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Abstract—Accurate occupancy detection remains a challeng-
ing problem due to dynamic occupancy patterns and varying
environments. Traditional machine learning (ML) struggles with
this variability as models typically require large datasets and
frequent updates as occupancy scenarios are unlimited and
continuously change over time. It is thus infeasible to train a
single “universal” model for the diverse real-world scenarios
given real-world computational constraints. To address these
issues, a context-aware hierarchical classification framework is |48
proposed which periodically trains multiple occupancy classi- oo
fiers on subsets of data delineated by meaningful contexts.
When new occupancy data arrive, its context is identified, and
a corresponding pretrained classifier is selected for prediction.
By focusing each model on more consistent data distributions
defined by context, this approach aims to improve classification accuracy compared to baselines trained on static
datasets alone. The framework also aims to eliminate the need for offline training on large datasets and frequent over-
the-cloud model updates required by traditional ML approaches by performing ML-based training and inference directly
on the sensor node via an Internet-of-Things (loTs) device. The framework is evaluated via datasets collected both in
an office and a residential setting, monitored by a network of synchronized low-energy electronically chopped passive
infra-red (SLEEPIR) sensors. These sensors, unlike conventional passive infrared (PIR) sensors, can detect stationary
occupants. Time-series features are extracted from observations and clustered to discover underlying contextual
scenarios. Experimentation resulted in context scenarios which essentially represent varying levels of infrared (IR) noise
in observed environment. The proposed framework achieved a 5.03% accuracy improvement over the best baseline
algorithm.
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[. INTRODUCTION
THE problem of occupancy detection is inherently com-
plex as occupancy estimation experiences considerable

accuracy deterioration [1], [2] due to constantly evolving
environmental and occupancy scenarios. Due to the dynamic
nature of occupancy scenarios, it is virtually impossible to

) . ) collect a comprehensive training dataset that contains patterns
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encompassing all anticipated occupancy scenarios. Although
highly unlikely to exist, such a dataset would also require sig-
nificant computational power to train a machine learning (ML)
model on, due to its size. For the same reason, the ML models
are typically trained off-site, and model updates are pushed
to the inference engine, which requires over-the-cloud con-
nectivity for the occupancy sensors. For such models, a novel
input occupancy pattern that does not belong to the distribution
of the training dataset would cause degradation in occupancy
detection accuracy. Since occupancy tracking is a higher-order
property of occupancy detection [3], it also suffers a loss in
tracking accuracy. The overall occupancy detection challenge
is a well-investigated topic [4] with widespread applications in
health and safety [5], [6], [7], smart energy management [8],
[9], [10], heating, ventilation, and air conditioning (HVAC)
[11], [12], [13], and security [14], [15] sectors
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Fig. 1. Context-aided occupancy detection and tracking system
flowchart. Hand-crafted features are extracted from raw observations
from each of the sensor nodes within the system. These features are
stored in a limited-term DB. This DB is evaluated for feature clusters
based on DBI. Clusters are then assigned to context class via 1-to-many
relationship. These classes correspond to various occupancy scenar-
ios. A context selector module then selects a suitably trained ODLL
occupancy classifier that establishes occupancy state (presence/no
presence). A Bayes filter-based occupancy detection and tracking sys-
tems then considers occupancy outputs from all nodes in the system
to establish a room-level occupancy detection and tracking estimate
every 60 s.

To address occupancy’s dynamic and ever-changing nature,
on-device lifelong learning (OODL) algorithms [16] aim to
maintain test and training distribution similarity by contin-
vously updating datasets. However, these algorithms have
memory constraints and limited dataset sizes, as Internet-of-
Things (IoTs) and edge AI devices are typically resource-
constrained [17]. The proposed method converts the bounded
size handicap into an opportunity by using contextual infor-
mation to create bounded datasets that effectively limit the
classification space for algorithms like K-nearest neighbor
(KNN). A limited classification space guarantees superior
classification performance, given certain preconditions are
met [18]. We term contextual information as the context of
occupancy, which can be any information aiding occupancy
estimation.

Fig. 1 illustrates the proposed method’s overview. Hand-
crafted features are extracted from normalized sensor observa-
tions and stored in a bounded database (DB). Feature clusters
are identified and mapped to context classes representing
occupancy scenarios. For new observations, a context selector
determines the context class. A corresponding periodically
trained OODL KNN [16] model is then selected for node-level
occupancy determination. Finally, occupancy outputs and
node locations are provided to a Bayesian filter (BF)
algorithm [19] that fuses the node-level occupancy to generate
a system-level estimate for occupancy detection and track-
ing over time. An in-depth comparison with state-of-the-art

occupancy detection methods was provided in a recent study
by Emad-ud-din and Wang [20]. This review evaluates the
contemporary techniques across key performance indicators
such as accuracy, response time, and practical deployment
considerations. This work compares the proposed method to
the best-performing state-of-the-art methods featured in the
review study under discussion.

Steps 2—4 constitute the hierarchical classifier selection
(HCS) framework. The key contributions for the proposed
work include 1) a unique context-aided hierarchical classifica-
tion approach for occupancy detection and tracking; 2) context
improves accuracy by focusing classification on similar distri-
butions compared to baseline algorithms where a large static
dataset is used; 3) a BF algorithm provides robust system-level
occupancy state detection and tracking; and 4) The framework
eliminates overhead of offline training on large datasets and
over-the-cloud ML model updates.

For the remaining article, a literature review is presented
in Section II. Section III details the underlying networked
sensor nodes used in the dataset collection and describes the
steps involved in preprocessing sensor inputs and preparing
these for clustering and classification methods. Section IV
outlines the significant features and working principles of
the HCS framework. Section IV describes the network-level
BF algorithm that estimates the system-level occupancy and
tracks occupancy. Section V outlines the dataset collection
strategy and lists the method performance results. Section VI
presents a brief discussion of the method. Section VII presents
a conclusion to this article.

Il. LITERATURE REVIEW

While the proposed method can be applied to occu-
pancy features extracted from other sensor modalities, passive
infrared (PIR)-based sensors have been the most widely
used for occupancy detection due to their low cost [21].
Other sensor modalities explored for occupancy detection
include light, temperature, sound, CO,, reed switches, total
volatile organic compounds (TVOCs), pressure, humidity,
power usage, Bluetooth low energy (BLE), and Wi-Fi sen-
sors [20]. However, the broad adoption of these alternative
sensors has been limited due to problems such as slow
response times, high noise-to-signal ratios, low sensing resolu-
tion, and low correlation with occupancy, given the changes in
the indoor environment. Low-cost camera-based systems have
also been suggested [22], but lack of privacy and high compu-
tational costs have inhibited their widespread use. Issues with
alternative sensor modalities have contributed to PIR sensors
remaining the primary technology for occupancy detection
applications.

Context awareness has been established as crucial in devel-
oping accurate sensing and control systems [23]. It has
already been shown that splitting a dataset based on certain
information, such as context, can improve the ML model
performance [18], [24]. In [25], various statistical classification
models such as linear discriminant analysis (LDA), classifica-
tion and regression trees (CART), and random forest (RF) are
employed for time-series data from light, temperature, humid-
ity, and CO, sensors. It is shown in the article that by including
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the information related to the time of the day and week status
(weekend, weekdays), a 32% increase in occupancy detection
was achieved. While the accuracy peaks at 97% for the work
described in [25], it lacks the variety of occupancy scenarios in
the dataset. For example, the study indicates whether the room
door opened or closed impacted the different sensor readings.
Despite this observation, no other occupancy scenarios were
tested for an indoor office environment chosen for the study,
which can have many possible occupancy scenarios.

The approach, described in [26], is more elaborate than any
other work encountered during the survey conducted for this
literature review. This approach uses three hierarchical levels
of classification. The first level is for occupancy detection, the
second is for occupancy density detection, and the third is for
head count estimation. Each level provides context for the next
layer. The computer usage and meeting schedule provide the
context for the first level of the observed office space. Each
level outputs a feature vector that contains posterior occupancy
probabilities for classification at the next level. KNN and
support vector machines (SVM) are used for classification
at each level. Then, their results are compared. One of the
apparent issues with this approach is the assumption that
computer usage and meeting schedules are correlated. The
computer can be accessed remotely, while meetings can be
skipped. Another issue with this approach is that the context
categories, namely, “computer usage,” “meeting schedules,”
“occupancy,” “occupancy density,” and ‘“headcount,” are all
hard coded in the algorithm. The proposed method, however,
is data-driven, and context categories are defined by clusters
or, in other words, are data-driven.

Khan et al. [26] corroborates the concerns raised in the
introduction of this article that occupancy is dynamic and
challenging to predict due to potentially infinite possible
scenarios. The occupancy estimation system must also be
aware of details on the lag caused by the powerup phase
of the heating regulation systems so that the lagging times
of the affected room temperature can be optimized. In [27],
a context-aware occupancy prediction method is proposed.
It is based on the spatiotemporal analysis of historical data
and context information. The context information includes
the current occupancy state and the sensor location, sensor
observation correlation, season, day of the week, and time
of day. The context is used to select parameters for the
estimation models. This method is suitable for real-time pre-
dictive control, for example, for HVAC control. This method
implements a Markov Chain model and a Semi-Markov model
for occupancy prediction. The proposed work in this article
does model the occupancy of the observed area using a Markov
Chain model, yet no historical data are utilized in the process.

Emad-Ud-Din and Wang [16] outlines an ODLL approach to
continuously update models with new data to maintain test and
training distribution similarity. The proposed algorithm builds
upon the ODLL algorithm [16] by incorporating contextual
information handling and a multilevel classification framework
to further improve accuracy for dynamic occupancy scenarios.
Both the proposed algorithm and the [16] aim to address the
dynamic nature of occupancy detection through continuous
learning approaches. However, the proposed algorithm offers

a more sophisticated solution by integrating contextual infor-
mation and a HCS process on top of ODLL.

Emad-ud-din et al. [1] proposes using a particle filter
(PF) algorithm for occupancy estimation with networked syn-
chronized low-energy electronically chopped passive infra-red
(SLEEPIR) sensors. It evaluates PF performance against a
static KNN model. On the other hand, the proposed algorithm
provides a more comprehensive evaluation of its proposed
context-aided BF method against PF and different base-
lines like extended Kalman filter (EKF) and long short-term
memory (LSTM).

Emad-Ud-Din et al. [19] presents a BF algorithm for
occupancy detection using a network of SLEEPIR sensors.
It processes observations from each sensor via a sensor model
that considers node adjacency, updating the filter. This pro-
vides a probability density function (pdf) for occupancy across
the monitored space. Evaluated on a residential dataset over
30 days, it improves accuracy over PF and extended Kalman
filter baselines by fusing information from networked sensors
rather than relying on individual nodes. Compared to [19]
the proposed algorithm, it introduces a novel context-aided
hierarchical classification framework on top of the BF to
handle dynamic occupancy scenarios better. Also, [19] it does
not include this contextual reasoning component.

One of the critical issues with context-aware applications
is the evaluation of context within the feasible time window
through timely data acquisition and efficient processing plat-
forms [28]. The proposed method ensures that the context is
evaluated every 30 min. This is achieved via a low-powered
IoT device capable of performing onboard learning and infer-
ence. It is also observed that multiple works [29], [30], [31]
integrate IoT-based devices to facilitate context-aware services
and applications. Following the trend, the proposed method
also utilizes IoT devices to evaluate and use context for
on-device occupancy classification.

[1l. NETWORKED SENSOR NODES, EXECUTION
PLATFORM, AND INPUT PREPROCESSING

As per the system flowchart shown in Fig. 1, the raw
sensor observations are extracted from the sensor node called
the SLEEPIR occupancy sensor. The SLEEPIR sensor was
recently developed to address a long-lasting issue of PIR
stationary occupants [32], [33]. All the SLEEPIR sensor nodes
in the system partially process the input onboard and then
use a Bluetooth communication protocol to deliver the output
to a central IoT device for network-level processing. This
processing boundary is marked in Fig. 1. The sensor node and
communication platform details are presented in Section III-A.

A. Synergistic SLEEPIR Sensor Node

In the top figure (Fig. 2), the SLEEPIR sensor node
configuration is depicted. Each node consists of two
polymer-dispersed liquid crystal (PDLC) IR shutters that
cover two analog PIR sensors (EKMC2691111K, Pana-
sonic Inc). Additionally, a traditional digital PIR sensor
(EKMB1391111K, Panasonic Inc.), a microcontroller unit
(MCU) (EFR32BG13, Silicon Laboratories), a PDLC driving
circuit, an ambient temperature sensor embedded in the MCU,
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- TABLE |
SLEEPIR EXECUTION PLATFORM EVALUATION
PDLC Power to
Shutters
Edge Al CPU Cycle Pros Cons
Platform .
ratio (Avg)
Ambia_ | a [Flash, BLEIADC suppor, |25 KB RAM.
Apollo3 SoC Temp sensor, Cost : $2.97 96 MHz CPU
Ambiq ARM Cortex M4F, 768
. Apollo3 Blue| 6pa  |KBRAM, 2MB Flash, g0y py
id Plus SoC BLE/ADC support, Temp
;:aRdiﬁO"a' / sensor, Cost : $3.95
sensor |
SparkFun 6 pA ARM Cortex M4F, IMB giﬁvﬁi%ﬁg’
Artemis Flash, BLE/ADC support Cost: $8.9
Voltage Change due to PDLC Shutter ST Micro- ARM Cortex M7, ADC 340 KB RAM,
@ electronics 178 mA support No BLE, Cost:
Open | © 32F746G PP $56.23
Max VT e ot = - - - — a . 256 KB
= Naﬁ(r)d;l;r];OLE 5 A |ARM Cortex M4, RAM,64 MHz
5 £ BLE/ADC support CPU, Cost:
=3 = Sense $22.30
=] W -
og \ 21O BLE/WiFi support, 2MB [ .\
6% \__J 7= 3 ESP32- | 130mA, |RAM/4MB Flash, 240 Coﬁsulr’n i
2> N Closed PICO-V3-02| 0.6A |MHz dual core CPU, Cost |SOnSUmpuOD,
[} . Cost: $22.30
(%] \ : $3.20
Evaluation Max 500 200MHz, Arm Cortex High power
} ¢ ¢ Kit for mA M33, 512KB SRAM, consumption,
Min Vy |- - E/‘ hp- / hp+ RAGMS 2MB Flash Cost: $57.00
| 11
ty ty
transmission, resulting in a corresponding periodic change
Fig. 2. SLEEPIR sensor node (top). lllustration of the sensor output  in the received radiation W (). Consequently, this change

voltage Vot due to the changing transmitted IR radiation when the PDLC
shutter turns on or off. b — ty = 4 s. 3 — 1 = 8 s (bottom). fpp, is
timestamp when Vot (Max V/+/2) while thp— is timestamp when
Vout == (MinVy/2).

and two AA batteries connected in series (providing a 3 V
dc voltage supply) are included. The PDLC shutters cover a
pyroelectric sensing element composed of pyroelectric mate-
rial, which converts changes in heat flux into current. When
the radiation power received by the pyroelectric material is
represented as W (1) = Wpe'®, and modulated at frequency o,
the voltage response V. (¢) for the preamplifier stage follows
the following form:

Rypnp’ Aw
Gr(1+0213)* (1+0273)*

Here, p’ is the perpendicular component of the pyroelectric
coefficient p. A is the area of the sensing element. 7 represents
the emissivity of the sensing element; 17 = H/Gr and tp =
R, Cy), represent the thermal and electrical constant, respec-
tively. Here, H, Gr, Ry, and Cy, stand for thermal capacity,
thermal conductance, feedback resistance, and capacitance,
respectively. Commercial-off-the-shelf (COTS) PIR sensors
typically include multiple sensing elements (usually two or
four) arranged in series with opposite polarizations. Applying
the same polarization to the sensing elements and covering
these with the PDLC shutter leads to significant voltage
signals from the PIR sensor. The PDLC shutter, positioned
in front of the PIR sensor, undergoes periodic changes in

Vour () = ®). (1

influences the output voltage Vou(?). An illustrative example
of an output signal is presented in Fig. 2 (bottom).

B. Execution Platform

The proposed method involves an onboard computational
device or an execution platform, a critical component of
the execution pipeline. The computational device chosen
for this purpose is an Edge Al IoT device called Ambiq
Apollo3 blue plus system-on-chip (SoC). This device was
chosen after a detailed evaluation study involving sev-
eral resource-constrained 10T platforms. Power consumption,
processing frequency, and onboard memory were major con-
siderations during this evaluation effort. The resultant data
gathered from this effort is listed in Table I. It can be
observed in Table I that the chosen Edge Al device has a
minimal power-to-CPU cycle ratio. The device can also house
and process relatively less bulky ML algorithms like KNN,
given its 768 KB static RAM. It possesses an embedded
temperature sensor and Bluetooth communication module, all
of which are critical for the stated needs of the proposed
method. Fig. 3 highlights the crucial performance parameters
plotted over 24 h for Ambiq Apollo3 Blue Plus SoC. The
plot shows no memory leaks and estimates the proposed
algorithm’s onboard resource usage. As per long-term test-
ing of the SLEEPIR sensor node, its average yearly power
consumption is 5.55 E-03 KWh/unit/year. This number is
comparable to other well-known PIR-based occupancy sensors
such as Panasonic PaPIRs sensors [34] and sensor switch
CMI10WR [35].
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a1y 0o, bt b MLl winy)
H Og».“\ﬂh«,//LM,‘l',u"‘).k'“mm\}‘.s.fli\:Mmm*‘\,M‘%,JL\.‘.«M.‘NJ,,M'MJ‘\".: AT M«\m\%‘hﬁégﬂ\w\. bt it Lndih o V,ut presents peak
10 Power Usage R values when sensor is
éf‘, H NN ‘ A | i ‘ L /‘ L] ] - Max Vr Maximum Vo exposed to radiated IR
<OO‘. SRR | VOO | NSRS | WSS | SO | By | B 5]);,, — — BUVRRE | I | R | .1000 | e Jh e e - (0.029)
Time (minutes) Voue presents low values
Fig. 3. Various performance metrics plotted for 24 h for Ambiqg Apollo3 Min Vr Minimum Vo, when sensor shutter is
blue plus edge Al device. closed (0.010)
thp+ — L2
Half-Power where tpy 4 is )
Bandwidth for timestamp when V";gﬂ?jf?:?:gls};svﬁ)en
C. Input Pre-Processing and Feature Extraction +ve peak (Vour == radiated TR (0.025)
While zero-centering and normalization of features are typi- (HPB) (Max V)/V2))
cal for ML models’ performance, stability, and interpretability, Minimum Vo,
segmenting the input time series into windows of features Ehp- _tl, V, e drops sharply when
. S . . . Half-Power where ty,_ is out !
requires justification. Sections III-C1 and II-C2 describe . . sensor shutter is closed
; . X . . Bandwidth for - timestamp when
the input formatting, feature extraction, and segmentation in o after exposure to
ve peak (HPB-) (Vour == .
detail ) radiated IR (0.027)
’ (MinV)/N2))
1) Input Formatting: The hand-crafted ML features are used Ve maintains higher
widely in the literature to produce easily distinguishable values Windowed central tendency
. .. . Mean V,,,; .
for different data classes [36]. A good feature remains invariant mean (mean Vr) during non-
to the slight changes in the input pattern for a particular class occupancy (0.040)
and tends to produce similar values for patterns belonging i Standard Vour maintains high
to the same class. Moreover, an optimal feature minimizes “l])mdo(wtfidVSt)d. Devi t.talnfarv Slgn}elll variability during
" . . CV (S uman presence
the false positives (FPs) and false negatives (FNs) by virtue T ceviation 10T Your © 0%18)
of be'ing easily distingu'ishable within feature space. Features Nummber of peals V, oz has less signal
described [16] are optimal for occupancy detection as the Peak C bove 0 5p ” variability towards
accuracy exceeds 90% for typical occupancy scenarios using eak Count da qu : Stl ’ positive side during
SLEEPIR sensor nodes. Table II describes each feature eval- cviation value human presence (0.062)
vated during the proposed work. The top six features were Measure of Vyue is predictable in
chosen to be deployed for the proposed ML model. Some of Spectral fTGQ}leanY terms Offrequenc}’
these features are visually represented in Fig. 2 (bottom panel). Entropy distribution during rr(;o;; Zcenarlos
Although input quantization has been shown to improve randomness : (0.096) _
recursive neural network (RNN) accuracy, we decided against Vout is not self-similar
ing this approach due to the insignificant accuracy improve- over-time especially
using . PP . g . y 1mp Mean Measure signal self- when IR noises are
ment.ac.h ieved at the C,OSt _Of information _IOSS [37]', autocorrelation | similarity over time added or ambient
It is important to highlight the effort involved in evaluat- temperature changes
ing several features before finalizing them. Data from both (0.13)
occupied and unoccupied classes were gathered, preprocessed, Measure of Ve remains relatively
and windowed. Afterward, this data were processed through | Wavelet Detail complexity or less random at different
a feature evaluation phase where several time and frequency Entropy randomness at scales during most

domains and autocorrelation and wavelet features were eval-
uated using the data. These features were shortlisted from
occupancy detection studies in Emad-Ud-Din and Wang [20]
that make use of PIR signal. Table II provides the description,
suitability, and p-value for all evaluated feature to Vi u(¢)
output of the SLEEPIR sensor.

While p-value of a feature in this context signifies the
statistical significance of the difference in that feature’s values
between the two classes (occupied and unoccupied), it is
important to note that the V. (t) keeps changing with chang-
ing occupancy scenario. Thus, it was ensured that the p-value
was computed using the entirety of both datasets used in this
study which captures a wide variety of occupancy scenarios.

multiple scales

scenarios (0.098)

2) Sliding Window Input Approach: We initialize a base
training dataset obsp where each element is created by sliding
a fixed-horizon nonoverlapping window of length / over the
raw voltage output Vi, from the SLEEPIR sensor. We thus
extract a 6-D training input time-series consisting of the
following elements [Max V;,Min V;, meanV,, stdV;, HPB;+,
HPB;—]. Suitable observation window length (/) is a critical
parameter that has a pronounced impact on the over-network
accuracy [38]. Detailed impact assessment of this parameter
has already been accomplished in [16] and an optimal value
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of [ was found to be 60 s for typical occupancy scenarios. The
labels labelp are initialized where each element corresponds
to each window in obsg. The labeling is done as per the
automated labeling algorithm proposed in [16]. It must be reit-
erated here that initially, the labels (occupied and unoccupied)
are obtained from calibration data collected by the end user.
The calibration is done using a smartphone app where the user
labels 20 observation windows, with 10 windows labeled as
“occupied” and 10 as “unoccupied” based on human presence
within the field of view (FoV) of the SLEEPIR sensor node.
The algorithm utilizes the time difference between consecu-
tive PIR activations for a sensor for automatic labeling. If the
time difference is less than or equal to / (60 s), it assumes the
presence of a human subject within the sensor range and FoV.
This assumption is generally true, and the training datasets
labeled based on this assumption provide high occupancy
detection accuracy [16]. It may also be mentioned here that
labeling of observations is required when the output of the
traditional PIR sensor onboard the SLEEPIR node is O for
the entire observation window of length /. The traditional PIR
sensor is assumed to be reliable enough not to produce FPs.

IV. HCS FRAMEWORK

Determining an occupancy classification model context
involves clustering the observation features based on Euclidean
distance. Each feature cluster approximately corresponds to a
specific occupancy scenario or activity performed by subjects.
For example, clusters may form when the observed subject
is in bed. Such a cluster can be associated with a context
labeled “subject sleeping.” This context outlines a cluster con-
taining observations of subjects under blankets at night. During
experimentation, it was found that an occupancy classifier
trained only on this “sleeping” data subset that outperformed
a baseline classifier trained on all data where the subjects
performed other activities besides sleeping. Thus, the proposed
method trains multiple ML models, with each trained on the
observations within an identified context cluster.

When classifying new observations, the appropriate pre-
trained model is selected based on the observation’s context
cluster. This approach leverages context to focus models on
more consistent data distributions, improving classification
accuracy over baselines.

The purpose of the HCS framework described below is to
train and select the most accurate occupancy classifier among
the set of continuously trained classifiers given a context.
Here, context is the information that is pivotal in selecting
the optimal occupancy classifie—Section IV-A details how
the context is evaluated.

A. Context Generation Through Data Clustering

Fig. 1 shows that the node-level feature DB contains a
labeled base training dataset with labels. Clustering aims to
identify the subsets of the base training dataset that enables
more accurate occupancy classification. Fig. 4 explains why
an appropriately clustered feature space is easier to classify
than an unclustered one. The concept of using clustering to
improve classification has been investigated thoroughly [18],

Base Classification

Un-clustered
Training Dataset Features
+ -
- +
+
+ +
+ —
Subset Classification
Clustered
Training Dataset Features _
+ b} .- trE
* | -
+ - L] -
L] - | + +
- ++ + *
+ ¥
++ + +
. ~

Fig. 4. Unclustered features being classified for occupancy (+) and
nonoccupancy (—) (top). The clustered features are classified (bottom).
The classification is much simpler in case only a single cluster is
considered at a time. The caveat is that the clustering needs to be
meaningful and have minimal outliers.

[39]. This begs the following questions: 1) How do feature
clusters look like for an actual SLEEPIR sensor signal?
2) Can the feature data be clustered in a meaningful way so
that it facilitates classification? Fig. 5 answers these questions
by showing that the evaluated occupancy features, when clus-
tered, can be easily classified into occupied and unoccupied
classes. Fig. 5 also indicates that the raw observation clusters
overlap and thus have a significantly higher susceptibility to
FPs and FNs.

To evaluate meaningful clusters, that is, clusters that cor-
respond to an occupancy scenario, we utilize a clustering
technique based on the K-means algorithm. Apart from identi-
fying the clusters attributed to each scenario, this technique is
also designed to minimize the variance in clustering solutions
obtained from K-means in the presence of randomized cen-
troid initialization. The Davies—Bouldin index (DBI) [40] was
utilized to reduce the impact of random initialization on the
K-means clustering results by tuning the number of clusters
k in a manner less sensitive to the initial cluster centroids.
To be precise, the DBI was calculated for different values of
k as K-means was executed multiple times with randomly
initialized centroids. The DBI seeks to minimize the ratio
of within-cluster to between-cluster distance. By plotting the
DBI against k for each run, the value of k at which the DBI
curve plateaus or reaches a minimum was identified. This k
value corresponded to a clustering solution demonstrated to be
more robust to initialization, although the individual cluster
assignments differed slightly between runs. It was observed
from the experiments conducted that each context naturally
tended to generate clusters with low intracluster distance and
high intercluster distance.

It must be highlighted here that one occupancy scenario
can cause multiple feature clusters. A single KNN-based
subclassifier is trained with features contained within a sin-
gle scenario. Multiple occupancy scenarios are denoted by
varying colors in Fig. 6. A 1-to-1 correspondence is shown
between the scenarios and trained subclassifiers in Fig. 6 as
well.

Authorized licensed use limited to: Texas A M University. Downloaded on October 29,2025 at 21:25:00 UTC from IEEE Xplore. Restrictions apply.



35920 IEEE SENSORS JOURNAL, VOL. 24, NO. 21, 1 NOVEMBER 2024
20l ® Occupied while stationary N\
® Unoccupied -
\ 2
115 Unoccupied \ =1 » =
W observation point )’ 'I"
2 4
l:-q_g 110 . obs:)n:r:riz':dpelm |I ||
ba *  New observation | . .rl
105 point . .'JI
- I‘. . % .,.-"!
100 ~ P
085 100 105 110 115 120 125 .
e
Voutt & & | oDLLKNN Classifier || ODLLKNN Classifier | | ODLLKNN Classifier |
L] E (Low noise scenario) (High noise scenario) (IR shielding scenario)
20! T ;
Computation On-board Sensor Node
Computation on loT Device
Bayes Filter based network-level Occupancy
Occupancy Detection and Tracking State
Fig. 6. 6-D Features points (shown in 3-D) divided into clusters
(in red) via DBI. Based on observations from past 30 min (in gray),
closest clusters are chosen (in green) to form a context. A dedicated
subclassifier is pretrained with feature points contained in green ellipsoid
for occupancy classification.
2 1::
The architecture for these subclassifiers is inspired by the
similar KNN classifier deployed in [16].
. . In general, KNN is a supervised classification technique that
Fig. 5. Raw observations from the SLEEPIR sensor node for a

24-hr period (top). Clustered features for SLEEPIR sensor module 1,
evaluated from the automatically labeled raw Fig. 1 (bottom). Context-
aided occupancy detection and tracking system flowchart. Hand-crafted
features are extracted from raw observations for each of the sensor
nodes within the system. These features are stored in a limited-term
DB. This DB is evaluated for feature clusters based on DBI. Clusters are
then assigned to context class via 1-to-many relationship. These classes
correspond to various occupancy scenarios. A context selector module
then selects a suitably trained ODLL occupancy classifier that estab-
lishes occupancy state (presence/no presence). A Bayes filter-based
occupancy detection and tracking system then considers occupancy
outputs from all nodes in the system to establish a room-level occupancy
detection and tracking estimate every 60 s.

B. Sub-classifier Architecture and Training

The node-level or subclassifier forms the second layer of
the HCS framework, as shown in Fig. 1. These classifiers are
ODLL classifiers having training datasets that evolve as the
occupancy scenarios consistently change in almost every real
indoor setting. The training dataset for each classifier is an
assigned cluster from the context generation phase detailed
in Section IV-A. For example, while the subject sleeps, the
SLEEPIR observations are frequently clustered together for the
collected dataset. Thus, these clustered observations can serve
as the training dataset for a dedicated ODLL KNN classifier
in this subclassifier layer of the HCS framework.

Similarly, the subject working on a laptop produces feature
clusters that are distinct from the “sleep scenario cluster.” The
“sleep scenario cluster” and “laptop work scenario” clusters
may be close in terms of Euclidean or Cosine distance which
may cause misclassifications. When both scenarios are evalu-
ated for occupancy by two separate classifiers, each trained on
its respective cluster, the results show marked improvement.

operates on the principles of nonlinear distance-based analysis.
Unlike other methods, KNN doesn’t involve a learning process
but relies on direct classification. It requires the indexed
storage of the entire training dataset.

Given a training dataset that contains a cluster C; (x¢,, yc,),
and a new observation x,y, the distance is calculated, denoted
as d,,, between xpey and x¢, using the following equation:

dy = ||xnew — X ” (2)

Distance calculation typically employs the widely used
Euclidean distance measure. Once the distance d,, is obtained,
the labels of the k training samples with the smallest distances
are selected. A majority voting scheme is then applied to
determine the label of the new observation. As the number
of existing samples in the dataset increases, the computation
time for assigning a new sample to a class also increases [41].

A limit is set on the total number of observations in the
training dataset (as determined by the cluster) to keep the size
of the training set bounded. This is achieved by periodically
removing observations that are farthest from their respec-
tive cluster centroid, determined by the Euclidean distance.
To determine the optimal number of neighbors (k), a critical
parameter for KNN inference the Elbow search method [42]
is used to determine the optimal number of neighbors (k),
a critical parameter for KNN inference. This method involves
periodically calculating the within-cluster-sum of squared
errors (WSS) for different values of k neighbors and evaluating
the WSS. While it is true that the plot of WSS versus k can
be visually assessed for an elbow. A numerical evaluation
route was undertaken to determine the elbow point for the
sake of process automation. This was done by calculating
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Algorithm 1 Context Selector
Input:
feature observations x;.s;, base clusters list ¢p, thresh, N
Output:
cluster subset cg
{ContextSelectorThread}
while last_time_stampcurrent_time < 30min
do_nothing( )
last_time_stamp = current_time
total_clusters = length(cy)
vote_vector[1l, ..., total_clusters] = 0
for all x;.;

for all £ in cp

clust_cent = cluster_centroid(k);

10 if dist(x;ey;, clust_cent) < thresh
11 vote_vector|k] = vote_vector[k] + 1;
12 ¢, = return_topNvoted_clusters(vote_vector, N)

O XN R W -

the second derivative of the WSS plot. The elbow point was
determined to have the largest negative value of the second
derivative. This search is performed periodically rather than for
every inference. Depending on the context, a subclassifier is
chosen, which establishes the node-level occupancy based on
the new observation xpe, collected at the last timestamp. The
occupancy output of the selected subclassifier then reaches a
network-level BF occupancy detection and tracking algorithm,
which is described in Section V.

C. Context Selector

Among the subclassifier layer of ODLL KNN models,
a suitable model must be selected to perform classification
whenever a context is evaluated. This is achieved via a
KNN-based Context Selector. It must be reiterated here that
the evaluated context in Section IV-A is a cluster(s) based on
similar occupancy observation. In other words, each cluster is
formed due to the SLEEPIR sensor response to a particular
occupancy scenario.

The only remaining task now is to be able to choose a
relevant set of clusters dictated by the occupancy scenario.
The distribution of observations in the selected set of clusters
should match the distribution of observations in the incom-
ing observations from the sensor node. For this purpose,
algorithm 1 is proposed. Algorithm 1 receives a vector Xies
of features calculated over sensor observations accumulated
over a tunable predefined period, for example, 30 min. For
each observation in x.g that falls within a threshold distance
of a cluster contained in a list of clusters cp, evaluated in
Section IV-A, a vote is added to a vector whose elements
correspond to each element of cg. Top N clusters regarding
vote count are selected and returned as a list cg, as an output of
Algorithm 1. At this point, it takes a negligible amount of time
to train a subclassifier with all the feature points that are mem-
bers of clusters in list c¢g. The subclassifier can be pretrained
as well, but this would involve pretraining subclassifiers for all
possible combinations of clusters identified in Section IV-A.
Next, the trained subclassifier is used to establish occupancy
for the next 30 min (or a predefined time interval).

This step concludes the last step of the top layer of the
proposed HCS framework, as shown in Fig. 1. In short, the
context determines a subdataset based upon which a trained
ODLL KNN sub-classifier performs occupancy classification
for the new observation and outputs the occupancy status for
each node in binary.

V. BAYES FILTER-BASED OCCUPANCY
DETECTION AND TRACKING

The BF occupancy detection and tracking algorithm
determines the networkwide occupancy while tracking the
occupancy state of the observed area, that is, the occupancy
status for each sensor node in the system. After binarizing the
node-level observations using the proposed HCS architecture
in Section IV, these observations are utilized to update a
BF [19], which generates an estimate of occupancy at the
network level.

Based on the available information, this BF method provides
a real-time posterior pdf of the state (occupancy belief).
The BF method is considered “optimal” because it seeks
the posterior distribution that integrates and incorporates
all the available information expressed as probabilities [22].
The BF-based algorithm for detecting occupancy at the net-
work level employs a dual-stage algorithm, details of which
can be found in [19]. In the initial stage, the occupancy status
of the area under surveillance is modeled as a Markov decision
process (MDP). The MDP is a representation of real-world
dynamics. The MDP proposes an optimal policy—a sequence
of state transitions needed before reaching a goal state.

The goal state is the occupancy state detected by the
networked SLEEPIR sensor nodes, for example, X 2 X3 which
indicates that occupancy was detected at nodes X? and X°.
The MDP also needs a starting state, the previous occupancy
state detected by the BF-based method. For example, if the
starting state was Unoccupied and the goal state was detected
to be X2, X3, then MDP would propose an optimal sequence
of states m that need to be navigated to reach goal state
while beginning at the start state. This suggested sequence
m would also require an expected time to be navigated.
Using fundamental Markov analysis (FMA) technique [43],
the sequence of occupancy states and expected traversal time,
given a starting and a goal occupancy state, can be evaluated.
As this detail is not the primary focus of the research presented
in this article, the evaluation process is skipped for the sake of
conciseness. In the second stage, the BF consistently receives
updates about occupancy status from individual SLEEPIR
nodes, e.g., X2, X3. Based upon the suggested sequence of
occupancy states m, the BF continually adjusts its belief based
on the degree of agreement between the observed occupancy
state fed via SLEEPIR node observations and the sequence
. If an incoming occupancy observation aligns well with &
suggested by the MDP, it is assigned a higher likelihood than
an observation that doesn’t align well. The sensor model for
the BF correlates the incoming observations to the likelihood
values of the overall space being observed as occupied (or
unoccupied). The posterior pdf, which represents the present
probability for all possible occupancy states, is provided
in Fig. 7. Fig. 7 shows how the occupancy belief of the
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Fig. 7. Insets 1 to 6 show progression of BF belief about the occupancy
via posterior probability distribution over all possible occupancy states
(top). A time-chart that shows the history of BF belief over time (bottom).
Inset 1 represents system belief at time = 0, while inset 8 represents
system belief at time = 10862.

BF-based occupancy-tracking algorithm evolved over time.
Fig. 7 also shows the history of tracked beliefs about the
occupancy state. The temporal progress chart comprising the
system’s occupancy belief over time is also shown in Fig. 7.

VI. RESULTS
A. Datasets

To evaluate the adaptability of the proposed context-aided
ODLL occupancy detection algorithm across different

10
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Fig. 8. Dataset was collected at a two bed, two bath apartment.
Four SLEEPIR sensor nodes were for dataset collection. Sensor node
locations are shown in the figure as well. Yellow shade shows SLEEPIR
detection footprint while gray shade represents traditional PIR detection
footprint.
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Fig. 9. Dataset was collected at an office space consisting of three

rooms. Three SLEEPIR sensor nodes were deployed for dataset collec-
tion. Sensor node locations are shown in the figure. Yellow shade shows
SLEEPIR detection footprint, while gray shade represents traditional PIR
detection footprint.

occupancy scenarios, such as residential settings and office
spaces, two datasets were collected: one in a residential unit
and the other in an office space.

1) Residential Dataset: Four SLEEPIR sensor nodes were
deployed at a residential apartment, as shown in Fig. 8. The
apartment unit has two bedrooms and two bathrooms. The
apartment-covered area is 140 m?. Each node is installed at
the height of 2.8 m. Each node collects one observation every
30 s. The duration of data collection is 30 days. Webcams are
used to collect ground truth data. The Kitchen sensor node
(X*) encounters frequent IR noise due to the presence of
a stove and warm water tap within sensor FoV. The living
room sensor node (X') and Bedroom 1 sensor node (X?)
also encounter IR noise due to sunlight encroaching from the
windows.

2) Office Dataset: Three SLEEPIR sensor nodes were
deployed in an office space, as shown in Fig. 9. Certain areas
are inaccessible, so these are shown to be crossed out in the
figure. This space has three rooms and two bathrooms. The
office-covered area is 103.3 m?. Each node is installed at the
height of 2.8 m. In this dataset as well, each node collects
one observation every 30 s. The duration of data collection is
15 days. Again, webcams are used to collect ground truth data.
There are no windows in this office space, so IR noise due to
sunlight does not impact accuracy. However, the environment
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is filled with electronic office equipment, including LED/liquid
crystal display (LCD) screens, PCs, and laptops, etc. We used
7 out of 15 days to extract probabilities of human traffic
between various office rooms. For both datasets, 80% of
the data for node-level detection was used for training and
validation, while the remaining 20% was used for testing.
The accuracy analysis presented in Section VI-B is based
on sensors placed in an uncontrolled environment where IR
noise is encountered frequently, thus representing the method’s
performance in challenging environments.

B. Accuracy Results and Analysis

This study chooses state-of-the-art EKF and PF as baseline
comparison methods. The proposed BF method outperformed
these in terms of occupancy detection and tracking using
networked sensor nodes.

It is essential to state that the proposed and baseline algo-
rithms are compared for accuracy at the two levels described
below.

1) Comparison between sensor fusion algorithms, that is,
EKF, PF, and proposed BF algorithms. The results of
this comparative experiment for the residential scenario
are listed in Tables III and IV. The corresponding results
for the office scenario are presented in Tables V and VL

2) Comparison between the LSTM [44] and KNN models
trained on static, nonevolving occupancy dataset versus
the context-aided KNN model trained on bounded evolv-
ing occupancy dataset.

Among the fusion baseline algorithms, the EKF implemen-
tation [45] was selected for comparison due to its ability
to approximate a Gaussian distribution and its resemblance
to BF, which incorporates linear, quadratic, and Gaussian
assumptions. In previous literature, EKF has frequently been
compared to BF in terms of algorithmic efficiency [46], [47],
[48]. The rationale behind choosing PF [1] as a baseline
method was simple as it has been used previously with
networked SLEEPIR sensor data to report detection accuracy.
Although inherently robust to non-Gaussian noise, PF is a
computationally expensive choice. Moreover, the PF imple-
mentation [1] uses historical sensor data to model occupancy
behavior. Inhomogeneous hidden Markov models (IHMM)
[49], although a good candidate for a baseline algorithm,
were not chosen as a baseline algorithm because the method
fused sensor modality by integrating data from infrared (IR)
sensors to other environmental parameters such as tempera-
ture, humidity, and carbon dioxide levels. This modality-based
sensor fusion approach differs from the proposed BF approach
that integrates a single modality data from multiple nodes to
construct a comprehensive occupancy hypothesis. A compre-
hensive review study [20] encompasses the state-of-the-art in
in terms of fusion algorithms for occupancy detection. It com-
ments on the input modalities, datasets, subjects, algorithm
details, and intended purpose of such algorithms. Since the
proposed method deals with a unique sensor signal and claims
success within a specific category of occupancy, that is,
stationary occupancy, the review study suggests EKF, BF, and
PF-based techniques to be the most suitable for performance
comparison.

TABLE IlI
RESIDENTIAL SPACE DETECTION ACCURACY COMPARISON
TO BASELINE MODELS

EKF + PF + BF + BF + Proposed
Date Static Static Static Static Context-
LSTM LSTM LSTM KNN aided KNN +
Accuracy | Accuracy | Accuracy | Accuracy | BF Accuracy
15 April 77.2% 81.9% 83.1% 89.3% 95.9%
16 April 82.1% 89.2% 91.7% 94.0% 95.3%
17 April 70.5% 77.0% 81.4% 90.7% 97.6%
18 April 61.2% 88.5% 82.5% 86.8% 91.0%
19 April 59.0% 88.3% 86.8% 87.1% 95.1%
20 April 71.6% 82.5% 89.5% 91.2% 97.5%
21 April 80.2% 85.2% 91.6% 93.9% 97.8%
TABLE IV

RESIDENTIAL SPACE TRACKING ACCURACY COMPARISON
TO BASELINE MODELS

EKF + PF + BF + BF + Proposed
Date Static Static Static Static Context-
LSTM LSTM LSTM KNN aided KNN +
Accuracy | Accuracy | Accuracy | Accuracy | BF Accuracy
15 April 57.9% 70.5% 77.5% 86.9% 93.2%
16 April 63.5% 77.9% 87.1% 91.7% 92.4%
17 April 52.1% 69.4% 75.8% 88.0% 95.4%
18 April 48.5% 77.7% 78.5% 84.8% 85.1%
19 April 44.0% 79.7% 81.7% 86.7% 91.0%
20 April 53.2% 75.2% 84.5% 90.5% 93.9%
21 April 62.9% 78.2% 88.4% 92.2% 94.0%
TABLE V

OFFICE SPACE DETECTION ACCURACY COMPARISON
TO BASELINE MODELS

EKF + PF + BF + BF + Proposed
Date Static Static Static Static Context-
LSTM LSTM LSTM KNN aided KNN +
Accuracy | Accuracy | Accuracy | Accuracy | BF Accuracy
6 Mar 86.15% 94.22% 93.71% 90.10% 98.22%
20 Oct 84.33% 92.36% 94.82% 93.39% 96.50%
3 Nov 89.70% 91.72% 93.29% 91.04% 92.90%
This study aims to demonstrate that the proposed

context-aided BF method surpasses existing implementations
in accuracy and efficiency despite its similarities with EKF
and PF. This evaluation also focuses on establishing the
effectiveness of the proposed method in accurately tracking
occupancy at the room or zone level within a building. First,
the accuracy results that compare the occupancy detection
performance using the networked SLEEPIR nodes are pre-
sented. The results of this comparative experiment are listed
in Tables III and V for both office and residential scenarios.
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Fig. 10. FPs and FNs for 7-day test data collected in residential space showing the performance for the proposed context-aided occupancy

detection framework.

TABLE VI
OFFICE SPACE TRACKING ACCURACY COMPARISON
TO BASELINE MODELS

EKF + PF + BF + BF + Proposed
Date Static Static Static Static Context-
LSTM LSTM LSTM KNN aided KNN +
Accuracy | Accuracy | Accuracy | Accuracy | BF Accuracy
6 Mar 53.60% 77.51% 81.80% 77.14% 95.23%
20 Oct 46.33% 78.20% 78.41.% 76.29% 97.52%
3 Nov 60.20% 79.54% 85.20% 79.11% 94.01%

The occupancy tracking performance of the abovementioned
baseline algorithms with the proposed context-aided BF track-
ing algorithm is also compared in Tables IV and VI. We chose
to evaluate the performance of algorithms over each day as
the clusters associated with the context evolve due to the
observance of new data (as explained in Section IV-B). This
entails that the order of the incoming observations has an
impact on how clusters evolved and thus influences accuracy.
Thus, the progression of accuracy over time needs to be shown.
The proposed model error is broken down into FPs and FNs,
and Fig. 10 illustrates the FP and FN reported by the proposed
and each baseline method. A total of 77% of the dataset
was used for training, while the remaining 23% was used for
testing. It was ensured that a continuous whole week of data
was tested for performance evaluation.

The following points highlight the most notable observa-
tions about the reported results.

1) On the 18 April, it was observed that there was a high
FN rate across all models, with the lowest accuracy
being 61.2% for the EKF + Static LSTM model and
the highest being 91.0% for the proposed context aided
KNN + BF model. This unusually high FN rate could be
attributed to the subject spending most of the day in bed.
This nontypical behavior might have misled the models,
causing them to incorrectly predict the absence of the
subject and hence increase the FN rate. Additionally,
as subjects are susceptible to covering themselves with

2)

3)

4)

5)

blankets or comforters when in bed [50], this behavior
can result in significant IR shielding. Such IR shielding
has significantly contributed to the anomalously low
model accuracy on this day through an increase in FNs.
On the 17, 20, and 21 April, it is noted that there
were fewer FPs than usual across all models. This
means that the models performed better in accurately
predicting occupancy. A critical factor that helped in this
improved performance is the capability of the proposed
context-aidled KNN + BF model to adapt well to the
IR noise caused by the solar IR in the living room
and bedroom 1. The model minimized FPs, thereby
increasing its accuracy, which ranged from 97.6% to
97.8% on these dates.

It is noteworthy that on 3 November, the detection
accuracy for the static LSTM model was higher than
that for the proposed context-aided ODLL KNN model.
Static models, when tested on data that follow a similar
distribution to the distribution of their static training
dataset, can produce better results than an ODLL model.
While such circumstances can occur, the chances of
occurrence are very low.

It needs to be mentioned that the presented accuracies
for the proposed KNN 4 BF model are based on
the fact that the context was evaluated using 30-min
observation windows, as detailed in Section IV-A. The
30-min window is a tunable parameter. It was found
experimentally that considering context over less than
30 min resulted in nonconsistent context, while notching
up the value to over 30 min led to missing certain
short-term contexts like having lunch or cooking a small
meal, etc.

The office and residential space differ in terms of human
occupancy behavior. For example, in the office space,
the sensor is exposed to frequent and large human
motion, for example, employees walking across the
FoV of the sensor. In the residential environment, the
subjects were found to be static for long periods of
time, for example, during sleep. Subjects were also
found to be covered mostly during sleep (IR-shielding)
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that introduces FN in terms of occupancy detection.
We find that average-tracking accuracy for office space
is 95.59% which is higher than average-tracking accu-
racy for residential setting, that is, 92.14%. This is a
direct consequence of losing track of subjects due to
IR-shielding.

VII. DISCUSSION

It must be highlighted that no prior assumptions are made
about the clusters that are essentially the context classes,
as evaluated in Section IV-A. Instead, a data-driven approach,
that is, K-means clustering, is solely used to establish similar
occupancy patterns. As per the conclusions gathered from
the literature review [25], it was expected that the datasets
gathered for this research would indicate that the context
classes determined by the K-means clustering algorithm would
loosely coincide with specified periods of a typical week,
for example, weekday mornings/evenings where the occupant
activity pattern was found to be similar. On the contrary,
the clustering technique mentioned in Section IV-A did not
produce clusters corresponding to a specific period within the
week. Instead, it was found that each cluster predominantly
contained observations from a frequent activity carried out in
a typical week, such as sleeping, eating at the table, cooking,
and exercising. Yet, some similar observations from multiple
activities also crossed over into a cluster of other similar
activities, for example, sleeping and watching TV in bed looks
similar to SLEEPIR. This adapts well to node-level ODLL
KNN subclassifier architecture, as these classifiers are blind
to the underlying meaning of these clusters. The classification
accuracy for these subclassifiers is agnostic to the fact that
the clusters represent a time period or not. This is because the
basis for classification is similarity in the occupancy patterns
that may belong to any period of a typical week. Thus, similar-
looking occupancy patterns within two different time frames
within a week can be part of the same cluster depending upon
their distance to another cluster within the feature space.

One of the most critical sets of clusters was found to be
the clusters formed due to the weekday night activities. These
clusters are unique in that the subject(s) are primarily station-
ary(sleeping), and during the months with frequent cold nights,
most parts of the subject’s body are covered with a blanket or
fabric. This inhibits the emitted body IR radiation from reach-
ing the sensor, resulting in IR shielding [50]. Thus, unique
patterns form clusters in proximity to clusters representing
unoccupancy within the feature space. It would have been a
particularly difficult task to perform occupancy classification
for the nonclustered data for the cold nights where subjects are
mostly covered in blankets, yet due to the clustering algorithm,
both cold night features and unoccupancy features lie within
the same scenario, and a specialized subclassifier was trained
to distinguish between these two occupancy phenomena.

VIIl. FUTURE RESEARCH
One of the major strengths of the proposed context-aided
ODLL occupancy detection algorithm is its ability to adapt
to varying occupancy scenarios (e.g., changes in occupant
behavior, occupant numbers, or observed space, i.e., residence

or office). This ability is well investigated in [16] and is due to
the inherent nature of ODLL, which periodically updates the
model according to new occupancy scenarios. The proposed
addition of context generation and BF fusion algorithm on top
of the previously proposed ODLL model enables the algorithm
to avoid the FP and FN caused by overlapping scenario clusters
that existed in the previously proposed ODLL model [16].

The context also resolves the issue of FP caused by heat
sources in the residence, such as heating ducts, kettle, warm
water from tap, stove, and oven. The main takeaway of the
proposed approach is that a human presence without any
heat source will be plotted at a different location in the
feature space shown in Fig. 6, compared to when the sensor
observes the heat sources alongside the human subject. It can
be observed in Fig. 6 that the blue feature points representing
the occupancy cluster are divided into two different scenar-
ios based upon the generated context boundaries, that is,
IR-shielding (blue boundary) and high-noise scenario (green
boundary). Since a distinct model handles each scenario, the
classification is much cleaner and with less FP and FN.

Previously published studies [1], [16], [19], [20] have
thoroughly assessed the impact of increasing and decreasing
the number of the SLEEPIR sensor nodes on occupancy
detection accuracy. Thus, this question was not addressed in
this study. These studies determined that a node density of
364 ft? is sufficient to achieve reliable detection accuracy for
the residential indoor spaces used in the variety of datasets
used in these studies. It is helpful to highlight here that
each SLEEPER node can observe an area of 364 ft> when
installed at the ceiling height of 2.8 m, directly observing
the area under it. It is acknowledged the results may not
generalize to all deployment sizes; however, given the prior
work establishing node count effects, the choice of a four-node
setup for residential and a three-node setup for office space
was based on experimental data provided by previous studies.
It is also acknowledged that since the periodic updates to the
model happen to cater to the new occupancy scenarios, the
frequency for these updates, which is set at every 30 min in
algorithm 1, and the extent for these updates is determined
by the variable thresh in algorithm 1 are good avenues for
future research. Presently, 96 MHz CPU frequency of the IoT
platform places an upper limit on both these parameters. It is
expected that with the maturity of future IoT platforms, this
upper limit can be enhanced. Power consumption limitations
also play a critical role in determining the upper limit under
question. For example, adding trivial components, such as
logic-level shifters that enable intermicrocontroller communi-
cation in certain scenarios, can significantly add to the overall
power draw. Thus, future efforts can attempt to minimize the
impact of hardware power on the expected performance of the
proposed algorithm.

IX. CONCLUSION
This work presented a context-aided occupancy detection
and tracking framework for networked sensor nodes. The
article addresses the inherent complexity of occupancy detec-
tion due to evolving environmental and occupancy scenarios.
It emphasized the challenges of collecting comprehensive
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training datasets encompassing all anticipated occupancy pat-
terns and the need for model updates in dynamic scenarios.

The proposed framework leveraged the bounded size of the
training dataset and utilized contextual information to enhance
occupancy detection accuracy. The method effectively limited
the classification space through data clustering and HCS
framework, improving accuracy and execution time compared
to baseline algorithms. The BF-based occupancy detection and
tracking algorithm provided a robust occupancy estimation at
both network and node levels, incorporating the occupancy
state’s real-time posterior pdf. The performance was evaluated
by collecting datasets in both residential and office space
settings.

The article demonstrated the effectiveness of the proposed
method through a comprehensive evaluation using a dataset
collected from a residential apartment. The results showcased
superior performance compared to state-of-the-art methods
regarding occupancy detection accuracy and tracking preci-
sion. The lowest detection accuracy was recorded at 61.2%
for the EKF + Static LSTM model, while the proposed
Context-aided KNN + BF model achieved the highest accu-
racy of 98.22%

The contributions of this research
context-aided  hierarchical classification approach, the
BF-based occupancy detection and tracking algorithm,
and the elimination of offline training and over-the-cloud
model updates. The proposed framework offers potential
applications in building automation, energy management, and
occupancy-based services.

include the novel
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