of the phase transition, thus enhancing the safety of the stimulation while evoking an action 
potential. Secondly, conduction-based models introduce a state vector ڋֆ in the problem, where ڋֆ 
gathers all the model’s variables, i.e., transmembrane voltage and ion channel gating variables. 
The presence of a state vector leads to state-based constraints of type ڋֆ+φ = ӻֆ(ڋֆ,  or the) (ډ
continuous-time counterpart, i.e., ڋ ̇ = ӻ(ڋ,  to the problem, as discussed in Section 2, and these ((ډ
constraints result in the optimal solution being expressed as a function of the state vector ڋֆ.  

Altogether, the solution in [48] emphasizes an important aspect of the optimal stimulation prob-
lems involving a state-space representation, which is that optimal solutions aim to estimate the 
internal state of the neuron to better anticipate the underlying dynamics and modulate the profile 



of stimulation accordingly. In [48], for instance, the optimal stimulus waveform follows the esti-
mated evolution of the ion gating variables, i.e., it slowly depolarizes the neuron during the open-
ing stage of sodium channels  (Fig. 5A) well before the threshold for an action potential is met 
(dashed line, Fig. 5B). Then, it rapidly changes polarity in anticipation of the repolarization phase, 
thus maintaining charge neutrality. This waveform uses the minimum amount of charge per phase 
that is necessary to reach the threshold for an action potential within the assigned time window. 

3.3. Solutions in Open Loop with Phase Representation 
The notion of state is used in a slightly different way in ref. [74, 75]. In these studies, the neuron 

is assumed to fire action potentials periodically at rest, and the evolution of the neuron’s trans-
membrane voltage is subsumed in a phase model, i.e., a differential state-space model whose state 
variable ڋ is confined to the interval [0, 2ᅺ[ and represents the instantaneous phase of the trans-
membrane voltage during the time window. The values (0)ڋ = ԉ)ڋ ,0 ) = 2ᅺ denote the phase val-
ues at which action potentials are fired, and the injected stimulus Ӿ(ԣ) over the interval (0, ԉ ) must 
be chosen to enforce an action potential at time ԉ . The model is typically formulated as: 

ڋ ̇ = ᆂ + ԏ(ڋ)Ӿ(ԣ)                                              (8) 
where ᆂ is the natural frequency of the neuron’s oscillations and ԏ(ڋ) is the phase response curve 
(PRC) [76], which is a function modeling the sensitivity of the neuron to exogenous stimuli. Stud-
ies [74, 75] exploit the regularity properties of the phase model in (Eq. 8) and, using a variational 
framework, demonstrate that, for any choice of ԉ > 0, an optimal current Ӿ∗(ԣ) exists, is unique, 
and is provided by an analytical formula as a function of the PRC ԏ(ڋ), i.e., Ӿ∗(ԣ) = Ӿ∗ॕڋ(ԣ)ॖ. Since 
the PRC is a sensitivity function and can be estimated offline based on the neuron’s oscillation at 
rest, the optimal current Ӿ∗(ԣ) was computed offline for all ԣ ∈ (0, ԉ ) by mapping the sequence of 
desired phases ڋ(ԣ) onto the interval [0, 2ᅺ]. The optimal current was then applied in open loop to 
neuron models of increasing complexity and nonlinearities.  

Interestingly, since the optimal current depends on the instantaneous phase, the values Ӿ∗(ԣ) can 
be mapped onto any time interval (0, ԉ ), which means that the optimal solution Ӿ∗(ԣ) can be re-
peated over consecutive nonoverlapping intervals of different lengths to enforce an irregular spik-
ing pattern. In case a regular spiking pattern must be followed, instead, a minimum energy stimulus 
can be achieved by envisioning the desired spiking pattern as the output of a reference phase model 

րց̇֍ڋ = ᆂ֍րց + ԏ֍րցिڋ֍րցीӾ(ԣ),                                    (9) 
with ᆂ֍րց  and ԏ֍րցिڋ֍րցी assigned. In this case, the optimal stimulus can be chosen to minimize 
both the energy of the stimulus and the distance between the actual phase ڋ(ԣ) of the neuron, which 
follows (Eq. 8), and the desired phase ڋ֍րց(ԣ) for all ԣ. This problem was first formulated in [77] 
for neurons and resulted in an open loop optimal solution Ӿ∗(ԣ) that depends on both the desired 
PRC ԏ֍րցिڋ֍րցी and an upper bound on the mismatch ੶ԏ֍րց(ڋ) − ԏ(ڋ)੶, where the upper bound 
can be set conservatively offline without prior knowledge about the neuron’s activity. 
 

3.3.1. From “Minimum-Energy” to “Minimum-Time” Stimulation.  
The problem formulated in (Eq. 6) with the phase model in (Eq. 8) aims to minimize the energy 

of the stimulus over the interval of interest (minimum-energy stimulation). A variation to this 
problem is the so-called “minimum time” problem and was proposed in refs. [78, 79]. In this case, 



the phase model in (Eq. 8) is retained but the goal is to determine the optimal current Ӿ∗ॕڋ(ԣ)ॖ that 
minimizes the arrival time ԉ  of an action potential under the constraint that the current must be 
charge-balanced over [0, ԉ ] and bounded at all times, i.e., |Ӿ| ≤ Ӿֈռ֓, with Ӿֈռ֓ being a known 
finite value. As in [74, 75], a variational approach can be used to derive the optimal solution 
Ӿ∗ॕڋ(ԣ)ॖ, which is expressed as a function of the PRC ԏ(ڋ). Further developments for the minimum 
time problem were later given in [80], where an optimal presynaptic stimulus was determined, and 
the optimization was constrained on an estimated model of the phase portrait of the neuron. 

 
3.3.2. Experimental Validation of Phase-based Optimal Stimulation Protocols.  

Minimum-energy and minimum-time solutions developed in [74, 75, 77-79] have demonstrated 
a direct translational potential when tested in vitro in hippocampal slices from rats. Figure 6 is 
reported from [77], which provides a proof-of-concept validation of the phase-based methods.  

 
Figure 6. Phase-based optimal stimulation in vitro. Response of a pyramidal neuron in vitro to a minimum energy stimulus (a) and two suboptimal 
stimuli, i.e., stimulus 1 (b) and stimulus 2 (c) reported in (Wilson et al., 2015). A) Voltage traces (black lines) and applied stimulus waveform (red 
lines). B) Histograms of inter-spike-intervals for the neuron under stimulation. Coefficient of variation (CV) values are reported. C) Instantaneous 
phase of the applied stimulus at the time of each action potential (black dots). The stimulus waveform is overlapped (red line). D) Histograms of 
the stimulus phase at the time of action potentials. Entropy values are reported as mean ± SEM. Image reproduced from [77] under the terms of the 
Creative Commons Attribution License (CC BY 4.0). © 2015 Wilson, Holt, Netoff and Moehlis. 

In this study, the optimal open-loop stimulation protocol was shown to enforce a regular firing 
pattern in pyramidal neurons (black line, Fig. 6A) with small differences between consecutive 
inter-pulse intervals (Fig. 6B). Also, the shape of the optimal current (red line, Fig. 6A) was shown 
to modulate the amount of charge delivered to the neuron over time to enforce a small, fixed lag 
between the stimulus and the neuron’s action potentials (Fig. 6C-D). Finally, the optimal solution 
was shown to outperform non-optimal stimuli (compare panel a) versus panels b-c) in Fig. 6) both 
in terms of precision of the enforced spiking pattern (Fig. 6B) and lag between the stimulus and 
the evoked action potentials (Fig. 6D). In a similar in vitro preparation, ref. [53] compared the 



performance of minimum energy stimuli from [74, 75] to standard pulsatile stimulation protocols 
and demonstrated that the optimal solutions offered higher efficiency and a more precise control 
of the spiking pattern of pyramidal neurons than pulsatile stimulation protocols while requiring 
significantly less energy.  

Overall, solutions [74, 75, 77-79] are relevant because a clear rationale is provided to determine 
the waveform of the applied currents. Specifically, the optimal current Ӿ∗ॕڋ(ԣ)ॖ is proportional to 
the PRC ԏ(ڋ), and this results in the amplitude of Ӿ∗ॕڋ(ԣ)ॖ rapidly increasing as the PRC is com-
pressed onto short time intervals, i.e., as the time ԉ  is moved closer to zero. Accordingly, it is 
demonstrated that a bang-bang stimulation protocol (i.e., a controlled alternation between the val-
ues +Ӿֈռ֓ and −Ӿֈռ֓) is necessary to minimize the arrival time of an action potential, whereas for 
values ԉ ≫ 0 (i.e., for small perturbations), the intensity of Ӿ∗ॕڋ(ԣ)ॖ decreases with the frequency 
of the oscillations of the neuron’s transmembrane voltage and can be modulated dynamically at 
different phases according to the sensitivity of the neuron to perturbations.  

 
3.4. Solutions in Open Loop with Stochastic Modeling of Neural Spiking  

A limitation to the formulations proposed in [53, 74, 75, 77-80] lies in the assumption that either 
neurons fire periodically on their own or the neuronal activity in a time window bears no impact 
on the activity during the next window. Spiking history, however, has a pivotal role in shaping the 
propensity of a neuron to future spikes [81, 82]. Hence, studies [83, 84] developed a more general 
formulation of the optimal stimulation problem, where the objective is to control the timing of 
several, irregularly spaced action potentials in a sequence rather than the arrival time of a single 
action potential at the time. To achieve this goal, the cost function is modified to explicitly penalize 
the mismatch between the entire spiking pattern ڃ fired by the neuron over an assigned time hori-
zon and a desired pattern ڃ,̂ while the control variable is the current Ӿ(ԣ) to be injected in the 
neuron, i.e., ډ(ԣ) = Ӿ(ԣ) and ӿ(ډ) = Ӻ{Ԓ(ڃ, -Ӿ}, where Ԓ(⋅) is a measure of the cost incurred be|̂(ڃ
cause of the mismatch (e.g., a negative Dirac’s delta function) and the conditional expected value 
Ӻ{⋅ |Ӿ} is computed across all admissible spike trains ڃ that the neuron could fire.  

The use of a conditional cost function requires an estimation of the conditional probability of 
the spiking pattern ڃ, given the input current Ӿ(ԣ), i.e., ԟ(ڃ|Ӿ). To estimate this probability for any 
train ڃ, a stochastic model was developed, where the arrival time of an action potential is given by 
an integrate and fire (IF) model with a soft stochastic threshold. Similar to the LIF model in (Eq. 
5), the IF model aims to capture physiological constraints that may limit the evolution of the neu-
ronal transmembrane voltage, including refractoriness and rate saturation, while the stochastic 
threshold accounts for the fact that the firing rate of a neuron may fluctuate over time because of 
presynaptic stimuli and noise. The combination of the IF model and the soft stochastic threshold 
results in a point-process representation of the neuron’s spike arrival times, which is then used to 
estimate the probability ԟ(ڃ|Ӿ). Finally, the combination of the stochastic neuron model and the 
cost function ӿ(ډ) = Ӻ{Ӹ(ڃ,  Ӿ} results in a convex optimization problem, whose solution is|̂(ڃ
unique and can be calculated numerically using a gradient-based algorithm. 

Figure 7 reproduces numerical simulations reported in ref. [83]. In these simulations, a neuron 
model was stimulated to track a reference spike train ڃ ̂over 20 consecutive trials, while the inten-
sity of the applied current Ӿ(ԣ) was constrained.  



Figure 7. Stochastic optimal stimulation of single neuron. Example of optimal stimulus proposed in (Ahmadian et al., 2011) to track a spiking 
pattern. A-B) Predicted voltage trace of a neuron model (A) responding to the optimal stimulus (B). Dashed lines in B) indicate the amplitude 
constraints on the optimal stimulus. C) Arrival times of the desired spike train (gray dots) and the actual spike train (black dots) of a neuron model 
under the optimal stimulus reported in B) over 20 trials. Image reproduced with permission from [83], © 2011 American Physiology Society. 

Fig. 7A reports the transmembrane voltage of the neuron model during one trial in response to 
the optimal stimulus Ӿ∗, and Fig. 7B shows the temporal pattern of Ӿ∗ along with applied constraints 
(dashed lines). The optimal stimulus rapidly changes around the time of each spike in the desired 
pattern ڃ ̂(gray dots in Fig. 7C) to elicit an action potential and then hyperpolarize the neuron right 
after. This optimal stimulus results in consistent spiking patterns across multiple trials and limits 
the jitter between the time of the desired spikes and the time of the actual spikes (Fig. 7C), thus 
increasing the precision in tracking ڃ.̂  

Interestingly, the optimal stimulus in Fig. 7B is applied in open loop, which indicates that the 
optimal design encompassed the desired spiking pattern ڃ ̂and a model of the neuron’s evolution 
but does not rely on any feedback observation about the current state of the neuron or actual pattern 
 Also, Fig. 7A-B indicate that the optimal stimulus is not a sequence of suprathreshold impulses .ڃ
delivered at the time of the desired spikes in ڃ.̂ Because of the model predictions, in fact, changes 
in the stimulus’ shape aim to anticipate the desired spikes and last several milliseconds beyond the 
spikes, which contribute to make the response robust against trial-to-trial fluctuations. 
 

3.5. Solutions in Closed Loop 
A potential limitation to the solutions presented in section 3.2-3.4 is that high levels of noise, 

unforeseen dynamics in the neuronal activity, and abrupt events such short-term synaptic stimuli 



may corrupt the effects of the optimal stimulation protocol and result in a deterioration of the 
overall performance. Lack of precision in evoking action potentials at the expected time and rising 
jitter across trials between the desired spiking and the actual spiking are common indicators of a 
performance deterioration and are often observed when optimal stimulation protocols are imple-
mented in loosely controlled environments [85]. 

The lack of robustness of these optimal stimulation protocols stems from the open loop imple-
mentation and is well studied in systems theory, e.g., see [86] for a general presentation. Although 
solving different problems, phase-based optimal stimuli in [53, 74, 75, 77-80] and stochastic 
model-based optimal stimuli in [83, 84] share a common trait, i.e., they both rely on a state variable 
(i.e., the phase and the spiking pattern ڃ, respectively) in the cost function or in the final formula 
of the optimal solution. Accordingly, these solutions estimate the state variable offline and deter-
mine the optimal stimulus as a function of the estimated values. As substantial mismatches appear 
between the neuron’s estimated state and the neuron’s actual behavior, though, the optimal stimu-
lus remains unchanged and therefore becomes unable to guarantee the expected spiking patterns. 
These limitations have motivated the development of optimal solutions in closed loop. The key 
idea for a transition to closed loop optimal stimulation protocols is depicted in Figure 8.  

Figure 8. Optimal stimulation protocols in open loop versus closed loop. A) Schematic of optimal stimulation in open loop. An optimization 
problem is solved offline to determine the combination of parameters, e.g., ډ∗ = (𝑥φ∗ , 𝑥ϵ∗), in a set Ω that minimizes a cost function ӿ(𝑥φ, 𝑥ϵ) 
(yellow star). The optimal stimulus is programmed using ډ∗ and results in a precomputed pulse sequence that is delivered regardless of the neuron’s 
actual evolution over time. B) Schematic of optimal stimulation in closed loop. Differently than A), the optimal solution is a time-varying function 
of a state variable ڋ that accounts for the neuron’s evolution, i.e., ډ∗(ԣ) = ԕ∗ॕڋ(ԣ)ॖ. At any time ԣ >  accounts for the activity of the neuron (ԣ)ڋ ,0
up to ԣ and is estimated by an algorithm (Optimal Control Algorithm) using measurements of the neuron’s activity over an interval ∆֏ up to ԣ. The 
algorithm then implements the formula ډ∗(ԣ) = ԕ∗ॕڋ(ԣ)ॖ to determine the stimulus that must be applied at time ԣ + 1 (e.g., pulse (3) in red). 

While open loop stimulation protocols rely on solving an optimization problem offline and ap-
ply the resultant optimal stimulus (e.g., a pulse sequence) regardless of the neuron’s evolution over 
time (Fig. 8A), closed loop protocols adjust the timing and/or amplitude of the applied stimuli to 
the actual, i.e., current, state of the neuron, as estimated from measurements that are directly col-
lected from the neuron online (Fig. 8B).  

From a theoretical viewpoint, the transition from open loop to closed loop stimulation requires 
minimal changes to the optimization framework and ultimately results from using an online esti-
mation of the state variable ڋ(ԣ) in the formula of the optimal solution. For instance, studies in [87, 
88] introduced a mathematical formulation based on the phase model (Eq. 8) where the value of 



the PRC ԏ(ڋ) is updated over time as the actual phase ڋ(ԣ) is measured. Accordingly, the phase-
based optimal current Ӿ∗ॕڋ(ԣ)ॖ discussed in section 3.3 is determined in closed-loop. In [87, 88], 
the resultant optimal stimulus resulted in a bimodal protocol, i.e., the stimulus switches between a 
minimum and a maximum value (bang-bang stimulation), and the phase ڋ(ԣ) is estimated to deter-
mine the switching time between the minimum value and the maximum value, thus resulting in a 
time-varying irregular stimulation pattern.  

Iolov et al. in [85], instead, noted that the minimum-energy current Ӿ∗(ԣ) that makes a neuron 
fire at a given time ԉ > 0 abides the Bellman’s principle of optimality, i.e., the optimal solution 
over the interval (0, ԉ ] must be also optimal over any partition of the interval (0, ԣφ] and (ԣφ, ԉ ], 
with 0 < ԣφ < ԉ . Specifically, the original minimum-energy problem is defined with cost function 

ӿ(ډ) = Ӻ ঱ᅯ௷ ԓԢᅽ(Ԣ)2ډ

0
+ (ᅽ − ԉ)2ল,                          (10) 

which trades off the energy associated with the control variable ډ(ԣ) = Ӿ(ԣ) and the mismatch be-
tween the desired onset time ԉ  of the evoked action potential and the actual onset time ᅽ  (i.e., ᅽ ≠
ԉ  but ᅽ → ԉ ) using the coefficient ᅯ > 0.  

Authors defined the minimum remaining cost as 

Ԧ∗(ԣ) = min۵(֎)Ӵ֎≥֏ Ӻ ঱ᅯ ௷ ԓԢᅽ(Ԣ)2ډ

ԣ
+ ॕ(ᅽ − ԣ) − (ԉ − ԣ)ॖ2ল,                 (11) 

to represent the cost associated with the optimal stimulus from a time ԣ < ᅽ to the onset time ᅽ  of 
the evoked potential, and solved the recursive problem  

min۵(֎)Ӵ֎<֏ Ӻ ঱ᅯ௷ ԓԢԣ(Ԣ)2ډ

0
+ Ԧ∗(ԣ)ল                            (12) 

using the Hamilton-Jacobi-Bellman equation [56]. The revised minimization problem in (Eq. 12) 
was constrained on a LIF neuron model, which describes the evolution of the neuron’s transmem-
brane voltage ԋ , and the optimal solution was unique and analytically derived as a function of ԋ , 
i.e., ډ∗ = Ӿ∗(ԋ , ԣ). Accordingly, ԋ (ԣ) was measured at any time ԣ to inform the optimal current and 
led to a closed loop implementation. The exact formula for the optimal solution in closed loop 
Ӿ∗(ԋ , ԣ) can be found in [85]. Figure 9 reports numerical simulations of a LIF model that responds 
to Ӿ∗(ԋ , ԣ) under the effects of standard Brownian motion noise.  



Figure 9. Optimal stimulation of neurons in closed loop. Example of closed-loop minimum-energy stimulation proposed in (Iolov et al., 2014) to 
control the spiking pattern of a neuron model in a high-noise regime. A-B) The optimal stimulus is obtained by applying the optimality principle 
(A) and the maximum principle (B), respectively. Solution in A) is an adaptive function of the neuron’s transmembrane voltage (closed loop) while 
solution B) is computed offline and applied in open loop. Panels a) in A-B) show the empirical firing rate averaged across 50 spike trains generated 
by the neuron under optimal stimulation (blue line) and a smoothed version of the desired spike train (red line). Panels b) in A-B) show the target 
times of the desired spike train (dashed red lines) and the actual spike train of the neuron model under optimal stimulation over 50 trials (blue dots). 
Image reproduced from [85] under the terms of the Creative Commons Attribution (CC-BY) 3.0 license, © 2014 IOP Publishing Ltd. 

To assess the merit of the closed-loop formula Ӿ∗(ԋ , ԣ), the original minimum energy problem 
with the cost function in (Eq. 10) was also solved using the maximum principle, which resulted in 
an open-loop analytical formula for the optimal current with no explicit dependency on the neu-
ron’s transmembrane voltage, i.e., Ӿ∗ = Ӿ∗(ԣ). Fig. 9A and Fig. 9B compare simulation results for 
the closed-loop formula Ӿ∗ = Ӿ∗(ԋ , ԣ) obtained solving (Eq. 12) and the open-loop formula Ӿ∗ =
Ӿ∗(ԣ) obtained using the maximum principle, respectively. A comparison between the estimated 
firing rates (Fig. 9A, panel a versus Fig. 9B, panel a) and the jitter among spike arrival times across 
multiple trials (Fig. 9A, panel b versus Fig. 9B, panel b) for the two formulations indicate that, in 
presence of strong Brownian noise, the closed-loop solution steers the neuron to elicit action po-
tentials at the desired times (dashed red lines) with higher temporal precision and less inter-trial 
jitter than the open-loop solution. 

Altogether, these studies provide a rich body of mathematical methods and numerical solutions 
that enable the control of the neurons’ spiking with maximum temporal precision and minimum 



energy. The existence of such solutions is critical to the decoding and the enhancement of sensory 
stimuli, e.g., [64, 67, 89], as well as the encoding of neural information for brain-machine interface 
applications. Moreover, these solutions are instrumental to take full advantage of the potential for 
neuromodulation offered by the latest technological developments, which include optogenetics, 
high-density electrode arrays, programmable interfaces, and closed-loop neural stimulators [45, 
90-92]. Finally, these solutions provide the opportunity to precisely target individual neurons and 
small groups of neurons. 
4. OPTIMAL STIMULATION FOR ENSEMBLES OF NEURONS 

Despite successful proof-of-concept in vitro applications [53, 77], the optimal stimuli discussed 
in section 3 have largely been confined to the status of theoretical contributions thus far. They have 
a remarkable merit, though, as they have contributed to establish core mathematical foundations 
and tools for the optimal stimulation framework. The lack of empirical applications for these op-
timal solutions, instead, likely depends on the limited range of preclinical problems where a single 
neuron must be controlled via dedicated inputs, where these problems are mostly confined to the 
regulation of the firing rate and synchrony of neurons against exogenous insults, e.g., [65, 93, 94].  

Most neural stimulation-based applications of clinical interest, instead, involve the modulation 
of large populations, i.e., ensembles, of neurons. Hence, extensive investigation has been devoted 
in recent years on how to extend the optimal stimulation framework from controlling a single neu-
ron to controlling an ensemble of neurons. A straightforward answer to this question would in-
volve adding as many terms to the cost function as the number of neurons in the ensemble, as the 
solution should trade off the precision of the spiking pattern of every neuron in the ensemble. As 
well, the number of constraints to the optimal solution should grow linearly with the size of the 
ensemble, as one model per neuron should be added, see Figure 10. 



Figure 10. Challenges affecting the design of optimal stimuli for neural ensembles. An ensemble of ԃ > 0 neurons (gray box) can be represented 
as a system with ԃ  output channels, i.e., one per neuron, where each output is the neuron’s spiking pattern (blue raster plots). A challenge is that 
the interactions between neurons are difficult to model, and this affects the ability to solve optimization problems for large ensembles. Another 
challenge is that the ensemble is underactuated because, despite ԃ  outputs, a single electrode is typically inserted in the ensemble (white bar). A 
common electric stimulus is delivered through the electrode and must therefore modulate the spiking pattern of all neurons simultaneously. Hence, 
limitations may arise on the number of distinct spiking patterns that can be simultaneously imposed on groups of neurons in the ensemble. 

As indicated in Figure 10, this solution poses significant challenges and rapidly loses feasibility 
as the number of neurons increases. Altogether, the following challenges must be considered when 
the regulation of the spiking activity in a neural ensemble is investigated: 
1. Remarkable technical challenges arise from scaling-up neuron models, regardless of whether 

these models are simple LIF models or stochastic models. Challenges emerge because these 
models are expected to describe both the concurrent evolution of neurons and the interactions 
that are formed among neurons, even though these interactions are often difficult to ascertain 
[95]. Accordingly, it becomes difficult to properly constrain the optimization problem.  



2. As the number of state variables increases with the number of neuron models, challenges are 
posed by the numerical optimization routines. The computational time of these routines grows 
significantly as more variables and more complex cost functions are considered [12], which 
reduces the chance of calculating a solution to an optimization problem in a reasonable time.  

3. The stimulation of an ensemble of neurons is intrinsically underactuated because the number 
of neurons is remarkably larger than the number of applicable stimuli [96]. As the problem 
presents more outputs than inputs, neurons cannot be driven to distinct spiking patterns, and 
the optimal stimuli must rather aim to synchronize all neurons to a common pattern or disrupt 
a common pattern (i.e., desynchronize) by resetting all neurons to their spontaneous activity. 

Hence, besides a few case studies involving very small ensembles, e.g., two-neuron ensembles 
in [97], these challenges have prevented from generalizing the framework discussed in section 3. 
To address issue 1), a common approach has rather consisted of the following three steps [98]:  

a) Envision an ensemble of ԃ > 1 neurons as a complex network [99], where the evolution of the 
individual neurons is modelled simplistically (e.g., via LIF models) and often driven by sto-
chastic inputs. 

b) Assume that the interactions among neurons contribute linearly to the neuron models, i.e., the 
contribution Ԗֆ→օ of any neuron Ԛ on any neuron ԙ in the ensemble is an additional term in the 
model of neuron ԙ and depends on the state ڋֆ of neuron Ԛ. Since Ԗֆ→օ ≠ 0 for pairs (Ԛ, ԙ) of 
interacting neurons and Ԗֆ→օ = 0 otherwise, the entire set of connections will be given by a 
matrix function ෦ = ृԖֆ→օॄφ≤ֆӴօ≤կ , whose actual structure may be partially unknown. 

c) Design optimal control solutions that remain valid for a large set of functions ෦, thus guaran-
teeing that the optimality is maintained even though specific connections Ԗֆ→օ are unknown. 

The general idea behind steps a), b), and c) is to embrace the issue at point 1) and shift the focus 
from constraints derived from the neuron models to constraints derived from a characterization of 
the uncertainty associated with these models. This means that the optimal solution can no longer 
be obtained through a variational formula as in [53, 74, 75, 78-80, 87, 88] for single neurons. The 
optimal solution, instead, must be obtained using a robust control approach, where the term “ro-
bust” is according to the mathematical sense defined in [100] and means that the optimal solution 
must account for an explicit characterization of the uncertainty associated with the neuron models, 
i.e., the solution must be robust against uncertainty coming from simplistic model assumptions.  

 
4.1. Robust Stimulation Protocols and Network Connectivity 

The shift towards robust design methods addresses both issue 1) and issue 2) indicated in sec-
tion 4 above, as it leads to constraints that focus on the ensemble as a whole unit rather than indi-
vidual neurons. The shift also results in fewer constraints overall, which make the computation of 
an optimal solution more easily attainable. The shift, however, has limited impact on issue 3), i.e., 
under-actuation [96]. The introduction of robust design methods rather brought additional empha-
sis on one critical aspect of controlling neural ensembles, which is that the connectivity properties 
of neurons influence the formation of collective behaviors across the ensemble in response to ap-
plied stimuli [101]. Specifically, the topology of the network formed by neurons can result in a 
scenario where stimulating certain neurons (a.k.a. “drivers”) is more effective than stimulating 
other neurons to elicit a common pattern. This would occur because perturbations applied to 



drivers can propagate more easily throughout the entire ensemble.  
Altogether, (i) the shift towards robust design methods and (ii) the link between control objec-

tives in a neural ensemble and ensemble connectivity are investigated in [102-109] and organized 
around two main problems, i.e., 
P1) Identification of drivers in a neural ensemble. The problem deals with finding the neurons 

in the ensemble that should be primarily stimulated to control the entire ensemble. Studies 
[102, 103] focus on this problem and follow steps a), b), and c) outlined above to define an 
optimal set of drivers that should be stimulated to recruit the entire ensemble into one common 
trajectory. Authors use an established relationship between controllability of networks and 
eigenvalues of ෶ ≜ [෦ ډ], where ෦ denotes the connectivity matrices associated with the en-
semble (see section 4) and ډ is a binary vector indicating the neurons that will receive stimu-
lation in the ensemble. Note that ډ is the vector to be chosen, and the eigenvalues of ෶ deter-
mine the trajectories that the ensemble can reach under stimulation, see [98, 110, 111] for 
details. Also, depending on the value of ډ, the eigenvalues of ෶ can be modified, thus deter-
mining the span of trajectories that the ensemble may reach. Accordingly, authors first for-
mulate boundaries on the eigenvalues of ෶ within which the desired common trajectory 
would be reachable. Then, an evolutionary algorithmic procedure is derived to select the driv-
ers whose stimulation would maximize the enforcement of the desired common trajectory 
while guaranteeing that the controlled ensemble has a matrix ෶ with eigenvalues within the 
assigned boundaries. Studies [104-106], instead, focus on a variation of the optimal driver 
selection problem and investigate how to alternate the stimulation among subsets of drivers 
while maintaining synchronization across the ensemble. These studies follow steps a), b), and 
c) above to derive adaptive solutions that optimize the switching times from one subset to the 
next. 

Physiologically, the studies addressing problem P1 are relevant because they demonstrate, 
under mild assumptions that are consistent with the structure of most neuronal networks, that 
wide synchronization across a neural ensemble can be achieved by randomly delivering stim-
uli to those neurons in the network that, on average, have the largest degree of centrality 
(DoC), where DoC is a measure of how many connections a neuron has in the ensemble [99]. 
This suggests that neurons with high DoC, e.g., neurons located in dense regions of the en-
semble, can serve as drivers for the entire ensemble.  

P2) Definition of optimal stimulation protocols for drivers. The problem deals with finding op-
timal sequences of stimuli that, when applied to an assigned set of drivers, will synchronize 
the entire ensemble. Tang et al. solved this problem in [107-109] via the Lyapunov function 
method [112]. Specifically, authors first select target drivers by combining evolutionary 
search algorithms from [102, 103] and then introduce local state-feedback stimulation strate-
gies for the target drivers. Each stimulation strategy has a time-varying gain and results in a 
sequence of pulses with varying amplitude and duration. Finally, the Lyapunov function 
method is used to determine boundaries on the control gains that would guarantee the syn-
chronization of the ensemble in the mean square sense, and a constrained optimization prob-
lem with relaxation is solved to determine the set of gain values that best satisfy these bound-
aries while minimizing the energy of the stimuli to the drivers.  

Beyond the technical merits of the proposed solutions, studies addressing problem P2 are 
relevant because they provide useful insights into the mechanisms of synchronization within 



neural ensembles. It is shown, in fact, that synchronous behaviors can be elicited by stimulat-
ing drivers in a staggered way, i.e., one driver at the time instead of all drivers at once. Also, 
it is shown that information about the connectivity within the ensemble, such as notions of 
neuroanatomy and information derived from tractography studies, can be explicitly used in 
the stimulation protocols to elicit collective behaviors efficiently while limiting the total 
amount of delivered stimulation, which is appealing for clinical applications.  

Finally, the wealth of stimulation protocols investigated in refs. [104-109] to address problems 
P1 and P2 is relevant because it provides a decentralized approach to the control of neural ensem-
bles. All protocols devised in [104-109], in fact, adjust the timing and amplitude of pulses sepa-
rately for each target driver based on the local mismatch between the activity of the driver and the 
activity of the most immediate neighbors. The notion of decentralized stimulation is appealing for 
applications where multielectrode arrays are used to stimulate and record the neural activity in 
multiple ensembles. Examples of such applications include retinal prostheses [113] and multireso-
lution DBS [45]. In these applications, a decentralized protocol can be translated into an efficient 
algorithm that sequentially activates one electrode contact at the time, thus preserving the safety 
of the stimulation and reducing the average amount of stimulation delivered at each electrode. 
 

4.2. Optimal Stimulation for Stochastic Ensembles 
The major contribution of the methods discussed above consists of decentralized stimulation 

protocols for neural ensembles, where the protocols are designed based on local information and 
assumptions about the structure of the ensemble. These protocols can synchronize the entire en-
semble while being selectively applied to a subset of neurons in the ensemble, which is a relevant 
trait to be used in applications that involve multielectrode arrays and multi-site stimulation. 

However, the assumptions underlying these methods (i.e., steps a), b), and c) described in sec-
tion 4) are nontrivial, and several technical challenges may arise from pursuing robust solutions 
[98]. Hence, alternative approaches have been pursued in recent years. Among these alternatives, 
methods that consider neural ensembles as multi-input multi-output (MIMO) stochastic processes 
have drawn significant interest, e.g., [96, 114, 115].  

The central idea of a stochastic representation is that the evolution of a neuron can be subsumed 
in the neuron’s spiking pattern, and the spiking patterns of many locally clustered neurons share 
similar statistical properties [82]. Accordingly, the mechanisms of spike generation for a cluster 
of neurons in an ensemble can be subsumed into a single generative stochastic model that is fitted 
on spike trains from the entire cluster and is often constructed nonparametrically [81, 82]. The 
schematic in Figure 11 depicts the construction of generative models in case of multielectrode 
arrays and multi-site stimulation.  



 
Figure 11. Multi-site stimulation and stochastic modeling for neural ensembles. A) A neural ensemble stimulated with a multielectrode array can 
be represented as a multi-input multi-output (MIMO) system, where stimulating electrodes are input channels and the multiunit activity recorded 
at each electrode is a distinct output channel. Output channels capture the activity of subsets of neurons in the ensemble (e.g., sub-ensembles 1, 2, 
…, ԃ ). The spiking pattern ڃֆ at any channel 1 ≤ Ԛ ≤ ԃ  over a given temporal interval is influenced by the sequence of stimuli ׊ֆ applied at 
channel Ԛ and partially overlaps with the spiking patterns at adjacent channels over the same interval. B) A stochastic model (e.g., a point process 
model) can be estimated for every input-output channel from A), e.g., by using maximum-likelihood methods. For any channel Ԛ, the stochastic 
model (blue box) provides the likelihood of the pattern ڃֆ as a function of the stimuli ׊ֆ (black arrows) and the neighbor patterns ڃօ, ԙ ≠ Ԛ (red 
arrows). The stochastic model is often chosen nonparametric to facilitate the fitting on available spiking data. 

As shown in Figure 11, recordings from a single electrode contact may capture the cumulative 
spiking pattern of a cluster of neurons (Fig. 11A), and the spiking pattern of a cluster can be influ-
enced by stimuli delivered through the electrode contact as well as the spiking patterns of neighbor 
clusters. Hence, the neural activity at a single electrode contact can be represented as a multivariate 
stochastic process. As recordings at multiple electrode contacts become available, efficient algo-
rithms, e.g., [116-118], have been introduced to estimate nonparametric models for the stochastic 
processes at all electrodes simultaneously and retain significant interactions between the activities 
at adjacent electrode contacts, thus leading to a MIMO model of neural ensembles (Fig. 11B).  

As discussed in section 3.4 for individual neurons, the introduction of a purely stochastic frame-
work, requires a probabilistic formulation of the control objectives used to determine an optimal 
stimulus. Refs. [96, 115] address this issue for a scenario where all neurons in an ensemble receive 
dedicated stimulation, e.g., via optical probes. In these studies, authors determine the conditions 
under which neurons can be concurrently driven to a set of desired spiking patterns (one pattern 
per neuron) and the likelihood of this event. Then, denoted with ڃ։, ڃ։̂, and چ։ the actual spiking 
pattern, a desired spiking pattern, and a stimulus sequence for the generic neuron ԝ, respectively, 
in an ensemble of size ԃ > 1 authors demonstrate that the optimal input ׉∗ = ∗ϵچ ∗φچ] ∗։چ… ∗կچ… ] 
that maximizes the likelihood of enforcing the desired patterns ̂ڃ = ϵ̂ڃ φ̂ڃ] ։̂ڃ… կ̂ڃ… ] is obtained 
by solving the problem 

minى ӿ(׉) = Ӻ{Ԓ(ڃ,  (13)                                 ,{׉|̂(ڃ

where the cost function has a similar structure as the function used in Figure 7 and Ԓ(ڃ,  is a ̂(ڃ
measure of mismatch between the desired patterns and the actual patterns ڃ obtained under ׉.  

The significance of the stochastic framework discussed in [96, 115] is twofold. First, optimal 



stimulation protocols derived in this framework have a precise probabilistic sense, which better 
reflects the performance limitations that may stem from uncertainty about the activity of individual 
neurons in the ensemble. Second, it is shown that the performance of the optimal stimulation pro-
tocol depends on whether the ensemble is controllable to the desired pattern ڃ.̂ This means that 
the controllability of an ensemble, which can be determined a priori, will inform the stimulation 
design process. Based on controllability information, in fact, it becomes possible to decide whether 
a desired set of spiking patterns is attainable via stimulation and, depending on the application, it 
becomes possible to predict the likely therapeutic value of stimulation. 

Refs. [95, 119] further develop the MIMO stochastic framework by introducing a kernel-based 
representation of the neurons’ spiking patterns. Specifically, authors observed that, in neural en-
sembles of practical relevance (e.g., cortical columns), the spiking patterns of ԃ  neurons (or neu-
ron clusters) can be described as a linear combination of Ԃ  parametric stochastic processes (i.e., 
kernels), with Ԃ ≪ ԃ . The spiking patterns of ԃ  neurons can therefore be expressed as ڃ =  ,Ⴜ׍
where Ⴜ = [ᅿφ ᅿϵ ᅿϯ …ᅿծ ]յ  is the array of kernel functions and ׍ is an ԃ × Ԃ matrix of weights 
to be estimated offline from neural recordings. Depending on the desired patterns ڃ,̂ matrices ׍ 
and Ⴜ can then be used to design an adaptive, closed-loop stimulation protocol that drives the 
ensemble to ڃ.̂ As before, the protocols stemming from using  ׍ and Ⴜ are optimal in the sense 
that the resultant inputs to the ensemble minimize the mismatch between the neurons’ actual spik-
ing patterns and ڃ.̂ 
 

4.3. Optimal Stimulation for Ensemble Desynchronization 
Approaches discussed in section 4.1-4.2 aim to design stimulation protocols that can elicit a set 

of desired spiking patterns in a neural ensemble. Depending on the controllability of the ensemble, 
action potentials in these patterns can be arranged at constant intervals or irregularly [115]. Also, 
distinct patterns can be imposed on different clusters of neurons in the ensemble (e.g., via multi-
site stimulation) or all neurons can be synchronized to a common pattern.  

In the study of the CNS, though, neural synchronization is often associated with pathological 
conditions and chronic diseases, e.g., [120-123], and stimulation protocols are rather investigated 
to desynchronize neurons. Hence, several studies have focused on optimization methods that may 
lead to a desynchronization of neural ensembles.  

A few aspects of neural desynchronization are well-suited for using optimization techniques. 
First, the objective of desynchronization is to disrupt a common pattern. Several metrics quantify 
the degree of synchrony across a neural ensemble, e.g., see [124] for an overview, which means 
that the desynchronization of an ensemble can be mathematically posed as the problem of mini-
mizing the degree of synchrony in the ensemble. Second, while synchronization may require con-
tinuous and region-specific inputs to the ensemble [106-108] to preserve a high level of synchrony 
among neurons, desynchronization does not require the enforcement of any pattern to the ensem-
ble, and therefore stimuli do not need to be region-specific nor continuous in time. Hence, a desyn-
chronizing stimulation protocol can be derived by trading off two objectives, i.e., minimizing the 
degree of synchrony in the ensemble and minimizing the amount of stimulation delivered over 
time. This trade-off can be easily posed as part of an optimization problem. 

Consistently with the mathematical tools introduced in Section 3.3, neurons can be represented 
as oscillators with similar phase portraits that are entrained into a common pattern because of the 



mutual interconnections or a common noise [52, 125, 126]. Accordingly, a desynchronizing stim-
ulus works by resetting all neurons at once to a common resting state, from which neurons even-
tually escape by following different trajectories because of their own internal conditions and ex-
ogenous inputs [127]. 

Refs. [128, 129] formulate the desynchronization problem using the ensemble-averaged trans-
membrane voltage as a proxy for synchrony within the ensemble, i.e., the average voltage ԋ ̅ (ԣ) is 
a periodic signal in case of a fully synchronized ensemble and progressively loses regularity as 
neurons desynchronize. A phase portrait of ԋ ̅ (ԣ) is derived from numerical simulations of conduct-
ance-based models of individual neurons in the ensemble, and the optimal stimulus is designed as 
the minimum-energy input that can drive ԋ ̅ (ԣ) to an unstable fixed point. ԋ ̅ (ԣ) reflects the field 
potential activity in the ensemble, and an unstable fixed point for ԋ ̅ (ԣ) defines a condition in which 
neurons are utmost sensitive to noise and easily desynchronized by local perturbations [129]. 

Altogether, the approach developed in [128, 129] consists of two steps: (1) developing a repre-
sentation of the ensemble activity, e.g., a mean-field model of ԋ ̅ (ԣ), and (2) using tools devised for 
the control of individual neurons (see section 3.2-3.3) to solve a minimum energy problem for the 
ensemble, e.g., for the mean-field model of ԋ ̅ (ԣ). Figure 12 depicts the results of ensemble desyn-
chronization by reproducing numerical simulations from ref. [129]. 



Figure 12. Optimal stimulation for ensemble desynchronization. Numerical example of optimal desynchronizing stimulation for an ensemble of 
100 noisy, coupled neurons from (Nabi et al., 2013). A-B) Transmembrane voltage of the 100 neurons (black lines) and ensemble average ԋ ̅  (gray 
lines) in the absence of optimal control (A) and when an event-based optimal stimulus Ӿ∗(ԣ) is applied (B). A dotted horizontal line in A-B) indicates 
the minimum value (i.e., -20 mV) that ԋ ̅  must reach to trigger the stimulation. C) Event-based optimal stimulus Ӿ∗(ԣ) delivered to the ensemble in 
B) in response to ԋ ̅  passing the assigned threshold. D) Raster plot of the neurons in B) during event-based optimal desynchronization, with one line 
per neuron. Desynchronization is noted following each stimulus. Image reproduced with permission from [129], © 2013 Springer Nature. 

In this figure, an ensemble of 100 noisy, coupled neurons is simulated in the absence of stimu-
lation (Fig. 12A) and when the optimal desynchronizing stimulus is applied (Fig. 12B). The opti-
mal stimulus is applied according to an event-based policy (Fig. 12C), i.e., the stimulus is switched 
on when ԋ ̅ (ԣ) is away from the target unstable fixed point and switched off otherwise, and the 
shape of the optimal stimulus results in a rapid disruption of the collective firing pattern of the 
neurons in the ensemble (Fig. 12D).  
 

4.3.1. Ensemble Desynchronization Using Phase Representation  
A variation to the minimum energy problem for neural ensemble desynchronization is proposed 



in refs. [127, 130-132]. In these studies, neurons are represented in the phase space according to 
(Eq. 8), i.e., 

։̇ڋ = ᆂ + ԏ(ڋ։)Ӿ(ԣ)                                      (14) 
where ڋ։(ԣ) ∈ [0, 2ᅺ[ is the phase of the generic neuron ԝ, with 1 ≤ ԝ ≤ ԃ , and ԏ(⋅) is the phase 
response curve, which is assumed similar for all neurons. In this representation, neurons form a 
continuum of phase values across the ensemble, and the collective behavior of the neural popula-
tion at any time ԣ is captured by the probability distribution of the instantaneous phases ڋ։(ԣ). The 
state of the ensemble is therefore described by tracking the mean value of the phase distribution, 
i.e., ڋ(ԣ) =  or a related measure (ԣ)ڋ and the PRC ԏ(⋅) is estimated from the mean value ,〈։(ԣ)ڋ〉
of collective activity, e.g., see ref. [133] for details on PRC estimation from ensemble activity.  

Refs. [127, 130] develop a phase model for the average variable ڋ(ԣ), i.e., a model like (Eq. 8) 
above, and then use the approach described in Section 3.3 to design a minimum energy stimulus 
for steering ڋ(ԣ) to the value ڋ = 0 over a finite time interval. In this formulation, ڋ = 0 corresponds 
to a reset condition for the entire ensemble. In refs. [131, 132], instead, the objective is to design 
a set of minimum energy stimuli that are applied to spatially segregated clusters of neurons within 
the ensemble and evoke a coordinated reset (CR) among the clusters [134]. 

Altogether, methods proposed in [127-132] are relevant because of their clinical potential, as 
neural desynchronization may mediate therapeutic outcomes in several applications, e.g., see sec-
tion 5.2 for applications in DBS. Perhaps more importantly, these methods are appealing because 
of the simplistic models that are introduced to describe the ensemble’s field activity. These models 
can be efficiently estimated from field measurements such as EEG, local field potentials, and mul-
tiunit recordings, with mild assumptions about the connectivity within the ensemble that are typi-
cally met both in vivo and in vitro. Also, differently than the robust and stochastic methods dis-
cussed in previous sections, these mean-field models retain the simplicity of the phase-based mod-
els discussed for single neurons in section 3 and therefore allow to extend the optimization tools 
presented for single neurons to the design of stimulation protocols for neural ensembles. 

 
5. OPTIMAL STIMULATION IN CLINICAL APPLICATIONS 

The optimization framework presented in section 3-4 has been applied to the design of neuro-
modulation therapies for a wide range of applications, including (i) DBS for movement disorders, 
psychiatric disorders, and epilepsy, (ii) sensory neuroprostheses for retinopathies, hearing loss, 
and brain-machine interfaces, and (iii) optogenetics for fundamental neuroscience investigation. 
However, the translation of optimal methods and solutions from the theoretical framework to in 
vivo and in vitro experiments has advanced slowly, and it is only recently that the translation has 
gained momentum. Two common challenges across many applications can explain the lag between 
theoretical developments and applications: 
C1. Modeling gap. A significant gap exists between the simplistic models used to constrain the 

optimal solutions and the complex behavior of neural tissue over time. This gap has required 
the development of multivariate identification techniques to estimate relevant model param-
eters, which are often specific to single neurons (e.g., PRC and point process model param-
eters), from measurements of collective activity such as fluorescence calcium imaging or 
local field potentials. It is only recently that promising techniques, e.g., [133, 135, 136], have 
been proposed to significantly reduce this gap. 



C2. Technological gap. Since several optimal solutions are in closed loop, a need exists for de-
vices that can (i) stimulate neural tissue while gathering feedback measurements and (ii) 
reprogram the stimulation protocol in real time. Devices satisfying (i) have been intensively 
investigated for DBS applications, as numerous closed loop stimulation protocols have been 
proposed in recent years to modulate the DBS signal based on measurements of field poten-
tial, see a list in [137]. Devices satisfying (ii), instead, are critical to implement multi-site 
stimulation protocols for multielectrode arrays, non-square stimulus waveforms, and com-
plex optimization formulas as those discussed in section 4.1-4.2.  

Addressing challenges C1) and C2) has required an intense technology development, whose 
presentation is beyond the scope of this chapter, and has recently led to a new generation of neu-
rostimulation devices. These devices can alternate the stimulation among multiple electrode con-
tacts to create focused electric fields [44, 138-140], can record neural activity during stimulation 
with an adequate signal-to-noise ratio [92, 141], and have computational capabilities to handle 
complex algorithms implementing adaptive stimulation protocols [91]. The applications of optimal 
stimulation discussed in the following sections have been enabled by the development of these 
technological innovations. 

 
5.1. Minimum Energy Stimulus Design for DBS Applications 

An important problem in several neuromodulation therapies and especially DBS deals with the 
waveform of the electric pulses. Study [48] in section 3.2 provides a first attempt at using an opti-
mization framework to find a waveform that is safe, effective in eliciting action potentials, and 
energy efficient. The problem defined in [48], though, critically assumes that neurons are quiet at 
rest and receive an injected current. These assumptions hardly hold for in vivo scenarios, where 
the electric pulses are delivered extracellularly, and neurons display ongoing spiking activity.  

Despite the specific limitations of the embodiment presented in ref. [48], an optimization frame-
work is appealing to solve the trade-off between safety and energy consumption because, as dis-
cussed in section 3.2, it can lead to exploring stimulus waveforms beyond those typically tested in 
clinical programming protocols [31]. Accordingly, study [47] reformulated the minimum energy 
problem with two major innovations: 

 The charge-balanced optimal waveform Ӿ∗(ԣ) that minimizes the energy over the pulse wave-
form width ԉ  is now constrained by an upper bound, i.e., |Ӿ∗(ԣ)| ≤ Ӿ֏փ֍տ determined by safety 
consideration [9, 10] and must activate a bundle of geometrically reconstructed mammalian 
axon models when applied extracellularly in a volume (see cost function in Table 3); and 

 The solution Ӿ∗(ԣ) is determined numerically rather than analytically by combining an evolu-
tionary algorithm (i.e., genetic algorithm) and numerical simulations of the model axons. 

The result of this optimization process is reported in Figure 13. The optimal pulse waveforms 
were tested in vivo on a cat sciatic nerve and demonstrated superior energy efficiency and charge 
efficiency than conventional waveforms used in neural stimulation. Also, the study showed that 
an optimal pulse can have a Gaussian-like structure (Figure 13) with a smooth slope both for short 
and long widths, which is consistent with the solution provided by [48] and depicted in Figure 5. 



Figure 13. Examples of optimal stimulus waveforms for neural stimulation. Minimum energy stimulus waveforms for neural stimulation proposed 
by (Wongsarnpigoon & Grill, 2010) using a genetic algorithm. Waveforms are reported for different pulse widths (PW), ranging from 0.02ms to 
2ms. Curves represent the means of the optimal waveforms across five trials of the genetic algorithm, and the gray regions define 95% confidence 
intervals. Image reproduced with permission from [47], © 2010 IOP Publishing Ltd. 

More recently, the waveform optimization problem has been solved in [49] using a stochastic 
search with extrema features, which is a gradient-based numerical approach that restricts the search 
space to the extrema (i.e., maxima and minima) of Ӿ∗(ԣ) instead of the entire waveform over the 
pulse width. The optimal solution in [49] confirmed traits seen in refs. [47, 48], i.e., the optimal 
waveform is not rectangular, with a wide hyperpolarizing component followed by a rapid depolar-
izing phase. More importantly, the study shows that the optimal solution depends on the phase of 
the neuron’s spiking pattern at rest, which reflects the important fact that optimal waveforms are 
directly related to the type of ion channels present in the target neurons [142, 143]. 

 
5.2. Optimal DBS for Movement Disorders 

The optimization framework presented in section 4 to control neural ensembles was primarily 
translated to develop DBS protocols for patients with severe movement disorders. A reason is that 
the desynchronization of neural ensembles is highly relevant to the treatment of Parkinson’s dis-
ease (PD) via DBS, as exaggerated neural synchronization in the range 13-35 Hz (beta band) is a 
widely accepted biomarker of PD [120, 144], and the suppression of beta band oscillations in the 
subthalamic nucleus (STN), which is the preferred DBS target, is a known hallmark of therapeutic 
DBS [145]. Regarding the desynchronization of STN, two questions have been recently addressed: 
Q1. When is the right time to deliver a DBS pulse? This question assumes that the waveform of 

the DBS pulse is set a priori. Hence, this question is complementary to the problem discussed 
in section 4.3, which focuses on finding a minimum energy desynchronizing stimulus. 

Q2. Which DBS electrode should be activated? This question is motivated by the recent devel-
opments in DBS hardware, which have resulted in DBS leads with tens of electrode contacts. 



In this case, the objective is to select the contact that may maximize the patient’s motor im-
provement during stimulation. 

An answer to question Q1) can be obtained by solving the problem: 
min ᅽ

subject to (ԣ̇)ڋ = ᆂ + ԏ(ڋ)ᅮ(ԣ − ᅽ),   ڋ(ᅽ+) = 0.                    (15) 
This is a variation of the optimization problems discussed in section 4.3, with ڋ(ԣ) being the 

mean phase of the neural population targeted by the DBS input. The value ڋ(ԣ) can be estimated 
from field potential measurements around the DBS lead, while ԏ(ڋ) is the ensemble-averaged 
phase response curve, and ᅽ  is the time when a DBS pulse is delivered to desynchronize. In this 
formulation, it is assumed that the DBS pulses are strong enough to desynchronize the population 
(i.e., ڋ(ᅽ+) = 0), and the solution to (Eq. 15) is the time ᅽ ∗ when ԏ(⋅) is minimal, i.e., desynchro-
nization is achieved by applying the DBS pulse at time ᅽ∗ such that ڋ(ᅽ∗) = (∗ڋ)and ԏ ∗ڋ ≤ ԏ(ڋ) 
for all ڋ ∈ [0, 2ᅺ[. 

This solution was first introduced in [133, 135], where a method was developed to estimate the 
ensemble-averaged phase response curve ԏ(ڋ) from STN oscillations in the beta frequency band, 
and an event-based algorithm was proposed to track the instantaneous phase, ڋ(ԣ), of the beta-band 
oscillation over time and apply DBS when it reaches the value ڋ∗. The relevance of the solution in 
refs. [133, 135] is that the prediction of a preferred phase ڋ∗, which is specific to the STN used to 
estimate ԏ(ڋ), was later demonstrated in a clinical study involving 10 PD patients who received 
STN stimulation during the DBS surgery study [146]. A patient-specific preferred phase was em-
pirically determined from the STN local field potentials, where the preferred phase is the value 
that utmost ameliorates the PD motor symptoms. Also, it was shown that the deterioration of the 
motor symptoms increases with the lag between the preferred phase and the phase at which the 
stimulation is delivered, and the increment is consistent across patients, Figure 14. 



 
Figure 14. Phase-specific variation of pathological neural oscillations in response to phase-locked DBS for Parkinson’s disease. Results pre-
sented in (Holt et al., 2019) showing a phase-dependent effect of DBS pulses on the amplitude of the subthalamic (STN) beta oscillation. Red bars 
denote the change in STN beta amplitude as a function of the relative phase lag of the DBS pulse from the preferred phase. Gray bars refer to 
surrogate data, i.e., pre-stimulation data that have been time-matched to the data used to compute the red bars. Data are from 10 Parkinson’s disease 
patients and shown using a boxplot. For each boxplot, the central dot is the median, and box edges are the 25th and 75th percentiles. Image reproduced 
from [146] under the terms of the Creative Commons Attribution 4.0 International License (CC-BY), © 2019 Society for Neuroscience. 

Finally, the phase-dependent DBS protocol that results from stimulating at the preferred phase 
requires fewer pulses per unit of time than regular DBS protocols [135], which can significantly 
improve the efficiency of the stimulation, the duration of the charge-based neural stimulators, and 
the long-term safety and tolerability of the DBS therapy, well beyond the theoretical improvements 
obtained with other closed-loop DBS protocols, e.g., protocols designed via adaptive control tech-
niques [147-155] and Bayesian control techniques [156]. 

An alternative, more recent solution to question Q1) has been obtained by formulating the DBS 
pulse train as a sequence of Ԁ pulses, with Ԁ > 1, that are repeated periodically, and optimizing 
the resultant sequence of Ԁ − 1 inter-pulse intervals. This idea was investigated in refs. [35, 157, 
158] using a computational approach similar to the one discussed in section 5.1, i.e., a cost function 
is defined to quantify the effect of a Ԁ-long DBS sequence on a computational model of neurons 
under PD conditions, and a genetic algorithm is used to search the space of all Ԁ-long sequences 
and find a sequence that minimizes the cost function. The optimal DBS sequences proposed in [35, 
157, 158] demonstrated a therapeutic value close to the value of regular DBS protocols in PD 
patients as well as rodent models of PD but the optimal DBS sequences resulted in using 



approximately 30% less power than regular DBS. Furthermore, the optimal DBS sequences are 
irregular and low frequency (i.e., less than 50 pulses per second, see Fig. 2A in section 1.1), which 
may have additional long-term positive effects on safety and tolerability of DBS therapies [159]. 

 
5.2.1. Selection of Optimal DBS Electrode in Multi-Contact Leads 

Question Q2) is more recent because it follows the latest hardware developments for DBS ap-
plications [44, 92, 138]. Nonetheless, an established body of work has been developed to address 
this question. The general problem was first introduced in ref. [160] and further developed in fol-
lowing studies [50, 51, 161].  

In these studies, authors integrated scan images from non-human primates and finite-element 
modeling to create a detailed 3-D model of the DBS lead, electrode contacts, and subject’s neural 
tissue surrounding the DBS lead. The neural tissue considered in [160] was from the ventral thal-
amus. Moreover, the DBS model was paired with conductance-based models of afferent axons to 
the thalamus, and numerical simulations were used to estimate the response of these axons to the 
activation of the various contacts on the DBS lead. The combination of the axon models and the 
3-D reconstruction of the DBS lead, contacts, and thalamic nuclei resulted in a sophisticated com-
putational platform that allows to estimate the volume of activated tissue (VAT) that would be 
obtained in response to various configurations of the active electrode contacts. Specifically, for 
any combination ֭ = (Ӿφ, Ӿϵ, Ӿϯ, … , Ӿկ) of currents applied to ԃ = 32 contacts (i.e., one current for 
contact, with Ӿօ = 0 for any 1 ≤ ԙ ≤ ԃ  indicating that contact ԙ is not activated), authors measured 
the fraction of axon fibers (Ӷӻ ) that were activated and used Ӷӻ  as a proxy for the VAT. Then, 
since the fraction Ӷӻ  depends on ֭, i.e., Ӷӻ =  Ӷӻ(֭), the following optimization problem was 
posed: 

minح ᅷॕӶӻֈռ֓ − Ӷӻ(֭)ॖ
subject to ం Ӿֆ = Ӿ֏֊֏,    Ӿֆ ≥ 0կ

ֆ=φ
.                               (16) 

The solution to the problem in (Eq. 16) is the optimal configuration of currents across the elec-
trode contacts on the DBS lead (i.e., the problem is solved with respect to ֭) and was obtained by 
combining the computational platform and a convex minimization algorithm [12]. In (Eq. 16), Ӿ֏֊֏ 
is the total current that can be delivered per charge phase, Ӷӻֈռ֓ is the maximum number of axons 
that can be activated, and ᅷ is a measure of the distance between the two amounts of fibers. Finally, 
a threshold-based rule was applied to the optimal solution to determine the electrode contacts to 
be activated. Figure 15 reports the solution to the problem in (Eq. 16).  



 
Figure 15. Example of optimal DBS contact selection. Results of the optimization procedure proposed in (Xiao et al., 2016) to select the optimal 
electrode contacts on a DBS lead. Three algorithm-generated electrode configurations are depicted to maximize the activation of the thalamic 
efferent axons. The left, middle, and right columns show outcomes from three distance functions ᅷ(⋅) in problem (Eq. 16), respectively. A-B) For 
each case, active contacts (A) are reported along with the precise amount of optimal current calculated by the algorithm (B). Active contacts (red) 
are contacts for which the optimal current is higher than 1μA. C-D) Axial views (C) and oblique views (D) of the oral and caudal ventral posterior 
lateral nuclei of thalamus (VLPo and VLPc, respectively), the DBS lead, and the active electrode contacts (red). Image reproduced with permission 
from [160], © 2016 IEEE. 

Fig. 15A reports the solution for three different choices of the distance ᅷ, along with the optimal 
currents (Fig. 15B), and the estimated 3D arrangement of the active contacts in the thalamus (Fig. 



15C-D). As suggested by the results in the figure, two aspects of the approach proposed in ref. 
[160] are of particular interest here.  

First, solving (Eq. 16) provides an efficient way to sample the ԃ-dimensional space of electrode 
configurations within a finite amount of time. Although affected by the limitations of the compu-
tational platform and the choice of ᅷ (see differences between columns in Fig. 15A and Fig. 15B), 
in fact, the optimal solution is expected to have a positive effect on neural tissue, nonetheless. The 
alternative would be an empirical, trial-and-error approach, which would be likely unfeasible for 
large values of ԃ  (e.g., ԃ = 32 in this study).  

Second, the optimal solution is obtained via a personalization process. Since the computational 
platform integrates bits of information that are specific to the subject, the solution to (Eq. 16) can 
be customized to individual subjects, i.e., PD patients, by simply updating the anatomical models 
used to constrain the problem.  

Altogether, these studies demonstrate the feasibility of translating optimal design methodolo-
gies to clinical applications and provide proof-of-concept evidence of the positive impact that op-
timization methods can have in the design process for DBS protocols. 
 

5.3. Optimal Stimulation for Epilepsy Surgery 
The concept of optimal stimulation has been recently explored for diagnostics purposes. A chal-

lenging diagnostic problem, which is often faced during the epilepsy surgery, deals with designing 
electrical stimulation probing protocols to identify epileptogenic zones intraoperatively [162-164]. 
The idea of probing the brain electrically has been investigated over the past decade to estimate 
the functional networks involved in cognitive processes, e.g., see [165, 166], but it remains unclear 
how to choose a sequence of stimuli to retrieve a functional network of interest most effectively. 

Studies [54, 167] have recently designed stimulation-based probing rules that address this issue. 
Perhaps more importantly, the rules derived in these studies were obtained by solving optimization 
problems. The general idea adopts established principles of network theory [99] and is stated as:  

 Under the assumptions that (i) ԃ > 0 electrodes are placed in the brain for stimulation and 
recording purposes and (ii) the electrodes are nodes in the brain functional network, the func-
tional network is uniquely defined by the edges between the nodes and their intensity, which 
are gathered in a ԃ × (ԃ − 1) vector ڋ ̂(adjacency vector). Adjacency vector ڋ ̂is a proxy for 
the brain functional network, is expected to be insensitive to probing pulses and can provide 
unique information to identify the epileptogenic zone. Vector ڋ,̂ though, is unknown and must 
be estimated through probing. Hence, the problem can be posed as: 

 
This problem was mathematically formulated in ref. [54]: vector ڋ ̂was considered an unknown 

state of the functional network, and the electric stimuli were considered as inputs that are applied 
to estimate ڋ.̂ Specifically, denoted with ڋֆ an estimation of ڋ ̂obtained after applying the Ԛ-th 
probing pulse, it is assumed that ڋֆ evolves according to a random walk: 

Ԛ+1ڋ = Ԛڋ + ֆڊԚڈ = ֜ֆ(ᅼֆ)ڋֆ + ֆڇ
                                       (17) 

Problem: Find a sequence of Ԃ > 1 nodes, with Ԃ  assigned, that maximizes the estimation of 
vector ڋ ̂when the nodes are probed sequentially, i.e., one node at the time, one pulse per node. 



where ڊֆ is the vector of electrographic recordings (e.g., intracranial EEG) measured at the ԃ  
electrodes, ڈֆ and ڇֆ are Gaussian random vectors (i.e., noise), and ֜ֆ(ᅼֆ) is the state-to-output 
matrix [86]. By definition, ֜ֆ(ᅼֆ) is a diagonal matrix, whose nonzero values depend on which 
node is probed at stage Ԛ, i.e., nonzero elements in ֜ֆ(ᅼֆ) are those associated with nodes that are 
neighbor to the probed node. The information about which node is probed at stage Ԛ, instead, is 
expressed by the decision variable ᅼֆ, where ᅼֆ is a ԃ × 1 binary vector that has all zeros and a 
single 1 at the position of the probed node.  

Although a precise derivation can be found in [54], it is important to note here that the notation 
introduced in (Eq. 17) implies that a refined estimation ڋֆ|ֆ of the true adjacency vector ڋ ̂can be 
obtained from ڋֆ by implementing a Kalman filter, and a sequence of Ԃ  probing nodes is uniquely 
represented by a sequence of Ԃ  decision vectors ᄑ = (ᅼφ, ᅼϵ, ᅼϯ,… , ᅼծ). Altogether, the model in 
(Eq. 17) and the mathematical notations introduced thereafter result in an optimal probing policy, 
which is given by the solution ᄑ∗ to the optimization problem: 

minᅏ
1
Ԃ ం Ӻृ੶ڋԚ(ᅼԚ) − Ԛ|Ԛ(ᅼԚ)੶ϵϵॄڋ

ծ

ֆ=φsubject to ‖ᅼֆ‖ = 1.
                              (18) 

The solution to (Eq. 18) is constrained by the model in (Eq. 17) and the equations of the Kalman 
filter, and the optimal sequence ᄑ∗ = (ᅼ1∗, ᅼ2∗, ᅼ3∗, … , ᅼԂ∗ ) determines the order according to which 
nodes must be probed to minimize the variance of the estimation of the adjacency vector ڋ.̂ 

The optimization problem provided in [54] is relevant because it derives a precise round robin 
protocol that can be applied during the epilepsy surgery. More importantly, authors determined 
that, under mild assumptions that are generally satisfied by electrode grids during epilepsy surger-
ies, the optimal stimulation protocol identifies the functional network with at most one impulse 
per electrode, i.e., Ԃ ≤ ԃ , which means that the optimal stimulation protocol can significantly 
reduce the duration of the epilepsy surgery [168]. 

 
5.4. Optimal Stimulation for Seizure Control 

The use of electrical stimulation to control seizures in patients with drug-resistant epilepsy has 
been investigated for several decades, and major embodiments are represented by VNS [16], cor-
tical stimulation [169], and DBS of the anterior nucleus of thalamus [170]. Further embodiments 
for pre-clinical investigations have also involved optogenetic stimulation [171].  

While clinical studies have primarily focused on demonstrating the safety and effectiveness of 
neuromodulation in seizure control, several preclinical studies have investigated the optimization 
of the stimulation protocol. Since seizures are phenomena with a repetitive, patient-specific evo-
lution [172, 173] two main problems arise in seizure control, i.e., finding the most effective stim-
ulation parameters and detecting the onset time of a seizure to maximize the impact of stimulation.  

Studies [174-176] focus on the first problem, i.e., stimulus optimization, and propose methods 
for an unsupervised adaptation of the stimulation to control seizures over time. The motivation for 
this investigation is that the electrographic activity in the brain can follow different trajectories 
during the evolution towards a seizure [172, 173], which means that every seizure requires a dif-
ferent type of stimulation, depending on the trajectory and the phase of the trajectory at which the 
stimulation is delivered. Also, the type of stimulation must be determined in real time. The key 



idea in [174-176] is that the evolution of the neural activity in response to pre-synaptic inputs and 
electrical stimulation can be subsumed in a Markov process [177], whose parameters can be esti-
mated offline. A seizure is a state within the Markov process, and the goal of the stimulation is to 
prevent the brain from reaching the seizure state. This idea is paired with reinforcement learning 
in refs. [174, 175] to solve the trade-off between the probability of having a seizure and the energy 
of a pulse train, while it is paired with adaptive control in [176], see Figure 16. 

 
Figure 16. Adaptive stimulation for seizure control. Example of seizure control in vitro via adaptive stimulation from (Panuccio et al., 2013). A) 
Schematic of the brain slice and experimental preparation. B) Boxplots summarizing the performance of three stimulation protocols in terms of 
suppression of seizures as compared to their respective pre-stimulation control phases. Protocols are: 1-Hz periodic stimulation (1.0 Hz), adaptive 
stimulation (Adaptive), and periodic stimulation at the average frequency of the adaptive stimulation (Effective Frequency). Inset: Range of fre-
quencies spanned by the Adaptive protocol. Each protocol decreased the seizure time (ԣ֋ք ) significantly (Asterisks: rank-sum test, P-value, P < 0.05), 
but the adaptive stimulation has the lowest variance and uses the least among of stimulation overall, as indicated by graph in the Inset. C) Recordings 
from the entorhinal cortex in two brain slices under adaptive stimulation. Panels a) and Panels c) report the control phases of the experiments in 
Panels b) and Panels d), respectively. Image reproduced with permission from [176], © 2013 Elsevier. 

An in vitro preparation (Fig. 16A) obtained from a rodent model of epilepsy was used, and the 
control algorithm in [176] was implemented at fixed intervals (stages), i.e., the calculation con-
ducted at each stage aimed to determine the rate of the pulsatile stimulus that would be applied at 
the next stage. As reported in Fig. 16B, the optimal, adaptive solution outperformed periodic, non-
optimal stimulation protocols and resulted in volleys of electric pulses (see example of volleys in 
Fig. 16C). These volleys were irregularly spaced, had different lengths, and included sequences of 
pulses with different time-varying rates (Fig. 16C, panel b and panel d), which ultimately disrupted 
the pattern observed during seizures (Fig. 16C, panel a and panel c).  

Interestingly, these optimal sequences demonstrated high efficacy in seizure control and robust-
ness against external perturbations despite the irregularity of the pulses, i.e., see the boxplots in 



Fig. 16B. Furthermore, these optimal sequences delivered, on average, less stimulation to the tissue 
than existing, open-loop protocols, as indicated by the range of pulse rates that was used (inset in 
Fig. 16B), which was below the value used in regular open-loop protocols. 

Studies [178-180], instead, focused on the second problem, i.e., seizure onset detection, and 
used Dynamic Programming. Specifically, the detection of the seizure onset time is formulated as 
a sequential decision problem, where the cost of each decision is a trade-off between the probabil-
ity of future seizures, which grows as time passes, and the penalty for a false detection, which 
would result in an untimely stimulation of the brain. Interestingly, the optimal solution to this 
detection problem corresponds to the transition of the brain network to an unstable manifold, where 
the neuronal activity can avalanche towards seizure in response to small insults [181]. Moreover, 
it is shown that small, highly localized stimuli delivered to the brain at the time of this detection 
can divert the brain network from instability and therefore result in a suppression of the seizure, 
e.g., see [182-185]. 

 
6. DISCUSSION 

Although well formalized in Operative Research, Computer Science, and Control Theory, the 
mathematical concept of “optimality” is still novel to the neuromodulation community and rapidly 
gaining momentum across an ample range of applications. The interest in pursuing “optimal” so-
lutions is twofold.  

First, an optimal solution satisfies a problem of interest while balancing additional, nontrivial, 
and often conflicting considerations, such as performance constraints, time limits, and energy sav-
ings. This is extremely appealing to the neuromodulation community because neurostimulation 
solutions via implantable devices are invasive, hard to titrate, and prone to side effects [4]. These 
aspects of neurostimulation therapies pose remarkable challenges that rarely reconcile each other. 
The optimization framework allows to systematically express these challenges and derive solutions 
that explicitly trade off concurrent requirements. Second, the theory of optimization offers an am-
ple and mature body of mathematical methods, numerical algorithms, and theoretical tools that 
allows to conveniently explore the space of possible solutions to a problem and rapidly find the 
optimal one. Moreover, the results obtained for optimal stimulation strategies involving implanta-
ble devices can be easily generalized to neuromodulation modalities that use transcranial stimula-
tion and ultrasound stimulation modalities, as recently shown in refs. [186, 187]. 

Altogether, these advantages promote a design paradigm where neuromodulation protocols are 
determined offline, i.e., using pilot data, numerical simulations, and mathematical derivations, in-
stead of following an online trial-and-error paradigm, where the neuromodulation protocols must 
be determined empirically on test-subjects. This may dramatically shorten the design cycle of neu-
romodulation protocols while increasing safety and efficiency [188]. Furthermore, the integration 
of computational tools into the development of neural stimulation protocols can facilitate the per-
sonalization of the protocols to the patient’s actual needs, as these needs can be tracked over time, 
analyzed using machine learning tools, and directly encompassed in the formulation of the opti-
mization problem, rather than being addressed acutely during the testing phase. Finally, since cost 
functions and constraints can be linearly added to an optimization problem, novel solutions can be 
rapidly calculated with modest changes to the mathematical framework and tools used to solve the 
optimization problems. 



Overall, these considerations reflect the important fact that the technological development of 
devices and probes for neural stimulation has rapidly outpaced the development of methodologies 
(i.e., algorithms and decision rules) to fully utilize the latest devices. This is of special interest in 
the case of implantable neurostimulation devices for chronic applications such as DBS and VNS, 
as the rapid multiplication of electrode contacts and stimulation modalities has not been paired by 
an equally rapid development of heuristic stimulation protocols. This is perhaps a reason for the 
rapid development of multi-objective optimization methods for neural stimulation and, specifi-
cally, for DBS applications, as exemplified in [35, 51, 135, 160]. This development has spanned 
both theoretical aspects and computational aspects, leading to a steady translation of methods from 
the theory to the clinical and preclinical domains. 

 
7. FUTURE DIRECTIONS 

While optimization methods are rapidly finding application in DBS and other neuromodulation 
therapies for chronic neurological diseases, there is an early but intensive investigation of optimal 
control as a novel and potentially transformative tool in the field of sensory rehabilitation, cogni-
tive state decoding, and motor control [189, 190]. In recent applications for retina prostheses [191-
193], in fact, optimal control problems have been formulated with the goal of design stimulation 
protocols that maximize the perception of the brightness of a phosphene and maximize the spatial 
resolution of the visual field. Optimization methods have also been used to design sequences of 
acoustic stimuli that maximally suppress tinnitus [194, 195].  

Refs. [196, 197] also focus on tinnitus suppression and are of special interest here because they 
formulate the problem of suppressing tinnitus as a desynchronization problem. In these studies, an 
optimal solution is derived and eventually implemented via a coordinated resetting (CR) stimula-
tion protocol (see ref. [198] for a definition of CR stimulation). Specifically, the objective of desyn-
chronizing the auditory cortex was pursued through coordinated sequences of bilateral sounds and 
resulted in significant improvements for patients. In a clinical study [194], in fact, more than 60 
patients with hearing loss up to 50 dB and chronic tonal tinnitus were treated with optimal CR 
stimulation over a 10-months period. Results demonstrated that up to 50% attenuation of tinnitus 
loudness and symptoms was achieved in over 75% of the patients, with a significant lowering of 
the tinnitus frequency and a stable long-term improvement over the 10-months period.  

Overall, these studies indicate that the optimization framework discussed in this chapter can be 
translated to numerous applications beyond chronic deep brain stimulation. Furthermore, although 
the array of targeted systems has been limited thus far, these studies demonstrate that an ever- 
growing interest is devoted to the development of optimal, nonelectrical neuromodulation tools. 
Finally, these studies show the extent to which optimization methods and an optimal control frame-
work may assist with improving the performance of prostheses for the restoration of impaired 
sensory functions and neural rehabilitation. 
 
CONCLUSIONS 

The mathematical concept of optimality has been recently introduced in neuromodulation as a 
paradigm shift in the design of neurostimulation therapies. Optimal design methodologies have 
gained momentum across an ample range of clinical applications involving implantable neurostim-
ulation devices, e.g., from deep brain stimulation for movement disorders to intraoperative 



electrical probing of the brain during epilepsy surgery, from controlling neural oscillations in psy-
chiatric disorders to sensory rehabilitation and brain-machine interface. Optimization-based design 
methodologies allow neural engineers to address the pressing need of balancing multiple nontrivial 
(and often conflicting) considerations when neuromodulation protocols are designed. Optimization 
methods and tools also help shorten the design cycle of new neuromodulation therapies while in-
creasing safety and efficiency of the stimulation and provide a unifying framework through which 
the design process can be personalized to the patient’s needs and clinical data, while seemingly 
integrating computational and data analytics resources into the prototyping and testing stages. 
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CR. See coordinated reset 
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pre-market approval, 4 
probing, 8, 33, 34, 38 
pyramidal neurons, 19 
random walk, 34 
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stimulus waveform, 17, 19 
STN. See subthalamic nucleus 
subthalamic nucleus, 31 
synchronization, 25, 27, 31 
temporal irregularity, 7 
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US FDA. See US Food and Drug Administration 
US Food and Drug Administration, 3, 4 
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vagus nerve stimulation, 4 

VAT. See volume of activated tissue 
ventral thalamus, 32 
VNS. See vagus nerve stimulation 
volume of activated tissue, 32 

 


