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A B S T R A C T

Understanding thermal stress evolution in metal additive manufacturing (AM) is crucial for producing high- 
quality components. Recent advancements in machine learning (ML) have shown great potential for modeling 
complex multiphysics problems in metal AM. While physics-based simulations face the challenge of high 
computational costs, conventional data-driven ML models require large, labeled training datasets to achieve 
accurate predictions. Unfortunately, generating large datasets for ML model training through time-consuming 
experiments or high-fidelity simulations is highly expensive in metal AM. To address these challenges, this 
study introduces a physics-informed neural network (PINN) framework that incorporates governing physical 
laws into deep neural networks (NNs) to predict temperature and thermal stress evolution during the laser metal 
deposition (LMD) process. The study also discusses enhanced accuracy and efficiency of the PINN model when 
supplemented with small simulation data. Furthermore, it highlights the PINN transferability, enabling fast 
predictions with a set of new process parameters using a pre-trained PINN model as an online soft sensor, 
significantly reducing computation time compared to physics-based numerical models while maintaining 
accuracy.

1. Introduction

Metal additive manufacturing (AM), including powder bed fusion 
(PBF) and directed energy deposition (DED), is an enabling technology 
for producing complex metal parts in a layer fashion, which has wide 
applications in the aerospace, biomedical, automotive, and energy in
dustries. In PBF, a high-energy beam, such as a laser or electron beam, is 
used to completely melt thin layers of metal powder (30–50 μm thick) in 
an inert environment to print a part. DED creates parts by directly 
melting feedstock materials (e.g., powder or wire) using a laser or 
electron beam, which has a significantly higher material deposition rate 
compared to PBF (Li et al., 2018). Despite the great potential of metal 
AM, its adoption in the industry remains limited due to uncertainties in 
the process-microstructure-property relationship. The thermal cycle in 
metal additive manufacturing is unique due to its rapid heating, cooling, 
and re-melting of previously solidified layers compared with traditional 
manufacturing processes, such as machining, casting, and heat treat
ment. The unique thermal stress cycle generates complex residual stress, 
which causes a major concern (Sharma and Guo, 2022). For example, 
residual stress may interfere with or damage the recoater blade during 

printing and deteriorate the dimension inaccuracies of a final compo
nent (Li et al., 2017). Residual stresses may also cause fracture at 
lower-than-ideal applied stress levels, further weakening a component 
and reducing its overall functions.

Many researchers have developed numerical methods to calculate 
the residual stress and validated their models with destructive or non- 
destructive experimental methods (Papadakis et al., 2014; Wang et al., 
2017; Song et al., 2015). These methods solve the physical governing 
equations i.e. energy and mechanical equations by finite element anal
ysis (FEA). Dai and Shaw (2001) developed one of the earlier FEA 
models to calculate residual stress for laser-processed components made 
up of multiple materials. They modeled the part buildup by adding all 
the powder elements in a single layer on top of the previously deposited 
layer. Afterward, some of these newly added elements were subjected to 
laser processing, following a pre-defined scanning strategy. This process 
led to the creation of a complete component, while the surrounding area 
was left with loosely bound powder particles. It was concluded that 
sequence I, which builds the high melting point material first, is the best 
approach for parts made of two materials, while sequence II, which 
builds both materials layer by layer, lacks control and is unsuitable. Ding 
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et al. (2011) developed a transient 3D model to study the development 
of residual stress in a multi-layer build-up process. They used a series of 
sequential steps, where the temperature from the previous step was 
carried over for each newly added layer. “Element birth technique” was 
used to simulate the multiple layers. The developed new approach 
which utilizes a steady-state thermal model, offers a significant reduc
tion in computational time. Li et al. (2016) developed a 
geometry-scalable predictive model that spans the microscale laser scan, 
mesoscale layer hatch, and macroscale part build-up to efficiently pre
dict residual stresses under various scanning strategies. These pre
dictions were validated using L-shaped bar and bridge structures. The 
geometry scalability approach offers an efficient method for optimizing 
part designs. These conventional numerical methods for calculating the 
residual stress in AM involve solving PDEs by converting them into 
algebraic equations suitable for digital computation. While effective, 
these methods require complex mathematical techniques for dis
cretization, coupling, and boundary conditions, often demanding sig
nificant computational resources and hours. Additionally, their 
performance varies by problem, requiring practitioners to have deep 
expertise in both manufacturing processes and mathematical methods.

Recently, machine learning (ML) methods have gained popularity for 
solving complex problems in manufacturing processes, due to the ability 
to capture large amounts of data through sensors (Zhou et al., 2021; 
Choi et al., 2024; Cao et al., 2022; Sarkar et al., 2021). These models 
gave comparable accuracy compared to the conventional numerical 
methods. Some researchers have attempted to use deep learning (DL) 
models to predict the residual stress developed in AM components (Zhou 
et al., 2022; Thakur et al., 2021; Maleki et al., 2023). These models focus 
on algorithmic data modeling and predicting labels based on observa
tions, emphasizing accurate predictions for classification and regression 
tasks. The main advantage of ML models is their ability to transfer easily 
to another processing condition after being trained on a specific process 
condition (Hu et al., 2023). This is particularly useful for online 
real-time process prediction, where traditional simulation models often 
fail due to the high computation cost to execute, even if just one process 
parameter changes. However, a disadvantage of conventional ML model 
pre-training is their reliance on large-labeled datasets, which could be 
expensive to generate. Additionally, the black-box nature of conven
tional ML models lacks explainability, especially when the model fails to 
predict accurate results.

In recent years, the accuracy of ML models (especially DL) has 
significantly improved by leveraging available data and the governing 
PDEs of the process. This novel approach, known as “physics-informed 
neural network (PINN)" (Raissi et al., 2019). This approach has some 
advantages over the conventional numerical methods due to the 
following reasons. 

• PINN method is a mesh-free technique that eliminates the significant 
overhead cost required in numerical methods like finite element 
method (FEM).

• The automatic differentiation used in PINN computes accurate de
rivatives, unlike the numerical methods that include truncation 
errors.

• Transfer learning is the most powerful tool of all the data-based 
methods where once the model is trained with a set of parameters, 
it can quickly predict the results for another set of parameters with 
minimum computation cost. This is a useful characteristic of the 
model as an online soft sensor. On the other hand, the numerical 
model took the same computation time to solve the PDEs even if 
there is a small change in the single parameter.

PINN has been successfully applied across a wide range of research 
problems, including fluid mechanics (Sharma et al., 2024a; Cheng and 
Zhang, 2021; Sun et al., 2020; Jin et al., 2021), physics (Jagtap et al., 
2020a; Ameya et al., 2020a), biology (Yazdani et al., 2020; Liu et al., 
2020), and supersonic compressible flow problems relevant to aerospace 

vehicles (Jagtap et al., 2022a) and many more. Given the limitations of 
the original PINN in addressing certain complex problems, several 
recent modifications have been introduced to enhance its computational 
performance and solution accuracy. For example, the conservative PINN 
(cPINN) (Jagtap et al., 2020b) uses a separate NN for each sub-domain 
within the computational domain to solve nonlinear conservation laws. 
Similarly, the eXtended PINN (Ameya et al., 2020b) employs a gener
alized decomposition method that can partition subdomains of any 
differential equation. This approach allows for the use of separate NNs in 
each sub-domain, facilitates efficient hyperparameter tuning, supports 
parallelization, and provides a greater representation capacity. Also, 
some studies have shown that using adaptive activation functions can 
improve the learning ability and convergence speed of NNs, especially 
when applied to solving forward and inverse differential equations using 
PINNs (Jagtap et al., 2020c, 2020d, 2022b).

In the AM community, some researchers have used PINN models to 
study thermal history evolution in metal AM (Kumar et al., 2023; Li 
et al., 2023; Ren et al., 2020; Sharma et al., 2024b; Zhu et al., 2021a; 
Liao et al., 2023a; Mishra et al., 2025; Jiang et al., 2024; Sajadi et al., 
2025). Zhu et al. (2021b) predicted the domain temperature and melt 
pool dynamics using the PINN framework, comparing the learning ef
ficiency and accuracy between “hard” and “soft” boundary condition 
cases. Their results showed that the PINN model could predict thermal 
history, melt pool velocity, and cooling rate with relatively less training 
data. Liao et al. (2023b) applied the PINN model to predict thermal 
history in the laser metal deposition (LMD) process. They trained the 
model with and without labeled training data, finding that the compu
tational time to train the PINN model with partial temperature data at 
the top boundary was significantly reduced. They implemented the 
trained model to predict temperatures in the actual experiment. Peng 
et al. (Peng and Panesar, 2024) investigated thermal history evolution in 
multi-layer Directed Energy Deposition (DED) and demonstrated that by 
employing pointwise weighting for the initial condition loss and 
explicitly defining solid-void regions, their PINN framework achieved 
accuracy comparable to numerical methods while offering the potential 
for significant computational time savings in large-scale part simula
tions. Although researchers have attempted to apply the PINN frame
work to the additive manufacturing process, the complex multiphysics 
problem of predicting thermal stress evolution during the laser scanning 
process has not yet been addressed. This is a critical area for future 
research in developing an ML-driven digital twin. Building a PINN 
model for thermal stress evolution and evaluating its performance 
against conventional numerical models is essential. It is important to 
note that while data-driven models (conventional ML models or PINNs) 
may initially require more time for training, once trained, they can 
easily be adapted to new parameter sets with minimal computational 
cost, making them superior to numerical models in this regard and they 
can be used for an online soft sensor.

To address the multiphysics problem of thermal stress evolution in 
the LMD process, this study focuses on developing a thermo-mechanical 
physics-informed neural network (PINN) model specifically designed to 
analyze the multiphysics problem of thermal stress evolution in an LMD 
process. The potential of PINN in addressing complex multiphysics 
problems offers a more efficient alternative to address the lasting chal
lenges facing traditional numerical methods and data-driven ML 
methods. The paper is structured as follows: Section 2 describes the 
governing equations for the LMD process. In Section 3, different PINN 
architectures are compared, and the advantages of the current NN ar
chitecture for thermal and mechanical models are discussed. Section 4
demonstrates the ability of the PINN model to predict the thermal field 
and stress without any labeled training data. Additionally, the acceler
ation of the training process using small simulation data is addressed. 
Finally, the model’s transferability to different parameter sets is dis
cussed. An outlook for the future direction of the work is presented in the 
last section.
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2. Mathematical formulation

This work focuses on the evolution of thermal stress during the 
deposition of a single layer of SS 316 L powder over the substrate of the 
same material at initial room temperature. Fig. 1 shows a schematic of 
the metal deposition process. A laser heat source starts scanning the 
substrate, creating a small melt pool where the powder particles melt 
into liquid and subsequently solidify as the laser moves to the next spot. 
Heat transfer occurs through three mechanisms: conduction, convec
tion, and radiation. The primary focus of this study is to demonstrate the 
ability of the PINN model to predict thermal stress evolution during laser 
scanning. Therefore, certain assumptions were made to simplify the 
study while still accurately representing the actual physics of the pro
cess. The following assumptions are made for this study. 

• The deposited metal layer is thin relative to the substrate thickness, 
so it is assumed that the deposited mass does not significantly affect 
the overall temperature.

• The latent heat of fusion is disregarded.
• Melt pool fluid flow and evaporation are not taken into account.
• Both the substrate and the deposited material are considered ho

mogeneous, with constant material properties.
• Only elastic thermal stresses are considered, while plastic deforma

tion is neglected.

2.1. Governing equations

In this section, the governing equations defining the process are 
discussed. The energy equation for LMD can be defined as: 

∂
(
ρCpT

)

∂t
= κ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)

(1) 

where ρ is the density of the material, Cp is the heat capacity, T is the 
temperature and κ is the thermal conductivity. The thermal boundary 
conditions are given by: 

−κ
∂T
∂n

= Qlaser + Qconv + Qrad (2) 

where n is the normal to the surface, Qlaser is the heat input by the laser 
heat source, Qconv is the convective heat loss, and Qrad is the radiative 
heat loss and given by: 

Qlaser = −
2ηP
πr2

b
exp

(
−2(x − vt)2

r2
b

)

(3) 

Qconv = h (T − T0) (4) 

Qrad = σϵ
(
T4 − T0

4)
(5) 

where η is the laser absorption coefficient, P is the laser power, rb is the 
laser beam radius, v is the laser scanning velocity, h is the convective 
heat transfer coefficient, σ is the Stefan-Boltzmann constant, ϵ is the 
emissivity, and T0 is the ambient temperature. The bottom surface of the 
substrate has a finite temperature boundary condition. The initial tem
perature of the domain is equal to the ambient (298 K). For mechanical 
analysis, the strain displacement relation can be given as: 

εxx =
∂u
∂x

− α
(
T − Tref

)
(6) 

εyy =
∂v
∂y

− α
(
T − Tref

)
(7) 

εzz =
∂w
∂z

− α
(
T − Tref

)
(8) 

εxy =
1
2

(
∂u
∂y

+
∂v
∂x

)

(9) 

εyz =
1
2

(
∂v
∂z

+
∂w
∂y

)

(10) 

εzx =
1
2

(
∂u
∂z

+
∂w
∂x

)

(11) 

where εij represents the strain tensor that depends on the displacement 
components u, v, and w in the x, y, and z directions respectively, α is the 
thermal expansion coefficient. Here, u, v, and w are the independent 
field variables whose distribution over the domain needs to be identified 
over time. The stress-strain constitutive law can be given as: 

σxx =
E

(1 + ν)(1 − 2ν)

[
εxx(1 − ν) + ν

(
εyy + εzz

)]
(12) 

σyy =
E

(1 + ν)(1 − 2ν)

[
εyy(1 − ν) + ν(εxx + εzz)

]
(13) 

σzz =
E

(1 + ν)(1 − 2ν)

[
εzz(1 − ν) + ν

(
εxx + εyy

)]
(14) 

σxy =
E

(1 + ν)
εxy (15) 

σyz =
E

(1 + ν)
εyz (16) 

σzx =
E

(1 + ν)
εzx (17) 

where σij represents the stress tensor components that depends on the 
Young’s modulus, E and Poisson’s ratio ν. The equilibrium equation can 
be given as: 

ρ ∂2u
∂t2 −

∂σxx

∂x
−

∂σxy

∂y
−

∂σzx

∂z
= 0 (18) 

ρ ∂2v
∂t2 −

∂σxy

∂x
−

∂σyy

∂y
−

∂σyz

∂z
= 0 (19) 

ρ ∂2w
∂t2 −

∂σzx

∂x
−

∂σyz

∂y
−

∂σzz

∂z
= 0 (20) 

for the boundary conditions, the bottom boundary is treated as a fixed 

Fig. 1. Schematic of a LMD process.
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boundary, while all other boundaries are considered stress-free. The 
different process parameters and material properties used in the study 
are tabulated as.

2.2. Numerical modeling

To validate the results predicted by the thermoelastic PINN model, 
FEM simulation data was used as the benchmark. This simulation data 
was later utilized to accelerate the training of the PINN model as well. 
The FEA simulations were conducted using the commercial software 
COMSOL Multiphysics®. The substrate dimensions were set to 18 mm ×
8 mm × 4 mm, with a laser heat source of 500 W power scanning the 
substrate at a speed of 10 mm/s, as depicted in Fig. 1. The material 
properties and other process parameters are tabulated in Table 1 and 2. 
The model employed a tetrahedral mesh consisting of 27,144 elements 
and 31,680 nodes. A non-uniform mesh was used, with a higher density 
of elements near the top surface and fewer elements toward the bottom. 
A 1-s laser scanning process was simulated. Temperature, displacement, 
and stress data were extracted at a frequency of 10 Hz for validation 
purposes. This simulation setup ensured a high-resolution dataset for 
accurate validation of the PINN model, particularly in capturing the 
thermal gradients and stress distribution throughout the substrate. The 
simulation took approximately 4 h on an Intel Core i7 CPU using a single 
core.

3. PINN methodology

PINN is a form of NNs that utilize the governing equations to either 
predict the results or accelerate the training process. They are particu
larly effective for modeling complex physical phenomena, such as fluid 
dynamics, heat transfer, and structural mechanics. Let’s consider a non- 
linear PDE of a general form: 

yt + N [y] = 0, x ∈ Ω, t ∈ [0, T] (21) 

e := yt + N [y] (22) 

where y(x, t) is a solution, N [ ⋅] is a non-linear differential operator and 
Ω is a subset of RD. The initial conditions and boundary conditions are 
known and can be given as: 

y(x, t) = yBC, x ∈ ∂Ω (23) 

y(x, 0) = yIC, x ∈ Ω (24) 

where ∂Ω is the boundary. If this problem is solved using a fully con
nected NN, it will take the spatiotemporal resolution (x, t) as the input 
and predict y(x, t) at each iteration, calculating the data loss, given by 
Eq. (25), at the collocation points in the spatiotemporal domain. The 
advantage of PINN is that it includes three additional loss terms besides 
the data loss. The loss terms in PINN are: 

L Data =
1
N

∑N

n=1

⃒
⃒
⃒yn

pred − yn
exact

⃒
⃒
⃒
2

(25) 

L PDE =
1
M

∑M

m=1
|e(tm, xm, ym)|

2 (26) 

L BC =
1
P

∑P

p=1

⃒
⃒
⃒yp

BC,pred − yp
BC,exact

⃒
⃒
⃒
2

(27) 

L IC =
1
Q

∑Q

q=1

⃒
⃒
⃒yq

IC,pred − yq
IC,exact

⃒
⃒
⃒
2

(28) 

L Total = w1.L Data + w2.L PDE + w3.L BC + w4.L IC (29) 

Here N, M, P, and Q are the sampling points for each loss term. The 
number of sampling points for each loss term may vary. L Data helps to 
learn the model from the labeled data, while L PDE, L BC, and L IC 
accelerate training by penalizing the model when predicted values fail to 
satisfy the governing equations, boundary conditions, and initial con
ditions, respectively. In PINN models, data loss is optional. It helps in 
predicting more accurate results and accelerates the training. The total 
loss is the weighted average of these four loss terms where weights are 
assigned to different loss terms to balance the gradients, accelerate the 
convergence rate, and enhance the quality of final solutions. The current 
study assumes 

{
1, 1, 1, 1e−4}

for w1, w2, w3, and w4. The initial condi
tion loss is four orders higher than the other losses. Therefore, to balance 
the contribution of each loss term in the total loss, w4 is given a lesser 
value. The current PINN model was implemented using PyTorch and 
derivatives are calculated by the automatic differentiation (AD) tech
nique (Baydin et al., 2018). This technique is different and superior 
compared to numerical differentiation like Taylor’s series. AD uses the 
chain rule to calculate the derivative which is accurate up to the ma
chine’s precision. Finally, to measure the accuracy of the predictions, a 
relative L2 error is calculated between the predicted quantity p and exact 
function f as given by: 

E (p, f) =

(
1
N

∑N

i=1
[p(xi) − f(xi)]

2

)

(30) 

where {xi = 1, 2, …, N} are the collocation points scattered in the whole 
domain.

3.1. Thermoelastic PINN

In this study, three different PINN architectures were evaluated 
before finalizing the most efficient thermoelastic PINN. All three net
works accurately predicted temperatures and stresses but differed in 
computational time. Network parameters were randomly initialized 
using the Glorot method, and the models were trained with the Adam 
optimizer, employing a learning rate of 2e-4 and the tanh activation 
function. The input to the network is scaled between −1 and 1. The 
output layer of the temperature network uses the Soft-plus activation 
function to ensure positive temperature values, while the output layer of 
the stress-displacement network is linear, with no activation function 
applied.

The first architecture consists of a single NN with 10 hidden layers 
and 64 neurons per layer. The input includes spatiotemporal coordinates 
(x, y, z, t), and the output consists of temperature and displacement (T, 
u, v, w). Stress components were predicted across the domain using 
displacement values and equations 4–18. The PIDL model required 
~200,000 epochs, taking approximately 11 h on a single Nvidia RTX 
A6000 GPU.

The second architecture features two separate NNs: one for tem
perature prediction and the other for displacement. The temperature 

Table 1 
Process parameters and material properties of SS 316 L.

Parameter Value

Laser power (W) 500
Laser absorption coefficient 0.4
Laser beam radius (mm) 1.5
Laser scanning speed (mm/s) 10

Material property Value

Density (kg/m3) 8000
Heat capacity (J/kgK) 500
Thermal conductivity (W/mK) 10
Emissivity 0.3
Youngs Modulus (GPa) 205
Poisson ratio 0.28
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network has 3 hidden layers with 64 neurons per layer, while the 
displacement network has 10 layers with 64 neurons per layer. This 
configuration was refined through trial and error. Both networks receive 
the same spatiotemporal inputs (x, y, z, t). The temperature network 
predicts the temperature T, and the displacement network predicts the 
displacement components (u, v, w). Initially, the temperature is pre
dicted across the entire domain, and once the temperature network 
converges, its output is used as input to the displacement network to 
solve equations (4)–(6). The temperature network converged signifi
cantly faster, requiring only 25,000 epochs (approximately 21 min on 
the Nvidia RTX A6000 GPU), while the displacement network took 
~200,000 epochs (approximately 8.2 h). The key advantage of this ar
chitecture is that it avoids solving the energy equation for the full 
number of epochs (~200,000), which is primarily required for 
displacement field convergence.

The third and most efficient architecture also utilizes two NNs: one 
for temperature and another for combined stress and displacement 
prediction. The temperature network retains the same architecture as in 
the second configuration, but the displacement network is replaced by a 
stress-displacement network. The input includes spatiotemporal co
ordinates (x, y, z, t), and the output consists of three displacement 

components and six stress tensor components. The advantage of this 
architecture is that, unlike the second architecture, which must compute 
stress at each iteration using equations 6–17, this model directly predicts 
the stress components in the output layer. This reduces the computa
tional cost by avoiding the calculation of stress components in each 
iteration from strain-displacement and stress-strain relations, especially 
at the boundary points since the five boundaries have stress-free con
ditions. The stress-displacement network required ~130,000 epochs, 
taking approximately 4.15 h on the same GPU for training without 
labeled data. Fig. 2 presents the architecture of the fully connected 
thermoelastic PINN used in this study.

3.2. Collocation points

Meshing plays a critical role in numerical modeling approaches like 
FEA, and similarly, the selection of collocation points is crucial in PINN 
models. A smaller number of collocation points may fail to capture the 
underlying physics, particularly in regions with steep gradients (Lu 
et al., 2021). On the other hand, using too many collocation points can 
significantly increase computational time. In this study, a 
non-homogeneous collocation point density was selected based on the 
physics of the problem. Since laser scanning is very fast, its effect is 
concentrated within only a few layers, resulting in a high-temperature 
gradient near the laser heat source, while the temperature remains 
relatively constant farther from the source. Therefore, a non-uniform 
collocation point distribution was chosen, as shown in Fig. 3, with a 
higher point density near the top layer and fewer points toward the 
bottom. Additionally, more collocation points were added around the 
laser center within a 2 × 2 mm area (indicated by red points in Fig. 3) to 
capture the dynamic effects more accurately. Further details about the 
selection and distribution of collocation points can be found in Liao et al. 
(2023b).

Fig. 2. Architecture of temperature network (red) and stress-displacement network (yellow) with the set of governing laws used in the loss functions. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Non-uniform distribution of collocation points.

Fig. 4. Comparison of temperature field (a) FEA (b) PINN (c) top-surface along the centerline.
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4. Results and discussions

To demonstrate the effectiveness of the thermoelastic PINN, three 
different cases of the forward problem are discussed in the following 
sub-sections. First, the ability of the thermoelastic PINN to predict 
temperature, displacement, and stress fields without any labeled 
training data is evaluated. Second, the acceleration of the training 
process using small simulation data is examined. Third, the capability of 
the thermoelastic PINN to produce faster predictions when initialized 
with weights from a previously trained model rather than random 
initialization is explored. These results demonstrate that PINNs can 
serve as a surrogate model for studying thermal stress evolution. In all 
cases, FEA results are used as the benchmark for validation.

4.1. Prediction without training data

The thermoelastic PINN model can use the governing PDEs, initial 
conditions, and boundary conditions only to predict the temperature, 
displacement, and stress field. It is worth noting that no labeled training 
data is used to train the model. The temperature network took 21 min to 
train on a single Nvidia RTX A6000 GPU. Fig. 4 shows the comparison 
between the PINN’s predicted temperature and the FEA temperature at 
time = 0.5 s. The results show that the PINN model can accurately 
predict the temperature field, with a root mean square error (RMSE) of 
2.03 K. The selection of collocation points near the laser center is crit
ical; insufficient points in this region can lead to inaccurate predictions 
of the high gradient around the laser center. This study employed a 
dense grid of collocation points within a 2 × 2 mm area from the laser 
center, with a spacing of 0.25 mm. This resolution was identified 
through a sequential refinement study. Once the temperature field is 

Fig. 5. (a) Loss function (b) Validation error evolution for the temperature network.

Fig. 6. Comparison of displacement field (a) FEA (b) PINN (c) top-surface along the central line.
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predicted, it can be used in equations (6)–(8) to calculate the displace
ment field due to thermal expansion. The evolution of the different loss 
terms and the mean squared error (MSE) validation error is shown in 
Fig. 5. Initially, the IC loss has a higher value, and its contribution is 
balanced by assigning it a lower weight in the total loss (Eq. (29)). The 
PDE loss starts off very low, then increases up to 16,000 iterations before 
decreasing again. This behavior is likely because, at the start, the 
network predicts a nearly uniform temperature across the domain, 
which easily satisfies Eq. (1) and results in a small residual. At this stage, 
however, the initial conditions (IC) and boundary conditions (BCs) are 
not yet satisfied, leading to a higher total loss. As the PINN model begins 
to capture the temperature gradient, the PDE residual increases, 
resulting in higher PDE loss, and eventually, as the correct temperature 
distribution is learned, the PDE loss decreases again.

The predicted displacement is compared with the FEA results in 
Fig. 6, showing that the thermoelastic PINN model can accurately 

predict the displacement field. As indicated by Eqs. 6–20, displacement 
is the only independent variable for the solid mechanics model and both 
strain and stress fields can be derived from it. Though, in this model, the 
stress tensor is also one of the outputs from the stress-displacement 
network, which helps to reduce the computational cost. If the model 
can accurately predict the displacement field, it will also predict the 
stress field accurately. Fig. 7 compares the predicted stress components 
with those from the FEA. The PINN model predicts the maximum values 
of σx and σy slightly lower than the FEA results. This limitation in 
capturing the peak values can be addressed by incorporating a small 
amount of training data, as discussed in detail in the subsequent sub
section. Fig. 8 illustrates the evolution of the different loss terms along 
with the MSE validation error. It is observed that the losses and vali
dation error decrease very slowly. The training process can be acceler
ated by using partial domain data, which is discussed in detail in the 
following subsection.

Fig. 7. Comparison of stress field (a) FEA (b) PINN (c) top-surface along the central line.

Fig. 8. (a) Loss function (b) Validation error evolution for the stress-displacement network.
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4.2. Prediction with training data

In this section, the effect of using partial simulation data as a labeled 
training dataset is studied to improve accuracy and training efficiency. It 
is important to note that physical laws and labeled data are not enforced 
as “hard” constraints in the PINN model, meaning the model is trained to 
minimize the loss rather than reduce it to zero. The advantage of this 
approach is that simulation or experimental data can be easily incor
porated without over-constraining the model. Additionally, there is no 
minimum required dataset size for the model to converge.

In this study, displacement and stress simulation data, consisting of 
31,878 points over the time range from 0.3 to 0.5 s (i.e., 10,626 collo
cation points per time step), were used to train the stress-displacement 
network. In Fig. 9, the predicted stress component (σx and σy) was 

compared for models trained with and without labeled data for 70,000 
and 130,000 iterations, respectively. It took approximately 2.5 h to train 
the model for 70,000 iterations. It was observed that the model trained 
with labeled data converged significantly faster than the model without 
labeled data with a relatively low value of loss function and validation 
error, as shown in Fig. 9a and b. It is worth noting that the PINN model 
trained with data in the range of 0.3–0.5 s demonstrates high accuracy in 
stress prediction up to approximately 0.8 s (Fig. 9c and d). Beyond this 
time, a decline in accuracy is observed, as indicated by the low peak 
stress value predicted by the PINN compared to the FEA results (Fig. 9e 
and f). At 1 s, the PINN with data still performs slightly better than the 
PINN without data; however, as time progresses, the predictions of the 
PINN model with data overlap with the PINN without data model. A 
limited re-training of the model is necessary to enhance the prediction 

Fig. 9. Fast and accurate prediction of PINN model using partial simulation data witnessed by (a) Total loss (b) validation error comparison (c) σxx (d) σyy at top- 
surface and along the central line at 0.8 s. The accuracy starts decreasing again as evident by (e) σxx (f) σyy at top-surface and along the central line at 1 s.

Fig. 10. Loss function evolution of (a) Temperature network (b) Stress-displacement network. On top surface along the central line at t = 1 s (c) Temperature (d) 
Stress, Sx.
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accuracy beyond 0.8 s. This can be accomplished by coupling the PINN 
framework with a numerical model, which is out of the scope of this 
study and which the authors intend to investigate in future work (Zhang 
et al., 2024; Jeon et al., 2024).

4.3. Prediction using pre-trained model

The primary advantage of using data-driven ML models over con
ventional numerical models is their transferability. Once trained on a 
specific set of parameters, an ML model can predict results for different 
parameters with minimal computational cost (Bahmani and Sun, 2021). 
This characteristic makes data-driven models highly suitable for soft 
sensing applications. Fig. 10 presents the evolution of the loss function, 
temperature, and stress fields for two sets of laser power and scanning 
speed combinations: 350 W at 5 mm/s and 750 W at 15 mm/s. A 
benchmark model trained on the 500 W, 10 mm/s case was used as a 
pre-trained model to predict the results for the new parameter sets. 
While the authors investigated additional parameter combinations, only 
two representative cases are presented here for clarity—one with a 
lower energy density and the other with a higher energy density than the 
benchmark case. The temperature and stress-displacement networks 
converged after approximately 1500 iterations, requiring only 51 s and 
2.6 min, respectively – substantially less computational time compared 
to the full model training phase. The predictions for the 350 W, 5 mm/s 
case show excellent agreement with the expected temperature and stress 
fields. The results closely align with benchmark FEA data, demon
strating the transferability and accuracy of the PINN model. For the 750 
W, 15 mm/s case, while the temperature prediction remains accurate, 
the peak stress is underpredicted. This trend is consistent with the ob
servations from PINNs trained without labeled data. Therefore, it is 
recommended to use a pre-trained model corresponding to the highest 
energy density case to improve the accuracy of temperature and stress 
field predictions.

5. Conclusions and outlook

This study presents a PINN approach to predict temperature and 
thermal stress evolution in the laser metal deposition (LMD) additive 
manufacturing process. A thermoelastic PINN model is developed to 
predict stress evolution in LMD process. This paper demonstrates the 
application of scientific machine learning (SciML) as an alternative to 
conventional physics-based models for efficiently solving complex 
multiphysics problems, particularly in parametric studies. The major 
conclusions of this work are as follows. 

• PINN can be used as an alternative method to facilitate the prediction 
of the temperature and thermal stress evolution in the LMD process 
without requiring labeled training data. Therefore, the thermoelastic 
PINN model can be used as a soft sensor for fast prediction of thermal 
stress evolution.

• The most efficient PINN architecture involves two separate networks 
for temperature and stress field predictions. The stress-displacement 
network outputs the three displacement and six stress components, 
avoiding extra calculations and improving computational efficiency.

• Incorporating small, labeled data from simulations makes the PINN 
model more accurate and training efficient. However, the model’s 
predictive accuracy tends to deteriorate over time, indicating the 
need for periodic re-training to maintain performance in long-term 
predictions.

• The thermoelastic PINN model can predict results for different sets of 
parameters very quickly (~3 min) compared to physics-based 
simulation models, demonstrating its transferability and suitability 
for real-time predictions. For optimal performance in transfer 
learning, it is recommended to pre-train the PINN model using the 
highest energy density case to ensure accurate prediction of tem
perature and stress evolution across a range of operating conditions.

This study represents the first application of the PINN approach to 
predict thermal stress evolution in the LMD process. Although PINN is 
highly efficient for parametric studies, it is less efficient for a single set of 
laser parameters, where physics-based simulations may perform better. 
Additionally, PINNs require significantly longer training times when 
trained without any data. As more governing equations are incorpo
rated, there is a possibility that the model may fail to converge in the 
absence of training data. The authors believe there is potential to opti
mize the NN architecture further, which could reduce computation time. 
This optimization could be explored in future work. Additionally, the 
model can be expanded to include more physics, such as phase changes, 
temperature-dependent material properties, and plastic deformation. 
The PINN model can also be applied to inverse problems, such as 
learning equation parameters like the laser absorption coefficient or 
material properties.
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