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Abstract— Different artificial intelligence approaches have
been made to automatically assess skills during robotic sur-
gical training. However, limitations still exist in these studies,
including issues related to feature engineering, cross-validation
methods, complex model architectures, and interpretability.
In response to these limitations, this study introduces a
Transformer-based model that processes kinematic data and
identifies surgical skill levels. The model performance was
rigorously evaluated under the Leave-One-User-Out cross-
validation method, resulting in a classification accuracy of 80%.
Beyond skill level classification, this study also explores deeper
into the interpretability aspect. It includes the extraction of
global-attention from the model, providing insights into the
significance of each part or gesture within a task during
the classification decision-making process. This interpretability
holds the potential to help surgeon improve their skill by
offering a comprehensive and detailed understanding of their
performance.

I. INTRODUCTION

Traditional surgical skill assessment methods primar-
ily depend on the subjective observations of experienced
surgeons, including intra-operative observation and post-
operative video analysis, which are inherently less objective,
unstructured, and can be influenced by personal biases.
Besides, the manual review of surgical procedures by expert
surgeons is time-consuming, and costly [1]-[3].

Numerous approaches have been made to mitigate the
problem of reviewer bias in surgical skill assessment. One is
using crowd-sourcing assessment [3], [4]. However, it still
requires reviewers to watch surgical videos. Furthermore,
these public reviewers typically lack medical training, which
can lead to concerns about the reliability and validity of the
assessment results.

Artificial intelligence (AI) techniques, including machine
learning (ML) and deep learning (DL), have proven to be
effective tools for surgical data processing and interpretation.
Leveraging Al algorithms allows us to extract meaningful
information from surgical procedures, enabling affordable,
objective, more accurate, and consistent technical skill as-
sessment [5].

The adoption of robotic surgical platforms has experienced
rapid growth since its introduction. Besides enhanced dexter-
ity and 3D vision systems, another advantage is the wealth
of data sources provided by the robotic platforms. These
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platforms provide a variety of data sources for analysis,
including high-resolution video feed and kinematic data from
robotic sensors. The combination of these benefits and the
exponential growth positions robotic platforms as an ideal
environment for Al applications. As the adoption of robotic
technology continues to expand, the opportunities for Al in
this context will be continuously growing.

Numerous studies have implemented Al models for auto-
mated surgical skill assessment on robotic surgical platforms,
including:

« Surgical videos to generate global rating scores [6], [7].

o Surgical videos to identify expertise levels [8]-[11].

o Kinematic data to generate global rating scores [12],

[13].
« Kinematic data to identify expertise levels [12], [14]-
[23].

While these studies have shown innovative approaches
and promising results, several limitations still exist, such as
cross-validation method selection, feature engineering, and
complex deep learning (black-box) models.

In this study, we take a step towards addressing these
challenges by working toward the development of a general-
izable, computationally efficient, and interpretable surgical
skill assessment model. We employ a Transformer-based
model to process kinematic data and generate expertise level
predictions and attention vectors for interpretation. Addition-
ally, we utilize a more robust cross-validation method to
enhance the reliability of model evaluation.

II. BACKGROUND
A. Expertise Level Assessment Using Kinematic Data

Robotic surgical platforms provide kinematic data from
robotic manipulators. Analyzing kinematic data is more com-
putationally efficient than processing video data, especially in
real-time settings. Furthermore, kinematic data is potentially
less invasive in terms of privacy compared to video data.
Although video data could provide more information about
the surgical context, the advantages of kinematic data make
it a good choice for skill assessment.

Fard et al. extracted movement features from kinematic
data to capture movement characteristics, including time to
completion, path length, depth perception, speed, motion
smoothness, turning angle, and more. They further utilized
machine learning algorithms such as k-nearest neighbors,
logistic regression, and support vector machines for the
classification of surgical expertise levels [14]. While feature
engineering based on raw kinematic data can be time-
consuming and requires extensive calculation, one advantage



of feature engineering is interpretability, for example, Zia
and Essa took a similar approach by calculating four types
of features from robotic kinematic data, including sequential
motion texture, discrete Fourier transform, discrete cosine
transform, and approximate entropy. After feature extraction,
they used the nearest neighbor classifier for skill level
classification and support vector regression models for rating
score prediction. Notably, they also introduced the “impact
scores” derived from the calculated features. The approach
could indicate which parts of the input sequence had positive
or negative effects on the final rating score prediction. By
overlapping the impact scores with gestures, it could help
surgeons understand the parts within a task that they need to
improve on [12].

With the advancement of deep learning models, several
studies have utilized CNN and its variations to process raw
kinematic data in surgical skill assessment, including the
combination with GRU and LSTM [15], [18], [19], [21],
[22]. These approaches uncovered the underlying patterns
within data sequences, potentially enhancing skill level clas-
sification accuracy. However, despite the advantages, deep
learning models often present challenges in terms of inter-
pretability due to their black-box nature. Similar to Zia and
Essa’s work, Fawaz et al. employed CNN in combination
with the class activation map (CAM) to localize which parts
of the trial impacted the model’s decision when evaluating
the skill level [19]. However, it’s noteworthy that this study,
along with the other deep learning-based studies mentioned
earlier in this section, adopted Leave-One-Supertrial-Out
(LOSO) cross-validation to evaluate the model performance
on the JHU-ISI Gesture and Skill Assessment Working Set
(JIGSAWY) [24], [25]. Under LOSO cross-validation, each
iteration involves leaving one of the five trials performed
by one subject as the testing set, while using the remaining
four trials from the same subject, combined with trials from
other subjects, as the training set. However, this approach
can introduce data leakage since the model “sees” data from
a specific subject in both the training and testing process, po-
tentially leading to an overestimated model performance. In
the context of Fawaz’s study, under LOSO cross-validation,
besides an overestimated model performance, the highlighted
parts generated by CAM within a trial might not be gener-
alized enough to newly coming subjects.

Therefore, the discussion above demonstrates a research
opportunity in the development of more robust, computa-
tionally efficient, and interpretable models for skill level
classification in surgical skill assessment.

B. Transformer Models

Given that identifying skill levels in surgical skill as-
sessment can be formulated as a sequence classification
problem, our attention is drawn to an emerging and pop-
ular model - the Transformer model. Although the initial
idea of Transformer was to improve the Natural Language
Processing (NLP) tasks, such as machine translation, as
proposed by Vaswani et al., it gained a wide range of
applications in different fields, to name a few, image pro-

cessing [26], speech recognition [27], and more. In sequence
classification tasks, Yan et al. utilized the Transformer model
to handle arrhythmia heartbeat classification [28]. Nambiar
et al. adapted the Transformer model for protein family
classification and protein interaction prediction [29], and
Sun et al. constructed multiple Transformer-based models
for motor imaginary EEG classification [30]. These diverse
applications underscore Transformer’s ability in sequence
classification tasks across various domains, due to the key
factor of the attention mechanism that could capture long-
range dependencies in the sequence more effectively.

C. Transformer Models in Robotic Surgery

Transformer models have also found compelling appli-
cations in the domain of robotic surgery. Kiyasseh et al.
proposed a unified surgical Al system (SAIS) based on the
vision Transformer architecture that could decode elements
of intra-operative surgical activities from videos collected
during surgery at three different hospitals, such as surgical
steps, surgical gestures, and quality during surgery. During
skill assessment on surgical gestures, SAIS could also place
attention on each video frame. By inspecting the atten-
tion, they were able to quantify the gesture relevance to
the skill being assessed [31]. Anastasiou et al. introduced
a novel video-based, contrastive regression architecture,
Contra-Sformer. The model could capture the differences
in the surgical performance between a test video and a
reference video by calculating the similarity and deviation
between test and reference videos, and generate the rating
score for the test video [6]. Shi et al. utilized a Transformer-
based model to recognize and predict surgical activities,
such as surgical gestures and end-effector trajectories [32].
Furthermore, building upon their research, Shi et al. used the
predicted future trajectory by the Transformer-based model
for assistive and resistive haptic cues during robotic surgical
training tasks on a da Vinci Research Kit. They observed
task performance improvement and a large decrease in user
difficulty ratings in washout trials that followed the resistive
conditions, indicating the resistive haptic cues during surgical
training could potentially result in lasting after-effects on
performance once the cues are removed [33].

Therefore, as inspired by these studies and their limita-
tions, we are taking a progressive step in our research. Our
aim is to employ a more robust cross-validation method to
assess the performance of our proposed Transformer-based
model for processing kinematic data and identify expertise
levels. Additionally, we seek to extract and analyze the
specific movements within the kinematic data that have
more impact on the model’s decision regarding skill level
classification. In other words, we aim to find the movements
that best characterize distinct skill levels, thus advancing the
interpretability of skill assessment.

III. METHODS
A. Dataset

To train and validate our proposed model, we used the
JHU-IST Gesture and Skill Assessment Working Set (JIG-



TABLE I: Gesture Descriptions in JIGSAWS Suturing Task

Gesture ID | Description
GO Unannotated
Gl Reaching for needle with right hand
G2 Positioning needle
G3 Pushing needle through tissue
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G8 Orienting needle
G9 Using right hand to help tighten suture
G10 Loosening more suture
Gl11 Dropping suture at end and moving to endpoints

SAWS) in the study [25]. JIGSAWS is a well-known dataset
in the field of robotic surgical skill assessment. It includes
three common surgical training tasks: Suturing, Needle Pass-
ing, and Knot Tying. Eight subjects with different robotic
surgical experiences were recruited. The expertise level of
each subject was determined by self-reported experience
- Expert (EX): more than 100 hours, Intermediates (IN):
between 10 and 100 hours, Novices (NO): less than 10 hours.
The subjects repeated each task five times using a da Vinci
Surgical System (dVSS), and kinematic data from the dVSS
was captured.

Kinematic data of both left and right master tool manipu-
lators (MTM), and the first and second patient side manipu-
lators (PSM) were recorded. It includes 19 variables for each
manipulator - Cartesian Positions (3): xyz, Rotation Matrix
(9): R, Linear Velocities (3): z'y’z’, Angular Velocities (3):
o’f3'y’, and a gripper angle (1): 6.

Besides the kinematic data, another feature of the JIG-
SAWS is the manually annotated surgical gestures which are
synchronized with the kinematic data. The dataset specified
15 gestures for all three tasks, as shown in Table. I.

For model training and evaluation, we only used 39
Suturing trials and 19 kinematic data of both MTMs (38
in total). The Suturing task includes 10 gestures out of a
total of 15 gestures in JIGSAWS. For each trial, we labeled
the unannotated time step as “0”.

B. Transformer Model

We formulate the task in this study as a time-sequence
classification task. Our proposed model is a derivative of
the original Transformer architecture as described in [34].
The original Transformer model was designed for sequence-
to-sequence tasks, therefore, we have adapted and refined
the Transformer model to suit our classification objectives.
For example, we removed the parts of Embedding layers
and Decoder Input layer from the original Transformer
model, and we added an Average layer to map the encoder
output dimension to decoder dimension, in order to calculate
the attention between encoder sequence and decoder (final)
output. In this study, the task is sequence classification,
where the input comprises kinematic data from a trial in
JIGSAWS and the output is a classification of the subject’s
expertise level - NO, IN, and EX (Fig.1).

The input data initially undergoes Positional Encoding.
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Fig. 1: Architecture of the proposed Transformer model. The
diagram illustrates the model’s structure, where the input
consists of the kinematic data with dimension [max_length,
38]. The Multi-Head Attention on the left calculates the self-
attention within the input sequence. The Multi-Head Atten-
tion on the right calculates the global-attention between the
final output and processed sequence. The model processes
the input to yield output probabilities for 3 classes.

Unlike traditional sequential models, the Transformer archi-
tecture does not inherently process sequential information.
Positional Encoding provides the model with necessary se-
quence order information.

Subsequently, the encoded data is fed into a Multi-head
Attention mechanism. For model simplicity, our implementa-
tion utilizes a single head. This layer captures self-attention
within the input sequence, enabling the model to discern
dependencies between various time steps and providing more
information on data representation for final classification.

Following this, the data progresses through a Feedforward
layer, which further processes the information.

To understand and interpret the model’s decision-making
process during classification, the data is then processed
through another Multi-head Attention layer. This layer is
distinct from the self-attention mechanism, as it focuses
on global attention. The global attention could describe the
importance of each time step for final classification.

Finally, the data is directed through a fully-connected layer
to make the final classification.

C. Model Training and Testing

To evaluate the model performance, we used the data
of Suturing in JIGSAWS and adopted Leave-One-User-Out
(LOUO) cross-validation. LOUO ensures that the model
is tested on unseen users, providing a robust estimate of
how well the model generalizes to new users, and closely
simulates real-world scenarios where models encounter data
from new users not present in the training set. More specifi-



cally, for each iteration of the validation process, the dataset
comprising all five trials from the i*" subject was left as the
testing set, while the datasets from the remaining subjects
formed the training set. The procedure was repeated for
each of the eight subjects, therefore, ensuring comprehensive
assessment and validation across all individual users.

Prior to the training and testing, the data underwent
standardization using a StandardScaler. To ensure consistent
scaling, the StandardScaler was fitted exclusively to the
training set for each iteration. Subsequently, the scaling
transformation was applied to both the training and testing
sets, maintaining data integrity by preventing data leakage
from the training set.

After obtaining the standardized data, we addressed the
variance in trial lengths by implementing zero-padding. The
process was essential to equalize the length of each trial to
the same dimension, max_length. The value of max_length
was determined as the length of the longest trial in terms of
time steps. For trials shorter than maz_length, zeros were
appended to the end of the data sequence, ensuring that all
trials conformed to this standardized length.

D. Model Evaluation

After training and obtaining testing results, we used stan-
dard metrics to evaluate our model performance, Precision,
Recall, and Fl-score, as well as the Macro- and Micro
Averages.

Precision is the ratio of correctly predicted positive (True
Positive, TP) labels to the total predicted positive labels
(True Positive and False Positive, TP + FP). High precision
indicates a low rate of false positives for that class.

. TP
Precision = TP FP (D

Recall is the ratio of correctly predicted positive (True
Positive, TP) labels to the total number of predictions in
actual labels (True Positive and False Negative, TP + FN).
High recall indicates that the model is good at capturing
positives for that class.

TP
Recall = m (2)

F1-score is the weighted average of Precision and Recall.
It takes both false positives and false negatives into account.
A high Fl-score indicates a good balance between precision
and recall for that class.
Precision * Recall

F1 - =2 3
seore ¥ Precision + Recall )

In multi-class tasks, a common practice is to calculate
these metrics for each class and average them - Macro
and Micro Averaging. Macro Averaging treats all classes
equally, computes the metric independently for each class,
and then takes the average. Micro Averaging aggregates the
contributions of all classes to compute the average metric
by aggregating the total true positives, false positives, and
false negatives. Micro Averaging is more reflective of the
model’s performance on the data as a whole, especially in
the presence of class imbalance.

IV. RESULTS
A. Expertise Level Classification

As discussed in earlier sections, we employed LOUO
cross-validation to train and evaluate our model. The dataset
consisted of kinematic data from the MTMs (38 features in
total), collected during Suturing task from the JIGSAWS.
The dataset includes eight subjects, labeled into one of three
expertise levels: NO, IN, and EX.

In each iteration of LOUO cross-validation, all five trials
from the i*" subject were left as the testing set, while data
from the remaining subjects were used to train the model.
Our model takes zero-padded kinematic data of each entire
trial as input and outputs the corresponding expertise level.

To assess the model performance, we calculated metrics
including precision, recall, and Fl-score, and their Macro
and Micro averages to provide a comprehensive model
evaluation.

Table. II summarizes the LOUO cross-validation results,
listing the classification accuracy for each subject when used
as the testing set. The model demonstrated high accuracy
in classifying NO and EX subjects, correctly classifying all
trials for these expertise levels. However, its performance in
classifying IN trials was deficient. For subject C, only 2 trials
were classified correctly, while for subject F, all trials were
misclassified.

To gain deeper insights into the model performance, we
constructed a confusion matrix, which is presented in Fig. 2.
It becomes clear that the model is accurate in identifying
NO and EX levels. However, it encountered difficulties when
classifying IN. As shown in Table. III, the Macro averages,
treating all classes equally, yield reasonably good results
(Precision: 0.85, Recall: 0.73, F1-Score: 0.68), although
these metrics are adversely affected by the misclassifications
of IN as EX.

On the other hand, the Micro averages also exhibit strong
performance (Precision: 0.79, Recall: 0.79, F1-Score: 0.79),
suggesting an overall good model performance. However, it
is worth noting that the performance in NO and EX classes
may be masking the model’s weakness in identifying IN.
The misclassifications of IN as EX presents a key area for
potential model improvement.

B. Attention Interpretations

In addition to the final classifications, we also generated
a global attention vector using the model. Global attention
indicates the importance of each time step in influencing the
final classification results. Given the synchronized gesture
sequence with the kinematic data in JIGSAWS (Table. I),
for each trial, we overlayed the global attention vector onto
the corresponding gesture sequence. This approach allowed
us to gain insights into the relative importance of different
gestures in generating the final classifications.

As our model demonstrated a good performance in dis-
criminating between NO and EX trials, we focused our
analysis solely on this subset of the data. For each trial
within NO and EX, we computed the attention devoted to



TABLE II: Summary of classification results using LOUO cross-validation and Suturing task.

Testing Subject SubB  Sub.C Sub.D Sub.E Sub.F Sub.G Sub.H Sub.l
Expertise Levels | NO IN EX EX IN NO NO NO
Accuracy 100% 40% 100% 100% 0% 100% 100% 100%
Confusion Matrix TABLE V: Comparing Gestures Attentions of EX Subjects.
Based on the data distribution property, we used the Kruskall-
o 19 0 0 Wallis test for statistical analysis.
-15
Significance
5 Gl > G6 (p = 0.0027), G9 (p = 0.0479), GII (p = 0.0175)
Q G2 > G6 (p=0.0146)
S 0 > 8 10 G5 > G6 (p=0.0001), G9 (p = 0.0052), G11 (p = 0.0011)
= TABLE VI: Comparing Gestures Attentions of NO subjects.
-5 Based on the data distribution property, we used the Kruskall-
~ 0 0 Wallis test for statistical analysis.
-0 Significance
0 1 2 G0 > G4 (p = 0.0000), G6 (p = 0.0001)
; Gl > G4 (p = 0.0000), G6 (p = 0.0000), G8 (p = 0.0349)
Predicted Label G2 > G4 (p=00000),G6 (p = 0.0005)
Fig. 2: Confusion matrix of the final classification results G3 > G4(p=00152)
indicati th b £ inst . h cl Cl 0: G5 > G4 (p = 0.0003), G6 (p = 0.0054)
indicating the number of instances in each class. Class 0: GIl > G4 (p=00002) G6 (p=00038)

Novices, Class 1: Intermediates, Class 2: Experts.

TABLE III: Summary of model evaluation metrics.

Metrics

Overall Accuracy 80%
Precision  0.85

Macro Recall 0.73
F1-Score  0.68
Precision  0.79

Micro Recall 0.79
F1-Score  0.79

each gesture, or gesture attention, by averaging the attention
scores across individual gestures.

First, we conducted a comparison of gesture attention
across all NO and EX trials, as illustrated in Fig. 3 and
Table. IV, G1 received the highest attention and it is signif-
icantly higher than G4, G6, G8, G11, and G9. In contrast,
G6 received the lowest attention and it is significantly lower
than the attentions received by GO, G1 G2, G3, G5, and G11.
In summary, when the model predicts the expertise level of
a given trial, it will focus more on GO, G1, G2, G3, G5, and
G11 than the other gestures.

TABLE IV: Comparing Gestures Attentions of All Subjects.
Based on the data distribution property, we used the Kruskall-
Wallis test for statistical analysis.

Significance

GO > G4 (p =0.0002), G6 (p = 0.0000)

Gl > G4 (p = 0.0000), G6 (p = 0.0000), G8 (p = 0.0157),
Gl11 (p = 0.0135), G9 (p = 0.0061)

G2 > G4 (p = 0.0002), G6 (p = 0.0000)

G3 > G6 (p =0.0041)

G5 > G4 (p =0.0001), G6 (p = 0.0000)

Gll > G6 (p =0.0370)

Next, we proceeded to compare gesture attentions specif-
ically among EX trials. As depicted in Fig. 4 (Red), G5
received the highest attention, whereas G11 received the
lowest attention. Among the gestures, G1 and G5 received
significantly higher attentions than G6, G9, and G11 (Ta-
ble. V). In summary, when the model predicts a certain trial
as EX, it will focus more on G1, G2, and G5 than the other
gestures. In other words, the user’s performance of G1, G2,
and G5 has more importance in characterizing an EX trial.

Similarly, we then compared the gesture attention across
NO subjects. As shown in Fig. 4 (Blue), G1 received the
highest attention, whereas G4 received the lowest attention
and it received significantly lower attention than GO, G1, G2,
G3, G5, and G11 (Table VI). In summary, when the model
predicts a certain trial as NO, it will focus more on GO, Gl1,
G2, G3, G5, and G11 than the other gestures. In other words,
the user’s performance of GO, G1, G2, G3, G5, and G11 has
more importance in characterizing a NO trial.

To comprehend the distinct roles of different gestures in
characterizing NO and EX trials, we conducted a comparison

TABLE VII: Comparing Each Gesture Attention between EX
and NO. *: t-test. **: Mann-Whitney U test.

Gesture | Significance | p-value
GO na* 0.7225
Gl na* 0.8903
G2 EX >NO* 0.0496
G3 na* 0.2253
G4 EX >NO* 0.0000
G5 EX >NO** | 0.0026
G6 na* 0.5037
G8 na** 0.1265
G9 na* 0.2463
G11 NO >EX* 0.0138
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of the attention each gesture received in these two categories.
In Fig. 4 and Table. VII, G2, G4, G5 received significantly
higher attention when characterizing EX trials compared to
NO trials, while G11 received significantly higher attention
when characterizing NO trials compared to EX trials.

V. DISCUSSION

According to a review paper by Yanik et al., LOSO is the
most common cross-validation method used for surgical skill
assessment. The models in the literature could achieve very
high accuracies up to 98.7%. The limitation of LOSO lies in
the model’s exposure to data from all subjects, including the
one under evaluation. The main reason that researchers tend
to use LOSO over LOUO is the data imbalance within the
JIGSAWS dataset, hurting the generalization of the models.
However, the authors still believe that more work should be
done to improve the model performance under LOUO to
fill the gap in the literature, recognizing it as a more robust
method for evaluating the model’s generalizability [35].

Therefore, in this study, we used LOUO cross-validation
to evaluate our proposed model. Based on our results, we

observed that the model tends to confuse IN with EX
(Fig. 2). Similar findings have been observed in related
studies, for example, Funke et al. used a 3D CNN for skill
level classification and the model misclassified all IN trials
to either EX or NO in Knot-Tying using LOUO cross-
validation [9]. Yanik et al. also mentioned that IN trials
are the most difficult to classify, and the reason includes
the categorization methods in JIGSAWS which is based
on self-reported hours of experience, and the unbalanced
dataset may bias models toward NO data (4 NO, 2 IN,
and 2 EX). However, in contrast, our results suggested that
2 IN trials were correctly classified and 8 IN trials were
misclassified as EX. This suggests that our model, while
still struggling with IN classification, may offer an improved
ability to handle the bias associated with dataset imbalance.
Therefore, our future work will improve the classification
accuracy of IN and finding the key differentiators between
IN and EX/NO. This could involve collecting a larger dataset
that contains more diverse subject population, incorporating
multiple data sources - kinematic data and video from the
robot, physiological sensor data to precisely measure the
human operator’s performance (e.g., EMG, GSR).

Additionally, we also examined the global-attention ex-
erted by the proposed model when classification results are
being made. Unlike self-attention, global-attention provides
insights into the significance of each time step when the
model is making a classification decision. By overlapping
the attention onto the gesture sequence, we could identify
specific gestures that could better characterize a NO or an
EX performance. For example, G1, G2, and G5 received
significantly higher attention in both EX and NO trials. This
indicates that these gestures play important roles in character-
izing skill levels, serving as focus points for surgeons. When
comparing gesture attention between EX and NO, as shown
in Table. VII, G2, G4, and G5 can better characterize an EX
performance. In contrast, G11 emerged as a key identifier for
a NO performance. This approach offers an opportunity for
the interpretation of skill level classification. Surgeons being
assessed can gain a deeper understanding of which parts of
the performance require improvement. Such interpretability
can serve as a tool for skill enhancement during surgical
training.

VI. CONCLUSIONS

This study addresses the current limitations of automated
skill assessment within robotic surgical training. The pro-
posed Transformer-based model achieved a classification
accuracy of 80% under LOUO cross-validation. The global-
attention exerted from the model could improve the inter-
pretability of classification results. The identification of key
gestures and their significance in characterizing skill levels
offer insights for surgeons to refine their performance. This
work contributes to the ongoing efforts to enhance surgical
training through AI techniques. Future research may further
refine the proposed approach by collecting an extensive real-
world dataset for model training.
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