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Understanding thermal stress evolution in metal additive manufacturing (AM) is crucial for producing high-
quality components. Recent advancements in machine learning (ML) have shown great potential for modeling
complex multiphysics problems in metal AM. While physics-based simulations face the challenge of high
computational costs, conventional data-driven ML models require large, labeled training datasets to achieve
accurate predictions. Unfortunately, generating large datasets for ML model training through time-consuming
experiments or high-fidelity simulations is highly expensive in metal AM. To address these challenges, this
study introduces a physics-informed neural network (PINN) framework that incorporates governing physical
laws into deep neural networks (NNs) to predict temperature and thermal stress evolution during the laser metal
deposition (LMD) process. The study also discusses enhanced accuracy and efficiency of the PINN model when
supplemented with small simulation data. Furthermore, it highlights the PINN transferability, enabling fast
predictions with a set of new process parameters using a pre-trained PINN model as an online soft sensor,
significantly reducing computation time compared to physics-based numerical models while maintaining

accuracy.

1. Introduction

Metal additive manufacturing (AM), including powder bed fusion
(PBF) and directed energy deposition (DED), is an enabling technology
for producing complex metal parts in a layer fashion, which has wide
applications in the aerospace, biomedical, automotive, and energy in-
dustries. In PBF, a high-energy beam, such as a laser or electron beam, is
used to completely melt thin layers of metal powder (30-50 pm thick) in
an inert environment to print a part. DED creates parts by directly
melting feedstock materials (e.g., powder or wire) using a laser or
electron beam, which has a significantly higher material deposition rate
compared to PBF (Li et al., 2018). Despite the great potential of metal
A, its adoption in the industry remains limited due to uncertainties in
the process-microstructure-property relationship. The thermal cycle in
metal additive manufacturing is unique due to its rapid heating, cooling,
and re-melting of previously solidified layers compared with traditional
manufacturing processes, such as machining, casting, and heat treat-
ment. The unique thermal stress cycle generates complex residual stress,
which causes a major concern (Sharma and Guo, 2022). For example,
residual stress may interfere with or damage the recoater blade during

printing and deteriorate the dimension inaccuracies of a final compo-
nent (Li et al., 2017). Residual stresses may also cause fracture at
lower-than-ideal applied stress levels, further weakening a component
and reducing its overall functions.

Many researchers have developed numerical methods to calculate
the residual stress and validated their models with destructive or non-
destructive experimental methods (Papadakis et al., 2014; Wang et al.,
2017; Song et al., 2015). These methods solve the physical governing
equations i.e. energy and mechanical equations by finite element anal-
ysis (FEA). Dai and Shaw (2001) developed one of the earlier FEA
models to calculate residual stress for laser-processed components made
up of multiple materials. They modeled the part buildup by adding all
the powder elements in a single layer on top of the previously deposited
layer. Afterward, some of these newly added elements were subjected to
laser processing, following a pre-defined scanning strategy. This process
led to the creation of a complete component, while the surrounding area
was left with loosely bound powder particles. It was concluded that
sequence I, which builds the high melting point material first, is the best
approach for parts made of two materials, while sequence II, which
builds both materials layer by layer, lacks control and is unsuitable. Ding
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et al. (2011) developed a transient 3D model to study the development
of residual stress in a multi-layer build-up process. They used a series of
sequential steps, where the temperature from the previous step was
carried over for each newly added layer. “Element birth technique” was
used to simulate the multiple layers. The developed new approach
which utilizes a steady-state thermal model, offers a significant reduc-
tion in computational time. Li et al. (2016) developed a
geometry-scalable predictive model that spans the microscale laser scan,
mesoscale layer hatch, and macroscale part build-up to efficiently pre-
dict residual stresses under various scanning strategies. These pre-
dictions were validated using L-shaped bar and bridge structures. The
geometry scalability approach offers an efficient method for optimizing
part designs. These conventional numerical methods for calculating the
residual stress in AM involve solving PDEs by converting them into
algebraic equations suitable for digital computation. While effective,
these methods require complex mathematical techniques for dis-
cretization, coupling, and boundary conditions, often demanding sig-
nificant computational resources and hours. Additionally, their
performance varies by problem, requiring practitioners to have deep
expertise in both manufacturing processes and mathematical methods.

Recently, machine learning (ML) methods have gained popularity for
solving complex problems in manufacturing processes, due to the ability
to capture large amounts of data through sensors (Zhou et al., 2021;
Choi et al., 2024; Cao et al., 2022; Sarkar et al., 2021). These models
gave comparable accuracy compared to the conventional numerical
methods. Some researchers have attempted to use deep learning (DL)
models to predict the residual stress developed in AM components (Zhou
et al., 2022; Thakur et al., 2021; Maleki et al., 2023). These models focus
on algorithmic data modeling and predicting labels based on observa-
tions, emphasizing accurate predictions for classification and regression
tasks. The main advantage of ML models is their ability to transfer easily
to another processing condition after being trained on a specific process
condition (Hu et al.,, 2023). This is particularly useful for online
real-time process prediction, where traditional simulation models often
fail due to the high computation cost to execute, even if just one process
parameter changes. However, a disadvantage of conventional ML model
pre-training is their reliance on large-labeled datasets, which could be
expensive to generate. Additionally, the black-box nature of conven-
tional ML models lacks explainability, especially when the model fails to
predict accurate results.

In recent years, the accuracy of ML models (especially DL) has
significantly improved by leveraging available data and the governing
PDEs of the process. This novel approach, known as “physics-informed
neural network (PINN)" (Raissi et al., 2019). This approach has some
advantages over the conventional numerical methods due to the
following reasons.

e PINN method is a mesh-free technique that eliminates the significant
overhead cost required in numerical methods like finite element
method (FEM).

The automatic differentiation used in PINN computes accurate de-
rivatives, unlike the numerical methods that include truncation
errors.

Transfer learning is the most powerful tool of all the data-based
methods where once the model is trained with a set of parameters,
it can quickly predict the results for another set of parameters with
minimum computation cost. This is a useful characteristic of the
model as an online soft sensor. On the other hand, the numerical
model took the same computation time to solve the PDEs even if
there is a small change in the single parameter.

PINN has been successfully applied across a wide range of research
problems, including fluid mechanics (Sharma et al., 2024a; Cheng and
Zhang, 2021; Sun et al., 2020; Jin et al., 2021), physics (Jagtap et al.,
2020a; Ameya et al., 2020a), biology (Yazdani et al., 2020; Liu et al.,
2020), and supersonic compressible flow problems relevant to aerospace
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vehicles (Jagtap et al., 2022a) and many more. Given the limitations of
the original PINN in addressing certain complex problems, several
recent modifications have been introduced to enhance its computational
performance and solution accuracy. For example, the conservative PINN
(cPINN) (Jagtap et al., 2020b) uses a separate NN for each sub-domain
within the computational domain to solve nonlinear conservation laws.
Similarly, the eXtended PINN (Ameya et al., 2020b) employs a gener-
alized decomposition method that can partition subdomains of any
differential equation. This approach allows for the use of separate NNs in
each sub-domain, facilitates efficient hyperparameter tuning, supports
parallelization, and provides a greater representation capacity. Also,
some studies have shown that using adaptive activation functions can
improve the learning ability and convergence speed of NNs, especially
when applied to solving forward and inverse differential equations using
PINNs (Jagtap et al., 2020c, 2020d, 2022b).

In the AM community, some researchers have used PINN models to
study thermal history evolution in metal AM (Kumar et al., 2023; Li
et al., 2023; Ren et al., 2020; Sharma et al., 2024b; Zhu et al., 2021a;
Liao et al., 2023a; Mishra et al., 2025; Jiang et al., 2024; Sajadi et al.,
2025). Zhu et al. (2021b) predicted the domain temperature and melt
pool dynamics using the PINN framework, comparing the learning ef-
ficiency and accuracy between “hard” and “soft” boundary condition
cases. Their results showed that the PINN model could predict thermal
history, melt pool velocity, and cooling rate with relatively less training
data. Liao et al. (2023b) applied the PINN model to predict thermal
history in the laser metal deposition (LMD) process. They trained the
model with and without labeled training data, finding that the compu-
tational time to train the PINN model with partial temperature data at
the top boundary was significantly reduced. They implemented the
trained model to predict temperatures in the actual experiment. Peng
etal. (Peng and Panesar, 2024) investigated thermal history evolution in
multi-layer Directed Energy Deposition (DED) and demonstrated that by
employing pointwise weighting for the initial condition loss and
explicitly defining solid-void regions, their PINN framework achieved
accuracy comparable to numerical methods while offering the potential
for significant computational time savings in large-scale part simula-
tions. Although researchers have attempted to apply the PINN frame-
work to the additive manufacturing process, the complex multiphysics
problem of predicting thermal stress evolution during the laser scanning
process has not yet been addressed. This is a critical area for future
research in developing an ML-driven digital twin. Building a PINN
model for thermal stress evolution and evaluating its performance
against conventional numerical models is essential. It is important to
note that while data-driven models (conventional ML models or PINNs)
may initially require more time for training, once trained, they can
easily be adapted to new parameter sets with minimal computational
cost, making them superior to numerical models in this regard and they
can be used for an online soft sensor.

To address the multiphysics problem of thermal stress evolution in
the LMD process, this study focuses on developing a thermo-mechanical
physics-informed neural network (PINN) model specifically designed to
analyze the multiphysics problem of thermal stress evolution in an LMD
process. The potential of PINN in addressing complex multiphysics
problems offers a more efficient alternative to address the lasting chal-
lenges facing traditional numerical methods and data-driven ML
methods. The paper is structured as follows: Section 2 describes the
governing equations for the LMD process. In Section 3, different PINN
architectures are compared, and the advantages of the current NN ar-
chitecture for thermal and mechanical models are discussed. Section 4
demonstrates the ability of the PINN model to predict the thermal field
and stress without any labeled training data. Additionally, the acceler-
ation of the training process using small simulation data is addressed.
Finally, the model’s transferability to different parameter sets is dis-
cussed. An outlook for the future direction of the work is presented in the
last section.
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Fig. 1. Schematic of a LMD process.

2. Mathematical formulation

This work focuses on the evolution of thermal stress during the
deposition of a single layer of SS 316 L powder over the substrate of the
same material at initial room temperature. Fig. 1 shows a schematic of
the metal deposition process. A laser heat source starts scanning the
substrate, creating a small melt pool where the powder particles melt
into liquid and subsequently solidify as the laser moves to the next spot.
Heat transfer occurs through three mechanisms: conduction, convec-
tion, and radiation. The primary focus of this study is to demonstrate the
ability of the PINN model to predict thermal stress evolution during laser
scanning. Therefore, certain assumptions were made to simplify the
study while still accurately representing the actual physics of the pro-
cess. The following assumptions are made for this study.

e The deposited metal layer is thin relative to the substrate thickness,
so it is assumed that the deposited mass does not significantly affect
the overall temperature.

e The latent heat of fusion is disregarded.

e Melt pool fluid flow and evaporation are not taken into account.

e Both the substrate and the deposited material are considered ho-
mogeneous, with constant material properties.

e Only elastic thermal stresses are considered, while plastic deforma-
tion is neglected.

2.1. Governing equations

In this section, the governing equations defining the process are
discussed. The energy equation for LMD can be defined as:

d(pC, T 2 2 ?

—(ﬂp):Ka_T 6_T 6_T 6
ot ox?  dy? 0z

where p is the density of the material, C, is the heat capacity, T is the

temperature and « is the thermal conductivity. The thermal boundary

conditions are given by:

oT
—K a - Qlaser + Qconv + Q.rad (2)

where n is the normal to the surface, Qs is the heat input by the laser
heat source, Q.ony is the convective heat loss, and Q,qq is the radiative
heat loss and given by:

2P —2(x —vt)*
Quser = — Pb exp (T) 3

Engineering Applications of Artificial Intelligence 157 (2025) 111554

QLonv:h (T_TO) (4)
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where 7 is the laser absorption coefficient, P is the laser power, r;, is the
laser beam radius, v is the laser scanning velocity, h is the convective
heat transfer coefficient, ¢ is the Stefan-Boltzmann constant, ¢ is the
emissivity, and T is the ambient temperature. The bottom surface of the
substrate has a finite temperature boundary condition. The initial tem-
perature of the domain is equal to the ambient (298 K). For mechanical
analysis, the strain displacement relation can be given as:

ou

Sxx:&_a(T_Tref) (6)

&y :% —a(T—Tyy) )
ow

Ezz :E - a(T - Tref) (8)
1/ou ov

v=3 (3 ") ©
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1/ou ow
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where ¢; represents the strain tensor that depends on the displacement
components u, v, and w in the x, y, and z directions respectively, a is the
thermal expansion coefficient. Here, u, v, and w are the independent
field variables whose distribution over the domain needs to be identified
over time. The stress-strain constitutive law can be given as:

E

= A ) [exc(1 —v) +v(gyy +€2) | 12)
Oyy :m [y (1= 1) + U(Ene +€2)] (13)
o=y U)fl e =9) (et ) 14
o= ﬁy)exy (15)
= i o 6)
o= i e a”

where oy represents the stress tensor components that depends on the
Young’s modulus, E and Poisson’s ratio v. The equilibrium equation can
be given as:

U 00y 00y, 00

P " ax oy o ° (18)
v 0oy, 00y, 00y,

@ ox oy a ° (19)
2

pIW _00m 00y dom (20)

for the boundary conditions, the bottom boundary is treated as a fixed
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Table 1

Process parameters and material properties of SS 316 L.
Parameter Value
Laser power (W) 500
Laser absorption coefficient 0.4
Laser beam radius (mm) 1.5
Laser scanning speed (mm/s) 10
Material property Value
Density (kg/m®) 8000
Heat capacity (J/kgK) 500
Thermal conductivity (W/mK) 10
Emissivity 0.3
Youngs Modulus (GPa) 205
Poisson ratio 0.28

boundary, while all other boundaries are considered stress-free. The
different process parameters and material properties used in the study
are tabulated as.

2.2. Numerical modeling

To validate the results predicted by the thermoelastic PINN model,
FEM simulation data was used as the benchmark. This simulation data
was later utilized to accelerate the training of the PINN model as well.
The FEA simulations were conducted using the commercial software
COMSOL Multiphysics®. The substrate dimensions were set to 18 mm x
8 mm x 4 mm, with a laser heat source of 500 W power scanning the
substrate at a speed of 10 mm/s, as depicted in Fig. 1. The material
properties and other process parameters are tabulated in Table 1 and 2.
The model employed a tetrahedral mesh consisting of 27,144 elements
and 31,680 nodes. A non-uniform mesh was used, with a higher density
of elements near the top surface and fewer elements toward the bottom.
A 1-s laser scanning process was simulated. Temperature, displacement,
and stress data were extracted at a frequency of 10 Hz for validation
purposes. This simulation setup ensured a high-resolution dataset for
accurate validation of the PINN model, particularly in capturing the
thermal gradients and stress distribution throughout the substrate. The
simulation took approximately 4 h on an Intel Core i7 CPU using a single
core.

3. PINN methodology

PINN is a form of NNs that utilize the governing equations to either
predict the results or accelerate the training process. They are particu-
larly effective for modeling complex physical phenomena, such as fluid
dynamics, heat transfer, and structural mechanics. Let’s consider a non-
linear PDE of a general form:

Ye+ Ay =0,x€Q,te[0,T] @1
e:=y +.7y] (22)

where y(x,t) is a solution, ./ -] is a non-linear differential operator and
Q is a subset of RP. The initial conditions and boundary conditions are
known and can be given as:

y(x,t) =Ygc,Xx € 0Q (23)
y(x, 0) =Yic,X € Q (24)

where 0Q is the boundary. If this problem is solved using a fully con-
nected NN, it will take the spatiotemporal resolution (x, t) as the input
and predict y(x,t) at each iteration, calculating the data loss, given by
Eq. (25), at the collocation points in the spatiotemporal domain. The
advantage of PINN is that it includes three additional loss terms besides
the data loss. The loss terms in PINN are:
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Here N, M, P, and Q are the sampling points for each loss term. The
number of sampling points for each loss term may vary. #pq, helps to
learn the model from the labeled data, while “ppr, <3¢, and L ¢
accelerate training by penalizing the model when predicted values fail to
satisfy the governing equations, boundary conditions, and initial con-
ditions, respectively. In PINN models, data loss is optional. It helps in
predicting more accurate results and accelerates the training. The total
loss is the weighted average of these four loss terms where weights are
assigned to different loss terms to balance the gradients, accelerate the
convergence rate, and enhance the quality of final solutions. The current
study assumes {1,1,1,1e~*} for wy, w, ws, and wy. The initial condi-
tion loss is four orders higher than the other losses. Therefore, to balance
the contribution of each loss term in the total loss, wy is given a lesser
value. The current PINN model was implemented using PyTorch and
derivatives are calculated by the automatic differentiation (AD) tech-
nique (Baydin et al., 2018). This technique is different and superior
compared to numerical differentiation like Taylor’s series. AD uses the
chain rule to calculate the derivative which is accurate up to the ma-
chine’s precision. Finally, to measure the accuracy of the predictions, a
relative L error is calculated between the predicted quantity p and exact
function f as given by:

“(p.f) = (% > pl) —f(xi)f) (30)

where {x;=1,2,...,N} are the collocation points scattered in the whole
domain.

3.1. Thermoelastic PINN

In this study, three different PINN architectures were evaluated
before finalizing the most efficient thermoelastic PINN. All three net-
works accurately predicted temperatures and stresses but differed in
computational time. Network parameters were randomly initialized
using the Glorot method, and the models were trained with the Adam
optimizer, employing a learning rate of 2e-4 and the tanh activation
function. The input to the network is scaled between —1 and 1. The
output layer of the temperature network uses the Soft-plus activation
function to ensure positive temperature values, while the output layer of
the stress-displacement network is linear, with no activation function
applied.

The first architecture consists of a single NN with 10 hidden layers
and 64 neurons per layer. The input includes spatiotemporal coordinates
(%, ¥, 2, t), and the output consists of temperature and displacement (7,
u, v, w). Stress components were predicted across the domain using
displacement values and equations 4-18. The PIDL model required
~200,000 epochs, taking approximately 11 h on a single Nvidia RTX
A6000 GPU.

The second architecture features two separate NNs: one for tem-
perature prediction and the other for displacement. The temperature



R. Sharma and Y.B. Guo

Engineering Applications of Artificial Intelligence 157 (2025) 111554

Governing laws

Temperature Network

* Energy equation (PDE)

Stress-displacement Network

a * Initial room temp (IC) a
at « Convective losses (BC) at
 Radiation losses (BC)

0 « Insulated boundary(BC) 1
ox 0x
* Strain-disp. relations (PDE)

* Stress-strain relation (PDE)
6:2 + Equilibrium equation(PDE) | (,;2
iy » Initial zero disp. (IC) =
0z2 * Fixed boundary (BC) 0z*

* Stress-free boundaries (BC)

Fig. 2. Architecture of temperature network (red) and stress-displacement network (yellow) with the set of governing laws used in the loss functions. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Non-uniform distribution of collocation points.

network has 3 hidden layers with 64 neurons per layer, while the
displacement network has 10 layers with 64 neurons per layer. This
configuration was refined through trial and error. Both networks receive
the same spatiotemporal inputs (x, y, 2, t). The temperature network
predicts the temperature T, and the displacement network predicts the
displacement components (u, v, w). Initially, the temperature is pre-
dicted across the entire domain, and once the temperature network
converges, its output is used as input to the displacement network to
solve equations (4)-(6). The temperature network converged signifi-
cantly faster, requiring only 25,000 epochs (approximately 21 min on
the Nvidia RTX A6000 GPU), while the displacement network took
~200,000 epochs (approximately 8.2 h). The key advantage of this ar-
chitecture is that it avoids solving the energy equation for the full
number of epochs (~200,000), which is primarily required for
displacement field convergence.

The third and most efficient architecture also utilizes two NNs: one
for temperature and another for combined stress and displacement
prediction. The temperature network retains the same architecture as in
the second configuration, but the displacement network is replaced by a
stress-displacement network. The input includes spatiotemporal co-
ordinates (x, ¥, 2, t), and the output consists of three displacement

3000
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12000
—4
£ 2
£ 49 1500
N0 15
10 1000
5 5
00
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Y (mm)

PINN Temperature(K) at t=0.5s

components and six stress tensor components. The advantage of this
architecture is that, unlike the second architecture, which must compute
stress at each iteration using equations 617, this model directly predicts
the stress components in the output layer. This reduces the computa-
tional cost by avoiding the calculation of stress components in each
iteration from strain-displacement and stress-strain relations, especially
at the boundary points since the five boundaries have stress-free con-
ditions. The stress-displacement network required ~130,000 epochs,
taking approximately 4.15 h on the same GPU for training without
labeled data. Fig. 2 presents the architecture of the fully connected
thermoelastic PINN used in this study.

3.2. Collocation points

Meshing plays a critical role in numerical modeling approaches like
FEA, and similarly, the selection of collocation points is crucial in PINN
models. A smaller number of collocation points may fail to capture the
underlying physics, particularly in regions with steep gradients (Lu
et al., 2021). On the other hand, using too many collocation points can
significantly increase computational time. In this study, a
non-homogeneous collocation point density was selected based on the
physics of the problem. Since laser scanning is very fast, its effect is
concentrated within only a few layers, resulting in a high-temperature
gradient near the laser heat source, while the temperature remains
relatively constant farther from the source. Therefore, a non-uniform
collocation point distribution was chosen, as shown in Fig. 3, with a
higher point density near the top layer and fewer points toward the
bottom. Additionally, more collocation points were added around the
laser center within a 2 x 2 mm area (indicated by red points in Fig. 3) to
capture the dynamic effects more accurately. Further details about the
selection and distribution of collocation points can be found in Liao et al.
(2023b).
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Fig. 4. Comparison of temperature field (a) FEA (b) PINN (c) top-surface along the centerline.
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Fig. 6. Comparison of displacement field (a) FEA (b) PINN (c) top-surface along the central line.

4. Results and discussions

To demonstrate the effectiveness of the thermoelastic PINN, three
different cases of the forward problem are discussed in the following
sub-sections. First, the ability of the thermoelastic PINN to predict
temperature, displacement, and stress fields without any labeled
training data is evaluated. Second, the acceleration of the training
process using small simulation data is examined. Third, the capability of
the thermoelastic PINN to produce faster predictions when initialized
with weights from a previously trained model rather than random
initialization is explored. These results demonstrate that PINNs can
serve as a surrogate model for studying thermal stress evolution. In all
cases, FEA results are used as the benchmark for validation.

4.1. Prediction without training data

The thermoelastic PINN model can use the governing PDEs, initial
conditions, and boundary conditions only to predict the temperature,
displacement, and stress field. It is worth noting that no labeled training
data is used to train the model. The temperature network took 21 min to
train on a single Nvidia RTX A6000 GPU. Fig. 4 shows the comparison
between the PINN’s predicted temperature and the FEA temperature at
time = 0.5 s. The results show that the PINN model can accurately
predict the temperature field, with a root mean square error (RMSE) of
2.03 K. The selection of collocation points near the laser center is crit-
ical; insufficient points in this region can lead to inaccurate predictions
of the high gradient around the laser center. This study employed a
dense grid of collocation points within a 2 x 2 mm area from the laser
center, with a spacing of 0.25 mm. This resolution was identified
through a sequential refinement study. Once the temperature field is
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predicted, it can be used in equations (6)—(8) to calculate the displace-
ment field due to thermal expansion. The evolution of the different loss
terms and the mean squared error (MSE) validation error is shown in
Fig. 5. Initially, the IC loss has a higher value, and its contribution is
balanced by assigning it a lower weight in the total loss (Eq. (29)). The
PDE loss starts off very low, then increases up to 16,000 iterations before
decreasing again. This behavior is likely because, at the start, the
network predicts a nearly uniform temperature across the domain,
which easily satisfies Eq. (1) and results in a small residual. At this stage,
however, the initial conditions (IC) and boundary conditions (BCs) are
not yet satisfied, leading to a higher total loss. As the PINN model begins
to capture the temperature gradient, the PDE residual increases,
resulting in higher PDE loss, and eventually, as the correct temperature
distribution is learned, the PDE loss decreases again.

The predicted displacement is compared with the FEA results in
Fig. 6, showing that the thermoelastic PINN model can accurately

predict the displacement field. As indicated by Egs. 6-20, displacement
is the only independent variable for the solid mechanics model and both
strain and stress fields can be derived from it. Though, in this model, the
stress tensor is also one of the outputs from the stress-displacement
network, which helps to reduce the computational cost. If the model
can accurately predict the displacement field, it will also predict the
stress field accurately. Fig. 7 compares the predicted stress components
with those from the FEA. The PINN model predicts the maximum values
of ox and o, slightly lower than the FEA results. This limitation in
capturing the peak values can be addressed by incorporating a small
amount of training data, as discussed in detail in the subsequent sub-
section. Fig. 8 illustrates the evolution of the different loss terms along
with the MSE validation error. It is observed that the losses and vali-
dation error decrease very slowly. The training process can be acceler-
ated by using partial domain data, which is discussed in detail in the
following subsection.
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4.2. Prediction with training data

In this section, the effect of using partial simulation data as a labeled
training dataset is studied to improve accuracy and training efficiency. It
is important to note that physical laws and labeled data are not enforced
as “hard” constraints in the PINN model, meaning the model is trained to
minimize the loss rather than reduce it to zero. The advantage of this
approach is that simulation or experimental data can be easily incor-
porated without over-constraining the model. Additionally, there is no
minimum required dataset size for the model to converge.

In this study, displacement and stress simulation data, consisting of
31,878 points over the time range from 0.3 to 0.5 s (i.e., 10,626 collo-
cation points per time step), were used to train the stress-displacement
network. In Fig. 9, the predicted stress component (o, and o,) was

compared for models trained with and without labeled data for 70,000
and 130,000 iterations, respectively. It took approximately 2.5 h to train
the model for 70,000 iterations. It was observed that the model trained
with labeled data converged significantly faster than the model without
labeled data with a relatively low value of loss function and validation
error, as shown in Fig. 9a and b. It is worth noting that the PINN model
trained with data in the range of 0.3-0.5 s demonstrates high accuracy in
stress prediction up to approximately 0.8 s (Fig. 9c and d). Beyond this
time, a decline in accuracy is observed, as indicated by the low peak
stress value predicted by the PINN compared to the FEA results (Fig. 9e
and f). At 1 s, the PINN with data still performs slightly better than the
PINN without data; however, as time progresses, the predictions of the
PINN model with data overlap with the PINN without data model. A
limited re-training of the model is necessary to enhance the prediction
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accuracy beyond 0.8 s. This can be accomplished by coupling the PINN
framework with a numerical model, which is out of the scope of this
study and which the authors intend to investigate in future work (Zhang
et al., 2024; Jeon et al., 2024).

4.3. Prediction using pre-trained model

The primary advantage of using data-driven ML models over con-
ventional numerical models is their transferability. Once trained on a
specific set of parameters, an ML model can predict results for different
parameters with minimal computational cost (Bahmani and Sun, 2021).
This characteristic makes data-driven models highly suitable for soft
sensing applications. Fig. 10 presents the evolution of the loss function,
temperature, and stress fields for two sets of laser power and scanning
speed combinations: 350 W at 5 mm/s and 750 W at 15 mm/s. A
benchmark model trained on the 500 W, 10 mm/s case was used as a
pre-trained model to predict the results for the new parameter sets.
While the authors investigated additional parameter combinations, only
two representative cases are presented here for clarity—one with a
lower energy density and the other with a higher energy density than the
benchmark case. The temperature and stress-displacement networks
converged after approximately 1500 iterations, requiring only 51 s and
2.6 min, respectively — substantially less computational time compared
to the full model training phase. The predictions for the 350 W, 5 mm/s
case show excellent agreement with the expected temperature and stress
fields. The results closely align with benchmark FEA data, demon-
strating the transferability and accuracy of the PINN model. For the 750
W, 15 mm/s case, while the temperature prediction remains accurate,
the peak stress is underpredicted. This trend is consistent with the ob-
servations from PINNs trained without labeled data. Therefore, it is
recommended to use a pre-trained model corresponding to the highest
energy density case to improve the accuracy of temperature and stress
field predictions.

5. Conclusions and outlook

This study presents a PINN approach to predict temperature and
thermal stress evolution in the laser metal deposition (LMD) additive
manufacturing process. A thermoelastic PINN model is developed to
predict stress evolution in LMD process. This paper demonstrates the
application of scientific machine learning (SciML) as an alternative to
conventional physics-based models for efficiently solving complex
multiphysics problems, particularly in parametric studies. The major
conclusions of this work are as follows.

e PINN can be used as an alternative method to facilitate the prediction
of the temperature and thermal stress evolution in the LMD process
without requiring labeled training data. Therefore, the thermoelastic
PINN model can be used as a soft sensor for fast prediction of thermal
stress evolution.

The most efficient PINN architecture involves two separate networks
for temperature and stress field predictions. The stress-displacement
network outputs the three displacement and six stress components,
avoiding extra calculations and improving computational efficiency.
Incorporating small, labeled data from simulations makes the PINN
model more accurate and training efficient. However, the model’s
predictive accuracy tends to deteriorate over time, indicating the
need for periodic re-training to maintain performance in long-term
predictions.

The thermoelastic PINN model can predict results for different sets of
parameters very quickly (~3 min) compared to physics-based
simulation models, demonstrating its transferability and suitability
for real-time predictions. For optimal performance in transfer
learning, it is recommended to pre-train the PINN model using the
highest energy density case to ensure accurate prediction of tem-
perature and stress evolution across a range of operating conditions.

Engineering Applications of Artificial Intelligence 157 (2025) 111554

This study represents the first application of the PINN approach to
predict thermal stress evolution in the LMD process. Although PINN is
highly efficient for parametric studies, it is less efficient for a single set of
laser parameters, where physics-based simulations may perform better.
Additionally, PINNs require significantly longer training times when
trained without any data. As more governing equations are incorpo-
rated, there is a possibility that the model may fail to converge in the
absence of training data. The authors believe there is potential to opti-
mize the NN architecture further, which could reduce computation time.
This optimization could be explored in future work. Additionally, the
model can be expanded to include more physics, such as phase changes,
temperature-dependent material properties, and plastic deformation.
The PINN model can also be applied to inverse problems, such as
learning equation parameters like the laser absorption coefficient or
material properties.
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