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Fig. 1. Le�: An example of a textured 3-color Dual Wang tiling with diamond shaped tiles generated from the text-prompt “drone view of canyonlands in utah,

rivers, tiny trees”. Right: selected textured tiles used to create the tiling shown on the le�.

We present a novel and �exible learning-based method for generating tileable
image sets. Our method goes beyond simple self-tiling, supporting sets of
mutually tileable images that exhibit a high degree of diversity. To promote
diversity we decouple structure from content by foregoing explicit copying
of patches from an exemplar image. Instead we leverage the prior knowledge
of natural images and textures embedded in large-scale pretrained di�usion
models to guide tile generation constrained by exterior boundary conditions
and a text prompt to specify the content. By carefully designing and selecting
the exterior boundary conditions, we can reformulate the tile generation
process as an inpainting problem, allowing us to directly employ existing
di�usion-based inpainting models without the need to retrain a model on
a custom training set. We demonstrate the �exibility and e�cacy of our
content-aware tile generation method on di�erent tiling schemes, such as
Wang tiles, from only a text prompt. Furthermore, we introduce a novel Dual
Wang tiling scheme that provides greater texture continuity and diversity
than existing Wang tile variants.
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1 INTRODUCTION

Textures are ubiquitous in computer graphics. A rich variety of meth-
ods have been introduced to aid in the creation of textures, ranging
from specialized texture editors, to exemplar-based texture synthesis
methods [Efros and Leung 1999], and to procedural methods [Perlin
1985]. Classic texture synthesis methods, however, generally couple
structure and content by verbatim copying parts from an exem-
plar without understanding the semantics of the content, thereby
adversely a�ecting the diversity of the generated textures.
Advances in machine learning have renewed the interest in tex-

ture synthesis. Generative networks, especially prompt-conditioned
di�usion models, have good semantic understanding of the image
content. The availability of large pretrained di�usion models makes
these models an attractive candidate for generating new textures
without the need to gather large sets of training textures. However,
di�usion models generate whole textures/images at once, and thus
thesemodels are limited in the size of the texture they can synthesize.
Tileable textures circumvent this problem by synthesizing one or
more small textures that can be seamlessly tiled into a larger texture.
However, existing learning-based methods [Rodriguez-Pardo et al.
2024; Vecchio et al. 2023] are limited to generating a single self-tiling
texture, yielding a tiling that exhibits noticeable repetition.
In this paper we address both tileability as well as diversity in

content-aware tile generation. To promote diversity, we forego ex-
plicit copying of parts of an exemplar texture, and instead rely on the
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prior knowledge embedded in prompt-conditioned di�usion models
to synthesize a unique content per tile. Our key idea is to condition
the synthesis of the image on exterior boundary conditions derived
from the exemplar. Conceptually, this is akin to solving for the in-
terior of a domain using partial di�erential equations (PDE) with
boundary conditions at the edge of the domain, except that we lever-
age a di�usion model for computing the solution corresponding to
the content speci�ed by the prompt. For �exibility and simplicity,
we avoid designing and training a specialized di�usion model to
generate tiles conditioned on prompt and exterior boundary condi-
tions, but instead we leverage existing pre-trained di�usion-based
inpainting models by carefully designing and selecting the exterior
boundary conditions to synthesize each tile’s interior separately
while ensuring tileability.

We demonstrate the �exibility of our content-aware tile genera-
tion on a wide variety of tile types: self-tiling tiles, stochastic self-
tiling tiles, textured Escher tiles, Wang tiles, and a novel Dual Wang
tiling that addresses the di�erence in diversity between the corners
and the interior of Corner Wang tiles [Lagae and Dutré 2005]. To the
best of our knowledge, this simple yet �exible method for generating
tile sets using exterior boundary inpainting has not been explored
in literature, nor have we found any similar implementation on the
various public repositories in the di�usion community. To facilitate
reproduction of our results and to stimulate further research, a ref-
erence implementation of our context-aware tile generation can be
found at https://github.com/samsartor/content_aware_tiles.

In summary, our contributions are:

(1) a �exible method for content-aware generation of diverse tile
sets by specifying exterior boundary conditions;

(2) that enables tileability for di�usion-based image synthesis
beyond self-tiling; and

(3) new tiling schemes such as stochastic self-tiling and textured
Escher tiling, as well as a Dual Wang tile formulation that
solves the corner versus interior diversity problem with Cor-
ner Wang tiles [Lagae and Dutré 2005].

2 RELATED WORK

Texture Synthesis. Classic texture synthesis algorithms can be
categorized as either parametric methods [Heeger and Bergen 1995]
that optimize a texture to match learned statistics from an exemplar,
or as non-parametric techniques that reassemble patches from an
exemplar either by copying [Efros and Leung 1999], quilting [Efros
2001], optimization [Kwatra et al. 2005], graph-cuts [Kwatra et al.
2003], or randomized correspondences [Barnes et al. 2009].
Recent successes of neural networks for various image process-

ing tasks also generated a renewed interest in texture synthesis.
The vast majority of machine learning based texture synthesis ap-
proaches fall in the �rst category of parametric texture synthesis.
Optimization-based approaches replace the manually crafted �lters
by statistics over activations from a pretrained convolutional neural
network [Gatys et al. 2015; Heitz et al. 2021]. However, optimiza-
tion methods are computationally costly, and various feed-forward
networks have been introduced to directly output the resulting tex-
ture. These feed-forward network solutions can be categorized on
whether they are trained per texture exemplar [Li and Wand 2016;

Mardani et al. 2020; Rodriguez-Pardo and Garces 2022; Ulyanov et al.
2016; Zhou et al. 2023, 2018] or per texture category [Bergmann
et al. 2017; Guo et al. 2022; Li et al. 2017; Ulyanov et al. 2017; Yu
et al. 2019]. The vast majority of these methods can only synthesize
a larger texture as a whole, either by repeated doubling [Guo et al.
2022; Li et al. 2017; Ulyanov et al. 2016, 2017; Zhou et al. 2023, 2018],
leveraging a fully convolutional architecture [Bergmann et al. 2017;
Li and Wand 2016], or by applying a neural Fast Fourier Trans-
form [Mardani et al. 2020]. An alternative approach to feed-forward
networks are pointwise evaluation models parameterized as a Multi-
Layer Perceptron (MLP) [Henzler et al. 2021, 2020; Portenier et al.
2020] that take a position and a crop from a large noise �eld as input.
While these methods can synthesize an in�nitely large texture, they
are limited to textures with a high degree of stochasticity.

A �nal class, to which our method also belongs, are tiling-based
synthesis methods which sit in the middle between point-evaluation
and feed-forward methods. Tile-based methods precompute small
tiles that are merged together at run-time. Classic tileable synthesis
methods either explicitely maximize stationarity [Moritz et al. 2017]
or extract the largest tileable patch from an exemplar [Rodriguez-
Pardo et al. 2019]. However, tiling a single texture often results in a
clear visible repetition. Vanhoey et al. [2013] and Kolvar et al. [2016]
exchange patches in a self-tiling texture with a small precomputed
set of compatible (i.e., seamless) patches from elsewhere in the tile.
While more diverse, these methods still rely on verbatim copying
from the same tile. Rodriguez-Pardo and Garces [2022] specialize a
Generative Adversarial Network (GAN) architecture to synthesize
a single tileable texture. Frühstück et al. [2019] tile, based on a guid-
ance map, the activations of an intermediate layer of a GAN trained
to synthesize tiles for a particular texture class (e.g., a terrain map).
The resulting tiled latent �eld is then processed by the remainder
of the GAN to produce a seam-free �nal texture. Zhou et al. [2022]
condition a GAN on a template to control the tileable structure. All
three prior learning-based tiling methods employ a GAN architec-
ture which often needs to be retrained for new texture categories.
We circumvent the problem of retraining (and thus gathering a suf-
�ciently large and diverse set of texture exemplars) by leveraging
existing pretrained text-to-image di�usion models. Furthermore, us-
ing a text-to-image di�usion model also allows the user the specify
the texture with a text-prompt instead of providing an appropriate
exemplar and/or structure-template. Finally, we revisit Wang tiles
in the context of learning-based texture synthesis, which to the best
of our knowledge has not yet been explored.

Wang Tiles. Wang tiles [1961] are squares with colored edges
that can tile the 2D plane by adjoining tiles with matching colored
edges. Cohen et al. [2003] introduced a patch-based method for
synthesizing textured tiles that meet theWang tile matching rules to
enable fast synthesis of large textures. Wei [2004] showed that, once
the texture tiles are precomputed, the tiling process can be directly
implemented on graphics hardware. Furthermore, Wei showed that
the Wang tiling can be evaluated on the �y without the need to
synthesize the full tiling. Other graphics applications of Wang tiles
include blue noise generation [Kopf et al. 2006; Lagae and Dutré
2005], fabrication [Liu et al. 2022], and texturing an arbitrary 3D
shape [Fu and Leung 2005]. Texture synthesis with edge-colored
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Wang tiles su�ers from the aptly named corner-problem where the
corners of each texture tile are the same for all tiles thereby creating
a noticeable repetition in the tiled textures. The corner-problem is
inherent to edge-coloredWang tiles because diagonally neighboring
tiles are not directly constrained, and therefore each corner must
match all other possible corners. Corner Wang tiles [Lagae and
Dutré 2005; Ng et al. 2005] overcome this issue by matching colored
corners instead of colored edges. We also leverage Wang tiles to
support fast synthesis without the need to synthesize the whole 2D
plane. However, unlike the above methods, we do not require an
exemplar sample, but instead allow the user to specify the texture
via a text-prompt and directly synthesize the di�erent Wang tiles. In
addition, we introduce a novel Dual Wang tile variant that increases
diversity and that does not su�er from the corner-problem. Finally,
due to the �exibility of our content-aware tile generation, our tiles
show greater diversity than prior graph-cut generated tile textures.

Generative Di�usion Models. Di�usion models formulate the gen-
erative process of a signal as an iterative neural denoising pro-
cess [Karras et al. 2022; Song et al. 2021] outperforming the state-of-
the art in image synthesis tasks [Dhariwal and Nichol 2021]. When
conditioned on text-prompts [Nichol et al. 2022; Ramesh et al. 2022;
Rombach et al. 2022; Saharia et al. 2022], di�usion models enable
non-artists to concretize their mental images. Di�usion models have
been successfully applied to a wide variety of downstream tasks,
including text-based image editing [Kawar et al. 2023; Kim et al.
2022; Liu et al. 2020; Mokady et al. 2023; Tumanyan et al. 2023],
sketch and depth-based synthesis [Ham et al. 2023; Voynov et al.
2023; Šubrtová et al. 2023; Ye et al. 2023; Zhang et al. 2023], and
appearance capture [Sartor and Peers 2023; Vecchio et al. 2023].

A related class of prior work are methods that leverage di�usion
models to directly synthesize textures on 3D shapes [Chen et al. 2023;
Liu et al. 2023; Richardson et al. 2023; Xiang et al. 2023; Xu et al. 2023;
Zeng et al. 2023]. However, these methods generate a �xed texture
of �nite size. In contrast, we leverage di�usion models to generate
textured tiles suitable for real-time synthesis of, potentially, in�nite
textures. Similar to prior work, we rely on powerful pretrained
text-to-image di�usion models, without �ne-tuning or retraining,
to sample the space of textures.
Most related to our method are tileable di�usion variants. Vec-

chio et al. [2023] introduced a method to generate tileable SVBRDFs
(i.e., a 10-channel image) using noise-rolling. Noise-rolling “rolls”

the noise tensor by a random translation each di�usion step, thereby
placing the seam at a random location. The di�usion models subse-
quently attempts to remove this seam as it is not a natural feature.
Furthermore, to condition noise-rolling on a non-tileable exemplar,
Vecchio et al. introduce a conditional noise rolling variant that
masks a small region around the input border (1/16 of the image
size) allowing the di�usionmodel to seamlessly ’inpaint’ the missing
texels. Rodriguez-Pardo et al. [2024] introduce “TexTile”, a di�eren-
tiable tileability metric. TexTile can be leveraged to force a di�usion
model (i.e., SinFusion [Nikankin et al. 2023]) to produce self-tiling
images by interleaving each di�usion step with a TexTile optimiza-
tion step. It is unclear how either noise-rolling or TexTile can be
extended beyond the generation of a self-tiling image. In contrast,

we demonstrate that our content-aware tile generation method is
also applicable to more general tiling schemes such as Wang tiles.

3 EXTERIOR BOUNDARY INPAINTING

Our goal is to generate a small set of one or more mutually tileable
images from a text-prompt and optionally an exemplar image. When
provided, the content of the optional exemplar and text-prompt
should match. Alternatively, the exemplar image can also be gener-
ated from the text-prompt. In our implementation, we use Stable-
Di�usion-XL [Stability AI 2022b] to generate the exemplars from a
text-prompt and apply (unconditional) noise-rolling [Vecchio et al.
2023] to obtain a more texture-like exemplar; a similar result can be
obtained with appropriate prompt engineering.

We introduce our method starting with the simplest tiling con�gu-
ration (i.e., a self-tiling texture), and then demonstrate our method’s
�exibility by applying the same methodology to more complex tiling
schemes, culminating in a novel Dual Wang tiling.

Self-tiling Texture. We start with the most straightforward tileable
texture (a self-tiling texture that does not introduce visible seams
when tiled over a 2D plane) as a didactic example to explain the
core of our method; similar results can also be obtained with prior
self-tiling methods [Rodriguez-Pardo et al. 2024; Vecchio et al. 2023].

To promote diversity, we aim to fully synthesize the interior tile
without verbatim copying of parts from the exemplar image. In-
stead, we will leverage the exemplar to establish exterior boundary
conditions that constrain the synthesis of the image to be tileable.
To synthesize the self-tiling texture, we employ an existing prompt-
conditioned di�usion-based inpainting model (Stable-Di�usion-2-
Inpainting [Stability AI 2022a]). The role of the prompt is to con-
strain the content, whereas the boundary conditions de�ne the
structure near the tile edges. Inpainting methods require a wide
enough strip of example pixels surrounding the target region in
order to guarantee continuity and a consistent structure. At the
same time, to ensure continuity at matching edges, the combined
boundary strips at matching edges need to be contiguous and not
exhibit any seams. We can ful�ll both goals, by selecting a template
patch from the exemplar (with a size similar to the target tile size)
for each pair of matching edges. In the case of a self-tiling image,
we have two pairs of matching edges: the horizontal and vertical
edge pairs. Next, we cut the template patches in half horizontally
and vertically respectively, and copy each half template patch to the
outside of the tile with the cut-edge abutting the tile edges acting as
the exterior boundary conditions. By construction, these boundary
conditions will be contiguous across matching edges. Finally, we
generate the interior of the tile by inpainting. We only retain the
synthesized interior as the �nal tile such that no pixels from the
exemplar image end up in the �nal tile texture. Note, that we also
inpaint the corners of the image not covered by the template halves;
this helps in creating reasonable content for the corners of the tile.
Figure 2 illustrates the process, and Figure 8 (top row, 1st column)
shows an example of a tiled texture.

Stochastic Self-tiling Texture. Self-tiling textures often produce
visibly repeating patterns, and the resulting texture is visually not
very diverse. To enrich the tiling, we leverage that di�usion-based
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Fig. 6. Infinite Stochastic Tiling: An example of on-the-fly generation of

Wang tile textures with a random seed to produce a unique texture per tile.

come at a signi�cant computational overhead; future advances in
inpainting might make this variant less costly and more practical.

6 EVALUATION

Comparison to Graph-cut based Synthesis. Cohen et al. [2003] pro-
pose to generate tile textures using graph-cut quilting of diamond
shaped templates cut from an exemplar. Because the same texels
from the templates are copied to multiple tile textures, the result-
ing tiles (Figure 5, right) are visually less diverse compared to our
inpainting-based method (Figure 5, 3rd column) that generates a
related, but unique, texture per tile.

Quantitative Comparison. To quantitatively assess our content-
aware tile generation method we employ two commonly used qual-
ity metrics: CLIP-IQA [Wang et al. 2023] to measure the overall
quality of the tiles, and CLIPScore [Hessel et al. 2021] to measure
the semantic similarity with the prompt. Besides these classic image
quality measures, diversity between the di�erent tiles also matters.
We express this by computing the average pairwise correlation
of the inception features [Salimans et al. 2016] between tiles. The
lower the correlation, the more diverse the tile-set. Other common
metrics such as SSIM and LPIPS assume aligned images, and are
therefore not suited for evaluating the quality of tiles [Rodriguez-
Pardo et al. 2024]. SIFID [Shaham et al. 2019] between the tiles and
the exemplar is also not suited as it penalizes diversity. We also do
not use TexTile [Rodriguez-Pardo et al. 2024] because it is intended
for comparing self-tiling images.

We compute the average scores over all the examples included in
this paper and the supplemental material. Because our exemplar im-
ages are semantically more complex than commonly used stationary
and stochastic textures, we also report the scores on 12 test textures
(resolution > 256) from SeamlessGAN [Rodriguez-Pardo and Garces
2022] (see supplemental material for corresponding tilings). We man-
ually create a text-prompt for each test texture in the SeamlessGAN
set, and use it as input to our content-aware tile generation, as well
as for evaluating CLIPScore. Table 1 lists the scores for each test set
for context-aware generated textures for di�erent tiling schemes.

Table 1. �antitative comparison of context-aware tile generation for dif-

ferent tiling schemes using CLIPScore [Hessel et al. 2021] (for semantic

similarity; higher is be�er), CLIP-IQA [Wang et al. 2023] (for quality; higher

is be�er), and average correlation of the inception features [Salimans et al.

2016] (to measure diversity; lower is be�er) over the 12 classic textures from

SeamlessGAN [Rodriguez-Pardo and Garces 2022], as well as semantically

more complex textures shown in this paper. Additionally, we also include

the scores for Wang tiles synthesized using the graph-cut based method

of Cohen et al. [2003] (3rd row marked in gray). All scores, except single

self-tiling, are computed using 81 tiles per scheme.

Classic Texture Semantic Textures
CLIP CLIP Incep. CLIP CLIP Incep.
Score IQA Correl. Score IQA Correl.

Single Self 24.587 0.765 ⧸ 23.370 0.746 ⧸

Stoch. Self 27.018 0.767 9.368 28.070 0.744 5.144
Wang (cut) 24.467 0.785 10.089 26.548 0.739 5.773
Wang Tile 26.002 0.762 9.293 28.57 0.756 5.251
Dual Wang 26.327 0.765 8.331 28.44 0.760 4.875

For completeness, we also include the scores for graph-cut based
Wang tile synthesis [Cohen et al. 2003]. All tilings except single
self-tiling consist of 81 tile textures. The quantitative comparisons
show that our method produces higher qualityWang tile textures for
typical textures than the graph-cut based tile synthesis. We found
that context-aware tile generation generally performs relatively
better on semantic textures that exhibit less regular structures than
on the classic SeamlessGAN test set. The quantitative comparison
also demonstrates that with a large tile set (81 in this case), sto-
chastic self-tiling is a viable alternative especially for inconspicuous
boundaries. Finally, Dual Wang tiling performs overall best, and it
produces the most diverse tilings for both test sets.

Self-tiling Comparison. While the focus of our method is on gen-
erating tile sets of multiple mutually tileable images, our method
can also be used for generating self-tiling images. While there exist
a number of prior learning-based methods for generating self-tiling
images, it should be stressed than none can be extended to produce
multi-tile sets or stochastic self-tiling images.
For completeness, Figure 7 and Table 2 compare our method

against recent self-tiling image generationmethods: the feedforward
SeamlessGAN [Rodriguez-Pardo and Garces 2022], the optimization
based Neural Texture Synthesis [Heitz et al. 2021] with a TexTile
loss [Rodriguez-Pardo and Garces 2022] to promote tileability, the
SinFusion [Nikankin et al. 2023] single-image di�usion model in
which each denoising step is interleaved with an TexTile maximiza-
tion step, and Conditional Noise Rolling [Vecchio et al. 2023] using
the same di�usion models as our method. Because SeamlessGAN is
not trained for semantic textures, we only compare on the Seam-
lessGAN dataset for fairness. In addition to CLIPScore [Hessel et al.
2021] and CLIP-IQA [Wang et al. 2023] used in the multi-tile compar-
ison (Table 1), we also include SIFID [Shaham et al. 2019] to measure
the similarity to the exemplar, and TexTile [Rodriguez-Pardo and
Garces 2022] to quantify self-tileability. For both Conditional Noise
Rolling and our method, we perform tile selection with 4 candidate
tiles using SIFID as the selection criterion; for completeness we also
include a variant where we replace the selection criterion by TexTile
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8 CONCLUSION

In this paper we presented an easy to implement, yet �exible, method
for generating tileable textures using inpainting. Unlike prior work,
we do not reuse pixels or patches from the exemplar, but instead use
them to impose exterior boundary conditions on the tile textures.
Furthermore, our tile generation method can easily accommodate
tiling schemes beyond self-tiling. By appropriate selection of the
template patches, we ensure that the boundaries match seamlessly
with corresponding boundaries on matching tiles. We demonstrated
our method on a variety of tiling schemes, including a novel Dual
Wang tile scheme that provides greater tile diversity than prior
Wang tile schemes without incurring an additional storage cost.
For future work, we would like to speed up and improve the au-
tomated methods for selecting the template patches and defective
tile rejection. Furthermore, we would like to explore other tiling
schemes.
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Fig. 8. Comparison of Tiling Schemes: A comparison of the di�erent tiling schemes (first row: self-tiling and stochastic self-tiling (with 4 tiles); second row:

stochastic Escher self-tiling (with 4 tiles) and regular 3-color Wang tiling (81 tiles); last row: 3-color Dual Wang tiling) demonstrated on texture tiles generated

with the prompt “European city blocks, tile roofs, streams, drone footage”. For each example we also show the tile shape and size with the scribbled overlay.

.
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“woven basket closeup, sharp focus, wooden strips”

“pebbles in a stream”

“misty mountains illustration, pine trees”

“volcanic crevice, lava �ow, bright magma, jagged rocks, small plants”

Fig. 9. Dual Wang Tile Results: High resolution (7168 × 2560) Dual Wang tiled textures generated from a text-prompt (listed above each example). Please

zoom-in on the tiled textures to fully appreciate the generated texture detail.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Exterior Boundary Inpainting
	4 Results
	5 Additional Applications
	6 Evaluation
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

