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Fig. 1. Left: An example of a textured 3-color Dual Wang tiling with diamond shaped tiles generated from the text-prompt “drone view of canyonlands in utah,
rivers, tiny trees”. Right: selected textured tiles used to create the tiling shown on the left.

We present a novel and flexible learning-based method for generating tileable
image sets. Our method goes beyond simple self-tiling, supporting sets of
mutually tileable images that exhibit a high degree of diversity. To promote
diversity we decouple structure from content by foregoing explicit copying
of patches from an exemplar image. Instead we leverage the prior knowledge
of natural images and textures embedded in large-scale pretrained diffusion
models to guide tile generation constrained by exterior boundary conditions
and a text prompt to specify the content. By carefully designing and selecting
the exterior boundary conditions, we can reformulate the tile generation
process as an inpainting problem, allowing us to directly employ existing
diffusion-based inpainting models without the need to retrain a model on
a custom training set. We demonstrate the flexibility and efficacy of our
content-aware tile generation method on different tiling schemes, such as
Wang tiles, from only a text prompt. Furthermore, we introduce a novel Dual
Wang tiling scheme that provides greater texture continuity and diversity
than existing Wang tile variants.
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1 INTRODUCTION

Textures are ubiquitous in computer graphics. A rich variety of meth-
ods have been introduced to aid in the creation of textures, ranging
from specialized texture editors, to exemplar-based texture synthesis
methods [Efros and Leung 1999], and to procedural methods [Perlin
1985]. Classic texture synthesis methods, however, generally couple
structure and content by verbatim copying parts from an exem-
plar without understanding the semantics of the content, thereby
adversely affecting the diversity of the generated textures.

Advances in machine learning have renewed the interest in tex-
ture synthesis. Generative networks, especially prompt-conditioned
diffusion models, have good semantic understanding of the image
content. The availability of large pretrained diffusion models makes
these models an attractive candidate for generating new textures
without the need to gather large sets of training textures. However,
diffusion models generate whole textures/images at once, and thus
these models are limited in the size of the texture they can synthesize.
Tileable textures circumvent this problem by synthesizing one or
more small textures that can be seamlessly tiled into a larger texture.
However, existing learning-based methods [Rodriguez-Pardo et al.
2024; Vecchio et al. 2023] are limited to generating a single self-tiling
texture, yielding a tiling that exhibits noticeable repetition.

In this paper we address both tileability as well as diversity in
content-aware tile generation. To promote diversity, we forego ex-
plicit copying of parts of an exemplar texture, and instead rely on the
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prior knowledge embedded in prompt-conditioned diffusion models
to synthesize a unique content per tile. Our key idea is to condition
the synthesis of the image on exterior boundary conditions derived
from the exemplar. Conceptually, this is akin to solving for the in-
terior of a domain using partial differential equations (PDE) with
boundary conditions at the edge of the domain, except that we lever-
age a diffusion model for computing the solution corresponding to
the content specified by the prompt. For flexibility and simplicity,
we avoid designing and training a specialized diffusion model to
generate tiles conditioned on prompt and exterior boundary condi-
tions, but instead we leverage existing pre-trained diffusion-based
inpainting models by carefully designing and selecting the exterior
boundary conditions to synthesize each tile’s interior separately
while ensuring tileability.

We demonstrate the flexibility of our content-aware tile genera-
tion on a wide variety of tile types: self-tiling tiles, stochastic self-
tiling tiles, textured Escher tiles, Wang tiles, and a novel Dual Wang
tiling that addresses the difference in diversity between the corners
and the interior of Corner Wang tiles [Lagae and Dutré 2005]. To the
best of our knowledge, this simple yet flexible method for generating
tile sets using exterior boundary inpainting has not been explored
in literature, nor have we found any similar implementation on the
various public repositories in the diffusion community. To facilitate
reproduction of our results and to stimulate further research, a ref-
erence implementation of our context-aware tile generation can be
found at https://github.com/samsartor/content_aware_tiles.

In summary, our contributions are:

(1) aflexible method for content-aware generation of diverse tile
sets by specifying exterior boundary conditions;

(2) that enables tileability for diffusion-based image synthesis
beyond self-tiling; and

(3) new tiling schemes such as stochastic self-tiling and textured
Escher tiling, as well as a Dual Wang tile formulation that
solves the corner versus interior diversity problem with Cor-
ner Wang tiles [Lagae and Dutré 2005].

2 RELATED WORK

Texture Synthesis. Classic texture synthesis algorithms can be
categorized as either parametric methods [Heeger and Bergen 1995]
that optimize a texture to match learned statistics from an exemplar,
or as non-parametric techniques that reassemble patches from an
exemplar either by copying [Efros and Leung 1999], quilting [Efros
2001], optimization [Kwatra et al. 2005], graph-cuts [Kwatra et al.
2003], or randomized correspondences [Barnes et al. 2009].

Recent successes of neural networks for various image process-
ing tasks also generated a renewed interest in texture synthesis.
The vast majority of machine learning based texture synthesis ap-
proaches fall in the first category of parametric texture synthesis.
Optimization-based approaches replace the manually crafted filters
by statistics over activations from a pretrained convolutional neural
network [Gatys et al. 2015; Heitz et al. 2021]. However, optimiza-
tion methods are computationally costly, and various feed-forward
networks have been introduced to directly output the resulting tex-
ture. These feed-forward network solutions can be categorized on
whether they are trained per texture exemplar [Li and Wand 2016;
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Mardani et al. 2020; Rodriguez-Pardo and Garces 2022; Ulyanov et al.
2016; Zhou et al. 2023, 2018] or per texture category [Bergmann
et al. 2017; Guo et al. 2022; Li et al. 2017; Ulyanov et al. 2017; Yu
et al. 2019]. The vast majority of these methods can only synthesize
a larger texture as a whole, either by repeated doubling [Guo et al.
2022; Li et al. 2017; Ulyanov et al. 2016, 2017; Zhou et al. 2023, 2018],
leveraging a fully convolutional architecture [Bergmann et al. 2017;
Li and Wand 2016], or by applying a neural Fast Fourier Trans-
form [Mardani et al. 2020]. An alternative approach to feed-forward
networks are pointwise evaluation models parameterized as a Multi-
Layer Perceptron (MLP) [Henzler et al. 2021, 2020; Portenier et al.
2020] that take a position and a crop from a large noise field as input.
While these methods can synthesize an infinitely large texture, they
are limited to textures with a high degree of stochasticity.

A final class, to which our method also belongs, are tiling-based
synthesis methods which sit in the middle between point-evaluation
and feed-forward methods. Tile-based methods precompute small
tiles that are merged together at run-time. Classic tileable synthesis
methods either explicitely maximize stationarity [Moritz et al. 2017]
or extract the largest tileable patch from an exemplar [Rodriguez-
Pardo et al. 2019]. However, tiling a single texture often results in a
clear visible repetition. Vanhoey et al. [2013] and Kolvar et al. [2016]
exchange patches in a self-tiling texture with a small precomputed
set of compatible (i.e., seamless) patches from elsewhere in the tile.
While more diverse, these methods still rely on verbatim copying
from the same tile. Rodriguez-Pardo and Garces [2022] specialize a
Generative Adversarial Network (GAN) architecture to synthesize
a single tileable texture. Frithstiick et al. [2019] tile, based on a guid-
ance map, the activations of an intermediate layer of a GAN trained
to synthesize tiles for a particular texture class (e.g., a terrain map).
The resulting tiled latent field is then processed by the remainder
of the GAN to produce a seam-free final texture. Zhou et al. [2022]
condition a GAN on a template to control the tileable structure. All
three prior learning-based tiling methods employ a GAN architec-
ture which often needs to be retrained for new texture categories.
We circumvent the problem of retraining (and thus gathering a suf-
ficiently large and diverse set of texture exemplars) by leveraging
existing pretrained text-to-image diffusion models. Furthermore, us-
ing a text-to-image diffusion model also allows the user the specify
the texture with a text-prompt instead of providing an appropriate
exemplar and/or structure-template. Finally, we revisit Wang tiles
in the context of learning-based texture synthesis, which to the best
of our knowledge has not yet been explored.

Wang Tiles. Wang tiles [1961] are squares with colored edges
that can tile the 2D plane by adjoining tiles with matching colored
edges. Cohen et al. [2003] introduced a patch-based method for
synthesizing textured tiles that meet the Wang tile matching rules to
enable fast synthesis of large textures. Wei [2004] showed that, once
the texture tiles are precomputed, the tiling process can be directly
implemented on graphics hardware. Furthermore, Wei showed that
the Wang tiling can be evaluated on the fly without the need to
synthesize the full tiling. Other graphics applications of Wang tiles
include blue noise generation [Kopf et al. 2006; Lagae and Dutré
2005], fabrication [Liu et al. 2022], and texturing an arbitrary 3D
shape [Fu and Leung 2005]. Texture synthesis with edge-colored



Wang tiles suffers from the aptly named corner-problem where the
corners of each texture tile are the same for all tiles thereby creating
a noticeable repetition in the tiled textures. The corner-problem is
inherent to edge-colored Wang tiles because diagonally neighboring
tiles are not directly constrained, and therefore each corner must
match all other possible corners. Corner Wang tiles [Lagae and
Dutré 2005; Ng et al. 2005] overcome this issue by matching colored
corners instead of colored edges. We also leverage Wang tiles to
support fast synthesis without the need to synthesize the whole 2D
plane. However, unlike the above methods, we do not require an
exemplar sample, but instead allow the user to specify the texture
via a text-prompt and directly synthesize the different Wang tiles. In
addition, we introduce a novel Dual Wang tile variant that increases
diversity and that does not suffer from the corner-problem. Finally,
due to the flexibility of our content-aware tile generation, our tiles
show greater diversity than prior graph-cut generated tile textures.

Generative Diffusion Models. Diffusion models formulate the gen-
erative process of a signal as an iterative neural denoising pro-
cess [Karras et al. 2022; Song et al. 2021] outperforming the state-of-
the art in image synthesis tasks [Dhariwal and Nichol 2021]. When
conditioned on text-prompts [Nichol et al. 2022; Ramesh et al. 2022;
Rombach et al. 2022; Saharia et al. 2022], diffusion models enable
non-artists to concretize their mental images. Diffusion models have
been successfully applied to a wide variety of downstream tasks,
including text-based image editing [Kawar et al. 2023; Kim et al.
2022; Liu et al. 2020; Mokady et al. 2023; Tumanyan et al. 2023],
sketch and depth-based synthesis [Ham et al. 2023; Voynov et al.
2023; Subrtova et al. 2023; Ye et al. 2023; Zhang et al. 2023], and
appearance capture [Sartor and Peers 2023; Vecchio et al. 2023].

A related class of prior work are methods that leverage diffusion
models to directly synthesize textures on 3D shapes [Chen et al. 2023;
Liu et al. 2023; Richardson et al. 2023; Xiang et al. 2023; Xu et al. 2023;
Zeng et al. 2023]. However, these methods generate a fixed texture
of finite size. In contrast, we leverage diffusion models to generate
textured tiles suitable for real-time synthesis of, potentially, infinite
textures. Similar to prior work, we rely on powerful pretrained
text-to-image diffusion models, without fine-tuning or retraining,
to sample the space of textures.

Most related to our method are tileable diffusion variants. Vec-
chio et al. [2023] introduced a method to generate tileable SVBRDFs
(i.e., a 10-channel image) using noise-rolling. Noise-rolling “rolls”
the noise tensor by a random translation each diffusion step, thereby
placing the seam at a random location. The diffusion models subse-
quently attempts to remove this seam as it is not a natural feature.
Furthermore, to condition noise-rolling on a non-tileable exemplar,
Vecchio et al. introduce a conditional noise rolling variant that
masks a small region around the input border (1/16 of the image
size) allowing the diffusion model to seamlessly "inpaint’ the missing
texels. Rodriguez-Pardo et al. [2024] introduce “TexTile”, a differen-
tiable tileability metric. TexTile can be leveraged to force a diffusion
model (i.e., SinFusion [Nikankin et al. 2023]) to produce self-tiling
images by interleaving each diffusion step with a TexTile optimiza-
tion step. It is unclear how either noise-rolling or TexTile can be
extended beyond the generation of a self-tiling image. In contrast,
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we demonstrate that our content-aware tile generation method is
also applicable to more general tiling schemes such as Wang tiles.

3 EXTERIOR BOUNDARY INPAINTING

Our goal is to generate a small set of one or more mutually tileable
images from a text-prompt and optionally an exemplar image. When
provided, the content of the optional exemplar and text-prompt
should match. Alternatively, the exemplar image can also be gener-
ated from the text-prompt. In our implementation, we use Stable-
Diffusion-XL [Stability Al 2022b] to generate the exemplars from a
text-prompt and apply (unconditional) noise-rolling [Vecchio et al.
2023] to obtain a more texture-like exemplar; a similar result can be
obtained with appropriate prompt engineering.

We introduce our method starting with the simplest tiling configu-
ration (i.e., a self-tiling texture), and then demonstrate our method’s
flexibility by applying the same methodology to more complex tiling
schemes, culminating in a novel Dual Wang tiling.

Self-tiling Texture. We start with the most straightforward tileable
texture (a self-tiling texture that does not introduce visible seams
when tiled over a 2D plane) as a didactic example to explain the
core of our method; similar results can also be obtained with prior
self-tiling methods [Rodriguez-Pardo et al. 2024; Vecchio et al. 2023].

To promote diversity, we aim to fully synthesize the interior tile
without verbatim copying of parts from the exemplar image. In-
stead, we will leverage the exemplar to establish exterior boundary
conditions that constrain the synthesis of the image to be tileable.
To synthesize the self-tiling texture, we employ an existing prompt-
conditioned diffusion-based inpainting model (Stable-Diffusion-2-
Inpainting [Stability Al 2022a]). The role of the prompt is to con-
strain the content, whereas the boundary conditions define the
structure near the tile edges. Inpainting methods require a wide
enough strip of example pixels surrounding the target region in
order to guarantee continuity and a consistent structure. At the
same time, to ensure continuity at matching edges, the combined
boundary strips at matching edges need to be contiguous and not
exhibit any seams. We can fulfill both goals, by selecting a template
patch from the exemplar (with a size similar to the target tile size)
for each pair of matching edges. In the case of a self-tiling image,
we have two pairs of matching edges: the horizontal and vertical
edge pairs. Next, we cut the template patches in half horizontally
and vertically respectively, and copy each half template patch to the
outside of the tile with the cut-edge abutting the tile edges acting as
the exterior boundary conditions. By construction, these boundary
conditions will be contiguous across matching edges. Finally, we
generate the interior of the tile by inpainting. We only retain the
synthesized interior as the final tile such that no pixels from the
exemplar image end up in the final tile texture. Note, that we also
inpaint the corners of the image not covered by the template halves;
this helps in creating reasonable content for the corners of the tile.
Figure 2 illustrates the process, and Figure 8 (top row, 1st column)
shows an example of a tiled texture.

Stochastic Self-tiling Texture. Self-tiling textures often produce
visibly repeating patterns, and the resulting texture is visually not
very diverse. To enrich the tiling, we leverage that diffusion-based
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Fig. 2. Self-tiling Texture Generation: We establish contiguous horizontal
and vertical boundary conditions by selecting two template patches from the
exemplar, and cutting them in half horizontally and vertically respectively.
Each cut half is placed on the outside of the tile with the cut edge (dashed
line) aligned with a tile edge. The interior of the tile (scribbled area) is then
inpainted. The final tile is then cropped to only retain the synthesized part.

inpainting takes, besides an image and a mask indicating the area to
be inpainted, also a seed as input. Changing the seed will result in a
slightly different generated texture. Keeping the boundary condi-
tions (i.e., template patches) the same, allows us to generate multiple
textured tiles that are mutually tileable. This yields a simple tiling al-
gorithm where we randomly select, during tiling, which texture tile
to use, yielding a more diverse tiled texture. Figure 8 (top row, 2nd
column) shows an example of such a stochastic self-tiling texture.

Escher Tiles. Salient features that cross a tile edge impose stricter
constraints on the tile generation process. While we could select dif-
ferent boundary conditions, it is not always possible to find straight
boundary conditions without salient features. However, we observe
that diffusion-based inpainting imposes no constraints on the shape
of the boundaries. Hence, we can trivially generate non-square “Es-
cher” tiles by cutting each template patch along an arbitrary path.
Figure 8 (middle row, 1st column) shows an example of such a
self-tiling Escher texture.

Wang Tiles. The above stochastic tiles are good for textures with
isolated objects and simple boundaries (e.g., shells in sand). However,
if the features at the tile boundaries are distinct, the resulting texture
will exhibit a clearly visible repetition. Cohen et al. [2003] proposed
to use textured Wang tiles to produce tiled textures with greater
diversity. We can apply a similar method for generating Wang tiles
as the previous tiling variants. However, unlike the self-tiling case,
we select two template patches (for horizontal and vertical splitting
respectively) per Wang tile edge color (= 2C template patches for C
colors). For each of the C* Wang tiles, we generate the texture by
copying the appropriate half template patches (based on the edge
color) as an exterior boundary condition, and inpaint the interior
region as before (Figure 3). Figure 8 (middle row, 2nd column) shows
an example of a titled texture generated with a 3-color textured
Wang tile set (= 81 tiles). An advantage of our exterior boundary
inpainting strategy is that our textured Wang tiles will exhibit high
diversity since each tile only shares the boundary conditions and the
interior of each textured tile is inpainted separately. In contrast, the
graph-cut based method of Cohen et al. reuses the same diamond
templates, and thus the same texture content appears in multiple
textured tiles. Similar as in stochastic self-tiling, we can also further
increase diversity by generating multiple textures per Wang tile and
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Fig. 3. Wang Tile Generation: Given C colors, we select 2 X C template
patches from an exemplar image, and cut each template patch in half (a
horizontal and a vertical cut per color, marked by the dashed line). For each
Wang tile we set the boundary conditions by coping each half template
patch to the exterior of the Wang tile with the (dashed) edge matching the
corresponding Wang tile edge. Finally, we generate the Wang tile texture
by inpainting the interior region (i.e., the scribbled area).

randomly selecting one at tiling-time (a similar strategy was also
proposed by Cohen et al. [2003]).

Dual Wang Tiles. Wang tiles suffer from the so-called “corner
problem” [Cohen et al. 2003; Lagae and Dutré 2005], i.e., each cor-
ner texel is shared between all tiles because the tiles placed diago-
nally across a corner do not share any edges and thus each corner
needs to match to the opposing corner of any other tile. Lagae and
Dutré [2005] introduced Corner Wang tiles as a solution; please refer
to the supplemental document for a description of how to apply
content-aware tile generation to Corner Wang tiles. While Corner
Wang tiles avoid the corner problem, it also introduces two new
practical problems. First, there is a difference in diversity between
the corners (copied from the exemplar) and the center (synthesized).
Second, as observed by Lagae and Dutré [2005], discontinuities of-
ten occur close to the center of each tile edge as these regions are
weakly constrained by the surrounding copied patches.

We introduce a new Dual Wang tile variant to solve both problems.
The key idea is to make the content of the corner regions of a Wang
tile dependent on its neighboring tiles. We start from a regular Wang
tiling. However, instead of attaching a square texture to each tile, we
attach a diamond-shaped texture (each diamond’s corner touches
the center of each Wang tile edge). We call these diamond shaped tex-
tures the “interior tiles” (white diamonds in
the inset). Each interior tile is identified by
the edge-colors of the surrounding Wang tile,
and thus there are C* different interior tiles.

Tiling a plane with such interior tiles results

in a texture with diamond shape holes be-

tween each four interior tiles that share a

corner. We employ a second set of diamond shaped textures, named
“cross tiles” (black diamonds in the inset), to seamless fill the resulting
hole. Each cross tile is identified by the colors of the edges incident
on the Wang tile-corner at the center of the cross tile. Hence, there
also exist C* possible cross tiles. The combined set of interior and
cross tiles form the Dual Wang tile set. Since every interior tile can
be combined with different cross tiles (depending on its neighboring
tiles), both the interior and corner regions are now equally diverse.
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Fig. 4. Dual Wang Tiles are created in a three-stage process. Left: we first generate a subset of 4 X C? regular Wang tiles, and extract the boundary conditions
for each interior tile edge (i.e., 4 edges, each identified by 2 colors or C? combinations). Middle: we assemble the generated boundary conditions corresponding
to each interior tile’s color combinations, and inpaint and extract the central interior tile texture (black scribble). Right: the cross texture tiles (white scribble)
are generated by inpainting a 2 X 2 tiling of the plane with the interior tiles as boundary conditions.

Our goal now is to create two sets of textured tiles, one for the
interior tiles and one for the cross tiles. Each tile does not need to
seamlessly tile (along an edge) with another tile from the same set,
but it does need to tile with corresponding tiles from from the other
set. Consequently, we can synthesize both sets separately; once
we have one set (e.g., interior tile set), we can use it as boundary
conditions for generating the second set. Additionally, we want to
impose a corner-continuity-constraint at the (diamond) corners in
both sets in order to avoid discontinuities as in Corner Wang tiles.

We start with the observation that the boundary conditions used
for generating regular Wang tiles already meet the (diamond) corner-
continuity-constraint. However, these are not sufficient conditions
for seamless Dual Wang tiles, as we further need to constrain each
interior/cross tile edge. Since each interior/cross tile edge is iden-
tified by two colors, there are C? possible conditions per edge (or
4 x C? in total). Unlike the corner-continuity-constraint, the edge
constraints do not need to enforce continuity between multiple
sides of tiles from the same set; it only needs to impose the same
constraint for corresponding tile edges in the other set. Both con-
straints cannot be met by simply cutting the boundary constraints
from the exemplar. Instead, we first generate a regular Wang tile set,
which by construction is contiguous across the edges (with match-
ing colors), and thus also across the diamond-corners. It therefore
forms a potential source for extracting the Dual Wang tile boundary
conditions. However, each interior/cross edge-color combination
occurs multiple times over the Wang tile set, each with potentially
different synthesized pixel values along the diamond-tile edges. We
therefore select a subset of the Wang tile set such that each combina-
tion only occurs once (i.e., a subset of 4 x C? Wang tiles). From this
subset, we can then extract the boundary conditions for generating
the interior tiles (Figure 4, left). Note, because we want to retain
continuity across the interior/cross tile corners, we also include the
original boundary conditions for each Wang tile, yielding a square-
shaped exterior boundary condition with a triangular corner (i.e.,
overlapping with the interior tile) cut out.

To generate the interior tiles, we assemble the Wang-tile-extracted
boundary conditions for each interior edge, and inpaint the interior
tiles (Figure 4, middle). Once we have generated all interior tiles,
we can then synthesize the cross tiles by creating a 2 X 2 tiling of
interior tiles with corresponding colors which we use as boundary
conditions for inpainting the cross tiles (Figure 4, right).

The generated Dual Wang tiles solve both of the identified issues
with Corner Wang tiles. First, all tiles in both sets are fully generated,
and no part of the boundary conditions are included in the final
textured tile sets. Therefore, no part of the textured tile set occurs
at a different frequency. Second, the Wang-tile-extracted boundary
conditions provide boundary conditions across the diamond bound-
aries, as well as across the diamond-tile corners. Figure 8 (bottom
row) shows an example of a Dual Wang tiled texture.

4 RESULTS

We implemented our content-aware tiling in PyTorch [Paszke et al.
2019], using Stable-Diffusion-XL [Stability Al 2022b] to generate
the exemplar image from a user-provided text-prompt, and Stable-
Diffusion-2-Inpainting [Stability Al 2022a] for tile generation. Any
sufficiently performant combination of text2image and inpainting
models could be easily used instead, including future more advanced
models, without the need for any additional training or per-model
customization. All results in this paper use a tile texture resolution
of 256 x 256 and a tiling of 3 edge colors. We use an Euler sampler
with 40 inference steps, and lower the CFG scale to 7.5.

Figure 9 shows four different generated tiled textures using our
Dual Wang tile scheme. The tiled textures, as shown, have an effec-
tive resolution of 7168 x 2560 or 28 x 10 tiles (i.e., each tile appears
on average 3.5 times). As can be seen, our tiled textures include fine
details as well as a large diversity in the generated tiles. We refer to
the supplemental material for additional generated tiled textures.

Template Patch Selection. The exterior boundary conditions are
determined by selecting patches from the exemplar image. For many
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Fig. 5. Img2Tile: Our method can also start from template patches selected from a suitable photograph and a descriptive prompt ( “bright orange lily in a
flower garden, small blue and white flowers, leaves”) (left). Please zoom-in on the Dual Wang tiled texture (2nd) and regular Wang tiled texture (3rd) to fully
appreciate the generated texture detail. Our tile generation method produces a more diverse set of tiles compared to graph-cut based tile synthesis (right).

exemplar images a simple random selection often works surpris-
ingly well (e.g., the “pebbles in a stream” and “woven basket” in Fig-
ure 9). Similar to Cohen et al. [2003] we potentially can also re-
peatedly select a random set of candidate template patches from
which we retain the template patches that produce the highest qual-
ity tiles according to CLIP-IQA [Wang et al. 2023]. Alternatively,
when the image contains strongly aligned features (e.g., “wooden
floor” in the supplemental material), we can exploit that our method
only requires that opposing vertical features along the horizontal
boundaries are aligned and likewise for opposing horizontal features
along the vertical boundaries. Hence, we constrain the selection to
first pick a random horizontal/vertical line along which all verti-
cal/horizontal template patches are randomly selected. This con-
strained selection method is unique to our method as prior graph
cut-based methods require that all four quadrants are mutually
aligned and thus are unlikely to align structures when the horizon-
tal and vertical (constrained selection) line is randomly selected.
Finally, if artistic control is desired, then the user can also manually
select the template patches by simply marking the horizontal and
vertical boundary lines per patch.

Tile Rejection. Diffusion-based inpainting can introduce unwanted
features such as noticeable seams and fake watermarks. Since every
tile is generated independently (given a set of boundary conditions),
we can simply regenerate the tile that exhibits the undesirable im-
age feature using a different seed. The user can either manually
mark the affected tiles or follow a similar selection strategy as for
the automatic template patch selection. For each tile, we generate
multiple candidates (4 in our implementation), each with a different
seed, and retain the candidate with the highest quality. In this case
we use SIFID [Shaham et al. 2019], as we found that CLIP-IQA is
blind to fake watermarks; the most common artefact produced by
Stable-Diffusion-2-Inpainting.

Performance. The computational cost of context-aware tile gener-
ation depends on the tiling variant and on whether tile rejection is
used. We generally require 40ms per U-Net evaluation on an NVidia
A5000, times 40 inference steps per inpainting operation, yielding
a 1.7s total computation time (including VAE encoding/decoding)
per tile. When generating 3-color Wang tiles (i.e., 81 tiles), this
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corresponds to a total of 140s. When evaluating 4 candidate tiles,
including the cost of scoring, this cost increases to 12 minutes. For
3-color Dual Wang tiles, we perform 243 inpainting operations, yield-
ing 7 minutes without rejection, or 36 minutes with 4 candidate
rejection. The cost of rejection can be avoided by manually select-
ing which tiles to regenerate (approximately 2-5 minutes overhead).
Newer diffusion models are significantly faster (0.2s instead of 1.7s,
or an 8X speedup), but we did not implement such optimizations.
Furthermore, our method can trivially be parallelized over multiple
GPUs. We believe that, with careful engineering, the computational
synthesis cost can be significantly lowered.

5 ADDITIONAL APPLICATIONS

Img2Tile. All results shown so far have been generated starting
from a text-prompt. However, we can also skip the initial step and
extract the template patches from a suitable photograph; we also
also expect the user to provide a text-prompt describing the image
content. Once the template patches have been selected, the tile
generation proceeds as before. Figure 5 shows an example of a 3-
color Dual Wang tiling and a regular Wang tiling with textured tiles
generated from a photograph of flowers with manually selected
template patches from the input photograph. To ensure that the
flowers fit within a tile, we downsample the input photograph by a
factor 4. Because our tile generation leverages inpainting, we never
directly copy any texels from the input photograph. This results in a
greater diversity of salient objects; i.e., different orientations/poses
and even semantically correct recoloring (e.g., the exemplar only
contains orange Lilies, whereas the tiles also includes white Lilies).

Infinite Stochastic Tiling. Each tiling scheme discussed in Section 3
also supports stochastic tiling; we simply generate additional tiles
with the same template patches using different inpainting seeds.
We can also postpone the actual inpainting of the tiles to tiling-
time. During preprocessing we compute the necessary boundary
conditions (i.e., the template patches). When evaluating the tiled
texture, we generate the corresponding tile on-the-fly with a random
seed. The effective result would be equivalent to a tiling with an
infinitely large stochastic tile set. Figure 6 shows an example of such
an infinite stochastic Wang tiled texture. While more diverse, it does



Fig. 6. Infinite Stochastic Tiling: An example of on-the-fly generation of
Wang tile textures with a random seed to produce a unique texture per tile.

come at a significant computational overhead; future advances in
inpainting might make this variant less costly and more practical.

6 EVALUATION

Comparison to Graph-cut based Synthesis. Cohen et al. [2003] pro-
pose to generate tile textures using graph-cut quilting of diamond
shaped templates cut from an exemplar. Because the same texels
from the templates are copied to multiple tile textures, the result-
ing tiles (Figure 5, right) are visually less diverse compared to our
inpainting-based method (Figure 5, 3rd column) that generates a
related, but unique, texture per tile.

Quantitative Comparison. To quantitatively assess our content-
aware tile generation method we employ two commonly used qual-
ity metrics: CLIP-IQA [Wang et al. 2023] to measure the overall
quality of the tiles, and CLIPScore [Hessel et al. 2021] to measure
the semantic similarity with the prompt. Besides these classic image
quality measures, diversity between the different tiles also matters.
We express this by computing the average pairwise correlation
of the inception features [Salimans et al. 2016] between tiles. The
lower the correlation, the more diverse the tile-set. Other common
metrics such as SSIM and LPIPS assume aligned images, and are
therefore not suited for evaluating the quality of tiles [Rodriguez-
Pardo et al. 2024]. SIFID [Shaham et al. 2019] between the tiles and
the exemplar is also not suited as it penalizes diversity. We also do
not use TexTile [Rodriguez-Pardo et al. 2024] because it is intended
for comparing self-tiling images.

We compute the average scores over all the examples included in
this paper and the supplemental material. Because our exemplar im-
ages are semantically more complex than commonly used stationary
and stochastic textures, we also report the scores on 12 test textures
(resolution > 256) from SeamlessGAN [Rodriguez-Pardo and Garces
2022] (see supplemental material for corresponding tilings). We man-
ually create a text-prompt for each test texture in the SeamlessGAN
set, and use it as input to our content-aware tile generation, as well
as for evaluating CLIPScore. Table 1 lists the scores for each test set
for context-aware generated textures for different tiling schemes.
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Table 1. Quantitative comparison of context-aware tile generation for dif-
ferent tiling schemes using CLIPScore [Hessel et al. 2021] (for semantic
similarity; higher is better), CLIP-IQA [Wang et al. 2023] (for quality; higher
is better), and average correlation of the inception features [Salimans et al.
2016] (to measure diversity; lower is better) over the 12 classic textures from
SeamlessGAN [Rodriguez-Pardo and Garces 2022], as well as semantically
more complex textures shown in this paper. Additionally, we also include
the scores for Wang tiles synthesized using the graph-cut based method
of Cohen et al. [2003] (3rd row marked in gray). All scores, except single
self-tiling, are computed using 81 tiles per scheme.

Classic Texture Semantic Textures
CLIP CLIP | Incep. CLIP | CLIP | Incep.
Score IQA | Correl. || Score | IQA | Correl.
Single Self 24.587 | 0.765 / 23.370 | 0.746 /
Stoch. Self || 27.018 | 0.767 | 9.368 28.070 | 0.744 | 5.144
Wang (cut) 24.467 | 0.785 | 10.089 26.548 | 0.739 5.773
Wang Tile 26.002 | 0.762 | 9.293 28.57 | 0.756 | 5.251
Dual Wang || 26.327 | 0.765 | 8.331 28.44 | 0.760 | 4.875

For completeness, we also include the scores for graph-cut based
Wang tile synthesis [Cohen et al. 2003]. All tilings except single
self-tiling consist of 81 tile textures. The quantitative comparisons
show that our method produces higher quality Wang tile textures for
typical textures than the graph-cut based tile synthesis. We found
that context-aware tile generation generally performs relatively
better on semantic textures that exhibit less regular structures than
on the classic SeamlessGAN test set. The quantitative comparison
also demonstrates that with a large tile set (81 in this case), sto-
chastic self-tiling is a viable alternative especially for inconspicuous
boundaries. Finally, Dual Wang tiling performs overall best, and it
produces the most diverse tilings for both test sets.

Self-tiling Comparison. While the focus of our method is on gen-
erating tile sets of multiple mutually tileable images, our method
can also be used for generating self-tiling images. While there exist
a number of prior learning-based methods for generating self-tiling
images, it should be stressed than none can be extended to produce
multi-tile sets or stochastic self-tiling images.

For completeness, Figure 7 and Table 2 compare our method
against recent self-tiling image generation methods: the feedforward
SeamlessGAN [Rodriguez-Pardo and Garces 2022], the optimization
based Neural Texture Synthesis [Heitz et al. 2021] with a TexTile
loss [Rodriguez-Pardo and Garces 2022] to promote tileability, the
SinFusion [Nikankin et al. 2023] single-image diffusion model in
which each denoising step is interleaved with an TexTile maximiza-
tion step, and Conditional Noise Rolling [Vecchio et al. 2023] using
the same diffusion models as our method. Because SeamlessGAN is
not trained for semantic textures, we only compare on the Seam-
lessGAN dataset for fairness. In addition to CLIPScore [Hessel et al.
2021] and CLIP-IQA [Wang et al. 2023] used in the multi-tile compar-
ison (Table 1), we also include SIFID [Shaham et al. 2019] to measure
the similarity to the exemplar, and TexTile [Rodriguez-Pardo and
Garces 2022] to quantify self-tileability. For both Conditional Noise
Rolling and our method, we perform tile selection with 4 candidate
tiles using SIFID as the selection criterion; for completeness we also
include a variant where we replace the selection criterion by TexTile

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.
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Fig. 7. Self-tiling Qualitative Comparison of SeamlessGAN (a), Neural Texture Synthesis with TexTile loss (b), SinFusion with TexTile loss (c), Conditional
Noise Rolling (d), and our context-aware self-tiling (e) on an exemplar from the SeamlessGAN test set.

Table 2. Quantitative comparison of different learning-based self-tiling tex-
ture generation methods (SeamlessGAN [Rodriguez-Pardo and Garces 2022],
Neural Texture Synthesis [Heitz et al. 2021] with a TexTile loss [Rodriguez-
Pardo and Garces 2022], SinFusion [Nikankin et al. 2023] interleaved with
a TexTile optimization step, and Conditional Noise Rolling [Vecchio et al.
2023]) using CLIPScore [Hessel et al. 2021] (for semantic similarity; higher is
better), CLIP-IQA [Wang et al. 2023] (for quality; higher is better), SIFID [Sha-
ham et al. 2019] (for similarity to the exemplar; lower is better), and TexTile
score (for self-tileability; higher is better) over the 12 classic textures from
SeamlessGAN [Rodriguez-Pardo and Garces 2022]. For both Conditional
Noise Rolling and our method, we employ tile selection (using SIFID or
TexTile) from 4 candidate tiles.

CLIP CLIP SIFID | TexTile

Score I0A
SeamlessGAN 22.528 | 0.7803 | 9.215 | 0.7149
Neural Tex. Synth. (TexTile) 22.350 | 0.8012 | 8.599 0.7783
SinFusion (TexTile) 20.829 | 0.7918 | 10.184 | 0.7407
Cond. Noise Roll. (SIFID) 22.668 | 0.7447 | 6.607 0.4826
Ours Self Tiling (SIFID) 22.857 | 07717 | 7.978 | 0.6950
Cond. Noise Roll. (TexTile) 23.212 | 0.7445 | 6.926 | 0.5270
Ours Self Tiling (TexTile) 22.228 | 0.7737 | 9.119 | 0.7494

to favor tileability rather than quality. From Table 2 we see that none
of the methods outperforms the others on all error metrics. Condi-
tional Noise Rolling does not score well on tileability (TexTile) due
to the very small inpainting region (1/16th of the image size). Our
method with SIFID-based candidate selection performs similar to
SeamlessGAN while adhering better to the exemplar (SIFID). When
using TexTile for tile selection, our method performs similar to the
methods that explicitly optimize tileability. Qualitatively (Figure 7)
we see that Conditional Noise Rolling (d) and our method with
SIFID selection (e) best preserve the characteristics of the exemplar
without deforming the corks (e.g., Neural Texture Synthesis (b))
or reducing variation (e.g., SinFusion (c)). Moreover, in contrast to
SeamlessGAN (a), our results appear less regular and exhibit less
tileability artifacts (e.g., Conditional Noise Rolling). We believe our
context-aware tile generation method (with SIFID selection) strikes
a good balance between exemplar similarity and tileability.

7 DISCUSSION

Dual Wang Tile Storage Requirements. Dual Wang tile sets contain
double the number of tiles compared to a regular Wang tile set.
However, it should be noted that the interior and cross tile textures
contain just 50% of the texels compared to regular Wang tile textures.

ACM Trans. Graph., Vol. 43, No. 6, Article . Publication date: December 2024.

Hence, when packed in a single texture map, the dual Wang tiles
have exactly the same storage costs.

Wei [2004] packs a complete regular Wang tile set in a single tex-
ture using every tile only once and where each edge is matched. Such
a packing ensures minimal storage and fast fetching and, impor-
tantly, correct texture filtering. However, Wei’s Wang tile packing
only guarantees that each tile occurs once (i.e., interior Dual Wang
tile), but it does not offer such guarantee for each cross tile. Fortu-
nately, a valid minimal Dual Wang tile packing is possible, and we
refer to the supplemental document for novel generative algorithms
for Dual Wang tile packings with odd and even colors.

Wang Tile Equivalence. 1t is possible to assemble the Dual Wang
tiles into a regular Wang tile set because the underlying tiling is the
same. Each texture in each of underlying Wang tiles is determined
by the colors of the four edges, as well as the two colors of incident
edges (not part of the Wang tile) at each corner. This implies that
each texture is determined by 12 edges, and thus the equivalent
number of unique Wang tiles textures required equals C'? = (C3)4,
or a Wang tiling consisting of C3 colors. While the number of unique
tiles is huge compared to regular Wang tiles (e.g., for C = 3, regular
Wang tiles consists of 81 textures and dual Wang tiles are equivalent
to 531,441 regular Wang tile textures), the resulting Wang tiles are
a combination of a smaller set of basis textures.

Limitations. Not all exemplar images are suitable for tile gen-
eration. Images with salient features larger than the tile size fail
to produce satisfactory results. We address this issue by simply
downsampling the image such that the salient features are smaller
than the tile size. Furthermore, images with perspective distortions
(e.g., finite vanishing points) or images with brightness gradients
typically result in noticeable repetitive patterns. However, prior
graph-cut based methods also struggle with such textures. In gen-
eral, our context-aware tile generation effectively ‘paints’ around
localized challenges, but it cannot correct global deviations. When
starting from a prompt, diffusion is not aware of this assumption
(unless carefully specified in the prompt), hence we apply (uncon-
ditional) noise-rolling to impose the assumptions during exemplar
synthesis. Note we did not apply noise-rolling as a preprocessing
step on the SeamlessGAN dataset used for evaluation in which many
exemplar violate the above assumptions, hence the SeamlessGAN
results can be seen as a worst case scenario; applying noise-rolling
(or any other stationarization method) as a preprocessing step could
further improve performance for suboptimal exemplars.



8 CONCLUSION

In this paper we presented an easy to implement, yet flexible, method
for generating tileable textures using inpainting. Unlike prior work,
we do not reuse pixels or patches from the exemplar, but instead use
them to impose exterior boundary conditions on the tile textures.
Furthermore, our tile generation method can easily accommodate
tiling schemes beyond self-tiling. By appropriate selection of the
template patches, we ensure that the boundaries match seamlessly
with corresponding boundaries on matching tiles. We demonstrated
our method on a variety of tiling schemes, including a novel Dual
Wang tile scheme that provides greater tile diversity than prior
Wang tile schemes without incurring an additional storage cost.
For future work, we would like to speed up and improve the au-
tomated methods for selecting the template patches and defective
tile rejection. Furthermore, we would like to explore other tiling
schemes.
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Fig. 8. Comparison of Tiling Schemes: A comparison of the different tiling schemes (first row: self-tiling and stochastic self-tiling (with 4 tiles); second row:
stochastic Escher self-tiling (with 4 tiles) and regular 3-color Wang tiling (81 tiles); last row: 3-color Dual Wang tiling) demonstrated on texture tiles generated
with the prompt “European city blocks, tile roofs, streams, drone footage”. For each example we also show the tile shape and size with the scribbled overlay.
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Fig. 9. Dual Wang Tile Results: High resolution (7168 x 2560) Dual Wang tiled textures generated from a text-prompt (listed above each example). Please
zoom-in on the tiled textures to fully appreciate the generated texture detail.
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