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While fluorescent labeling has been the standard for visualizing fibers within fibrillar scaffold models of
the extracellular matrix (ECM), the use of fluorescent dyes can compromise cell viability and photobleach
prematurely. The intricate fibrillar composition of ECM is crucial for its viscoelastic properties, which
regulate intracellular signaling and provide structural support for cells. Naturally derived biomaterials
such as fibrin and collagen replicate these fibrillar structures, but longitudinal confocal imaging of fibers
using fluorescent dyes may impact cell function and photobleach the sample long before termination of
the experiment. An alternative technique is reflection confocal microscopy (RCM) that provides high-
resolution images of fibers. However, RCM is sensitive to fiber orientation relative to the optical axis, and
consequently, many fibers are not detected. We aim to recover these fibers. Here, we propose a deep
learning tool for predicting fluorescently labeled optical sections from unlabeled image stacks. Specifically,
our model is conditioned to reproduce fluorescent labeling using RCM images at 3 laser wavelengths
and a single laser transmission image. The model is implemented using a fully convolutional image-to-
image mapping architecture with a hybrid loss function that includes both low-dimensional statistical and
high-dimensional structural components. Upon convergence, the proposed method accurately recovers
3-dimensional fibrous architecture without substantial differences in fiber length or fiber count. However,
the predicted fibers were slightly wider than original fluorescent labels (0.213 + 0.009 pm). The model
can be implemented on any commercial laser scanning microscope, providing wide use in the study of
ECM biology.
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Introduction

The extracellular matrix (ECM) is a complex meshwork that
supports and facilitates cellular communication within tissues,
regulating processes such as migration, differentiation, and
tissue morphogenesis [1,2]. The natural makeup of the ECM
comprises noncellular fibrillar elements, such as collagen, elas-
tin, fibronectin, and several other glycoproteins, which grant
it viscoelasticity and nonlinear elastic properties [2,3]. Initially,
the ECM was thought to serve merely as a scaffold for maintain-
ing organ and tissue integrity. However, the numerous syn-
dromes caused by ECM mutations emphasize its critical role
in biological signaling in vivo [3,4]. There is an association
between ECM integrity and diseases, and understanding the
role of each ECM component is challenging due to the com-
plexity of the ECM and its dynamic nature [5-8].
Predominantly, studying ECM architecture and associated
cellular response is conducted within 3-dimensional (3D) cell
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culture scaffolds. Such biocompatible scaffolds can be broadly
categorized into nanoporous materials, such as alginate and
polyethylene glycol (PEG) scaffolds, or natural fibrous bioma-
terials, such as type 1 collagen and fibrin [9-11]. PEG scaffolds
are commonly used in tissue engineering and regenerative
medicine due to their tunable physical and chemical properties
and versatility in achieving desired nanoporosity, hydrophilic-
ity, binding domains, etc. [12-15]. However, their isotropic,
homogeneous microstructure does not recapitulate the fibrillar
nature of native ECM, which is crucial for mechanical trans-
duction and force propagation [14,16]. Alternatively, naturally
derived fibrillar scaffolds such as collagen and fibrin can mimic
ECM mechanical properties and architecture [17].

Typically in fibrillar scaffolds, fiber lengths ranges from 2 to
30 pm [18]. Resolving ECM structure thus requires imaging
tools with enhanced optical sectioning capability such as laser
scanning confocal microscopy (LSM), based on a developed
technique by M. Minsky in 1955 [19]. LSM of fluorescently
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labeled scaffolds enables visualization of deep fibers (1 to 2 mm)
at high resolution in both transverse and longitudinal planes
[20]. These diffraction-limited thin transverse sections are used
to reconstruct scaffold 3D microstructure within an ECM vol-
ume [20]. 3D imaging can identify deformation within the
scaffold and track cell interactions in real time during experi-
ments that can last for weeks or longer [21,22]. Unfortunately,
such labeled samples become photobleached in a process gen-
erating free radicals that can influence cell behaviour through
processes such as DNA oxidation [23-25]. Furthermore, expos-
ing cells to high-intensity laser light during LSM can induce
DNA damage, especially with lasers of shorter wavelength near
the ultraviolet band [26]. An alternate approach to longitudinal
LSM is chemical fixation of an ECM followed by fluorescent
labeling against target molecules. However, this technique
requires terminating samples at each time point (e.g., [26]),
precluding longitudinal studies and instead averaging behaviors
over time across multiple samples. Such studies necessitate a
complex and time-intensive protocol of fixation, labeling, and
imaging of each sample.

An alternate modality that can image ECM fibers is reflec-
tion confocal microscopy (RCM) that avoids challenges associ-
ated with fluorescent labeling of the ECM [27,28]. This method
relies on endogenous contrast, utilizing the intrinsic properties
of the specimen for imaging, without the need for exogenous
labels. RCM is wavelength-dependent, where the choice of illu-
mination wavelength affects the depth, quality, and resolution
of images. Further, scattering coefficients are wavelength-
dependent and may introduce a level of independence between
images at multiple unique laser wavelengths [29]. Therefore,
for this study, we labeled fibrin ECMs with the fluorescent dye
(Alexa 647). ECMs were then imaged in transmission mode by
one laser, and RCM at 3 laser wavelengths (405/488/561 nm),
which do not excite the fluorescence. Additionally, the same
ECMs were imaged in fluorescence using a 640-nm laser as
illustrated in Fig. 1A. As can be seen in Fig. 1B, transmission,
fluorescence (Alexa 647), and reflection (405/488/561) images
carry different information. The transmission image (top left)
reveals detailed structures of the fibrillar sample, but from a
thick focal volume, and thus cannot assign the depth of each
fiber. In contrast, the RCM images (bottom row: 405/488/561)
provide optical sectioning, thus improving depth resolution.
However, while RCM detects fibers oriented along the trans-
verse (image) plane, detection fails as orientation has compo-
nents along the longitudinal axes, and tends to miss important
structural features like fiber intersections (nodes) [30]. The
fluorescence confocal imaging overcomes these limitations
and provides detailed structural information, making it highly
advantageous for accurate 3D reconstruction and resolving
fine sample details. This observation motivated our method
to predict the fluorescently labeled image (Fig. 1C), which we
refer to as ground truth (GT).

In this paper, we develop a deep learning approach to virtu-
ally stain samples using RCM and transmission images, thereby
recovering the missing fibers and gaining structural informa-
tion about the scaffold (Fig. 1C). Our method extends known
frameworks for image-to-image mapping tasks, commonly
implemented using fully convolutional architectures such as
the U-Net, to learn a mapping function between 2 domains that
exploits nonlinear pairwise relationships between the pixels
[31]. Recent work in histology has illustrated the use of image-
to-image mapping convolutional neural networks (CNNs) to
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predict fluorescent labels from naive standard nonfluorescent
images of histological samples [32,33]. Here, we investigate the
use of this technique to virtually label ECM fibers within a 3D
fibrin scaffold. The input channels are label-free and exploit the
modalities of RCM at 3 laser wavelengths and transmitted light
microscopy at a single laser wavelength (Fig. 1A and B), both
of which are standard features of any commercial laser scanning
confocal microscopes. Predictions are compared to GT using
statistical metrics for image reconstruction error as well as
derived scaffold metrics such as fiber length, fiber width, and
fiber count.

Materials and Methods

Scaffold preparation

Bovine stock fibrinogen (MilliporeSigma, F8630-10G) was dis-
solved in phosphate-buffered saline (PBS; Gibco) and filtered
using Thermo Fisher Scientific Nalgene Rapid-Flow Disposable
Filter Units (974101). Fibrinogen solution was prepared at 2.5,
5, and 10 mg/ml concentrations and filtered using polyethersul-
fone 0.22-pm 30-mm-diameter syringe filter (Genesee Scientific
25244) and 10-ml syringe (Henke-Ject 21M29C8). A 1-ml fil-
tered fibrinogen solution was added to 20 pl of bovine thrombin
(4 U/ml, Sigma, SLBW2056) and swirled around quickly inside
a 35-mm glass bottom dish (MatTek) before polymerization. The
swirl method involves tilting the glass dish by hand while moving
the fluid in a circular motion to cover the entire dish surface.
Each sample was incubated at room temperature for 5 min before
being placed in the incubator at 37 °C and 5% CO, for 30 min
prior to labeling. Fibers were labeled with Alexa Fluor 647 NHS
ester (succinimidyl ester) (Thermo Fisher Scientific A20006) by
adding 2 mg/ml of the dye to the sample and incubating it for
15 min on the shaker, followed by 3x washes using PBS.

Data acquisition

For the training set, five 3D confocal image stacks of 4 different
samples (2.5 mg/ml) were acquired with 100-nm step size. Each
training set of images was 318.20 X 318.20 X 2 pm’, with an
image scan area resolution of 4,096 X 4,096 pixelsz, a pixel size
of 77.69 nm, and a pixel dwell time of 4 ps. For the test set, a
single 3D image stack was acquired of dimension 40 X 40 X
16 pm’ with identical pixel size and image stack step size but
with 2-ps pixel dwell time. For each focal plane, 2 sets of confo-
cal images were acquired using an Olympus FV3000 laser scan-
ning confocal microscope and an Olympus 40X silicon oil
immersion objective lens (numerical aperture = 1.25). Details
of Olympus Fluoview software configuration can be found in
Fig. S1. We acquired images in 2 different FV3000 internal optic
configurations to accommodate different light paths associated
with reflection and fluorescence modalities. One main differ-
ence between the 2 configurations is the use of a 10/90 beam
splitter for reflection so only 10% of light intensity can reach
the sample. Laser lines and dye excitation/emission spectra are
shown in Fig. 1A. Briefly for configuration 1, the GT fluores-
cence and transmission images are acquired simultaneously
(Fig. 1B). Note that the 561-nm laser used for RCM does overlap
the tail of the excitation spectra of Alexa 647. We tested if any
excited fluorescence contributed to the 561-nm RCM image,
which would bias our technique. For this one test, we reconfig-
ured FV3000 in a standard fluorescence mode with the dye being
excited by the 561-nm laser at the same power used for RCM.
No fluorescence was detected (Fig. 1B, 561 EX/Alexa Fluor
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Fig. 1. Experimental design. (A) Spectra showing 3 laser emission peaks at 405, 488, and 561 nm, and the excitation/emission spectra of Alexa Fluor 647 nm used to label
fibers. Produced by FPBase [45]. (B) Confocal optical sections of a fibrin scaffold acquired in 2 configurations, where a configuration is defined as a unique set of optical filters,
dichroic mirrors, and light paths for simultaneously acquiring a set of images. Configuration 1: (bound by orange dashed border) 488-nm laser for transmission, 640-nm
laser for exciting Alexa 647 fluorescence, and bandpass filtering to detect Alexa 647 emission. The image in column 3 tests for excitation of Alexa 647 by the 561-nm laser
used for RCM. Configuration 2: RCM at 3 laser wavelengths, 405, 488, and 561 nm. (C) Schematic diagram illustrating prediction of fluorescent fibers from label-free images
acquired by transmission and RCM.
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647 EM). Configuration 2 acquired all 3 RCM images simul-
taneously using the 405-, 488-, and 561-nm lasers (refer to Fig.
1B, Configuration 2 for an example).

Data preprocessing

Normalization

A normalization scheme is applied to all raw imaging data in
order to equalize brightness in both the transverse and longi-
tudinal planes as well as to enhance overall image contrast.
Specifically, we use a sliding window approach to perform spa-
tially localized Z-score normalization [34], as shown in Fig. 2.
This technique transforms pixel intensities into dimensionless
zero-mean distribution with a unit standard deviation, preserving
spatial information while reducing light gradients across an image
(e.g., Fig. 2A and B). In this study, we implement the sliding
window kernel with a dimension of (1,101,101) and a stride of
(1,1,1) such that the mean and standard deviation for any single
window is calculated using a neighborhood of 10,200 pixels.
Application of this kernel yields spatial arrays representing local
means (x,y,z;¢) and local standard deviations & (x,y,z;c).
These local statistical distributions are used to perform Z-score
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transformation through pixel-wise subtraction and division on
the raw images R(x, ¥ z;c) according to Eq. 1, resulting in a
normalized output N (x, y,2z;¢)with locally and globally equal-
ized pixel values (e.g., Fig. 2A and B). Of note, this method
suppresses the bright central artifact common to RCM imaging
(Fig. 2B) and prioritizes local variations over broader intensity
gradients (Fig. 2C).

Patching and cohorts

After normalization, we separate the original data into image
patches comprising smaller fields of view under the hypothesis
that GT prediction only requires local contextual information.
This approach maximizes available training data as each
subvolume yields a separate sample for learning and also
accommodates the practical limitations of GPU memory.
To generate image patches, we divide the original matrix of
size (z, x=4096, y = 4096, c) into (z, x =256,y =256, c) patches,
where z is the depth of the image and ¢ is the number of input
channels. By maintaining the original z dimension, we preserve
z-oriented features, which in turn supports the reconstruction of
fibers along the zaxis. This protocol results in a total of 2,816 patches
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Fig. 2. Intensity normalization. (A) Transmission image example: Left column shows raw image, mean, and standard deviation maps of an ROI; column 2 shows a normalized
image (bottom) and two zoomed-in regions of interest for comparison between before (blue frame) and after (green frame) normalization. (B) RCM image example: Left column
shows raw image, mean, and standard deviation maps, and top right shows a zoomed-in comparison between before (blue frame) and after (green frame) normalization,
where we were able to tune down the intensity of the bright laser spot in the center of the field of view. (C) Intensity profiles comparing a reflection image before and after

normalization. Z score shows the drop in saturation at the center of the image.
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with dimensions of (batchsize, z=20,x =256,y =256,c) for
training and 1,024 patches of identical dimensions for valida-
tion. For testing, we used an independent dataset with a size
of (z=150,x=512,y=512,c). To improve model generaliz-
ability, we incorporated data from 2 distinct fibrin scaffold
samples for training and employed an independent third sam-
ple for hyperparameter tuning and validation. This approach
increases the diversity of the training set, reducing within-
sample correlations and enabling a more robust validation
process. Finally, testing was performed using a fully indepen-
dent fibrin scaffold sample distinct from both samples used
during training and validation.

Network architecture

In this study, we implement an image-to-image mapping model
using a fully convolutional encoder-decoder (U-Net) architec-
ture. The encoder-decoder architecture is a standard approach
for image-to-image mapping tasks and has been successfully
adapted for similar previous work in microscopy [33,35-37].
Our fully convolutional encoder-decoder model is imple-
mented using a series of convolutional blocks defined as the
application of a 3D convolution operation, batch normaliza-
tion, and rectified linear unit (ReLU) nonlinearity as shown in
Fig. 3. A downsampling convolutional block is implemented
by utilizing a (1,2,2) stride length in the convolution operation.
Similarly, an upsampling convolutional block is implemented
by replacing the standard convolution with a (1,2,2) stride
length convolution transpose operation followed by a non-
strided average pooling operation with kernel size (1,2,2) to
mitigate zero-filled upsampling artifacts. In total, our encoder

Attention mechanism

is composed of a series of 4 alternating pairs of nonstrided and
strided downsampling blocks followed by a symmetric decoder
of 4 alternating pairs of nonstrided and strided upsampling
blocks. With each downsampling operation, the feature map
depth is doubled from an initial 4-channel input to a maximum
feature map depth of 64. Refer to the Supplementary Materials
for the mathematical definitions of the blocks.

We further introduce a per-channel attention mechanism at
the first layer of the network, as shown in Fig. 3 (top left). This
layer is designed not only to enhance network performance but
also to enable the model to explicitly learn the relative impor-
tance of each input channel for optimal reconstruction, overall
improving model interpretability. To implement this strategy,
each channel is assigned a single trainable global weight scalar,
WRef,» WRef,» WRef,» Wy Which is multiplied across all pixel val-
ues of each corresponding input channel data. During the opti-
mization process, the model is allowed to increase or decrease
the relative contribution of any individual channel to maximize
reconstruction accuracy. Upon convergence, the learned per-
channel weight values reflect the relative importance of each
input to the final reconstruction task.

Optimization

Loss function

Our loss function is composed of a combination of low-
dimensional per-pixel error as well as high-dimensional struc-
tural consistency. The low-dimensional loss component L (y,)
is defined using a series of LP norm values, P = %ll. ||§, with
p=1andp=3,asshownin Eq. 2, where N represents the total
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Fig. 3. Network architecture: Overview of encoder—decoder (U-Net) network architecture for proposed image reconstruction task. For each resolution level, spatial dimensions
are shown along the y axis (as a ratio of original data size), while channel depth is shown along the x axis. Note that within a block, information flows from left to right.
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number of pixels within the image domain I, while i, j, k are
indices corresponding to the spatial dimensions x,y,z.
Generally, higher values of p more effectively penalize outlier
errors, which can accelerate convergence. However as the
model converges, the partial derivative of higher-order loss
terms asymptotically approaches zero, which in turn degrades
gradients used for optimization. Furthermore, high-order
norm functions prioritize a uniform distribution of error at the
expense of precise predictions, resulting in blurring at the edges
of reconstructed images. The p = 1 term, on the other hand,
encourages both improved gradient stability during optimiza-
tion as well as a sparse distribution of errors, overall preserving
finer details during image-to-image regression tasks. The high-
dimensional structural consistency loss component is defined
using structural similarity SSIM ( y,j/\), a term that captures
more abstract perceptual differences within a local neighbor-
hood of pixels [38]. Together, the L, L3, and SSIM terms are com-
bined using weights & and § to adjust the contribution of L; and
SSIM relative to the main L; component. After a grid search, we
determined that @ = 10~! and § = 10~* yielded optimal perfor-
mance (Eq. 2). Optimization is performed using the Adam
method [38] at a learning rate of LR = 10~*and a batch size of 5.

Implementation details

All experiments were written using TensorFlow 2.5.0 within
the Python 3.8.5 environment. Model training was performed
on systems featuring 4 NVIDIA GeForce RTX 2080 Ti GPUs
(11 GB of VRAM), a 16-core AMD Epyc processor 3.0 GHz,
256 GB of DDR4 RAM, and a 960 GB NVMe SSD.

Impact of image modality on model performance
Per-channel analysis

To investigate the contribution of different input channels to
model performance and determine how channels complement
one another, we conduct an input channel ablation study. In
addition to the baseline experiment with all input channels, we
perform experiments isolating the input to just transmission
or reflection groups. This procedure yields a total of 3 different
input permutations:

o Tra + Ref: Training the model with both transmission and
RCM.

o Tra: Training with only transmission.

o Ref: Training with only RCM.

In addition to statistical metrics of reconstruction accuracy,
we generate postprocessed image error maps to highlight salient
features in the prediction () relative to GT (y). To generate
these maps, we first threshold the original images and perform
azprojection to create a binary mask of relevant fiber structures.
This step is performed using Fiji software (https://imagej.net/
software/fiji/). Then, we multiply raw images (¥ and y) by the
binary fiber mask followed by a signed error difference calcula-
tion that we refer to as J — y for simplicity. In the resulting error
map, any positive value indicates model overestimation, while
any negative value indicates model underestimation.

Transmission channel blurring

Transmission channel resolution is degraded with thicker and
higher concentration of ECMs because of light scattering. To
assess the effect of this potential source of quality degradation,
such ECMs are simulated computationally by applyinga 5 X 5
Gaussian blur kernel of different standard deviations: 1, 3,
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or 5. These blurred transmission images were combined with
all 3 raw (unchanged) RCM inputs, yielding an additional 3
ablation experiments:
o Tra,c = 1: Transmission blurred by a 5 X 5 kernel with o = 1.
o Tra, o = 3: Transmission blurred by a 5 X 5 kernel with o = 3.
o Tra, o = 5: Transmission blurred by a 5 X 5 kernel with o =5.

RCM wavelength comparison
To evaluate the relative contributions of each RCM image
acquired at different excitation wavelengths, we trained models
using distinct wavelength-specific image sets in conjunction
with the transmission image. The goal of these experiments is
to determine the extent to which each wavelength contributes
to predictive accuracy of fibrillar parameters, such as fiber
count, length, and width. The following experiments were
trained and assessed to give us insight on whether all 3 RCMs
are necessary for robust fibrillar characterization:

o Tra + Ref405: Training with transmission and the
405-nm RCM.

o Tra + Ref488: Training with transmission and the
488-nm RCM.

o Tra + Ref561: Training with transmission and the
561-nm RCM.

Robustness of best-performing model
One possible issue that can affect model performance is the pres-
ence of interference rings inherent to the RCM modality, espe-
cially near the glass interface. Acknowledging this potential
source of error, we deliberately ensured that the training cohort
comprised images at the glass interface containing this particular
artifact pattern, allowing the model to learn high-quality map-
pings even in the presence of image degradation. To test for
robustness to this known artifact, we carefully interrogated model
predictions specifically in regions exhibiting these ring patterns,
with a particular emphasis on evaluating the consistency of fiber
predictions in the central region where the rings appear.
Furthermore, we assess out-of-distribution model generaliz-
ability on higher-density samples (5 and 10 mg/ml) where pore
size and fibrillar structure significantly differ from those in the
lower-density training dataset (2.5 mg/ml). For this evaluation,
we generate predictions from our top-performing model with-
out additional fine-tuning on 2 new 3D image stacks of 5 and
10 mg/ml fibrinogen concentration of dimension 40 X 40 X
6 pm’ with a pixel size of 77.69 nm, a pixel dwell time of 2 ps,
and a step size of 100 nm.

Statistical analysis

Nonstructural analysis

Model reconstruction error is estimated using mean squared
error (MSE; Eq. 3), structural similarity index (SSIM; Eq. 4),
peak signal-to-noise ratio (PSNR; Eq. 5), and Spearman’s rank
correlation coeflicient (p; Eq. 6). Definitions of these metrics
and Egs. 3 to 6 are in the Supplementary Materials. Prior to
metric derivation, all images and model predictions are nor-
malized to a distribution between [0,1]. Metric variance is esti-
mated using a bootstrapping technique implemented using
10,000 overlapping patches from the test cohort with dimen-
sions of (batchnumber, z = 15, x =100, y =100, ¢).

Structural analysis
The ability of model reconstructions to retain relevant semantic
meaning compared to GT was assessed using GTFiber, an
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open-source software package with algorithms to track and
analyze polymers, filaments, and fibrous samples [39]. In this
study, GTFiber is used to produce a vectorization map of the
fibers (Fig. 4A) to calculate total number of fibers (Fig. 4B), fiber
length (Fig. 4C), and width (Fig. 4D) within a volume of dimen-
sion 40 x 40 X 16 um”. Specific application of GTFiber to a data-
set requires manual configuration of various filters to the input

A

image according to the specified parameters shown in Fig. S2.
For this analysis, identical parameters were used for both GT
and prediction. Prior to application of GTFiber software, GT
images were denoised using the spatial redundancy subsam-
pling method proposed by Li et al. [40]. Refer to Fig. S3 for an
example. All statistical analyses were carried out in GraphPad
Prism version 10.2.3 for Windows (GraphPad Software, Boston,
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Fig. 4. Structural analysis. (A) Example of the process used to analyze fibers using GTFiber. A series of filters are applied to the raw image, followed by a vectorization step
[39]. Distributions per slice of number of detected fibers (B), fiber length (C), and fiber width (D) for GT, Tra + Ref, Tra, and Ref predictions. (E) Number of detected fibers

within an image volume, binned by depth.
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MA, USA; www.graphpad.com). A 2-tailed paired parametric
t test was used with a level of significance, @ = 0.05.

Results

Quantitative analysis

A summary of results across all input channel permutations is
shown in Table 1, with reconstruction accuracy characterized
by normalized MSE, SSIM, PSNR, and Spearman coefficient.
We notice that Tra + Ref performed the best across all 4 metrics
with MSE = 0.3542 % 1072, SSIM = 0.7891, PSNR = 24.5469,
and Spearman correlation coeflicient p = 0.8782. Figure 5
shows a randomly selected slice of Tra + Ref output demon-
strating the quality of GT prediction. Figure 5A shows the
original input channels for model prediction, while Fig. 5B
shows corresponding GT and generated reconstructed outputs;
notice that numerous fine details including fiber structure are
recovered. Review of the generated error map suggests that
discrepancies in model predictions are primarily distributed

along the edges of existing fibers, resulting in over- or under-
estimation of fiber intensity and width. Importantly, we did not
observe significant hallucinations or other de novo generation
of completely new fiber structures in Tra + Ref reconstructions.
A similar analysis was completed for models Tra and Ref (Fig.
S4) showing hallucinations and missing nodes.

As motivated in Per-channel analysis, a per-channel atten-
tion mechanism is used to learn the relative contributions of
each input channel for optimal reconstruction accuracy. Upon
model convergence, the weight associated with the transmis-
sion channel, wr,,, surpassed the weights associated with reflec-
tion channels, WRef,» WRef,» WRefy by nearly 40%, highlighting
the relative importance of the transmission channel in the
reconstruction task. As noted in Table 1, ablation experiments
suggest a similar trend with Tra outperforming Ref for all
reconstruction error metrics. A comparison of model predic-
tions for Tra and Ref as shown in Fig. S4 further affirms this
observation with significant degradation in performance when
transmission data are withheld from the model.

Table 1. Quantitative analysis of the trained models Tra + Ref, Tra, and Ref. This table presents the mean and standard deviation for MSE,
SSIM, PSNR, and Spearman'’s rank correlation of the 3 different models explained in Per-channel analysis.

Model MSE (+1072) SSIM PSNR (dB) Spearman

Tra + Ref 0.3542 + 0.0487 07891 + 0.0229 24.5469 + 0.5862 0.8782 + 0.0265

Tra 0.4020 + 0.0478 0.7614 + 0.0265 23.9886 + 0.5144 0.8577 + 0.0308

Ref 0.7306 + 0.1151 06954 + 0.0337 214172 + 0.6868 0.6376 + 0.0767
A Ref405 Ref488 Ref561

PArediction
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Fig. 5. Example Tra + Ref prediction. (A) Tra + Ref inputs of a selected ROI comprising RCM at 3 wavelengths (405/488/561 nm) and a laser scanning transmission image.
(B) Corresponding fluorescently labeled image (GT = y), model prediction (7), binary fiber mask, and a normalized error map (¥ — y) created according to Per-channel

analysis. Note that scale bars are drawn at 10 pm.
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The effect of a blurred transmission image on prediction
performance was assessed by models Tra, ¢ = 1, Tra,c = 3,and
Tra, o = 5 (results shown in Table 2). In these ablation experi-
ments, we observed progressive decline in performance with
increasing o. Corresponding images are shown in Fig. S5. Of
note, the loss of information with blurred transmission images
does not appear to be mitigated by RCM images, which remained
intact for these experiments; indeed, these results further con-
firm the critical importance of transmission images for robust
reconstruction.

We further explored the contribution of each RCM wave-
length to model accuracy. Results of the models mentioned in
RCM wavelength comparison are presented in Table 3. Among
the individual wavelength models, Tra + Ref405 shows perfor-
mance closest to the full model (Tra + Ref). In contrast, Tra +
Ref488 and Tra + Ref561 exhibit a progressive decline in met-
rics, with the 561-nm model performing the worst.

Structural analysis

We utilized GTFiber to assess the fibrillar similarities and dif-
ferences between GT and the predictions of our best-performing
model, Tra + Ref. Results are presented in Fig. 4. Overall, Tra +
Ref shows no significant difference as compared to GT in num-
ber of fibers detected per slice (Fig. 4B) or fiber length (Fig.
4C). However, a small but statistically significant difference is
observed in fiber width (0.21 + 0.01 pm), with model recon-
structions showing slightly thicker fibers (Fig. 4D). Given the
systematic nature of this error (likely due to the L;loss function
component as detailed in Loss function), we note that application
of a sharpening filter successfully eliminates this difference in
width (Fig. S5C and E). We further analyzed the number of
detected fibers across a depth of 16 pm by grouping the data

into depth intervals of 1 to 4, 4 to 8, 8 to 12, and 12 to 16 pm.
A 2-tailed paired f test shows no significant difference between
GT and the prediction of Tra + Ref (Fig. 4E).

Compared to our baseline Tra + Ref, Tra showed no signifi-
cant difference in the number of fibers detected per slice; however,
significantly shorter and thicker fibers were predicted with 2.31 +
2.32 and 0.51 + 0.55 pm (median + SD), respectively (Fig. 4B
to D). By contrast, Ref showed significant differences in the num-
ber of detected fibers per slice (11.63 + 6.23 fibers), fiber length
(1.39 + 0.28 pm), and fiber width (0.41 + 0.59 pm) compared to
the GT (Fig. 4B to D). The underperformance of Ref can be attrib-
uted to the nature of RCM images, which often fail to capture
fibers oriented along the z axis due to insufficient light reflection.
These results demonstrate that transmission images, either alone
or in combination with RCM images, can reliably reproduce GT
fibrillar structure as observed in Fig. 4C. These findings corrobo-
rate our results in Table 1, where combining transmission images
with RCM to train the model produced the best results.

We further examined the impact of individual RCM wave-
lengths on fiber detection, length, and width predictions. As
shown in Fig. 6, all models incorporating RCM images main-
tained a comparable number of detected fibers per slice with
no significant differences observed, except for Tra + Ref488
(Fig. S6A). However, fiber length predictions exhibited signifi-
cant deviations from GT across all single RCM-based models
(Fig. S6B). This effect is particularly pronounced in the 488-
and 561-nm models, which show the greatest discrepancies.
Similarly, fiber width predictions were significantly affected by
RCM wavelength selection, with all models predicting system-
atically different fibers than GT (Fig. S6C). The widening effect
is most pronounced in the 561-nm model, suggesting that longer
wavelengths may introduce artifacts that impact fiber morphology

Table 2. Quantitative analysis of the trained models Tra + Ref, Tra, s = 1, Tra, o = 3, and Tra, c = 5. This table presents the mean and stan-
dard deviation for MSE, SSIM, PSNR, and Spearman'’s rank correlation of the 4 different models explained in Transmission channel blurring.

Model MSE (¥1072) SSIM PSNR (dB) Spearman

Tra + Ref 0.3542 + 0.0487 0.7891 + 0.0229 24.5469 + 0.5862 0.8782 + 0.0265
Tra,c=1 0.3882 + 0.0573 0.7767+ 0.0253 24.1556 + 0.6359 0.8642 +0.0292
Tra,c =3 0.4770 + 0.0627 0.7543 +0.0269 23.2515 + 0.5676 0.8516 + 0.0287
Tra,c=5 0.5660 + 0.0747 0.7209 + 0.0310 22.5092 + 0.5703 0.8047 + 0.0397

Table 3. Quantitative analysis of the trained models Tra + Ref, Tra + Ref405, Tra + Ref488, and Tra + Ref561. This table presents the mean
and standard deviation for MSE, SSIM, PSNR, and Spearman’s rank correlation of the 3 different models explained in RCM wavelength

comparison.

Model MSE (*10~2) SSIM PSNR (dB) Spearman

Tra + Ref 0.3542 + 0.0487 0.7891 + 0.0229 24.547 + 0.586 0.8782 + 0.0265
Tra + Ref405 0.3505 + 0.0484 0.7826 + 0.0236 24.594 + 0.589 0.8701 + 0.0283
Tra + Ref488 0.3778 + 0.0491 0.7683 + 0.0269 24.264 + 0.566 0.8563 + 0.0303
Tra + Ref561 0.4012 + 0.0608 0.7663 + 0.0250 24.014 + 0.640 0.8649 + 0.0286
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estimation. These findings support our quantitative analysis
(Table 3), highlighting the importance of including all 3 RCM
images as an input to preserve fibrillar structure.

Qualitative comparison

To better characterize the complimentary information present
across transmission and RCM input images, each individual
imaging modality is analyzed using GTFiber within a volume
of dimension 40 X 40 x 16 um’. One key observation is the
notable increase in number of detected fibers in the transmis-
sion channel as compared to GT, which is expected because
transmission is not a confocal modality and thus it images a
thicker focal volume (Fig. 6A). Also, as discussed above, RCM
is insensitive to out-of-plane fibers and thus has a lower fiber
count. Further, both fiber length and width in either of these
modalities deviate largely from GT and are insufficient for net-
work reconstruction (Fig. 6A).

The ability of Tra + Ref, Tra, and Ref to predict all fibers and
nodes in an image is exemplified in Fig. 6B to D. Interestingly,
while the transmission channel was heavily weighted during
training, we did observe a Z-coordinate offset for each fiber,
with the offset step size changing across the field of view without
any detectable trend. Columns 1 and 2 in Fig. 6B show examples
of this offset that ranges from 400 to 700 nm. When examining
the reflection, GT, and prediction images, we notice that features
in the GT image align with those in Z, | g, not the corre-
sponding Z, transmission image. Unexpectedly, the Tra + Ref
predicted image contains features that are not in focus within
the corresponding transmission image (column 2), but are in
focus in the parfocal reflection image (column 3). Tra prediction
hallucinated fiber structure (Fig. 6C, yellow ovals), while Ref
failed to detect fibers (Fig. 6D, yellow ovals). Furthermore,
Tra + Refretrieved all nodes (Fig. 6B), whereas Tra hallucinated
nodes (Fig. 6C, white arrow); conversely, Ref failed to detect
several nodes that were present in GT (Fig. 6D, white arrows).
To test if the transmission image focal plane offset was an arti-
fact of the microscope condenser alignment position, we shifted
the condenser along the optical axis but found no change in
the location of features. This result suggests that the observed
focal plane offset is inherent to the laser scanning transmission
modality.

Discussion

Here, we present a technique to image ECM fibers that frees
up a fluorescent channel typically dedicated to that task, where
the said channel is better used for molecular labeling. Our
approach exclusively uses the label-free modalities of trans-
mission and RCM while compensating for their limitations
as previously supported by Fig. 6A. Specifically, Tra + Ref
compensates for the RCM limitation of not detecting a signifi-
cant portion of fibers and the poor optical sectioning inherent
to transmission microscopy. Further, Tra + Ref successfully
reconstructs scaffold structure, which is valuable for real-time
deformation analysis in the study of cell-ECM interactions.
Structural and statistical comparisons between the GT and
predictions show strong agreement in number of detected
fibers and length. However, the predicted fibers were slightly
wider than their GT counterparts, likely due to a spectral bias
in CNNs that prioritizes low-frequency features during the
optimization process [41]. Such a bias makes it challenging for
the network to reconstruct high-frequency features such as the
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sharp edges of fibers with high precision. Additionally, L,
norm-based losses, which are known to induce blurriness in
structures [42], contribute to a disproportionate increase in
width relative to length, as fibrin fibers are elongated structures.
Importantly, however, the shape of fiber width distribution is
similar between the predicted and GT data in our best perform-
ing model (Fig. 4D), overall suggesting a systematic bias that
can be compensated for using postprocessing techniques such
as a sharpening filter (Fig. S5) or morphologic erosion. As
needed, a calibration step could be introduced to determine
optimal postprocessing hyperparameters that best remove this
artifact based on dataset-specific properties.

We further assessed the reconstruction error of our models
using metrics including MSE, SSIM, PSNR, and Spearman
correlation, as summarized in Table 1. Each of these metrics
captures image similarity from a different perspective, and they
should be interpreted holistically within the context of the
specific task rather than in isolation. MSE reflects a low-dimen-
sional per-pixel accuracy without regard for spatial distribution
of error. In a normalized image with pixel intensities ranging
from 0 to 1, MSE values on the order of ~107% as exhibited by
our models suggest that the average quadratic deviation per
pixel is approximately 1% of the maximum image intensity,
which we consider a reasonable outcome for this task. SSIM
is a normalized metric with a range of [0,1], with higher SSIM
values indicating statistical similarity accounting for spatial
distribution on a patch-by-patch basis. Our top model yielded
SSIM values of ~0.79, which is comparable to other image-to-
image mapping tasks. In a previous study [33], a model for
virtual staining of hematoxylin and eosin (H&E) images
achieved an SSIM of ~0.725.

The Spearman correlation coefficient (p) is a normalized
metric with a range of [0,1], with higher values indicating a
direct, monotonic global relationship between image pairs with-
out consideration of absolute pixel values. We found p between
Tra + Ref prediction and GT to be ~0.87, overall suggesting
strong correlation. Finally, PSNR is a metric that characterizes
image noise on a logarithmic scale measured in decibels. In
image reconstruction tasks, typical PSNR values fall within the
20- to 25-dB range, with higher values representing better image
quality. Our model predictions yield PSNR values of approxi-
mately 24.5 dB and are overall similar to PSNR values of the GT.
Overall, the collective interpretation of these metrics, alongside
previously established benchmarks in related work ([32,33,36]),
supports the conclusion that our model is capable of generating
accurate and robust reconstructions.

While training with the single transmission and 3 RCM
channels produced a well-performing model, we did question
whether both reflection and transmission channels were nec-
essary. Our ablation experiments (Per-channel analysis) pro-
vide insight into the contribution of each input channel in our
best-performing model (Tra + Ref). Interestingly, while the
transmission channel had greatest weight during training, a
second model trained on the transmission alone (Tra) predicts
shorter and narrower fibers as compared to GT and thus does
a poor job reconstructing the GT mesh structure. A third
model trained on the RCM channels alone (Ref) had similar
limitations.

Lastly, we explored robustness of Tra + Ref to ECMs having
increased thickness and turbidity, 2 factors that are dependent
upon the design of a tissue culture experiment. As expected,
dynamically blurred training sets diminished prediction accuracy
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Fig. 6. Limitation and cooperation between input image modalities. (A) GTFiber analysis of number of fibers per slice, fiber length, and width within a fibrin volume using the
3 imaging modalities: fluorescence (GT), RCM example (405 nm), and transmission. (B) Three Tra + Ref examples (one per row) showing a first transmission slice at depth
Z, ,oftset and second at Z,, as well as RCM (405 nm), GT, and prediction at Z,. Yellow ovals highlight features inconsistent between image types. White arrows point to nodes.

Corresponding image types for Tra (C) and Ref (D).
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(Table 2 and Fig. S5C), but application of a sharpening mask
(radius of 4 pixels, mask weight of 0.6) can reasonably recover
fiber contrast and resolution (Fig. S5, C as compared to E). This
suggests that our tool could be beneficial for thicker samples than
we imaged here, but a further developed model may become
necessary beyond some thickness threshold.

As expected, RCM could not detect all fibers in the focal
plane due to dependency on fiber axial orientation. However,
one surprising observation is the focal plane mismatch between
transmission and GT images as assessed by the appearance of
fibers. In fact, we found that the difference in focal plane was
on the order of 0.5 pm and was not uniform between regions
of interest. This depth of mismatch is significant for recon-
structing and understanding ECM mesh architecture in the
context of tissue engineering, and thus needs to be accounted
for. Fortuitously, while the abundance of spatial information
in the transmission channel greatly aided the model in predict-
ing fibers, it appears that the RCM channels can “pull” fibers
back into the GT focal plane, thus compensating for the trans-
mission offset. Further, because the focal offset seems to be
dependent on fiber orientation, local fiber density, and sample
depth, a simple offset applied to all region of interest (ROI) is
insufficient for accurate prediction. This claim is supported by
the fact that Tra exhibits hallucinated fibers and nodes, and
required the RCM to both define the true focus and provide
optical sectioning (Fig. 6C).

We further assess model generalizability and robustness to
image artifact as well as out-of-distribution conditions (Fig.
S7). First, we analyzed predictions on 2.5 mg/ml samples in
regions where RCM images contained diffraction rings due to
proximity to the glass interface. Despite the presence of these
artifacts, Tra + Ref was able to accurately reconstruct scaffold
fibers, demonstrating resilience to diffraction-induced distor-
tions (Fig. S7A). Indeed, a key advantage of neural networks is
the capacity to recover high-quality mappings from any repre-
sentative distribution of input and output image pairs, includ-
ing input images degraded by various artifacts. In other words,
amodel can implicitly learn to reconstruct artifact-free images
directly from artifact-degraded inputs without the need to
manually compensate for data corruption so long as the sources
of image degradation are adequately represented in the training
dataset and do not irreversibly damage the underlying signal
of interest. Second, we observed that the top-performing model
was able to recover fibers even in samples of higher density (5
and 10 mg/ml) than those used in training (2.5 mg/ml), although
overall performance in this out-of-distribution context is lower
than in the original baseline experiments. We suspect that this
is at least in part due to degradation of overall signal across the
input images, an observation most evident in the 10 mg/ml con-
dition where fiber contrast and subtle finer structure appears
significantly diminished across both input and ground-truth
channels (Fig. S7B). This suggests that the underlying theoretical
upper bounds of fiber reconstruction may be lower for higher
density samples regardless of technical approach. Nonetheless,
we acknowledge that further optimization in this setting may
be best achieved using a dedicated model to accommodate the
broader range of pore sizes and fiber arrangements.

We plan to extend model development to include predic-
tions of molecules within and surrounding cells where GT
includes, for example, fluorescent labels, such as 4',6-diamidino-
2-phenylindole (DAPI), phalloidin, and lectin, which stain cell
nuclei, actin fibers, and endothelial cells, respectively. This will
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enable longitudinal studies without the need for invasive fixa-
tion and staining procedures, preserving the integrity of exper-
iments. We hypothesize that complementary information
exists in the images captured by different microscopy modali-
ties, and any well-trained model should be capable of extract-
ing this information to virtually label specific structures of
interest. In addition, we plan to explore alternative architec-
tures such as generative adversarial networks (GANs) and
incorporate perceptual loss functions. These methods have
demonstrated success in similar tasks [33,36,37] and in super-
resolution applications [43,44], effectively performing image-
to-image mapping tasks and enhancing sharp borders with the
goal of precisely replicating fiber width.

Conclusion

In this paper, we present a method for virtually staining fibrin
fibers using a 3D CNN, with label-free RCM and transmission
images as inputs and fluorescently labeled images as outputs.
Our best-performing model, Tra + Ref, successfully recon-
structs the scaffold structure, recovers missing fibers from
reflection data, and enhances optical sectioning. We began
by acquiring the training dataset using multiple microscope
modalities and validated the model with a blind test, assessing
predictions through quantitative, qualitative, and structural
analyses. Our results demonstrate that both RCM and trans-
mission data are essential for optimal model performance,
where RCM provides parfocality. The complementary nature
of these modalities arises from the volumetric information
captured in the image stacks, underscoring the importance of
3D data for accurate predictions. However, some blurriness
appeared in the synthetic images, which we attribute to limita-
tions in the CNN-based reconstruction and the associated loss
functions. These limitations led to small discrepancies in fiber
width between the fluorescent GT and the predicted images,
which were correctable to an extent via postprocessing filters.
Opverall, the prediction and GT images show strong agreement
in fiber detection and length. We have made this tool open
access, enabling its integration with any commercially available
laser scanning confocal microscope.

R(x,y,z;c) —,u(x,y,z;c)
a(x,y,z;c)

N(xy.z5c) = (1)

~ 1 ~ ~ P
L(}’J)=NZijk61<‘}’ijk—}’ijk|+“))’i;k—}’ijk| > )
+B(1-SSIM(y,7)).
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