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Bridging Data Gaps: A Federated
Learning Approach to Heat
Emission Prediction in Laser
Powder Bed Fusion
Deep learning has impacted defect prediction in additive manufacturing (AM), which is
important to ensure process stability and part quality. However, its success depends on
extensive training, requiring large, homogeneous datasets—remaining a challenge for
the AM industry, particularly for small- and medium-sized enterprises (SMEs). The
unique and varied characteristics of AM parts, along with the limited resources of SMEs,
hamper data collection, posing difficulties in the independent training of deep learning
models. Addressing these concerns requires enabling knowledge sharing from the similar-
ities in the physics of the AM process and defect formation mechanisms while carefully han-
dling privacy concerns. Federated learning (FL) offers a solution to allow collaborative
model training across multiple entities without sharing local data. This article introduces
an FL framework to predict section-wise heat emission during laser powder bed fusion
(LPBF), a vital process signature. It incorporates a customized long short-term memory
(LSTM) model for each client, capturing the dynamic AM process’s time-series properties
without sharing sensitive information. Three advanced FL algorithms are integrated—
federated averaging (FedAvg), FedProx, and FedAvgM—to aggregate model weights
rather than raw datasets. Experiments demonstrate that the FL framework ensures conver-
gence and maintains prediction performance comparable to individually trained models.
This work demonstrates the potential of FL-enabled AM modeling and prediction where
SMEs can improve their product quality without compromising data privacy.
[DOI: 10.1115/1.4065888]
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1 Introduction
Metal additive manufacturing (AM) has been widely used in

industries, proving its success across various enterprises [1]. Its
advantages in producing complex geometries and customized
parts have been a game-changer, offering rapid prototyping and
cost-effective production of complex parts [2]. Despite these advan-
tages, metal AM faces challenges related to achieving consistent
stability in production. This instability can be traced to the intricate
nature of material deposition, which is inherently complex and
dynamic, leading to the formation of defects during the process.
To ensure process stability and print quality, it is crucial to detect
anomalies promptly. Research has been directed toward mitigating
the impact of defects, focusing on approaches such as process mon-
itoring, anomaly detection, and defect prediction [3–5].
Advanced sensing in AM provides rich, timely, and in situ data,

enabling data-driven approaches for process monitoring. Machine

learning (ML) and deep learning (DL) have been widely recognized
as effective in enhancing predictive accuracy and operational effi-
ciency in these applications [6]. However, ensuring high prediction
performance requires meticulous training of these models, which
typically involves large, homogeneous datasets. Homogeneous
data consist of similar, uniform elements, while heterogeneous
data comprise diverse elements from multiple sources. In AM,
sensing data are usually homogeneous when the process is identical
(e.g., same material and same process setting), whereas heteroge-
neous data arise when data exhibit variability in these aspects due
to customized designs.
The requirement of homogeneous data poses challenges to the

training of robust and high-performing ML and DL models for
small- and medium-sized enterprises (SMEs) in the AM industry
[7]. These SMEs often make custom parts, leading to different
process settings each time and resulting in heterogeneous datasets
that usually vary by design [6]. This variability makes it difficult,
and sometimes even infeasible, for them to gather large, homoge-
neous datasets necessary for training deep learning models. The
customized design objects in AM usually have much smaller data
volumes compared to the mass-produced objects [8]. Furthermore,
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limited by time and budgets, SMEs are often restricted to a small
range of designs, further reducing their data collection.
One possible solution to address the data scarcity issue among

SMEs is to leverage knowledge transfer methods. For instance,
transfer learning has been developed for deep learning models to
use pretrained models to facilitate training, thus mitigating the
data scarcity issue while maintaining model performance [9]. Nev-
ertheless, transfer learning relies mainly on centralized training data
and powerful hardware. The effectiveness of pretrained models is
also critical, and careful measures are needed to avoid negative
transfer and ensure good performance. Knowledge distillation is
another popular method for knowledge transfer. Originally
designed for model compression [10], the method distills knowl-
edge from complex model architectures into simpler ones, thereby
improving training efficiency. Recently, knowledge distillation-
based methods have been adapted in the manufacturing sector for
predictive models on defect detection [11]. Multitask learning
also leverages shared knowledge, effectively capitalizing on the
commonalities across tasks by using insights gained from one
task to boost performance and generalization in others [12].
The abovementioned methods facilitate knowledge transfer,

enabling its application in manufacturing. However, even though
some aspects of AM processes and defect formation are similar
across different scenarios [13], which could help in knowledge
sharing, privacy concerns about disclosing information such as
part geometries, process parameters, and quality specifications are
significant obstacles [14]. These concerns prevent data sharing
and limit SMEs from achieving more robust model training. As a
result, models based on data from a single design type are often
not useful for other designs, making it expensive and impractical
for SMEs to develop newmodels for every different production sce-
nario. Yet, few studies have investigated the development of models
that can handle limited data volume and heterogeneous data while
ensuring data privacy for SMEs in AM [15]. Therefore, there is a
pressing need for a paradigm that addresses data privacy concerns
effectively. It would be particularly advantageous if this paradigm
could also enhance its knowledge transfer capabilities.
Inspired by the success of federated learning (FL) in various

fields such as the Internet of Things [16], banking [17], and
health care [18], we propose to leverage FL to tackle SMEs’ chal-
lenges of data scarcity in AM, especially in concerns about knowl-
edge sharing of heterogeneous data without compromising data
privacy. These concerns arise from the lack of sufficient homoge-
neous datasets, which are essential for training machine-learning
models effectively. FL is an innovative machine-learning method
that enables several participants to train machine-learning models
through heterogeneous data collaboratively without sharing their
locally stored data [19]. Figure 1 is the diagram of the proposed
FL framework. The framework consists of four components. First,
the central server model initializes a machine-learning model and

broadcasts the model weights to all local client models. Second,
each local client assigns the weights to the local model and trains
based on the local storage data. Third, clients update their local
model weights to the central server. Fourth, the global model aggre-
gates the local model weights and continues to the next updating
round, until the global model reaches its convergence.
FL addresses the data privacy issue through its mechanism of

sharing only model weights during training. Although various FL
algorithms have shown success in other industries, their application
in AM remains underexplored. This highlights the need for effec-
tively selecting and refining the appropriate FL algorithms across
diverse AM designs to improve model accuracy [20]. There is
limited existing work in AM so far. Notable examples include
Mehta and Shao [21], who formulated an FL methodology with
U-net for semantic segmentation, and Truong et al. [22], who incor-
porated FL with time-series data in industrial control systems.
However, the general averaging-based FL paradigm encounters sig-
nificant challenges when applied in AM due to the unique printing
configurations of AM. Consequently, exploring the usage of hetero-
geneous datasets has become a prominent topic. The knowledge
transfer techniques reviewed above can be effectively integrated
with FL in an orthogonal manner. These techniques are particularly
useful in mitigating data heterogeneity issues by leveraging knowl-
edge learned across various SMEs. When combined with FL, these
techniques improve the local model’s personalized performance.
Personalized FL provides significant customization potential
throughout the training process, from the architecture of the local
model and communication hierarchy to the aggregation method
[23,24]. Efforts have been made to balance local client model per-
formance with the efficiency of global training. For example, Putra
et al. utilized transfer learning to build a hierarchical FL framework
for efficient training [25], and Shi et al. incorporated knowledge dis-
tillation with FL for online process monitoring [26]. Another
emerging topic involves enriching model input with multimodal
datasets as tensors [27,28]. These techniques enhance local model
performance but also introduce challenges related to data acquisi-
tion and raise concerns about overfitting in increasingly complex
models and architectures. Currently, there is no consensus paradigm
for personalized FL. Considering the challenges of overfitting and
complexity in personalized frameworks, this article focuses on the
generic performance of FL models to ensure broader applicability
in AM scenarios.
Motivated by the need to further explore the benefits of knowl-

edge sharing across SMEs in AM, the objective of this article is
to develop an FL approach to improve the accuracy of defect predic-
tion. Our approach predicts heat emission readings captured
through pyrometry, during the printing process of the laser
powder bed fusion (LPBF). In LPBF, a high-power laser selectively
melts and fuses powder materials layer by layer, printing the
product. Furthermore, studies have attempted to incorporate the

Fig. 1 Overview of the federated learning framework
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physics of AM processes and domain knowledge to improve the
interpretability of machine-learning and deep-learning models
[29–31]. Incorporating physics insights with FL can be a highly
effective strategy for heterogeneous scenarios in AM. The frame-
work explores the relationship between emission readings and
part quality under different process parameter scenarios. Each
client, mimicking an SME, utilizes a long short-term memory
(LSTM) model with a tailored loss function. The model is used to
capture the time-series properties under the dynamic AM process.
A global LSTM model [32] is developed and aggregates weights
from these local models within the FL framework, enabling knowl-
edge sharing without direct data transfer. Three state-of-the-art FL
aggregation algorithms (federated averaging (FedAvg), FedProx,
and FedAvgM) are employed, and their effectiveness is assessed
through a series of experiments.
The key contributions of our article are as follows: (1) it is empir-

ically demonstrated that custom loss functions enhance FL model
performance; (2) a thorough examination of the impact of data het-
erogeneity on FL model training is provided; and (3) scenario of
minimal client participation in FL is explored. The findings have
direct implications for AM, demonstrating how FL can be effec-
tively employed in scenarios where SMEs face challenges due to
limited data availability or client participation. This has significant
practical benefits for the AM industry, where data sensitivity is a
common concern among SMEs.
The remainder of this paper is organized as follows. Section 2

introduces the data, the preprocessing method, and the FL method-
ology. Section 3 includes the custom loss function, the local LSTM
model, and the FL architecture for emission prediction. Section 4
presents three case studies to demonstrate the effectiveness of
FL-based architecture with custom LSTM models. Section 5 con-
cludes the article and discusses directions for future research.

2 Data Description
2.1 Data Collection. In this study, the in situ pyrometry

sensing data were obtained from an LPBF experiment as shown
in Fig. 2, utilizing an AconityMINI machine. The machine is
equipped with a laser source of up to 400 W and a spot diameter
of 50 µm. This approach builds upon methodologies in prior
work [33]. Blocks were fabricated from stainless steel (SS 316L)
powder under a controlled argon atmosphere to maintain consistent
build conditions. A total of 16 blocks were printed with dimensions
of 10 mm×10 mm×5 mm, each consisting of 166 layers with a
layer thickness of 30 µm. The configurations used for printing
included laser powers of 120, 150, 180, and 210 W and laser
speeds of 600, 800, 1000, and 1200 mm/s, as shown in Fig. 2.

Each block was marked with a sample number ranging from 1 to
16. All experiments were conducted in an argon atmosphere (O2

< 300 ppm) with continuous recirculation to remove metal vapor
and condensate. Each block was subjected to a consistent scanning
strategy involving a raster scan for the interior, followed by a frame
scan. To capture thermal emissions from the melt pool, two cali-
brated pyrometers, coaxial with the process laser, were employed
at a frequency of 100 kHz. Each layer yielded an estimated
300,000 emission readings.

2.2 Data Preprocessing. Raw emission readings from in situ
pyrometry sensing were preprocessed using methods developed
in the authors’ previous work [34]. Initial steps involved noise
attenuation techniques from the readings through methods like
radius-based clustering, visual inspection, and automation. The
radius-based clustering technique defines a radius to classify iso-
lated points within this boundary as noise, effectively distinguishing
actual data points from noise. Visual inspection is conducted man-
ually by trained personnel, relying on human observations to iden-
tify and remove any outliers, thereby enhancing the cleanliness of
the data. In addition, automated methods are employed to detect
and correct inconsistencies in the data, such as unexpected noise
paths. The integration of these approaches ensures that the emission
data were thoroughly cleaned for the subsequent steps. After noise
attenuation, the cleaned data coordinates were transformed to a new
alignment by rotating (x, y) coordinates 20 deg clockwise. The
emission readings were then systematically organized in a sequen-
tial array based on their (x, y) locations and recorded order. To
improve computational efficiency, the cleaned emission readings
were further segmented. Emission sequences from each printed
layer block were segmented into equal-sized sections, with each
section represented by its average emissions and coordinates in a
new spatial map. This approach, illustrated in Fig. 3, effectively
reduced the dataset size while preserving the essential characteris-
tics of the emission data. Each segmented section was represented
by its average emission reading, and its location was remapped
using the section’s average (�x, �y) coordinates. This segmentation
led to a data scale reduction of approximately 1000 times.
As proposed in the previous work, both physical and statistical

features were employed as model inputs [32]. Physical features
encompassed predefined manufacturing parameters including laser
power, laser speed, energy density, and scanning phase. Addition-
ally, sequential information, such as layer number, was derived
from the dataset. Furthermore, the section’s average coordinates
have been incorporated as physical features. These factors capture
the cumulative thermal history, vital for understanding the LPBF
process outcome. Statistical features (min, max, average emissions,

Fig. 2 Printing layout and parameter settings in the experiment [33]
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25th/75th percentiles, and standard deviation), extracted from seg-
mented sections, offer insights into the emission distribution
within a segmented section. Selected based on their descriptive
potential, these features provide physics insights into section-wise
variations and are instrumental in emission prediction.

2.3 Client Data Preparation. In the real world, datasets are
often heterogeneous due to varying process settings and customized
parts. To mimic this situation, representing different SMEs with their
unique configurations and data, we generate multiple clients in prep-
aration for the model training process under the FL paradigm from
the preprocessed emission readings. As described in Sec. 2.1, a
total of 16 distinct block samples were printed using various combi-
nations of laser power and laser speed. Therefore, this variability
allows us to categorize the data by their corresponding printing con-
figurations, thereby simulating the inherent data heterogeneity across
clients in an FL setting. Subsequently, the data from 16 blocks are
randomly grouped into eight clients, with each training with data
from two blocks. Forming clients this way usually leads to noninde-
pendently and identically distributed (i.e., non-IID) data between the
clients, while the diverse printing configurations within each client’s
data are preserved, as each client has two distinct parameter combi-
nations. The data amount between clients is kept comparable,
making no client dominant over the others. This can reduce the rep-
resentativeness of individual clients concerning the entire dataset.
Figure 4(a) presents the non-IID data of sectional average emission

(mV) across clients. It is evident from the figure that the data for each
client appear to be a combination of two normal distributions, each
one centered around the mean value of the two blocks of data.
This pattern indicates heterogeneity within each client’s dataset.

The heterogeneity is also quantitatively indicated by the Kullback–
Leibler divergence (KLD) value, which is calculated from the Gauss-
ian kernel density estimation for each client’s data distribution. The
KLD can serve as a simple yet direct index to reflect the divergence
between two clients. The KLD values shown in the legend of
Fig. 4(a) are divergence between each client and client 8, with
larger values indicating more divergence, less similar distribution
curves, and more differences in the boxplots. Boxplots in Fig. 4(b)
reveal the variations in the printing parameters of each dataset. The
emissions span a range from 820 mV to 840 mV for most data
points. Some points reach above 900 mV. This spread of data
points indicates the diversity encountered across clients.

3 Methods
3.1 LSTMModel. For the construction of local client models,

as depicted in Fig. 1, our approach employs a long short-term
memory architecture. LSTM is a variant of recurrent neural net-
works that is renowned for its proficiency in processing and predict-
ing sequential data [32]. A one-layer LSTMmodel is selected as the
baseline of this study for its balance between training efficacy and
computational cost. This model architecture is consistently used
across all clients. This model takes a sequence of τ= 10 section
records zi ∈ Rτ×d as input, sliding from section i to section i− τ,
with each section including a total of d= 13 features (including 7
physical and 6 statistical features) as described in Sec. 2.2. Specifi-
cally, the physical features include laser power, laser speed, energy
density, scanning phase, sequential layer number, and x and y coor-
dinates in the new space. The statistical features consist of descrip-
tive features of sections, such as minimum emissions, maximum

Fig. 3 Data segmentation process [34]: emission sequences from printed layers of each block are segmented
into equal-sized sections and represented by their average emissions and coordinates in a new spatial mapping
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emissions, average emissions, standard deviation of emissions,
and the 25th and 75th percentile emissions. This input structure
captures the temporal dependencies inherent in the time-series
data due to the heat transfer characteristics across layers [35]. Sub-
sequently, the model implements a conventional LSTM layer,
whose number of hidden matches the output size. A dropout rate
of 0.5 is applied to mitigate the overfitting issue. The model’s
objective is to predict the s= 6 statistical features yi+1 ∈ R1×s for
the subsequent section i+ 1, thereby enabling the prediction of
thermal trends. The network is initialized with the “He normal
method” [36], and the ReLU function is employed as the activa-
tion function. Proposed by Kaiming He, the He normal method
is a weight initialization technique designed to alleviate the van-
ishing or exploding gradient problems in neural networks. It ini-
tializes network weights according to a Gaussian distribution
with zero mean and a variance calculated based on the number
of input and output units. This method ensures more stable and
efficient training for neural networks, particularly when paired
with the ReLU function. The mean squared error (MSE) is utilized
as the primary loss function. Additionally, to refine the training
dynamics further, we define a custom loss function tailored to
align closely with the learning objectives.

3.2 Custom Loss Function. In the context of the loss function
design, let N denote the total number of samples and our primary
loss function Lbase can be represented as

Lbase =
1
N

∑N
i=1

‖ypred,i − ytrue,i‖2 (1)

where the function computes the MSE between the actual statistics
for each section and the predicted statistics by the LSTM model
across all samples. This function gives equal weights to all features
in y. However, this standard MSE method may underemphasize
errors in pivotal features such as the sectional average emission
value Eavg. This feature is critical as it encapsulates the major emis-
sion characteristics for subsequent sections, and it is beneficial to
illustrate the trends within sequential data. In the custom loss func-
tion Lcustom, we address this limitation in Lbase, to ensure that the
model pays attention to Eavg while also considering the prediction
accuracy of other statistical features.
As highlighted by the small variation range on Eavg in Fig. 4(b),

the baseline loss function Lbase may not adequately address the var-
iability in predictions for this feature, since every ypred column in the
loss calculation is treated with equal weight. Therefore, we empha-
size the impact of Eavg among other features in the output to better
reflect its significance in predictive performance. Specifically, we
assign an increased weight for Eavg in ypred asWEavg , and we consider
the variance penalty PEavg to the Eavg feature when the training
model’s predictions converge around the average emission values.
This usually reflects the nature of the printing performance of the
3D printers, which tend to maintain a stable temperature, leading
to less variation in emission values. Lcustom is defined as follows:

WEavg = λ ∗ 1
N

∑N
i=1

‖ypred,i,Eavg
− ytrue,i,Eavg

‖2 (2)

PEavg =
γ if σ( ypred,Eavg

) < θ
0 otherwise

{
(3)

Lcustom = Lbase + WEavg + PEavg (4)

In Eq. (2), ypred,i,Eavg
refers to the predicted value of the Eavg

column for the ith data point in the output matrix ypred. Here, i
denotes the index of the data point within the dataset. λ, θ, and γ
are hyperparameters that control the impact of MSE and penalty
level for a shortfall in prediction variance of Eavg, respectively. A
larger λ gives more emphasis on the accuracy of the specific
feature, and a smaller value reduces its influence within the
overall loss calculation. The threshold θ is defined for the term
σ(ypred,Eavg

), which stands for the standard deviation of the Eavg
column in the output ypred. The variance penalty is applied when
the standard deviation falls below this threshold. It prevents the

Fig. 4 (a) Client emission data density distributions with Kull-
back–Leibler divergence (KLD) to client 8. (b) Client emission
data boxplots.

Fig. 5 (a) Flowchart of the local model training and (b) flowchart of the global model training
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model from predicting constant emission values, ensuring that pre-
dictions can reflect the underlying data variability. The value of θ is
chosen based on the variation of local data predictions. If the pre-
dicted data distribution has a smaller variation, a smaller θ is
needed, and more tolerance can be given if data are more heteroge-
neous. γ serves as the regularization factor to specifically quantify
the predicted Eavg values, where a larger γ value assigns more
penalty on uniform predictions, discouraging overly consistent pre-
dictions across all data points. This custom loss function aims to
ensure that the model not only reduces the overall prediction error
but also captures the critical emission characteristics and maintains
a sufficient level of prediction variability, which is essential for
detecting anomalies in the AM process.

3.3 Federated Learning. FL enables collaborative model
training across multiple clients, with a total of K clients engaging
in T rounds of communications to train a global model. The
custom loss function is incorporated into the FL approach the
same way as standard loss functions, with the objective to mini-
mize the loss functions (1) and (4) as min

w∈Rd
L(w), where

L(w) = 1
n

∑K
k=1 Lk(w). In the FL paradigm, client k trains a local

model separately on dataset Dk = {xk , yk}, consisting of nk data

points. Typically, min
w∈Rd

Lk(w) is formulated, where Lk(w) =
1
nk∑nk

i=1 lk(xk,i, yk,i; w). The loss lk(xk,i, yk,i; w) is calculated based on
the discrepancy between the prediction on actual data point yk,i
and the predicted value with input xk,i and model parameters w.
The client loss functions are then aggregated into the global loss
function.
The aggregation algorithm used in the global model training step

is an iterative method that merges each client model’s gk = ∇Lk(wk)
and the gradients of the loss over Dk for every round. Specifically,
the well-known FedAvg algorithm is one such approach, as it
selects C-fraction of clients from total K clients to train E epochs
in local updates for each communication round, using B local mini-
batch size [19]. The local update wk

t+1 ← wk
t − η∇Lk(wk

t ) at training
epoch t is iterated with a fixed learning rate η in each epoch before
the client updates weights to the global server.
While FedAvg has demonstrated empirical success in collabora-

tive training, it does not fully address heterogeneity. Statistically, it
has been shown that this vanilla algorithm results in divergence in
non-IID data across devices. To address this challenge, we also
incorporate FedProx [37] and FedAvgM [38] into the framework.
The pseudo codes for the three aggregation algorithms are
merged in Algorithm 1. FedProx adds a proximal term
μ

2
‖w − wt‖2 in the update of local weights in addition to the calcu-

lated gradients for a more general case of FedAvg but benefits the
local objective. The usage of the proximal term is a well-
acknowledged method in the optimization settings and FedProx
has proved convergence guarantees. FedAvgM incorporates
momentum to accelerate training by the accumulation of the gradi-
ent history to dampen oscillations, changing the original gradient

update into w ← w − v,v ← βv + Δw. This modification is benefi-
cial for FL settings with non-IID data. In addition to the classical
aggregation formula in the algorithm, an αk factor is added to the
term wk

t+1, representing the weight assigned to each client k based
on various criteria such as data quality, correlation of client data dis-
tributions, and historical performance. By adjusting this coefficient,
clients with more reliable or relevant data will have a greater influ-
ence on the aggregated model, thereby improving the overall effec-
tiveness and robustness of the federated process.

Algorithm 1 FedAvg, FedProx, and FedAvgM

Begin
Server side:
initialize w0

for each round t = 1 to T do
select a C fraction of clients m
for each client k in m in parallel do

wk
t+1 ← ClientUpdate(k, wt)

update global weights

wt+1 ←
∑K
k=1

αk
nk
n w

k
t+1

ClientUpdate(k, wt):
initialize wk

t
for each epoch e = 1 to E do
split Dk into B with batches of size B
for batch b ∈ B do

w ← w − η∇l(w; b) (FedAvg)
w ← w − η∇l(w; b) + μ

2 ‖w − wt‖2 (FedProx)
w ← w − v, v ← βv + η∇l(wt; b) (FedAvgM)

Aggregation algorithms play a crucial role in the model conver-
gence speed, particularly when training with heterogeneous data-
sets. Our interest lies in the efficacious training of an FL model
for the AM scenario, given the diverse custom design configuration.
Enhancing prediction accuracy through refined local model training
is another key concern. We propose a systematic approach for train-
ing the local model as shown in Fig. 5(a). This serves as a compre-
hensive illustration of the components in Fig. 1. For each
communication round, the local model receives updated weights
via step 1, followed by local training (step 2.a). After the training,
additional assessments are incorporated into the performance eval-
uation procedure to dynamically fine-tune the model. The perfor-
mance evaluation involves a sequential assessment of various
performance metrics, an example of which is shown as the
diamond block for accuracy assessment in the flowchart. This
metric is selected and exclusively considered here because it is
widely recognized as a fundamental indicator of the system’s per-
formance. As shown in the diamond block of Fig. 5(a), the assess-
ment process begins with an evaluation of prediction accuracy to
determine if improvements are necessary. If improvements are
needed, the model will be refined through step 2.b. Subsequently,
if acceleration in convergence is necessary, a request will be sent

Table 1 Comparison of the average performance of LT, CT, FL, and CL-employed models (LT-CL, CT-CL, and FL-CL)

Model

RMSE MAE MAPE

Train Test Train Test Train Test

LT 8.5332 (1.0821) 17.1221 (2.0932) 7.0956 (0.0711) 12.9507 (0.1439) 0.0179 (0.0321) 0.0286 (0.0611)
CT 6.4553 (0.3841) 6.9628 (0.2102) 3.5692 (0.1342) 4.2039 (0.2927) 0.0084 (0.0010) 0.0092 (0.0012)
FL 8.0268 (3.6791) 12.1878 (4.2129) 6.3872 (2.6563) 6.8471 (3.1680) 0.0091 (0.0065) 0.0122 (0.0041)
LT-CL 7.5972 (1.0112) 11.4562 (1.8730) 4.5692 (0.0807) 8.5623 (0.1269) 0.0078 (0.0012) 0.0179 (0.0025)
CT-CL 6.1068 (0.3177) 6.4781 (0.1973) 3.2521 (0.1259) 3.8647 (0.2987) 0.0078 (0.0011) 0.0075 (0.0010)
FL-CL 7.9073 (2.8834) 10.2421 (3.7281) 6.2387 (2.3040) 6.3892 (3.3462) 0.0073 (0.0012) 0.0075 (0.0011)

Note: The numbers in each cell represent the average values from five replications, with standard deviations in parentheses. Models that consistently
outperform their standard loss function counterparts across all metrics, as shown by the bold test metrics.
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from step 4.b to the global model server in Fig. 5(b) for the refine-
ment of the FL framework. In this work, our current emphasis is on
preliminary experiments, we have simplified the refinement
process. For step 2.b, the model’s loss function is adjusted during
local model training. Step 5 represents opportunities for further
improvement of the ML framework considering additional assess-
ments on other performance metrics.

4 Case Studies
4.1 Experiment Settings. Three case studies are discussed to

assess the efficacy of our FL framework and understand the under-
lying mechanisms. The experiment settings, from the perspective of
local and global model training, are crafted with the consideration of
the above objectives. Grid search was conducted on the three hyper-
parameters in the custom loss function: λ (0.1, 0.5, 1, 5), γ (1, 2, 5,
10), and θ (0.001, 0.01, 0.02, 0.05) to determine the appropriate
hyperparameter combination. This tuning was performed during
local client model training, and the local validation RMSE results
were averaged across clients to ensure robustness. Among several
candidate combinations where the performance was closely
matched, we selected the hyperparameters by also considering
values that were not overly biased within the range. Specifically,
the λ value is set at 1.0 for the MSE of the Eavg value to ensure
its impact on the overall loss function. The default value of 1/6 is
derived from evenly distributing importance across the six features
in the standard loss function. We use λ = 1.0 instead of the default
value 1/6 to ensure that the model gives adequate attention to this
feature. γ is set to 5.0 as a regularization factor to prevent potential
over-smoothing in predictions. Preliminary experiments indicated
that without this penalty, the model sometimes generated predic-
tions for Eavg that were excessively constant, failing to capture
nuanced variations in the data. Such constant predictions could
lead to oversights in identifying critical anomalies in overheating
detection. θ is determined as 0.01 after comparing its candidate
values from the grid search results with the standard deviation of
the dataset. This is because θ serves as a regularized threshold to
control the variance of the prediction values for the output. There-
fore, the selection of θ needs to consider not only the grid search
results but also its practical applicability. Consequentially, we
deter the model from producing such oversimplified outputs and
encourage it to capture the inherent intricacies in the data.
Model training hyperparameters are selected based on established

standards and insights from prior experiments. We choose time-
stamp τ = 10, B = 32, and learning rate η = 0.01. Stochastic gradi-
ent descent (SGD) is used across all the experiments as the
optimizer in the LSTM model to be consistent with the original
FedAvg algorithm, as it has been tested to perform well in millions
of mobile device collaborative training [19]. SGD offers simplicity
with potentially better generalization in certain scenarios due to its
noisy updates, which can be more stable for the FL architecture. For
αk in the aggregation process, we assign value 1 across all clients,
treating each client with equal importance. This simplifies the
implementation and isolates the analysis of other factors on
model performance, allowing for a more focused evaluation.
In our regression tasks, we use standard performance metrics: the

root mean square error (RMSE), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE). RMSE is com-
puted as the standard deviation of the residuals, reflecting the
model’s accuracy in predicting section-wise average emissions.
MAE measures the average magnitude of the errors in a set of pre-
dictions, and MAPE expresses the prediction residuals as a percent-
age, facilitating a scale-independent assessment of the model’s
accuracy. Both MAE and MAPE are particularly useful for compar-
ing the model’s performance across different scales of data. Lower
values of RMSE, MAE, and MAPE indicate a better-performing
model. From the FL global training side, we assume that under
the AM scenario, there are no stragglers during each communica-
tion round, and all the selected C fraction of the total K clients
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will join the training. In the following case studies, the first seven
clients are used for training and the eighth client is served as the
test dataset, if not illustrated specifically. Each experiment is repli-
cated five times to ensure the robustness of the results.

4.2 Assessment of Local, Central, and Federated Learning
Training With Custom Loss Functions. The first study focuses
on comparing the efficacy of localized training (LT), centralized
training (CT), and FL under two main criteria: the performance of
custom versus standard loss functions and the overall effectiveness
of each training method. LT trains individualized models on client-
specific data, aiming for high accuracy on local data distributions.
We have trained seven separate models through the LT approach.
CT aggregates all client data to train a single model, while FL dis-
tributes the training process across clients without pooling their
data. Both loss functions are tested for their effects on model con-
vergence and performance metrics. All the models are given
enough training rounds until they converge. For this scenario, C =
1 is used for FL training, which implies that all seven clients partic-
ipate in each training round.
The experiments were conducted across five replications, with

the results summarized in Table 1, including both average perfor-
mance metrics and their respective standard deviations. Notably,
the FL model exhibits higher variability during the training phase,
with a standard deviation of RMSE at 3.6791. This is significantly
higher than that of the LT model at 1.0821 and the CT model at
0.3841. The lower variability in CT suggests a more stable model
performance. In test results, however, the FL model shows
improved consistency as its standard deviation of RMSE aligns
more closely with that of the training data. In contrast, the LT
model presents higher variance and poorer average performance
in test scenarios, indicating potential overfitting issues. The CT
model maintains consistent performance levels between the training
and testing phases, as shown by its comparably low standard devi-
ations, demonstrating reliable model behavior across different data-
sets. It can be seen from Table 1 that models employing the custom
loss (CL) function (named LT-CL, CT-CL, and FL-CL models,
respectively) consistently outperform their standard loss function
counterparts (LT, CT, and FL models, respectively) across all
metrics. When the LT model is enhanced with the custom loss func-
tion (LT-CL), it shows a significant reduction in RMSE from
17.1221 to 11.4562 in the test set. Similarly, the central training
model (CT-CL) and federated learning model (FL-CL) with the
custom loss function also exhibit improved accuracy with lower
RMSE, MAE, and MAPE values compared to their standard loss
function equivalents. This pattern validates the effectiveness of
the custom loss function in improving model performance, likely
due to its ability to capture more nuanced features and penalize crit-
ical prediction errors more effectively.
When comparing the CT and FL, as well as CT-CL and FL-CL

models, we notice that FL demonstrates performance discrepancy
to CT while outperforming LT. This is evident from the close
RMSE values in the test set (6.9628 for CT, 12.1878 for FL, and
17.1221 for LT) and similarly close MAE and MAPE values. The
introduction of the custom loss function into FL-CL further
narrows this performance gap, with FL-CL achieving a lower

RMSE of 10.2421 in the test set, compared to CT-CL which has
an RMSE of 6.4781. These results suggest that FL, particularly
when combined with a custom loss function, is an effective
approach for training models that are nearly as accurate as those
trained centrally, with the added benefits of privacy preservation
and decentralized data handling intrinsic to FL.

4.3 Federated Learning Performance With Limited
Clients. SMEs can employ similar printers and geometries while
varying in process parameters for printing objects. Training
models collaboratively can use data of different process parameters,
but limited client participation will lead to data scarcity, especially
in dimensions such as laser power and speed. Understanding how
the FL training process is performed under conditions of limited
client participation helps SMEs make the most of available data
to improve product quality. By conducting FL with data from 1
or 2 clients out of seven, we evaluate how such selective participa-
tion influences model performance, exploring the bounds of client
participation in FL.
This case study uses the custom loss function since it has been

empirically demonstrated its performance better than the standard
loss function in the previous case study. The choice of participating
clients also allows for an analysis of the influence of data heteroge-
neity on the model. With only one client, the model may become
highly specialized in that client’s data distribution. With two
clients, there is an opportunity to observe how the introduction of
additional data diversity impacts the model’s performance and gen-
eralization. A series of experiments are conducted, each designed to
elucidate the performance metrics under varying client data condi-
tions. For each trial, we employed a consistent set of clients, ran-
domly selected at the outset, and used throughout the entire
training period. This method differs from the approach of sampling
a subset of clients for each communication round. By maintaining a
fixed group of clients, we aim to gain clearer insights into the train-
ing dynamics that emerge from a limited client base. Trial1 utilizes
data solely from client 1 to establish a foundational understanding
of the process under controlled conditions. Trial6 explores the per-
formance of the model trained by client 6. To delve into the com-
pound effects that arise from combining client datasets, Trial1,3
aggregates models from clients 1 and 3 with the FL approach,
while Trial1,6 examines the outcomes from clients 1 and 6. This
deliberate structuring of experiments serves to dissect the individual
contributions of each client as well as to uncover the dynamics that
emerge from their collaboration, thereby enriching our comprehen-
sion of the LPBF process in a multiclient AM scenario. Each trial is
trained with T = 1600 rounds.
Table 2 summarizes the average performance results from each

trial across five replications. Columns highlighted in bold indicate
the training results of the respective trials, while the remaining
clients are test results since they are not used for training in these
trials. Using a single client is equivalent to LT, as mentioned in
the first study. Trial1 and Trial6 encounter overfitting to their own
client training models, while they perform poorly to other clients.
This is also reflected by the standard deviation values. For instance,
both trials exhibit low variance in their respective training outputs
but show significantly higher variance and unstable performance

Fig. 6 Test RMSE over rounds for FedAvg, FedProx, and FedAvgM methods
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in testing across different clients. This outcome emphasizes the
issue of data heterogeneity from different clients and how single-
client training struggles to produce a model that generalizes well.
Trial1,6 and Trial1,3 present a mitigation of the overfitting issue,
with notable improvements in performance metrics compared to
single-client trials. Although the overall performance is still not
comparable to employing all clients in the FL training, these trials
illustrate the benefits of incorporating diverse datasets into the train-
ing process. This is also supported by the stable variance observed
in test clients compared to the clients used for training. For instance,
Trial1,6 shows improved performance metrics on test clients relative
to Trial1, while maintaining similar standard deviations between the
training and test datasets. Such integration of diverse datasets can
enhance the performance of the FL global model.
Experiments involving training with a single client exhibit more

randomness, as indicated by the disparate KLD values of clients 1
and 6, yet both yield poor test results. However, in testing scenarios,
client 5 consistently outperforms other clients under both configura-
tions. Furthermore, when training involves two clients, client 5 con-
tinues to achieve the best results with clients 1 and 6, whereas client
2 surpasses all others when trained with clients 1 and 3. Improved
performance is observed on client 8 when training transitions from a
client with lower KLD values (client 1) to a more diverse client
(client 6), and in the two-client training scenarios between Trial1,3
and Trial1,6. This suggests that datasets with less heterogeneity
tend to yield better performance.

4.4 Comparison of Aggregation Algorithms. Traditional FL
research primarily focuses on FedAvg due to its simplicity and
effectiveness. However, this algorithm struggles with non-IID
data and client drift. It takes a longer time to converge when training
with a more heterogeneous dataset. With limited clients involved in
the training, the converge speed gets even slower. Other algorithms
like FedProx and FedAvgM have been designed to handle better for
heterogeneous datasets and converge faster. This case study is to
compare the efficacy of these FL algorithms when combined with
the designed custom loss function. The custom loss function has
been demonstrated in the previous case study to perform better
than a standard loss function. In this case study, we use the first
seven clients as training data and client 8 as test data. Each algo-
rithm is trained for T = 600 rounds, with performance metrics
recorded every round.
In the FedProx algorithm, the selection of μ is guided by a heu-

ristic that adapts to the observed loss trends. For this study, we have
determined μ to be 0.02. This value is selected to prevent local
models from leveraging their unique data insights while avoiding
significant deviations from the global model. Similarly, for the
FedAvgM algorithm, β is set to 0.9. This value is commonly
adopted in the field due to its effectiveness in stabilizing and accel-
erating convergence. The integrated knowledge from past updates
enables momentum to reduce the risk of getting trapped in local
optima, thereby improving model convergence performance.
Figure 6 shows the test RMSE over rounds for each algorithm.

FedAvg shows a stable but much slower convergence, indicating
its difficulty in handling client heterogeneity. FedProx demonstrates
rapid convergence and uses fewer rounds to converge compared to
FedAvg. FedAvgM outperforms the other two algorithms with an
initial good performance and converges with around 10 rounds.
Table 3 presents a comparison of the three FL algorithms in the

RMSE, MAE, and MAPE metrics. The results for both the training
and test clients are presented, with each experiment undergoing five
replications, each consisting of several training rounds until model
convergence is reached. The training scores are listed for all seven
local clients, with their standard deviation included. The test scores
are also averaged from the data of client 8 across these replications.
FedAvg demonstrates significant variability across replications
between the training and test clients, whereas FedProx and
FedAvgM show stable performance. Both models surpass
FedAvg in terms of average performance across both training and
test clients. Notably, FedProx matches FedAvgM in performance
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and exhibits the lowest variance among different clients. Addition-
ally, FedProx achieves superior results on test client 8, even though
FedAvgM displays stronger training performance in five out of
seven local clients.
The results in Table 3 also illustrate the impact of data heteroge-

neity on the three aggregation algorithms, shedding light on how
each algorithm performs when faced with heterogeneous data.
FedAvg shows higher variability in performance metrics across
clients, with significant standard deviations noted especially for
RMSE and MAPE in clients 6 and 7. This suggests FedAvg strug-
gles with heterogeneity. FedProx exhibits generally better perfor-
mance across all clients compared to FedAvg. Its standard
deviation values are also smaller, indicating more stable perfor-
mance across diverse client data. FedAvgM also shows improved
performance, demonstrating some resilience to heterogeneity.
From the KLD value’s perspective, higher KLD values (such as
0.81 and 1.38 for clients 6 and 7) correlate with greater variability
in performance metrics, suggesting that more significant differences
in data distribution may lead to poorer and less stable performance.
Lower KLD values (such as 0.04 for client 1) are associated with
more consistent and better performance metrics, indicating a more
similar distribution to the test client and hence better generalization.
While Table 3 demonstrates the numeric model performance at

the end of training, Fig. 7 shows the detailed comparison of
actual values and predicted values over Eavg on the test client’s
dataset, providing a more nuanced understanding of each algo-
rithm’s performance. The figure visualizes the predicted values in
yellow color compared to actual values in blue color, across the
three algorithms. FedAvg’s predictions are not closely aligned
with the true values, suggesting a disparity in capturing the data’s
underlying patterns. The predictions from FedProx are more consis-
tent with the true values, as shown in the visualization, demonstrat-
ing its capability to handle data heterogeneity effectively. While
FedAvgM’s predictions are an improvement over FedAvg, the
visuals show that it tends to predict lower values than the actual
ones, unlike FedProx, which delivers a uniform output that
closely matches the sequence of the true values.

4.5 Discussion. The assessment of model training with LT,
CT, and FL approaches in Sec. 4.2 reveals that while local training
is highly specialized, it may not generalize well. Central training
offers robust generalization but at the cost of privacy and potential
bias toward dominant data sources. FL emerges as a potent alterna-
tive, balancing specialization with generalization, especially when
paired with a custom loss function. The introduction of a custom
loss function significantly enhances the predictive performance of
both local and central training paradigms. Furthermore, federated
learning, especially with the custom loss function, achieves a
level of accuracy that is competitive with central learning models,
affirming its viability as a decentralized learning strategy.
The analysis of the FL performance with limited clients in Sec.

4.3 emphasizes the challenges of data heterogeneity in FL and the
potential of multiclient data integration to enhance model robust-
ness. It reinforces the notion that even limited data diversity can sig-
nificantly impact the effectiveness of FL models, which is a

valuable insight for situations in AM where data may be scarce or
diverse client participation is constrained.
The comparison of FL algorithms in Sec. 4.4 shows the signifi-

cance of choosing an appropriate FL algorithm when dealing with
complex loss functions and heterogeneous data. The refinement
of aggregation algorithms significantly affects the computational
time. FedProx and FedAvgM show promise in such settings,
while FedAvg needs longer rounds to converge.
The experiments’ exploration into these FL algorithms reveals

their potential in enhancing AM processes. However, no single
FL algorithm consistently excels in every scenario, indicating that
algorithm selection and customization remain critical challenges.
For instance, customized models may consider additional perfor-
mance metrics such as convergence time. The diamond block in
Fig. 5(a) represents the current evaluation phase for local models,
focusing specifically on assessing accuracy improvement. If accu-
racy enhancement is needed, a model refinement process is initiated
to update the model’s architecture. Otherwise, the analysis may
proceed to examine additional performance metrics (step 5).
Figure 8 is provided to offer a detailed technical route for step 5,
showing the further analyses that can be carried out when additional
performance metrics are considered, potentially leading to a robust
theoretical framework that offers clear guidelines for the optimal
adjustment of the FL framework. This approach involves additional
refinements for both local and global model training, such as the
aggregation of local models’ hyperparameters, examination of
model convergence speed, and the selection of aggregation algo-
rithms for the global model. Refinements to the FL framework
are implemented as part of step 4.b in the global model training
process. The insights from a more robust methodology could
guide practitioners in selecting and customizing FL algorithms for
specific applications, particularly those where data privacy,
non-IID data, and complex problem constraints are prevalent.
In addition, while FL facilitates training across heterogeneous data,

it exhibits suboptimal performance in highly heterogeneous environ-
ments in terms of predictive accuracy and convergence rate. There-
fore, there is still room for further improvement. For instance, if a
new client with a different set of process configurations and an
uneven quantity of datasets is added to the FL framework, it could det-
rimentally affect the model’s overall performance. In the proposed
method, our current framework has explored variants of averaging-
based FL aggregation algorithms, incorporating strategies such as

Fig. 7 Test predictions across (a) FedAvg, (b) FedProx, and (c) FedAvgM on average emission

Fig. 8 Flowchart of the performance analysis for FL framework
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regularization and momentum to address data heterogeneity. These
modifications have demonstrated performance enhancements over
the “vanilla” FedAvg algorithm. Future research could continue in
this direction by exploring heterogeneous datasets from SMEs and
their impact on adopting FL in the AM industry.

5 Conclusion
To address the need for SMEs in AM to train heterogeneous data-

sets collaboratively without compromising data privacy and propri-
etary information, this article has revealed efficient FL training in
the context of AM through a detailed exploration of case studies
with thermal emission data. This article demonstrates that custom
loss functions can significantly improve the performance of FL
models. Through experimentation, it was shown that these func-
tions yield better accuracy and generalization across different
client datasets when compared to standard loss functions. The chal-
lenges posed by data heterogeneity are identified in FL. By training
models with data from varying numbers of clients, we revealed that
a model’s ability to generalize effectively is compromised when
trained on data from a single client but improves with the introduc-
tion of more diverse client data.
Future research will focus on the enhancement of the predictive

capabilities of FL models within even more diverse manufacturing
environments and heterogeneous datasets. The scope of investiga-
tion will expand to include FL models trained on datasets character-
ized by a broader array of part geometries, printing configurations,
and material types, among other variables. This will provide
insights into the robustness and adaptability of FL in the face of
increased data heterogeneity, a step closer to its widespread applica-
tion in the dynamic field of AM. Further exploration into these
factors will also aid in incorporating physics-related information
into model refinement that can handle the complexity and variabil-
ity inherent in manufacturing data, ultimately enhancing the predic-
tive power and efficiency of FL models in real-world industrial
settings.
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