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While fluorescent labeling has been the standard for visualizing fibers within fibrillar scaffold models of 

the extracellular matrix (ECM), the use of fluorescent dyes can compromise cell viability and photobleach 

prematurely. The intricate fibrillar composition of ECM is crucial for its viscoelastic properties, which 

regulate intracellular signaling and provide structural support for cells. Naturally derived biomaterials 

such as fibrin and collagen replicate these fibrillar structures, but longitudinal confocal imaging of fibers 

using fluorescent dyes may impact cell function and photobleach the sample long before termination of 

the experiment. An alternative technique is reflection confocal microscopy (RCM) that provides high-

resolution images of fibers. However, RCM is sensitive to fiber orientation relative to the optical axis, and 

consequently, many fibers are not detected. We aim to recover these fibers. Here, we propose a deep 

learning tool for predicting fluorescently labeled optical sections from unlabeled image stacks. Specifically, 

our model is conditioned to reproduce fluorescent labeling using RCM images at 3 laser wavelengths 

and a single laser transmission image. The model is implemented using a fully convolutional image-to-

image mapping architecture with a hybrid loss function that includes both low-dimensional statistical and 

high-dimensional structural components. Upon convergence, the proposed method accurately recovers 

3-dimensional fibrous architecture without substantial differences in fiber length or fiber count. However, 

the predicted fibers were slightly wider than original fluorescent labels (0.213 ± 0.009 μm). The model 

can be implemented on any commercial laser scanning microscope, providing wide use in the study of 

ECM biology.

Introduction

   �e extracellular matrix (ECM) is a complex meshwork that 
supports and facilitates cellular communication within tissues, 
regulating processes such as migration, di�erentiation, and 
tissue morphogenesis [  1 ,  2 ]. �e natural makeup of the ECM 
comprises noncellular �brillar elements, such as collagen, elas-
tin, �bronectin, and several other glycoproteins, which grant 
it viscoelasticity and nonlinear elastic properties [ 2 ,  3 ]. Initially, 
the ECM was thought to serve merely as a sca�old for maintain-
ing organ and tissue integrity. However, the numerous syn-
dromes caused by ECM mutations emphasize its critical role 
in biological signaling in vivo [ 3 ,  4 ]. �ere is an association 
between ECM integrity and diseases, and understanding the 
role of each ECM component is challenging due to the com-
plexity of the ECM and its dynamic nature [  5 –  8 ].

   Predominantly, studying ECM architecture and associated 
cellular response is conducted within 3-dimensional (3D) cell 

culture sca�olds. Such biocompatible sca�olds can be broadly 
categorized into nanoporous materials, such as alginate and 
polyethylene glycol (PEG) sca�olds, or natural �brous bioma-
terials, such as type 1 collagen and �brin [  9 –  11 ]. PEG sca�olds 
are commonly used in tissue engineering and regenerative 
medicine due to their tunable physical and chemical properties 
and versatility in achieving desired nanoporosity, hydrophilic-
ity, binding domains, etc. [  12 –  15 ]. However, their isotropic, 
homogeneous microstructure does not recapitulate the �brillar 
nature of native ECM, which is crucial for mechanical trans-
duction and force propagation [  14 ,  16 ]. Alternatively, naturally 
derived �brillar sca�olds such as collagen and �brin can mimic 
ECM mechanical properties and architecture [  17 ].

   Typically in �brillar sca�olds, �ber lengths ranges from 2 to 
30 μm [  18 ]. Resolving ECM structure thus requires imaging 
tools with enhanced optical sectioning capability such as laser 
scanning confocal microscopy (LSM), based on a developed 
technique by M. Minsky in 1955 [  19 ]. LSM of �uorescently 
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labeled sca�olds enables visualization of deep �bers (1 to 2 mm) 
at high resolution in both transverse and longitudinal planes 
[  20 ]. �ese di�raction-limited thin transverse sections are used 
to reconstruct sca�old 3D microstructure within an ECM vol-
ume [ 20 ]. 3D imaging can identify deformation within the 
sca�old and track cell interactions in real time during experi-
ments that can last for weeks or longer [  21 ,  22 ]. Unfortunately, 
such labeled samples become photobleached in a process gen-
erating free radicals that can in�uence cell behaviour through 
processes such as DNA oxidation [  23 –  25 ]. Furthermore, expos-
ing cells to high-intensity laser light during LSM can induce 
DNA damage, especially with lasers of shorter wavelength near 
the ultraviolet band [  26 ]. An alternate approach to longitudinal 
LSM is chemical �xation of an ECM followed by �uorescent 
labeling against target molecules. However, this technique 
requires terminating samples at each time point (e.g., [ 26 ]), 
precluding longitudinal studies and instead averaging behaviors 
over time across multiple samples. Such studies necessitate a 
complex and time-intensive protocol of �xation, labeling, and 
imaging of each sample.

   An alternate modality that can image ECM �bers is re�ec-
tion confocal microscopy (RCM) that avoids challenges associ-
ated with �uorescent labeling of the ECM [  27 ,  28 ]. �is method 
relies on endogenous contrast, utilizing the intrinsic properties 
of the specimen for imaging, without the need for exogenous 
labels. RCM is wavelength-dependent, where the choice of illu-
mination wavelength a�ects the depth, quality, and resolution 
of images. Further, scattering coe�cients are wavelength-
dependent and may introduce a level of independence between 
images at multiple unique laser wavelengths [  29 ]. �erefore, 
for this study, we labeled �brin ECMs with the �uorescent dye 
(Alexa 647). ECMs were then imaged in transmission mode by 
one laser, and RCM at 3 laser wavelengths (405/488/561 nm), 
which do not excite the �uorescence. Additionally, the same 
ECMs were imaged in �uorescence using a 640-nm laser as 
illustrated in Fig.  1 A. As can be seen in Fig.  1 B, transmission, 
�uorescence (Alexa 647), and re�ection (405/488/561) images 
carry di�erent information. �e transmission image (top le�) 
reveals detailed structures of the �brillar sample, but from a 
thick focal volume, and thus cannot assign the depth of each 
�ber. In contrast, the RCM images (bottom row: 405/488/561) 
provide optical sectioning, thus improving depth resolution. 
However, while RCM detects �bers oriented along the trans-
verse (image) plane, detection fails as orientation has compo-
nents along the longitudinal axes, and tends to miss important 
structural features like �ber intersections (nodes) [  30 ]. �e 
�uorescence confocal imaging overcomes these limitations 
and provides detailed structural information, making it highly 
advantageous for accurate 3D reconstruction and resolving 
�ne sample details. �is observation motivated our method 
to predict the �uorescently labeled image (Fig.  1 C), which we 
refer to as ground truth (GT).        

   In this paper, we develop a deep learning approach to virtu-
ally stain samples using RCM and transmission images, thereby 
recovering the missing �bers and gaining structural informa-
tion about the sca�old (Fig.  1 C). Our method extends known 
frameworks for image-to-image mapping tasks, commonly 
implemented using fully convolutional architectures such as 
the U-Net, to learn a mapping function between 2 domains that 
exploits nonlinear pairwise relationships between the pixels 
[  31 ]. Recent work in histology has illustrated the use of image-
to-image mapping convolutional neural networks (CNNs) to 

predict �uorescent labels from naive standard non�uorescent 
images of histological samples [  32 ,  33 ]. Here, we investigate the 
use of this technique to virtually label ECM �bers within a 3D 
�brin sca�old. �e input channels are label-free and exploit the 
modalities of RCM at 3 laser wavelengths and transmitted light 
microscopy at a single laser wavelength (Fig.  1 A and B), both 
of which are standard features of any commercial laser scanning 
confocal microscopes. Predictions are compared to GT using 
statistical metrics for image reconstruction error as well as 
derived sca�old metrics such as �ber length, �ber width, and 
�ber count.   

Materials and Methods

Scaffold preparation
   Bovine stock �brinogen (MilliporeSigma, F8630-10G) was dis-
solved in phosphate-bu�ered saline (PBS; Gibco) and �ltered 
using �ermo Fisher Scienti�c Nalgene Rapid-Flow Disposable 
Filter Units (974101). Fibrinogen solution was prepared at 2.5, 
5, and 10 mg/ml concentrations and �ltered using polyethersul-
fone 0.22-μm 30-mm-diameter syringe �lter (Genesee Scienti�c 
25244) and 10-ml syringe (Henke-Ject 21M29C8). A 1-ml �l-
tered �brinogen solution was added to 20 μl of bovine thrombin 
(4 U/ml, Sigma, SLBW2056) and swirled around quickly inside 
a 35-mm glass bottom dish (MatTek) before polymerization. �e 
swirl method involves tilting the glass dish by hand while moving 
the �uid in a circular motion to cover the entire dish surface. 
Each sample was incubated at room temperature for 5 min before 
being placed in the incubator at 37 °C and 5% CO2 for 30 min 
prior to labeling. Fibers were labeled with Alexa Fluor 647 NHS 
ester (succinimidyl ester) (�ermo Fisher Scienti�c A20006) by 
adding 2 mg/ml of the dye to the sample and incubating it for 
15 min on the shaker, followed by 3× washes using PBS.   

Data acquisition
   For the training set, �ve 3D confocal image stacks of 4 di�erent 
samples (2.5 mg/ml) were acquired with 100-nm step size. Each 
training set of images was 318.20 × 318.20 × 2 μm3, with an 
image scan area resolution of 4,096 × 4,096 pixels2, a pixel size 
of 77.69 nm, and a pixel dwell time of 4 μs. For the test set, a 
single 3D image stack was acquired of dimension 40 × 40 × 
16 μm3 with identical pixel size and image stack step size but 
with 2-μs pixel dwell time. For each focal plane, 2 sets of confo-
cal images were acquired using an Olympus FV3000 laser scan-
ning confocal microscope and an Olympus 40× silicon oil 
immersion objective lens (numerical aperture = 1.25). Details 
of Olympus Fluoview so�ware con�guration can be found in 
Fig.  S1 . We acquired images in 2 di�erent FV3000 internal optic 
con�gurations to accommodate di�erent light paths associated 
with re�ection and �uorescence modalities. One main di�er-
ence between the 2 con�gurations is the use of a 10/90 beam 
splitter for re�ection so only 10% of light intensity can reach 
the sample. Laser lines and dye excitation/emission spectra are 
shown in Fig.  1 A. Brie�y for con�guration 1, the GT �uores-
cence and transmission images are acquired simultaneously 
(Fig.  1 B). Note that the 561-nm laser used for RCM does overlap 
the tail of the excitation spectra of Alexa 647. We tested if any 
excited �uorescence contributed to the 561-nm RCM image, 
which would bias our technique. For this one test, we recon�g-
ured FV3000 in a standard �uorescence mode with the dye being 
excited by the 561-nm laser at the same power used for RCM. 
No �uorescence was detected (Fig.  1 B, 561 EX/Alexa Fluor 
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Fig. 1. Experimental design. (A) Spectra showing 3 laser emission peaks at 405, 488, and 561 nm, and the excitation/emission spectra of Alexa Fluor 647 nm used to label 

fibers. Produced by FPBase [45]. (B) Confocal optical sections of a fibrin scaffold acquired in 2 configurations, where a configuration is defined as a unique set of optical filters, 

dichroic mirrors, and light paths for simultaneously acquiring a set of images. Configuration 1: (bound by orange dashed border) 488-nm laser for transmission, 640-nm 

laser for exciting Alexa 647 fluorescence, and bandpass filtering to detect Alexa 647 emission. The image in column 3 tests for excitation of Alexa 647 by the 561-nm laser 

used for RCM. Configuration 2: RCM at 3 laser wavelengths, 405, 488, and 561 nm. (C) Schematic diagram illustrating prediction of fluorescent fibers from label-free images 

acquired by transmission and RCM.
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647 EM). Con�guration 2 acquired all 3 RCM images simul-
taneously using the 405-, 488-, and 561-nm lasers (refer to Fig. 
 1 B, Con�guration 2 for an example).   

Data preprocessing
Normalization
   A normalization scheme is applied to all raw imaging data in 
order to equalize brightness in both the transverse and longi-
tudinal planes as well as to enhance overall image contrast. 
Speci�cally, we use a sliding window approach to perform spa-
tially localized Z-score normalization [  34 ], as shown in Fig.  2 . 
�is technique transforms pixel intensities into dimensionless 
zero-mean distribution with a unit standard deviation, preserving 
spatial information while reducing light gradients across an image 
(e.g., Fig.  2 A and B). In this study, we implement the sliding 
window kernel with a dimension of (1,101,101) and a stride of 
(1,1,1) such that the mean and standard deviation for any single 
window is calculated using a neighborhood of 10,200 pixels. 
Application of this kernel yields spatial arrays representing local 

means  �
(

x, y, z; c
)

    and local standard deviations ﻿�
(

x, y, z; c
)

   . 

�ese local statistical distributions are used to perform Z-score 

transformation through pixel-wise subtraction and division on 
the raw images  R

(

x, y, z; c
)

    according to  Eq. 1 , resulting in a 

normalized output  N
(

x, y, z; c
)

    with locally and globally equal-
ized pixel values (e.g., Fig.  2 A and B). Of note, this method 
suppresses the bright central artifact common to RCM imaging 
(Fig.  2 B) and prioritizes local variations over broader intensity 
gradients (Fig.  2 C).           

Patching and cohorts
   A�er normalization, we separate the original data into image 
patches comprising smaller �elds of view under the hypothesis 
that GT prediction only requires local contextual information. 
�is approach maximizes available training data as each 
subvolume yields a separate sample for learning and also 
accommodates the practical limitations of GPU memory. 
To generate image patches, we divide the original matrix of 
size ﻿

(

z,x=4096, y=4096, c
)

    into  
(

z,x=256, y=256, c
)

    patches, 
where z is the depth of the image and c is the number of input 
channels. By maintaining the original z dimension, we preserve 
﻿z-oriented features, which in turn supports the reconstruction of 
�bers along the z axis. �is protocol results in a total of 2,816 patches 

Fig. 2. Intensity normalization. (A) Transmission image example: Left column shows raw image, mean, and standard deviation maps of an ROI; column 2 shows a normalized 

image (bottom) and two zoomed-in regions of interest for comparison between before (blue frame) and after (green frame) normalization. (B) RCM image example: Left column 

shows raw image, mean, and standard deviation maps, and top right shows a zoomed-in comparison between before (blue frame) and after (green frame) normalization, 

where we were able to tune down the intensity of the bright laser spot in the center of the field of view. (C) Intensity profiles comparing a reflection image before and after 

normalization. Z score shows the drop in saturation at the center of the image.
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with dimensions of  
(

batchsize, z=20,x=256, y=256,c
)

    for 
training and 1,024 patches of identical dimensions for valida-
tion. For testing, we used an independent dataset with a size 
of  

(

z=150,x=512, y=512, c
)

   . To improve model generaliz-
ability, we incorporated data from 2 distinct �brin sca�old 
samples for training and employed an independent third sam-
ple for hyperparameter tuning and validation. �is approach 
increases the diversity of the training set, reducing within-
sample correlations and enabling a more robust validation 
process. Finally, testing was performed using a fully indepen-
dent �brin sca�old sample distinct from both samples used 
during training and validation.   

Network architecture
   In this study, we implement an image-to-image mapping model 
using a fully convolutional encoder–decoder (U-Net) architec-
ture. �e encoder–decoder architecture is a standard approach 
for image-to-image mapping tasks and has been successfully 
adapted for similar previous work in microscopy [ 33 ,  35 –  37 ]. 
Our fully convolutional encoder–decoder model is imple-
mented using a series of convolutional blocks de�ned as the 
application of a 3D convolution operation, batch normaliza-
tion, and recti�ed linear unit (ReLU) nonlinearity as shown in 
Fig.  3 . A downsampling convolutional block is implemented 
by utilizing a (1,2,2) stride length in the convolution operation. 
Similarly, an upsampling convolutional block is implemented 
by replacing the standard convolution with a (1,2,2) stride 
length convolution transpose operation followed by a non-
strided average pooling operation with kernel size (1,2,2) to 
mitigate zero-�lled upsampling artifacts. In total, our encoder 

is composed of a series of 4 alternating pairs of nonstrided and 
strided downsampling blocks followed by a symmetric decoder 
of 4 alternating pairs of nonstrided and strided upsampling 
blocks. With each downsampling operation, the feature map 
depth is doubled from an initial 4-channel input to a maximum 
feature map depth of 64. Refer to the Supplementary Materials 
for the mathematical de�nitions of the blocks.        

   We further introduce a per-channel attention mechanism at 
the �rst layer of the network, as shown in Fig.  3  (top le�). �is 
layer is designed not only to enhance network performance but 
also to enable the model to explicitly learn the relative impor-
tance of each input channel for optimal reconstruction, overall 
improving model interpretability. To implement this strategy, 
each channel is assigned a single trainable global weight scalar, 
﻿wRef0

,wRef1
,wRef2

,wTra   , which is multiplied across all pixel val-

ues of each corresponding input channel data. During the opti-
mization process, the model is allowed to increase or decrease 
the relative contribution of any individual channel to maximize 
reconstruction accuracy. Upon convergence, the learned per-
channel weight values re�ect the relative importance of each 
input to the �nal reconstruction task.    

Optimization
Loss function
   Our loss function is composed of a combination of low-
dimensional per-pixel error as well as high-dimensional struc-
tural consistency. �e low-dimensional loss component  L

(

y ,̂y
)

    
is de�ned using a series of  Lp    norm values,  L

p
p =

1

N
‖. ‖

p
p   , with 

﻿p = 1 and p = 3, as shown in  Eq. 2 , where N represents the total 

Fig. 3. Network architecture: Overview of encoder–decoder (U-Net) network architecture for proposed image reconstruction task. For each resolution level, spatial dimensions 

are shown along the y axis (as a ratio of original data size), while channel depth is shown along the x axis. Note that within a block, information flows from left to right.
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number of pixels within the image domain I, while  i, j, k    are 
indices corresponding to the spatial dimensions  x, y, z   . 
Generally, higher values of p more e�ectively penalize outlier 
errors, which can accelerate convergence. However as the 
model converges, the partial derivative of higher-order loss 
terms asymptotically approaches zero, which in turn degrades 
gradients used for optimization. Furthermore, high-order 
norm functions prioritize a uniform distribution of error at the 
expense of precise predictions, resulting in blurring at the edges 
of reconstructed images. �e p = 1 term, on the other hand, 
encourages both improved gradient stability during optimiza-
tion as well as a sparse distribution of errors, overall preserving 
�ner details during image-to-image regression tasks. �e high-
dimensional structural consistency loss component is de�ned 
using structural similarity  SSIM

(

y, ŷ
)

   , a term that captures 
more abstract perceptual di�erences within a local neighbor-
hood of pixels   [38] . Together, the  L1   ,  L3   , and SSIM terms are com-
bined using weights  �    and  �    to adjust the contribution of  L3    and 
﻿SSIM relative to the main  L1    component. A�er a grid search, we 
determined that  � = 10

−1    and  � = 10
−4    yielded optimal perfor-

mance ( Eq. 2 ). Optimization is performed using the Adam 
method [ 38 ] at a learning rate of  LR = 10

−4    and a batch size of 5.   

Implementation details
   All experiments were written using TensorFlow 2.5.0 within 
the Python 3.8.5 environment. Model training was performed 
on systems featuring 4 NVIDIA GeForce RTX 2080 Ti GPUs 
(11 GB of VRAM), a 16-core AMD Epyc processor 3.0 GHz, 
256 GB of DDR4 RAM, and a 960 GB NVMe SSD.    

Impact of image modality on model performance
Per-channel analysis
   To investigate the contribution of di�erent input channels to 
model performance and determine how channels complement 
one another, we conduct an input channel ablation study. In 
addition to the baseline experiment with all input channels, we 
perform experiments isolating the input to just transmission 
or re�ection groups. �is procedure yields a total of 3 di�erent 
input permutations:

   • Tra + Ref: Training the model with both transmission and 
RCM.

   • Tra: Training with only transmission.
   • Ref: Training with only RCM.
   In addition to statistical metrics of reconstruction accuracy, 

we generate postprocessed image error maps to highlight salient 
features in the prediction ( ̂y    ) relative to GT (y). To generate 
these maps, we �rst threshold the original images and perform 
a z projection to create a binary mask of relevant �ber structures. 
�is step is performed using Fiji so�ware ( https://imagej.net/
so�ware/�ji/ ). �en, we multiply raw images ( ̂y     and ﻿y) by the 
binary �ber mask followed by a signed error di�erence calcula-
tion that we refer to as  ̂y − y    for simplicity. In the resulting error 
map, any positive value indicates model overestimation, while 
any negative value indicates model underestimation.   

Transmission channel blurring
   Transmission channel resolution is degraded with thicker and 
higher concentration of ECMs because of light scattering. To 
assess the e�ect of this potential source of quality degradation, 
such ECMs are simulated computationally by applying a 5 × 5 
Gaussian blur kernel of di�erent standard deviations: 1, 3, 

or 5. �ese blurred transmission images were combined with 
all 3 raw (unchanged) RCM inputs, yielding an additional 3 
ablation experiments:

   • Tra,  � = 1   : Transmission blurred by a 5 × 5 kernel with  �    = 1.
   • Tra,  � = 3   : Transmission blurred by a 5 × 5 kernel with  �    = 3.
   • Tra,  � = 5   : Transmission blurred by a 5 × 5 kernel with  �    = 5.   

RCM wavelength comparison
   To evaluate the relative contributions of each RCM image 
acquired at di�erent excitation wavelengths, we trained models 
using distinct wavelength-speci�c image sets in conjunction 
with the transmission image. �e goal of these experiments is 
to determine the extent to which each wavelength contributes 
to predictive accuracy of �brillar parameters, such as �ber 
count, length, and width. �e following experiments were 
trained and assessed to give us insight on whether all 3 RCMs 
are necessary for robust �brillar characterization: 

   • Tra + Ref405: Training with transmission and the 
405-nm RCM.

   • Tra + Ref488: Training with transmission and the 
488-nm RCM.

   • Tra + Ref561: Training with transmission and the 
561-nm RCM.    

Robustness of best-performing model
   One possible issue that can a�ect model performance is the pres-
ence of interference rings inherent to the RCM modality, espe-
cially near the glass interface. Acknowledging this potential 
source of error, we deliberately ensured that the training cohort 
comprised images at the glass interface containing this particular 
artifact pattern, allowing the model to learn high-quality map-
pings even in the presence of image degradation. To test for 
robustness to this known artifact, we carefully interrogated model 
predictions speci�cally in regions exhibiting these ring patterns, 
with a particular emphasis on evaluating the consistency of �ber 
predictions in the central region where the rings appear.

   Furthermore, we assess out-of-distribution model generaliz-
ability on higher-density samples (5 and 10 mg/ml) where pore 
size and �brillar structure signi�cantly di�er from those in the 
lower-density training dataset (2.5 mg/ml). For this evaluation, 
we generate predictions from our top-performing model with-
out additional �ne-tuning on 2 new 3D image stacks of 5 and 
10 mg/ml �brinogen concentration of dimension 40 × 40 × 
6 μm3 with a pixel size of 77.69 nm, a pixel dwell time of 2 μs, 
and a step size of 100 nm.   

Statistical analysis
Nonstructural analysis
   Model reconstruction error is estimated using mean squared 
error (MSE; Eq. 3), structural similarity index (SSIM; Eq. 4), 
peak signal-to-noise ratio (PSNR; Eq. 5), and Spearman’s rank 
correlation coe�cient ( �   ; Eq. 6). De�nitions of these metrics 
and Eqs. 3 to 6 are in the Supplementary Materials. Prior to 
metric derivation, all images and model predictions are nor-
malized to a distribution between [0,1]. Metric variance is esti-
mated using a bootstrapping technique implemented using 
10,000 overlapping patches from the test cohort with dimen-
sions of (batchnumber, z = 15, x =100, y =100, c).   

Structural analysis
   �e ability of model reconstructions to retain relevant semantic 
meaning compared to GT was assessed using GTFiber, an 
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open-source so�ware package with algorithms to track and 
analyze polymers, �laments, and �brous samples [  39 ]. In this 
study, GTFiber is used to produce a vectorization map of the 
�bers (Fig.  4 A) to calculate total number of �bers (Fig.  4 B), �ber 
length (Fig.  4 C), and width (Fig.  4 D) within a volume of dimen-
sion 40 × 40 × 16 μm3. Speci�c application of GTFiber to a data-
set requires manual con�guration of various �lters to the input 

image according to the speci�ed parameters shown in Fig.  S2 . 
For this analysis, identical parameters were used for both GT 
and prediction. Prior to application of GTFiber so�ware, GT 
images were denoised using the spatial redundancy subsam-
pling method proposed by Li et al. [  40 ]. Refer to Fig.  S3  for an 
example. All statistical analyses were carried out in GraphPad 
Prism version 10.2.3 for Windows (GraphPad So�ware, Boston, 

Fig. 4. Structural analysis. (A) Example of the process used to analyze fibers using GTFiber. A series of filters are applied to the raw image, followed by a vectorization step 

[39]. Distributions per slice of number of detected fibers (B), fiber length (C), and fiber width (D) for GT, Tra + Ref, Tra, and Ref predictions. (E) Number of detected fibers 

within an image volume, binned by depth.
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MA, USA;  www.graphpad.com ). A 2-tailed paired parametric 
﻿t test was used with a level of signi�cance,  � = 0.05   .             

Results

Quantitative analysis
   A summary of results across all input channel permutations is 
shown in Table  1 , with reconstruction accuracy characterized 
by normalized MSE, SSIM, PSNR, and Spearman coe�cient. 
We notice that Tra + Ref performed the best across all 4 metrics 
with  MSE = 0.3542 ∗ 10

−2   ,  SSIM = 0.7891   ,  pSNR = 24.5469   , 
and Spearman correlation coe�cient  � = 0.8782   . Figure  5  
shows a randomly selected slice of Tra + Ref output demon-
strating the quality of GT prediction. Figure  5 A shows the 
original input channels for model prediction, while Fig.  5 B 
shows corresponding GT and generated reconstructed outputs; 
notice that numerous �ne details including �ber structure are 
recovered. Review of the generated error map suggests that 
discrepancies in model predictions are primarily distributed 

along the edges of existing �bers, resulting in over- or under-
estimation of �ber intensity and width. Importantly, we did not 
observe signi�cant hallucinations or other de novo generation 
of completely new �ber structures in Tra + Ref reconstructions. 
A similar analysis was completed for models Tra and Ref (Fig. 
 S4 ) showing hallucinations and missing nodes.         

   As motivated in Per-channel analysis, a per-channel atten-
tion mechanism is used to learn the relative contributions of 
each input channel for optimal reconstruction accuracy. Upon 
model convergence, the weight associated with the transmis-
sion channel,  wTra   , surpassed the weights associated with re�ec-
tion channels,  wRef0

,wRef1
,wRef2

   , by nearly 40%, highlighting 

the relative importance of the transmission channel in the 
reconstruction task. As noted in Table  1 , ablation experiments 
suggest a similar trend with Tra outperforming Ref for all 
reconstruction error metrics. A comparison of model predic-
tions for Tra and Ref as shown in Fig.  S4  further a�rms this 
observation with signi�cant degradation in performance when 
transmission data are withheld from the model.

Table 1. Quantitative analysis of the trained models Tra + Ref, Tra, and Ref. This table presents the mean and standard deviation for MSE, 

SSIM, PSNR, and Spearman’s rank correlation of the 3 different models explained in Per-channel analysis.

Model MSE (*10−2) SSIM PSNR (dB) Spearman

﻿Tra + Ref﻿ 0.3542 ± 0.0487 0.7891 ± 0.0229 24.5469 ± 0.5862 0.8782 ± 0.0265

﻿Tra﻿ 0.4020 ± 0.0478 0.7614 ± 0.0265 23.9886 ± 0.5144 0.8577 ± 0.0308

﻿Ref﻿ 0.7306 ± 0.1151 0.6954 ± 0.0337 21.4172 ± 0.6868 0.6376 ± 0.0767

Fig. 5. Example Tra + Ref prediction. (A) Tra + Ref inputs of a selected ROI comprising RCM at 3 wavelengths (405/488/561 nm) and a laser scanning transmission image. 

(B) Corresponding fluorescently labeled image (GT = y), model prediction ( ŷ ), binary fiber mask, and a normalized error map ( ŷ − y) created according to Per-channel 

analysis. Note that scale bars are drawn at 10 μm.
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   �e e�ect of a blurred transmission image on prediction 
performance was assessed by models Tra,  � = 1   , Tra,  � = 3   , and 
﻿Tra,  � = 5    (results shown in Table  2 ). In these ablation experi-
ments, we observed progressive decline in performance with 
increasing  �   . Corresponding images are shown in Fig.  S5 . Of 
note, the loss of information with blurred transmission images 
does not appear to be mitigated by RCM images, which remained 
intact for these experiments; indeed, these results further con-
�rm the critical importance of transmission images for robust 
reconstruction. 

   We further explored the contribution of each RCM wave-
length to model accuracy. Results of the models mentioned in 
RCM wavelength comparison are presented in Table  3 . Among 
the individual wavelength models, Tra + Ref405 shows perfor-
mance closest to the full model (Tra + Ref). In contrast, Tra + 
﻿Ref488 and Tra + Ref561 exhibit a progressive decline in met-
rics, with the 561-nm model performing the worst.    

Structural analysis
   We utilized GTFiber to assess the �brillar similarities and dif-
ferences between GT and the predictions of our best-performing 
model, Tra + Ref. Results are presented in Fig.  4 . Overall, Tra + 
Ref shows no signi�cant di�erence as compared to GT in num-
ber of �bers detected per slice (Fig.  4 B) or �ber length (Fig. 
 4 C). However, a small but statistically signi�cant di�erence is 
observed in �ber width (0.21 ± 0.01 μm), with model recon-
structions showing slightly thicker �bers (Fig.  4 D). Given the 
systematic nature of this error (likely due to the  L3    loss function 
component as detailed in Loss function), we note that application 
of a sharpening �lter successfully eliminates this di�erence in 
width (Fig.  S5 C and E). We further analyzed the number of 
detected �bers across a depth of 16 μm by grouping the data 

into depth intervals of 1 to 4, 4 to 8, 8 to 12, and 12 to 16 μm. 
A 2-tailed paired t test shows no signi�cant di�erence between 
GT and the prediction of Tra + Ref (Fig.  4 E).

   Compared to our baseline Tra + Ref, Tra showed no signi�-
cant di�erence in the number of �bers detected per slice; however, 
signi�cantly shorter and thicker �bers were predicted with 2.31 ± 
2.32 and 0.51 ± 0.55 μm (median ± SD), respectively (Fig.  4 B 
to D). By contrast, Ref showed signi�cant di�erences in the num-
ber of detected �bers per slice (11.63 ± 6.23 �bers), �ber length 
(1.39 ± 0.28 μm), and �ber width (0.41 ± 0.59 μm) compared to 
the GT (Fig.  4 B to D). �e underperformance of Ref can be attrib-
uted to the nature of RCM images, which o�en fail to capture 
�bers oriented along the z axis due to insu�cient light re�ection. 
�ese results demonstrate that transmission images, either alone 
or in combination with RCM images, can reliably reproduce GT 
�brillar structure as observed in Fig.  4 C. �ese �ndings corrobo-
rate our results in Table  1 , where combining transmission images 
with RCM to train the model produced the best results.

   We further examined the impact of individual RCM wave-
lengths on �ber detection, length, and width predictions. As 
shown in Fig.  S6 , all models incorporating RCM images main-
tained a comparable number of detected �bers per slice with 
no signi�cant di�erences observed, except for Tra + Ref488 
(Fig.  S6 A). However, �ber length predictions exhibited signi�-
cant deviations from GT across all single RCM-based models 
(Fig.  S6 B). �is e�ect is particularly pronounced in the 488- 
and 561-nm models, which show the greatest discrepancies. 
Similarly, �ber width predictions were signi�cantly a�ected by 
RCM wavelength selection, with all models predicting system-
atically di�erent �bers than GT (Fig.  S6 C). �e widening e�ect 
is most pronounced in the 561-nm model, suggesting that longer 
wavelengths may introduce artifacts that impact �ber morphology 

Table 2. Quantitative analysis of the trained models Tra + Ref, Tra, σ = 1, Tra, σ = 3, and Tra, σ = 5. This table presents the mean and stan-

dard deviation for MSE, SSIM, PSNR, and Spearman’s rank correlation of the 4 different models explained in Transmission channel blurring.

Model MSE (*10−2) SSIM PSNR (dB) Spearman

﻿Tra + Ref﻿ 0.3542 ± 0.0487 0.7891 ± 0.0229 24.5469 ± 0.5862 0.8782 ± 0.0265

﻿Tra, σ = 1 0.3882 ± 0.0573 0.7767± 0.0253 24.1556 ± 0.6359 0.8642 ± 0.0292

﻿Tra, σ = 3 0.4770 ± 0.0627 0.7543 ± 0.0269 23.2515 ± 0.5676 0.8516 ± 0.0287

﻿Tra, σ = 5 0.5660 ± 0.0747 0.7209 ± 0.0310 22.5092 ± 0.5703 0.8047 ± 0.0397

Table 3. Quantitative analysis of the trained models Tra + Ref, Tra + Ref405, Tra + Ref488, and Tra + Ref561. This table presents the mean 

and standard deviation for MSE, SSIM, PSNR, and Spearman’s rank correlation of the 3 different models explained in RCM wavelength 

comparison.

Model MSE (*10−2) SSIM PSNR (dB) Spearman

﻿Tra + Ref﻿ 0.3542 ± 0.0487 0.7891 ± 0.0229 24.547 ± 0.586 0.8782 ± 0.0265

﻿Tra + Ref405 0.3505 ± 0.0484 0.7826 ± 0.0236 24.594 ± 0.589 0.8701 ± 0.0283

﻿Tra + Ref488 0.3778 ± 0.0491 0.7683 ± 0.0269 24.264 ± 0.566 0.8563 ± 0.0303

﻿Tra + Ref561 0.4012 ± 0.0608 0.7663 ± 0.0250 24.014 ± 0.640 0.8649 ± 0.0286
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estimation. �ese �ndings support our quantitative analysis 
(Table  3 ), highlighting the importance of including all 3 RCM 
images as an input to preserve �brillar structure.   

Qualitative comparison
   To better characterize the complimentary information present 
across transmission and RCM input images, each individual 
imaging modality is analyzed using GTFiber within a volume 
of dimension 40 × 40 × 16 μm3. One key observation is the 
notable increase in number of detected �bers in the transmis-
sion channel as compared to GT, which is expected because 
transmission is not a confocal modality and thus it images a 
thicker focal volume (Fig.  6 A). Also, as discussed above, RCM 
is insensitive to out-of-plane �bers and thus has a lower �ber 
count. Further, both �ber length and width in either of these 
modalities deviate largely from GT and are insu�cient for net-
work reconstruction (Fig.  6 A).        

   �e ability of Tra + Ref, Tra, and Ref to predict all �bers and 
nodes in an image is exempli�ed in Fig.  6 B to D. Interestingly, 
while the transmission channel was heavily weighted during 
training, we did observe a Z-coordinate o�set for each �ber, 
with the o�set step size changing across the �eld of view without 
any detectable trend. Columns 1 and 2 in Fig.  6 B show examples 
of this o�set that ranges from 400 to 700 nm. When examining 
the re�ection, GT, and prediction images, we notice that features 
in the GT image align with those in  Zn+offset   , not the corre-
sponding  Zn    transmission image. Unexpectedly, the Tra + Ref 
predicted image contains features that are not in focus within 
the corresponding transmission image (column 2), but are in 
focus in the parfocal re�ection image (column 3). Tra prediction 
hallucinated �ber structure (Fig.  6 C, yellow ovals), while Ref 
failed to detect �bers (Fig.  6 D, yellow ovals). Furthermore, 
﻿Tra + Ref retrieved all nodes (Fig.  6 B), whereas Tra hallucinated 
nodes (Fig.  6 C, white arrow); conversely, Ref failed to detect 
several nodes that were present in GT (Fig.  6 D, white arrows). 
To test if the transmission image focal plane o�set was an arti-
fact of the microscope condenser alignment position, we shi�ed 
the condenser along the optical axis but found no change in 
the location of features. �is result suggests that the observed 
focal plane o�set is inherent to the laser scanning transmission 
modality.    

Discussion

   Here, we present a technique to image ECM �bers that frees 
up a �uorescent channel typically dedicated to that task, where 
the said channel is better used for molecular labeling. Our 
approach exclusively uses the label-free modalities of trans-
mission and RCM while compensating for their limitations 
as previously supported by Fig.  6 A. Speci�cally, Tra + Ref 
compensates for the RCM limitation of not detecting a signi�-
cant portion of �bers and the poor optical sectioning inherent 
to transmission microscopy. Further, Tra + Ref successfully 
reconstructs sca�old structure, which is valuable for real-time 
deformation analysis in the study of cell–ECM interactions. 
Structural and statistical comparisons between the GT and 
predictions show strong agreement in number of detected 
�bers and length. However, the predicted �bers were slightly 
wider than their GT counterparts, likely due to a spectral bias 
in CNNs that prioritizes low-frequency features during the 
optimization process [  41 ]. Such a bias makes it challenging for 
the network to reconstruct high-frequency features such as the 

sharp edges of �bers with high precision. Additionally,  Lp    
norm-based losses, which are known to induce blurriness in 
structures [  42 ], contribute to a disproportionate increase in 
width relative to length, as �brin �bers are elongated structures. 
Importantly, however, the shape of �ber width distribution is 
similar between the predicted and GT data in our best perform-
ing model (Fig.  4 D), overall suggesting a systematic bias that 
can be compensated for using postprocessing techniques such 
as a sharpening �lter (Fig.  S5 ) or morphologic erosion. As 
needed, a calibration step could be introduced to determine 
optimal postprocessing hyperparameters that best remove this 
artifact based on dataset-speci�c properties.

   We further assessed the reconstruction error of our models 
using metrics including MSE, SSIM, PSNR, and Spearman 
correlation, as summarized in Table  1 . Each of these metrics 
captures image similarity from a di�erent perspective, and they 
should be interpreted holistically within the context of the 
speci�c task rather than in isolation. MSE re�ects a low-dimen-
sional per-pixel accuracy without regard for spatial distribution 
of error. In a normalized image with pixel intensities ranging 
from 0 to 1, MSE values on the order of ~10−2 as exhibited by 
our models suggest that the average quadratic deviation per 
pixel is approximately 1% of the maximum image intensity, 
which we consider a reasonable outcome for this task. SSIM 
is a normalized metric with a range of [0,1], with higher SSIM 
values indicating statistical similarity accounting for spatial 
distribution on a patch-by-patch basis. Our top model yielded 
SSIM values of ~0.79, which is comparable to other image-to-
image mapping tasks. In a previous study [ 33 ], a model for 
virtual staining of hematoxylin and eosin (H&E) images 
achieved an SSIM of ~0.725.

   �e Spearman correlation coe�cient ( �   ) is a normalized 
metric with a range of [0,1], with higher values indicating a 
direct, monotonic global relationship between image pairs with-
out consideration of absolute pixel values. We found  �    between 
﻿Tra + Ref prediction and GT to be ~0.87, overall suggesting 
strong correlation. Finally, PSNR is a metric that characterizes 
image noise on a logarithmic scale measured in decibels. In 
image reconstruction tasks, typical PSNR values fall within the 
20- to 25-dB range, with higher values representing better image 
quality. Our model predictions yield PSNR values of approxi-
mately 24.5 dB and are overall similar to PSNR values of the GT. 
Overall, the collective interpretation of these metrics, alongside 
previously established benchmarks in related work ([ 32 , 33 ,  36 ]), 
supports the conclusion that our model is capable of generating 
accurate and robust reconstructions.

   While training with the single transmission and 3 RCM 
channels produced a well-performing model, we did question 
whether both re�ection and transmission channels were nec-
essary. Our ablation experiments (Per-channel analysis) pro-
vide insight into the contribution of each input channel in our 
best-performing model (Tra + Ref). Interestingly, while the 
transmission channel had greatest weight during training, a 
second model trained on the transmission alone (Tra) predicts 
shorter and narrower �bers as compared to GT and thus does 
a poor job reconstructing the GT mesh structure. A third 
model trained on the RCM channels alone (Ref) had similar 
limitations.

   Lastly, we explored robustness of Tra + Ref to ECMs having 
increased thickness and turbidity, 2 factors that are dependent 
upon the design of a tissue culture experiment. As expected, 
dynamically blurred training sets diminished prediction accuracy 
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Fig. 6. Limitation and cooperation between input image modalities. (A) GTFiber analysis of number of fibers per slice, fiber length, and width within a fibrin volume using the 

3 imaging modalities: fluorescence (GT), RCM example (405 nm), and transmission. (B) Three Tra + Ref examples (one per row) showing a first transmission slice at depth 

Zn+offset and second at Zn, as well as RCM (405 nm), GT, and prediction at Zn. Yellow ovals highlight features inconsistent between image types. White arrows point to nodes. 

Corresponding image types for Tra (C) and Ref (D).
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(Table  2  and Fig.  S5 C), but application of a sharpening mask 
(radius of 4 pixels, mask weight of 0.6) can reasonably recover 
�ber contrast and resolution (Fig.  S5 , C as compared to E). �is 
suggests that our tool could be bene�cial for thicker samples than 
we imaged here, but a further developed model may become 
necessary beyond some thickness threshold.

   As expected, RCM could not detect all �bers in the focal 
plane due to dependency on �ber axial orientation. However, 
one surprising observation is the focal plane mismatch between 
transmission and GT images as assessed by the appearance of 
�bers. In fact, we found that the di�erence in focal plane was 
on the order of 0.5 μm and was not uniform between regions 
of interest. �is depth of mismatch is signi�cant for recon-
structing and understanding ECM mesh architecture in the 
context of tissue engineering, and thus needs to be accounted 
for. Fortuitously, while the abundance of spatial information 
in the transmission channel greatly aided the model in predict-
ing �bers, it appears that the RCM channels can “pull” �bers 
back into the GT focal plane, thus compensating for the trans-
mission o�set. Further, because the focal o�set seems to be 
dependent on �ber orientation, local �ber density, and sample 
depth, a simple o�set applied to all region of interest (ROI) is 
insu�cient for accurate prediction. �is claim is supported by 
the fact that Tra exhibits hallucinated �bers and nodes, and 
required the RCM to both de�ne the true focus and provide 
optical sectioning (Fig.  6 C).

   We further assess model generalizability and robustness to 
image artifact as well as out-of-distribution conditions (Fig. 
 S7 ). First, we analyzed predictions on 2.5 mg/ml samples in 
regions where RCM images contained di�raction rings due to 
proximity to the glass interface. Despite the presence of these 
artifacts, Tra + Ref was able to accurately reconstruct sca�old 
�bers, demonstrating resilience to di�raction-induced distor-
tions (Fig.  S7 A). Indeed, a key advantage of neural networks is 
the capacity to recover high-quality mappings from any repre-
sentative distribution of input and output image pairs, includ-
ing input images degraded by various artifacts. In other words, 
a model can implicitly learn to reconstruct artifact-free images 
directly from artifact-degraded inputs without the need to 
manually compensate for data corruption so long as the sources 
of image degradation are adequately represented in the training 
dataset and do not irreversibly damage the underlying signal 
of interest. Second, we observed that the top-performing model 
was able to recover �bers even in samples of higher density (5 
and 10 mg/ml) than those used in training (2.5 mg/ml), although 
overall performance in this out-of-distribution context is lower 
than in the original baseline experiments. We suspect that this 
is at least in part due to degradation of overall signal across the 
input images, an observation most evident in the 10 mg/ml con-
dition where �ber contrast and subtle �ner structure appears 
signi�cantly diminished across both input and ground-truth 
channels (Fig.  S7 B). �is suggests that the underlying theoretical 
upper bounds of �ber reconstruction may be lower for higher 
density samples regardless of technical approach. Nonetheless, 
we acknowledge that further optimization in this setting may 
be best achieved using a dedicated model to accommodate the 
broader range of pore sizes and �ber arrangements.

   We plan to extend model development to include predic-
tions of molecules within and surrounding cells where GT 
includes, for example, �uorescent labels, such as 4′,6-diamidino-
2-phenylindole (DAPI), phalloidin, and lectin, which stain cell 
nuclei, actin �bers, and endothelial cells, respectively. �is will 

enable longitudinal studies without the need for invasive �xa-
tion and staining procedures, preserving the integrity of exper-
iments. We hypothesize that complementary information 
exists in the images captured by di�erent microscopy modali-
ties, and any well-trained model should be capable of extract-
ing this information to virtually label speci�c structures of 
interest. In addition, we plan to explore alternative architec-
tures such as generative adversarial networks (GANs) and 
incorporate perceptual loss functions. �ese methods have 
demonstrated success in similar tasks [ 33 , 36 , 37 ] and in super-
resolution applications [  43 ,  44 ], e�ectively performing image-
to-image mapping tasks and enhancing sharp borders with the 
goal of precisely replicating �ber width.  

Conclusion
   In this paper, we present a method for virtually staining �brin 
�bers using a 3D CNN, with label-free RCM and transmission 
images as inputs and �uorescently labeled images as outputs. 
Our best-performing model, Tra + Ref, successfully recon-
structs the sca�old structure, recovers missing �bers from 
re�ection data, and enhances optical sectioning. We began 
by acquiring the training dataset using multiple microscope 
modalities and validated the model with a blind test, assessing 
predictions through quantitative, qualitative, and structural 
analyses. Our results demonstrate that both RCM and trans-
mission data are essential for optimal model performance, 
where RCM provides parfocality. �e complementary nature 
of these modalities arises from the volumetric information 
captured in the image stacks, underscoring the importance of 
3D data for accurate predictions. However, some blurriness 
appeared in the synthetic images, which we attribute to limita-
tions in the CNN-based reconstruction and the associated loss 
functions. �ese limitations led to small discrepancies in �ber 
width between the �uorescent GT and the predicted images, 
which were correctable to an extent via postprocessing �lters. 
Overall, the prediction and GT images show strong agreement 
in �ber detection and length. We have made this tool open 
access, enabling its integration with any commercially available 
laser scanning confocal microscope.
﻿﻿  

﻿﻿       
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