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“futuristic soldier with advanced armor weaponry and helmet” “rusty steel toy frog with spatially varying materials with the body di�use but shinny eyes”

Figure 1: Examples of generated images speci�ed via a text-prompt (listed below each example) and with �ne-grained lighting

control. Each prompt is plausibly visualized under two di�erent user-provided lighting environments.

ABSTRACT

This paper presents a novel method for exerting �ne-grained light-

ing control during text-driven di�usion-based image generation.

While existing di�usion models already have the ability to generate

images under any lighting condition, without additional guidance

these models tend to correlate image content and lighting. More-

over, text prompts lack the necessary expressional power to de-

scribe detailed lighting setups. To provide the content creator with

�ne-grained control over the lighting during image generation, we

augment the text-prompt with detailed lighting information in the

form of radiance hints, i.e., visualizations of the scene geometry

with a homogeneous canonical material under the target lighting.

∗Work partially done during internship at Microsoft Research Asia.
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However, the scene geometry needed to produce the radiance hints

is unknown. Our key observation is that we only need to guide

the di�usion process, hence exact radiance hints are not necessary;

we only need to point the di�usion model in the right direction.

Based on this observation, we introduce a three stage method for

controlling the lighting during image generation. In the �rst stage,

we leverage a standard pretrained di�usion model to generate a

provisional image under uncontrolled lighting. Next, in the sec-

ond stage, we resynthesize and re�ne the foreground object in the

generated image by passing the target lighting to a re�ned di�u-

sion model, named DiLightNet, using radiance hints computed on

a coarse shape of the foreground object inferred from the provi-

sional image. To retain the texture details, we multiply the radiance

hints with a neural encoding of the provisional synthesized im-

age before passing it to DiLightNet. Finally, in the third stage, we

resynthesize the background to be consistent with the lighting on

the foreground object. We demonstrate and validate our lighting

controlled di�usion model on a variety of text prompts and lighting

conditions.

CCS CONCEPTS

• Computing methodologies→ Image-based rendering.
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non-rigid semantic edits [Cao et al. 2023; Kawar et al. 2023], modify-

ing the identity and gender of subjects [Kim et al. 2022], capturing

the data distribution of underrepresented attributes [Cong et al.

2023], and material properties [Sharma et al. 2023]. However, with

the exception of Alchemist [Sharma et al. 2023], these methods only

o�er mid and high level semantic control. Similar to Alchemist, our

method aims to empower the user to control low level shading

properties. Complementary to Alchemist which o�ers relative con-

trol over material properties such as translucency and gloss, our

method provides �ne-grained control over the incident lighting in

the generated image.

Alternative guidance mechanisms have been introduced to pro-

vide spatial control during the synthesis process based on (sketch,

depth, or stroke) images [Meng et al. 2022; Voynov et al. 2023a; Ye

et al. 2023], identity [Ma et al. 2023; Ruiz et al. 2023b; Xiao et al.

2023], photo-collections [Ruiz et al. 2023a], and by directly manip-

ulating mid-level information [Ho and Salimans 2021; Mou et al.

2023; Zhang et al. 2023b]. However, none of these methods provide

control over the incident lighting. We follow a similar process and

inject radiance hints modulated by a neural encoded version of

the image into the di�usion model via a ControlNet [Zhang et al.

2023b].

2D di�usion models have also been leveraged to change view-

point or generate 3D models [Liu et al. 2023; Watson et al. 2022;

Xiang et al. 2023; Zhang et al. 2023a]. However, these methods

do not o�er control over incident lighting, nor guarantee con-

sistent lighting between viewpoints. Paint3D [Zeng et al. 2023]

directly generates di�use albedo textures in the UV domain of

a given mesh. Fantasia3D [Chen et al. 2023] and MatLaber [Xu

et al. 2023] generate a richer set of re�ectance properties in the

form of shape and spatially-varying BRDFs by leveraging text-to-

image 2D di�usion models and score distillation. Di�usion-based

SVBRDF estimation [Sartor and Peers 2023; Vecchio et al. 2023]

and di�usion-based intrinsic decomposition [Kocsis et al. 2023]

also produce rich re�ectance properties, albeit from a photograph

instead of a text-prompt. However, all these methods require a ren-

dering algorithm to visualize the appearance, including indirect

lighting and shadows. In contrast, our method directly controls

the lighting during the sampling process, leveraging the space of

plausible image appearance embedded by the di�usion model.

Single Image Relighting. While distinct, our method is related to

relighting from a single image, which is a highly underconstrained

problem. To provide additional constraints, existing single image

methods focus exclusively on either outdoor scenes [Gri�ths et al.

2022; Liu et al. 2020a; Türe et al. 2021; Wu and Saito 2017; Yu et al.

2020], faces [Han et al. 2023; Nestmeyer et al. 2020; Pandey et al.

2021; Peers et al. 2007; Ranjan et al. 2023; Shu et al. 2017; Sun et al.

2019; Wang et al. 2008], or human bodies [Ji et al. 2022; Kanamori

and Endo 2018; Lagunas et al. 2021]. In contrast, our method aims

to o�er �ne-grained lighting control of general objects. Further-

more, existing methods expect a captured photograph of an existing

scene as input, whereas, importantly, our method operates on, pos-

sibly implausible, generated images. The vast majority of prior

single image relighting methods explicitly disentangle the image

in various components, that are subsequently recombined after

changing the lighting. In contrast, similar to Sun et al. [2019], we

forego explicit decomposition of the input scene in disentangled

components. However, unlike Sun et al., we do not use a specially

trained encoder-decoder model, but rely on a general generative dif-

fusion model to produce realistic relit images. Furthermore, the vast

majority of prior single image relighting methods represents inci-

dent lighting using a Spherical Harmonics encoding [Ramamoorthi

2002]. Notable exceptions are methods that represent the incident

lighting by a shading image. Gri�ths et al. [2022] pass a cosine

weighted shadow map (along with normals and the main light

direction) to a relighting network for outdoor scenes. Similarly,

Kanamori et al. [2018] and Ji et al. [2022] pass shading and ambient

occlusion maps to a neural rendering network. To better model

specular re�ections, Pandey et al. [2021] and Lagunas et al. [2021]

pass, in addition to a di�use shading image, also one or more spec-

ular shading images for neural relighting of human faces and full

bodies respectively. We follow a similar strategy and pass the target

lighting as a di�use and (four) specular radiance hints as conditions

to a di�usion model.

Relighting using Di�usion Models. Ding et al.[2023] alter light-

ing, pose, and facial expression by learning a CGI-to-real mapping

from surface normals, albedo, and a di�use shaded 3D morphable

model �tted to a single photograph [Feng et al. 2021]. To preserve

the identity of the subject in the input photograph, the di�usion

model is re�ned on a small collection (∼ 20) of photographs of

the subject. Ponglertnapakorn et al.[2023] leverage o�-the-shelf

estimators [Deng et al. 2019; Feng et al. 2021; Yu et al. 2018] for

the lighting, a 3D morphable model, the subject’s identity, cam-

era parameters, a foreground mask, and cast-shadows to train a

conditional di�usion network that takes a di�use rendered model

under the novel lighting (blended on the estimated background),

in addition to the identity, camera parameters, and target shadows

to generate a relit image of the subject. While we follow a similar

overall strategy, our method di�ers on three critical points. First,

our method operates on general scenes which exhibit a broader

range of shape and material variations than faces. Second, we pro-

vide multiple radiance hints (di�use and specular) to control the

lighting during the di�usion process. Finally, DiLightNet operates

purely on an image generated via a text-prompt and our method

does not require a real-world captured input photograph.

Lasagna [Bashkirova et al. 2023] also shares the goal of control-

ling the lighting in di�usion-based image generation. However,

instead of radiance hints, Lasagna uses language tokens to con-

trol the lighting and thus lacks the �ne-grained lighting control of

DiLightNet. Furthermore, it only supports a prede�ned set of 12

directional lights while DiLightNet handles both point and envi-

ronmental lighting.

3 OVERVIEW

Our method takes as input a text prompt (describing the image con-

tent), the target lighting, a content-seed that controls variations in

shape and texture, and an appearance-seed that controls variations

in light-material interactions. The resulting output is a generated

image corresponding to the text prompt that is consistent with

the target lighting. We assume that the image contains an isolated

foreground object, and that the background content is implicitly

described by the target lighting. We make no assumption on the
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that it will generate a foreground object with the same shape and

texture as in the provisional image. Therefore, we want to include

the provisional image into the di�usion process. However, the tex-

ture and shape information in the provisional image is entangled

with the unknown lighting from the �rst stage. We disentangle

the relevant texture and shape information by �rst encoding the

provisional image (with the alpha channel set to the segmentation

mask). Our encoder follows Gao et al.’s [2020] deferred neural re-

lighting architecture, but with a reduced number of channels to

limit memory usage (see supplemental material). In addition, we

include a channel-wise multiplication between the 12-channel en-

coded feature map of the provisional image and the 4 × 3-channel

radiance hints which are subsequently passed to ControlNet.

4.3 Training

To train DiLightNet, we opt for a synthetic 3D training set that al-

lows us to precisely control the lighting, geometry, and the material

distributions. It is critical that the synthetic training set contains a

wide variety of shapes, materials, and lighting.

Shape and Material Diversity. We select synthetic objects from

the LVIS category in the Objaverse dataset [Deitke et al. 2022] that

also have either a roughnessmap, a normalmap, or both, yielding an

initial subset of 13 objects. In addition, we select 4 objects from

the Objaverse dataset (from the LVIS category) that only contain a

di�use texture map and assign a homogeneous specular BRDF with

a roughness log-uniformly selected in [0.02, 0.5] and specular tint

set to 1.0. To ensure that the re�ned di�usionmodel has seen objects

with homogeneous materials, we select an additional 4 objects

(from the LVIS category) and randomly assign a homogeneous

di�use albedo and specular roughness sampled as before.

Empirically, we found that the diversity of detailed spatially

varying materials in the Objaverse dataset is limited. Therefore,

we further augment the dataset with the shapes with the most

“likes” (a statistic provided by the Objaverse dataset) from each

LVIS category. For each of these selected shapes we automatically

generate UV coordinates using Blender (we eliminate the shapes

(17) for which this step failed), and create 4 synthetic objects per

shape by assigning a randomly selected spatially varying material

from the INRIA-Highres SVBRDF dataset [Deschaintre et al. 2020],

yielding a total of 4 additional objects with enhanced materials.

In total, our training set contains 25 synthetic objects with a

wide variety of shapes and materials. We scale and translate each

object such that its bounding sphere is centered at the origin with

a radius of 0.5m.

Lighting Diversity. We consider �ve di�erent lighting categories:

(1) Point Light Source random uniformly sampled on the upper

hemisphere (with 0 ≤ \ ≤ 60
◦) surrounding the object with

radius sampled in [4<, 5<], and with the power uniformly

chosen in [500,, 1500, ]. To avoid completely black images

when the point light is positioned behind the object, we also

add a 1, uniform white environment light.

(2) Multiple Point Light Sources: three light sources sampled in

the same manner as the single light source case, including

the uniform environment lighting.

(3) Environment Lighting sampled from a collection of 679 envi-

ronment maps from Polyhaven.com.

(4) Monochrome Environment Lighting are the luminance only

versions of the environment lighting category. Including this

category combats potential inherent biases in the overall

color distribution in the environment lighting.

(5) Area Light Source simulates studio setups with large light

boxes. We achieve this by randomly placing an area light

source on the hemisphere surrounding the object (similar to

point light sources) aimed at the object, with a size randomly

chosen in the range [5<, 10<] and total power sampled in

[500,, 1500, ]. Similar to the point lighting, we add a uni-

form white environment light of 1, .

Rendering. We render each of the 25 synthetic objects from

four viewpoints uniformly sampled on the hemisphere with radius

uniformly sampled from [0.8<, 1.1<] and 10
◦ ≤ \ ≤ 90

◦, aimed

at the object with a �eld of view sampled from [25◦, 30◦], and lit

with 12 di�erent lighting conditions, selected with a relative ratio

of 3 : 1 : 3 : 2 : 3 for point source lighting, multiple point sources,

environment maps, monochrome environment maps, and area light

sources respectively. For each rendered viewpoint, we also require

corresponding radiance hints. However, at evaluation time, the ra-

diance hints will be constructed from estimated depth maps; using

the ground truth geometry and normals during training would

therefore introduce a domain gap. We observe that depth-derived

radiance hints include two types of approximations. First, due to

the smoothed normals, the resulting shading will also be smoothed

and shading e�ects due to intricate geometrical details are lost; i.e.,

it locally a�ects the radiance hints. Second, due to the ambiguities

in estimating depth from a single image, missing geometry and

global deformations cause incorrect shadows; i.e., a non-local e�ect.

We argue that di�usion models can plausibly correct the former,

whereas the latter is more ambiguous and di�cult to correct. There-

fore, we would like the training radiance hints to only introduce

approximations on the local shading. This is achieved by using

the ground truth geometry with modi�ed shading normals. We

consider two di�erent approximations for the shading normals, and

randomly select at training time which one to use: (1) we use the

geometric normals and ignore any shading normals from the ob-

ject’s material model, or (2) we use the corresponding normals from

the smoothed triangulated depth (to reduce computational costs,

we estimate the depth for each synthetic object for each viewpoint

under uniform white lighting instead for each of the 9 sampled

lighting conditions).

Training Dataset. At training time we dynamically compose the

input-output pairs. We �rst select a synthetic object and view uni-

formly. Next, we select the lighting for the input and output image.

To select the lighting condition for the input training image, we note

that images generated with di�usion models tend to be carefully

white balanced. Therefore, we exclude the input images rendered

under (colored) environment lighting. For the output image, we

randomly select any of the 12 precomputed renders (including those

renderedwith colored environment lighting).We select the radiance

hints corresponding to the output with a 1:9 ratio for the radiance

hints with smoothed depth-estimated normals versus geometric

normals. To further improve robustness with respect to colored
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lighting, we apply an additional color augmentation to the output

images by randomly shu�ing their RGB color channels; we use

the same color channel permutation for the output image and its

corresponding radiance hints.

5 BACKGROUND INPAINTING

Environment-based Inpainting. When the target lighting is speci-

�ed by an environment map, we can directly render the background

image using the same camera con�guration as for the radiance hints.

We composite the foreground on the background using the previ-

ously computed segmentation mask �ltered with a 3 × 3 average

�lter to smooth the mask edges.

Di�usion-based Inpainting. For all other lighting conditions, we

use a pretrained di�usion-based inpainting model [Rombach et al.

2022] (i.e., the stable-di�usion-2-inpaintingmodel [Stability AI 2022a]).

We input the synthesized foreground image along with the (inverse)

segmentation mask, as well as the original text prompt, to complete

the foreground image with a consistent background.

6 RESULTS

We implemented DiLightNet in PyTorch [Paszke et al. 2019] and

use stable di�usion v2.1 [Stability AI 2022b] as the base pretrained

di�usion model to re�ne. We jointly train the provisional image

encoder as well as the ControlNet using AdamW [Loshchilov and

Hutter 2018] with a 10−5 learning rate (all other hyper-parameter

are kept at the default values) for 150 iterations using a batch size

of 64. Training took approximately 30 hours using 8× NVidia V100

GPUs. The training data is rendered using Blender’s Cycles path

tracer [Blender Foundation 2011] at 512 × 512 resolution with 4096

samples per pixel.

Consistent Lighting Control. Figure 9 shows �ve generated scenes

(the provisional image is shown in the �rst column for reference) un-

der 5 di�erent lighting conditions (point light (2nd and 3rd column),

and 3 di�erent environment maps from [Debevec 1998]: Eucalyptus

Grove (4th column), Kitchen (5th column), and Grace Cathedral

(last column)) for �ve di�erent prompts. Each prompt was chosen

to demonstrate our method’s ability to handle di�erent material

and geometric properties such high specular materials (1st row),

rich geometrical details (2nd row), objects with multiple homoge-

neous materials (3rd row), non-realistic geometry (4th row), and

spatially-varying materials (last row). The provisional image in the

last two rows are generated with DALL-E3 instead of stable di�usion

v2.1 to better model the more complex prompt. We observe that

DiLightNet produces plausible results and that the appearance is

consistent under the same target lighting for di�erent prompts.

Furthermore, the lighting changes are plausible over each prompt.

Please refer to the supplemental material for additional results.

Additional User Control. One advantage of our three step solu-

tion is that the user can alter the appearance-seed in the second

stage to modify the interpretation of the materials in the provi-

sional image. Figure 4 showcases how di�erent appearance-seeds

a�ect the generated results. Altering the appearance-seed yields

alternative explanations of the appearance in the provisional image.

Conversely, using the same appearance-seed produces a consis-

tent appearance under di�erent controlled lighting conditions (as

demonstrated in Figure 9).

In addition to the appearance-seed, we can further specialize the

text prompt between the �rst and second stage to provide additional

guidance on the material properties. Figure 5 shows four special-

izations of an initial prompt (“toy robot” ) by adding: “paper made”,

“plastic”, “specular shinny metallic”, and “mirror polished metallic”.

From these results we can see that all variants are consistent under

the same lighting, but with a more constrained material appearance

(i.e., di�use without a highlight, a mixture of di�use and specular,

and two metallic surfaces with a di�erent roughness).

User Study. We perform two user studies to measure the percep-

tual lighting accuracy and the consistency of the resulting appear-

ance under varying lighting; i.e., how well changes induced by the

target lighting are disentangled from the appearance-seed.

In the �rst study, participants rate the lighting similarity of the

foreground objects in image pairs (four-level rating range where 0

means least similar and 3 means most similar) selected from three

groups of image pairings (10 pairs in each group):

(1) a synthetic object rendered under the target lighting is paired

with any of the generated images shown in this paper and

the supplemental material under identical lighting;

(2) a pair of synthetic objects rendered under identical target

lighting (this serves as the positive baseline); and

(3) a synthetic image paired with a generated image without

lighting control (the negative baseline). To avoid that the

background a�ects the judgment, we replace the background

with the target environment lighting.

The average total rating over 20 non-expert participants with im-

ages shown in randomized order for each of the three classes is:

19.61/19.85/12.25, showing that DiLightNet scores similar to the

positive reference.

In a second study, participants rate the appearance consistency

of the foreground objects in image pairs generated with rotated

environment lighting. We opt for rotating the lighting to retain the

overall color balance and frequency of lighting. The three groups

of pairings under rotated lighting are:

(1) image pairs generated with the same prompt and seeds;

(2) image pairs renderedwith the same synthetic object (positive

baseline); and

(3) pairs generated without lighting control with the same text

prompt but di�erent content-seeds (negative baseline).

The average total rating was 25.75/25.05/11.35, con�rming appear-

ance consistency on par with the positive baseline.

7 ABLATION STUDY

We perform a series of qualitative and quantitative ablation studies

to better understand the impact of the di�erent components that

comprise our method. For quantitative evaluation, we create a

synthetic test set by selecting objects from the Objaverse dataset

that have the ’Sta� Picked’ label and no LVIS label, ensuring that

there is no overlap between the training and test set. To ensure

high quality synthetic objects, we manually remove scenes that

are not limited to a single object and/or objects with low quality
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Figure 4: Impact of changing the appearance-seed. If not su�ciently constrained by the text prompt, the generated provisional

image (left) might not provide su�cient information for DiLightNet to determine the exact materials of the object. Altering the

appearance-seed directs DiLightNet to sample a di�erent interpretation of light-matter interaction in the provisional image.

In this example, altering the appearance-seed induces changes in the interpretation of the glossiness and smoothness of the

leather gloves.

Provisional image "paper made" "plastic" "specular shinny metallic" "mirror polished metallic"

Figure 5: Impact of prompt specialization in DiLightNet. Instead of altering the appearance-seed, the user can also specialize

the prompt with additional material information in the 2nd stage. In this example the initial prompt (“toy robot” ) is augmented

with additional material descriptions while keeping the (point lighting) �xed.

Table 1: Quantitative comparison of di�erent variants of pass-

ing radiance hints to theDiLightNet (rows 1-3), the number of

radiance hints (rows 4-6), impact of including the segmenta-

tionmask (row 7-8) and di�erent training data augmentation

schemes (rows 9-12).

Variant PSNR SSIM LPIPS

Our Network 22.97 0.8249 0.1165

Direct ControlNet 22.82 0.8216 0.1212

Non-Encoded Multiplication 22.40 0.8174 0.1232

3 Radiance Hints 22.92 0.8197 0.1188

4 Radiance Hints 22.97 0.8249 0.1165

5 Radiance Hints 22.79 0.8200 0.1176

w/ Mask 22.97 0.8249 0.1165

w/o Mask 22.23 0.8148 0.1184

Full Augmentation 22.97 0.8249 0.1165

w/o Material Augmentation 22.90 0.8235 0.1178

w/o Smoothed Normal 21.88 0.7974 0.1314

w/o Color Augmentation 22.54 0.8161 0.1223

scanned textures with baked in lighting e�ects, yielding a test set

of 50 high quality synthetic objects. We render each test scene for

3 viewpoints and 6 lighting conditions. We quantify errors with

the PSNR, SSIM, and LPIPS [Zhang et al. 2018] metrics. Because

the appearance-seed is a user controlled parameter, we assume that

the user would select the appearance-seed that produces the most

plausible result. To simulate this process, we report the errors for

each scene/view/lighting combination that produces the lowest

LPIPS errors on renders generated with 4 di�erent appearance-

seeds.

Provisional Image Encoding. DiLightNet multiplies the (encoded)

provisional image with the radiance hints. We found that both the

encoding, as well as the multiplication is critical for obtaining good

results. Figure 6 shows a comparison of DiLightNet versus two

alternate architectures:

(1) Direct ControlNet passes the provisional image directly as an

additional channel (in addition to the radiance hints) instead

of multiplying, yielding 16 channels input for ControlNet

(3-channels for the provisional image, plus (4 × 3)-channels

for the radiance hints, and 1 channel for the mask); and

(2) Non-encoded Multiplication of the provisional image (without

encoding) with the radiance hints.

Neither of the variants generates satisfactory results. This quali-

tative result is further quantitatively con�rmed in Table 1 (rows

1-3).

Impact of Number of Radiance Hints. Table 1 (rows 4-6) compares

the impact of changing the number of (specular) radiance hints;
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all variants include a di�use radiance hint. The 3 radiance hints

variant includes 2 specular radiance hints with roughness 0.13, and

0.34. The 4 radiance hints variant includes one additional specular

radiance hint with roughness 0.05. Finally, the 5 radiance hints

variant includes an additional (sharp specular) hint with roughness

0.02. From the quantitative results in Table 1 we can see that 4

radiance hints perform best. Upon closer inspection of the results,

we observe that there is little di�erence for scenes that exhibit a

simple shape with simple materials. However, for scenes with a

more complex shapewe �nd that the 3 radiance hints are insu�cient

to accurately model the light-matter interactions. For scenes with

complexmaterials, we found that providing toomany radiance hints

can also be detrimental due to the limited quality of the (smoothed)

depth-estimated normals.

Foreground Masking. DiLightNet takes the foreground mask as

additional input. To better understand the impact of including the

mask, we also train a variant without taking the mask as an addi-

tional channel. Instead we �ll the background with black pixels in

the provisional image. During training we also remove the back-

ground in the reference images. As a consequence, DiLightNet will

learn to generate a black background. For the ablation, we only

compute the errors over the foreground pixels. As shown in Ta-

ble 1 (rows 7-8), the variant trained without a mask produces larger

errors especially on cases with either complex shape or materials.

Training Augmentation. We eliminate each of the three augmen-

tations from the training set to better gauge their impact (Table 1,

rows 9-12):

• Without Normal Augmentation: This variant is trained using

radiance hints rendered with the ground truth shading nor-

mals, instead of the smoothed depth-estimated normals or

the geometric normals;

• Without Color Augmentation: This variant is trained on the

full training set without swapping the RGB color channels;

and

• Without Material Augmentation: This model is trained with

the basic 13 dataset without material augmentations.

From Table 1, we observe that all three augmentations improve

the robustness of DiLightNet. Of all augmentations, the normal

augmentation has the largest impact as it helps to bridge the domain

gap between perfect shading normals (in the training) and the

smoothed estimated depth normals. The color augmentation also

improves the quality for all test scenes, albeit to lesser degree.

The bene�ts of the material augmentation are most noticeable for

objects with smooth shapes (i.e., low geometrical complexity) as

errors in the normal estimation can help to mask inaccuracies in

representing complex materials.

8 DISCUSSION

Relation to Single Image Relighting. By skipping the �rst stage

and directly inputing a captured photograph as the provisional

image into DiLightNet, we can perform approximate single image

relighting (Figure 7). However, due to the lack of a text prompt, the

relighting results might not be ideal. Furthermore, unlike existing

single image relighting methods that are trained for a more narrow

class of scenes, DiLightNet is trained to handle any type of synthe-

sized image for which there might not exists a ’real’ reference under

novel lighting (e.g., the ’gira�e-turtle’ in Figure 9), DiLightNet only

aims to produce plausible images. Nevertheless, the relighting re-

sults generated by DiLightNet are plausible for scenes from which

a reasonably accurate depth and mask can be extracted. Further

re�ning DiLightNet to be more robust for relighting photographs

is a promising avenue for future research.

Limitations. Our method is not without limitations. Due to the

limitations of specifying the image content with text prompts, the

user only has limited control over the materials in the scene. Con-

sequently, the material-light interactions might not follow the in-

tention of the prompt-engineer. DiLightNet enables some indirect

control, beyond text prompts, through the appearance-seed. Inte-

gratingmaterial aware di�usionmodels, such as Alchemist [Sharma

et al. 2023], could potentially lead to better control over the material-

light interactions. Furthermore, our method relies on a number of

o�-the-shelf solutions for estimating a rough depth map and seg-

mentation mask of the foreground object. While our method is

robust to some errors in the depth map, some types of errors (e.g.,

the bass-relief ambiguity) can result in non-satisfactory results.

An interesting alternative pipeline takes a reference depth map

as input (e.g., using a depth conditioned di�usion model such as

“stable-di�usion-2-depth” ), thereby bypassing the need to estimate

the depth and mask. As demonstrated in Figure 8, augmenting the

input with a reference depth map, further increases the quality of

the results. Finally, animating/altering the lighting using a �xed

content-seed can result in some minor structural shape changes

because the images are generated independently (see supplemental

video). Incorporating cross-frame consistency to improve temporal

stability is an interesting avenue for future research.

9 CONCLUSION

In this paper we introduced a novel method for controlling the

lighting in di�usion-based text-to-image generation. Our method

consists of three stages: (1) provisional image synthesis under un-

controlled lighting using existing text-to-image methods, (2) resyn-

thesis of the foreground object using our novel DiLightNet condi-

tioned by the radiance hints of the foreground object, and �nally

(3) inpainting of the background consistent with the target lighting.

Key to our method is DiLightNet, a variant of ControlNet that takes

an encoded version of the provisional image (to retain the shape

and texture information) multiplied with the radiance hints. Our

method is able to generate images that match both the text prompt

and the target lighting. For future work we would like to apply

DiLightNet to estimate re�ectance properties from a single photo-

graph and for text-to-3D generation with rich material properties.
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