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Abstract. Automatic defect detection for 3D printing processes, which
shares many characteristics with change detection problems, is a vital
step for quality control of 3D printed products. However, there are some
critical challenges in the current state of practice. First, existing meth-
ods for computer vision-based process monitoring typically work well
only under specific camera viewpoints and lighting situations, requiring
expensive pre-processing, alignment, and camera setups. Second, many
defect detection techniques are specific to pre-defined defect patterns
and/or print schematics. In this work, we approach the defect detection
problem using a novel Semi-Siamese deep learning model that directly
compares a reference schematic of the desired print and a camera im-
age of the achieved print. The model then solves an image segmentation
problem, precisely identifying the locations of defects of different types
with respect to the reference schematic. Our model is designed to en-
able comparison of heterogeneous images from different domains while
being robust against perturbations in the imaging setup such as different
camera angles and illumination. Crucially, we show that our simple ar-
chitecture, which is easy to pre-train for enhanced performance on new
datasets, outperforms more complex state-of-the-art approaches based
on generative adversarial networks and transformers. Using our model,
defect localization predictions can be made in less than half a second
per layer using a standard MacBook Pro while achieving an Fl-score of
more than 0.9, demonstrating the efficacy of using our method for in situ
defect detection in 3D printing.
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Heterogeneous Additive Printing of 3D Materials (SHAP3D)). A. W. K. Ma acknowl-
edges support from UConn via the United Technologies Corporation Professorship
in Engineering Innovation. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or the sponsors.
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1 Introduction

Defect detection methods that can provide feedback in real-time is of significant
interest to the additive manufacturing community in order to save on materials
cost, printing time, and most importantly, to ensure the quality of printed parts.
A key advantage of 3D printing technology that can be leveraged to enable in
situ defect detection is that 3D objects are printed layer by layer (Figure 1).
Thus, each 2D layer of the object can be imaged and probed for internal defects;
unlike traditional manufacturing processes, it is not necessary to wait to analyze
the fully printed 3D object, and the interior of the object can be probed as the
object is being constructed.

Imaging of the first printed layer
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Fig. 1: Schematic diagram of the 3D printing process for binder jet 3D printing
with layer-wise imaging during the print.

In this work, we propose a novel defect detection method for 3D printing
that poses the problem as one of change detection between a desired reference
schematic and a camera image of the printed layer (Figure 2). In the change
detection problem in computer vision, two images such as satellite images of land
or surveillance images of streets, are compared for differences. There are several
challenges common to both the defect detection and change detection problems:
the need to pre-process and pre-align images due to changes in camera angle and
lighting, which result in significant and sometimes expensive limitations to the
camera setup that must be used, and the data-hungry nature of this complex
comparison problem. Additionally, the images we would like to compare for 3D
printing are from heterogeneous sources: one is a reference print schematic and
the other is a noisy camera image of the actual printed result. In this work,
we utilize one-shot learning techniques [11] to develop a novel deep learning
architecture that can provide fast and precise localization of defects robust to
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camera angle and lighting perturbations. A key characteristic of our model is
that its relatively lightweight and simple architecture can be easily pre-trained
to adapt to new datasets; in fact we show that pre-training enables our simple
model to outperform more complex methods based on state-of-the-art techniques
such as transformers. The simplicity and flexibility of our model will enable it
to be highly transferable to different industrial settings for 3D printing, without
requiring careful camera setups and application-specific model customization
that is both expensive and time-consuming. Our proposed approach of building
on change detection methods from computer vision for tackling the challenges
of defect detection is to the best of our knowledge a new direction in the 3D
printing field.

reference schematic camera image of print
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Fig.2: Our robust defect localization model takes as input a reference print
schematic and a camera image of the print, and predicts the precise location
and type of defects with respect to the frame of reference of the print schematic.
In the predicted image, white corresponds to no defects, red to over-extrusion
and green to under-extrusion. This model can be used for in situ defect detection:
it requires 0.419 seconds for prediction while printing a single layer on an inkjet-
based 3D printer requires tens of seconds or less.

2 Related work

Change detection is a fundamental task in computer vision, with many important
applications such as analysis of satellite imagery for agricultural monitoring [10],
urban planning [17], and disaster assessment [21], among others. A large body
of work has thus been built starting from at least the 1980s using methods such
as change vector analysis [14]. To handle perturbations such as misalignment
and varied lighting, techniques such as incorporating active camera relocation
have been proposed [5]. Many state-of-the-art methods today are now based
on deep learning, ranging from autoencoders to Siamese neural networks to re-
current neural networks, and various combinations thereof [20]. Recently, several
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methods based on combining convolutional neural networks (CNN) with Siamese
architectures have been proposed. One of the earlier such methods, ChangeNet,
uses a combination of ResNet, fully connected, and deconvolution blocks in its
Siamese branches [22]. It is designed to handle different lighting and seasonal
conditions in the images, but like most existing methods assumes aligned or
nearly aligned image pairs. Interestingly, the architecture is different from tradi-
tional Siamese architectures in that the deconvolution layers are not required to
have the same weights. This is reminiscent of our proposed Semi-Siamese archi-
tecture which we will discuss in Section 3; however, we will propose the opposite
- the deconvolution layers are the portion of our architecture that are required to
share the same weights. Another interesting recent approach uses a Siamese pair
of autoencoders [15], where the change map is generated based on the learned
latent representations. However, this method also assumes coregistered images
and can only learn approximate change locations in addition to a classification
of whether changes have occurred. A recently proposed architecture that enables
fast pixel-level change detection is FC-Siam-diff, a fully convolutional encoder-
decoder network with skip connections [3]. In this model, there are two encoders
that share the same architecture and weights, while there is only one decoder.
However, this model again assumes coregistered images. Finally, the challenge
of dealing with images that are not necessarily coregistered, with differences in
lighting, camera viewpoint, and zoom, was addressed in Sakurada & Okatani [18]
and with CosimNet [6]. The former uses features learned from CNNs trained for
large-scale objected recognition in combination with superpixel segmentation to
address the problem of change detection in pairs of vehicular, omnidirectional
images such as those from Google Street View. The latter, CosimNet, uses the
DeeplabV2 model as a backbone and proposes various modifications to the loss
function to provide robustness to perturbations [6]. Nevertheless, both of these
methods still assume that the images being compared are from the same domain,
e.g. they are both camera or satellite images, rather than from different do-
mains such as a camera image versus a schematic. More recently, heterogeneous
change detection has been addressed using generative adversarial networks [12]
and transformers [2].

Despite its importance for additive manufacturing, defect detection has tra-
ditionally been a challenging task. First, there are many different types of defects
that may be of interest, including defects caused by missing jets, inconsistent
jets, angled jets, and cracks in powder bed material, just to name a few that are
relevant to inkjet-based 3D printing; other technologies such as fused deposition
modeling have their own set of defects. Many heuristic-based methods such as
computing the entropy of depth maps have consequently been developed to ad-
dress specific defect types [4]. In recent years, both classical machine learning
methods such as support vector machines utilizing human-engineered features [8]
and deep learning-based methods utilizing convolutional neural networks have
begun to be developed to enable more powerful defect detection [9, 19]. However,
many of these methods require large amounts of labeled experimental data, which
is difficult to obtain. They also typically require fixed, high-resolution camera
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setups, and cannot easily handle differences in camera angle and lighting. For
example, one group of methods is based on denoising autoencoders [7], where
the idea is that an autoencoder is trained to take as input a “noisy” (defective)
image and output its non-defective counterpart. Then, differences between the
input and output can be used to identify defects. An advantage of this approach
is that it does not require a large amount of labeled experimental data; however,
unlike change detection approaches which can handle general differences, this
approach can only handle a pre-defined range of defects, since it must be trained
to be able to remove them from the output.

3 Semi-Siamese defect detection model

Our proposed model consists of two major components: a novel Semi-Siamese
architecture based on U-Net [16] branches, and a fully convolutional network
(FCN) to reconstruct the final defect detection mask. The input to the model
is a pair of 2D images corresponding to a particular layer during 3D printing:
the reference schematic images of the desired print pattern, I,.; € RH*XW*3/
and the camera images of the printed result, Io,,, € R7*W*3, The image pair
(Iref, Ieam) is first fed into a Semi-Siamese network to generate a pair of feature
maps (Fref, Feam) of the same dimensions as the input. In contrast to stan-
dard Siamese networks and existing Semi-Siamese networks which use different
decoders, a simple but key innovation of our architecture is that the feature ex-
traction sections of each branch (encoder) do not share the same weights; only the
reconstruction section (decoder) share the same weights. This is important for
our defect detection problem because the camera image and reference schematic
come from different domains. In order to compare them, we first use different
feature extraction functions to transform them to the same latent feature space,
after which we reconstruct them both back into a comparable reference frame
using the same reconstruction function. Then, their difference is calculated to
generate a change map. It is important to calculate the change map from the
reconstructed images in a comparable reference frame rather than from the la-
tent feature space in order to enable highly precise pixel-wise defect localization.
The final FCN is used to fully transform the change map from this comparable
reference frame back to the reference frame of the schematic image.

3.1 Transfer learning from U-Net models

As described above, the Semi-Siamese branches of our model are based on the
U-Net architecture. This choice is made to leverage the ability of U-nets to pro-
duce high resolution outputs [16], enabling precise localization of defects upon
comparison of the outputs (Fyref, Feqm) from each branch. In order to further
improve the performance of our model, we first utilize transfer learning from
a U-Net model with the same architecture as our Semi-Siamese branches. This
U-net model takes as input a perturbed camera image, and outputs a transfor-
mation of the image into the same reference frame as its corresponding reference
print schematic. When trained on a fixed number of reference schematics, this
U-Net can be used for detecting defects by directly comparing a camera image
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transformed into the reference frame with its corresponding print schematic.
However, it is important to note that this architecture cannot handle arbitrary
print schematics. Suppose that we would like to detect defects in a print cor-
responding to a schematic (called “schematic-new”) that is similar to a print
schematic that the model was previously trained on (called “schematic-old”),
but that looks like a perturbed version of it. Then any camera images of a per-
fect print of “schematic-new” might be erroneously transformed by the model
back into the reference frame of “schematic-old”. Now when compared with
“schematic-new”, many defects will be detected, even though no defects oc-
curred in the actual print. Thus, this U-Net architecture cannot be used on its
own to handle defect detection for arbitrary desired print schematics. We will
instead use this U-Net model pre-trained on a small set of reference schematics
to initialize the weights of each branch of our Semi-Siamese model. This allows
us the initialize the Semi-Siamese model in such a way that it can offset per-
turbations for some limited sets of camera images and reference schematics. We
then continue training to fine-tune these weights to be able to handle arbitrary
reference print schematics and perturbed camera images. As we show in the re-
sults, this ability to pre-train the U-Net to initialize our Semi-Siamese model is
key to high performance on novel problems. We note that while we have utilized
a U-Net backbone for our Semi-Siamese branches, we can replace it with any
state-of-the-art encoder-decoder architecture of choice.

3.2 Semi-Siamese network architecture

Our deep learning model begins with two U-Net branches sharing an identical
architecture. Each U-Net has five fully convolutional blocks to do downsampling
(feature extraction) and four convolutional blocks to do upsampling (reconstruc-
tion). Each feature extraction block is composed of two 3 x 3 convolutional layers
followed by a batch normalization layer and a rectified linear unit (ReLU) ac-
tivation. For the first four feature extraction blocks, there is a 2D max pooling
layer after each block, where each max pooling layer has pool size 2 x 2 and
strides of 2. For each of the first four feature extraction blocks, the size of the
feature maps is thus reduced by half, while the number of channels is doubled.
In the last feature extraction block, there is no max pooling layer, so the size
of the feature map remains the same and only the number of channels is dou-
bled. For the reconstruction blocks, each block starts with 3 x 3 convolution
layers followed by a batch normalization layer and ReLLU activation. Analogous
to the feature extraction block, the size is doubled each time but the number of
channels is reduced by half. Before each reconstruction layer, there is a 2D trans-
posed convolutional layer for upsampling (upsampling layer). Skip connections
link the output from the max pooling layers to the corresponding upsampling
layers. From these Semi-Siamese branches, a pair of feature maps are generated
and their difference is calculated to get the change map. This change map is then
fed into the remaining FCN, which generates the final change mask Y giving the
predicted probability for each pixel of whether it corresponds to a location with
no defect, over-extrusion, or under-extrusion. A full schematic of the proposed
architecture is shown in Figure 3.



Semi-Siamese Change Detection 7

Camera
Image
Categorical
T T Change Map
Feature Extrrction Blocks Reconstrucltion Blocks
Architecture sharing Architecture and weight sharing ‘ H ‘
' ' ad — |
Feature Extr!}ction Blocks Reconstrucltion Blocks |
| 1
Reference
Image
Hm H —(| ||| | || ap -] |-\ - |. - |—~ - —_
||
Convolution Batch Relu 2D Deconvolution § Concatenate Sigmoid . Softmax
A A . . Difference A
Layer Normalization  Activation = Maxpooling Layer Layer Activation Activation

Fig. 3: Full architecture for our model. Different types of layers are labeled by
color, as indicated in the legend. The Semi-Siamese branches each consist of
an underlying U-Net architecture, with a feature extraction (encoder) section,
a reconstruction (decoder) section, and skip connections between corresponding
layers.

3.3 Training Objective

Our model uses focal loss [13] as the loss function in order to address the imbal-
ance in change detection datasets between easy-to-classify background pixels and
the smaller number of foreground pixels where changes may occur. We note that
this imbalance is more pronounced in datasets from our 3D printing application
than in benchmark datasets for change detection typically derived from satellite
imagery. The focal loss leverages a modulating term on the cross entropy loss
in order to focus learning on hard samples by reducing the contributions to the
training loss of samples for which the model is confidently correct (easy samples).
The equation for the focal loss is

N
FL(y,p)=— Z%‘(l —pi)" log(pi) (1)

i=1
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where p; is the predicted probability for the true class y; for pixel i, and (1 —p;)”
is the modulating term, with tunable focusing parameter v > 0. The hyperpa-
rameters «; are additional weighting parameters that re-balance the contribution
of each pixel to the loss, typically based on its true class. Here we denote y as
the vector of all y; and p as the vector of all p;.

4 Experiments

We compare our model against three change detection methods that represent
different existing state-of-the-art approaches: ChangeNet [22], which utilizes a
ResNet backbone and Semi-Siamese branches with shared encoders; BIT [2],
which utilizes transformers; and DTCDN, which utilizes generative adversarial
networks [12].

First, we compare our model with existing methods for heterogeneous change
detection across different image domains using the benchmark Wuhan dataset [1],
which consists of pairs of optical and synthetic aperture radar (SAR) images.
Note that this dataset only involves binary classification and does not contain
significant perturbations in image alignment and angle; there is no benchmark
dataset for heterogeneous change detection in the multi-class case. To test the
application of our model to 3D printing with three-class classification (no de-
fect, under-extrusion, and over-extrusion), and also to demonstrate our model’s
robustness to perturbations in camera angle and lighting, we then created our
own experimental dataset consisting of pairs of (1) reference print schematics
and (2) top-down camera images of inkjet-based 3D printing on powder bed
material, where Dimatix Blue model fluid is used on Visijet core powder. To
simplify dataset generation, our set of reference schematic images consist only
of images with vertical lines of varying length spaced closely together. The cor-
responding camera images are taken at various angles, so that a simple template
matching approach would not be able to easily achieve pixel-wise accuracy in
defect localization. In future work, we will expand to more complex schematic
images. However, the efficacy of our model in precisely localizing defects can be
sufficiently demonstrated using this dataset.

4.1 Full dataset generation using data augmentation

Since generating an experimental dataset is time-consuming, and with a real
3D printer also incurs significant material costs, we start with only a limited
dataset of 57 pairs of experimental images. We then use data augmentation to
significantly increase our dataset size by adding perturbations in camera angle
to existing camera images. Note that lighting perturbations come naturally from
the camera images being taken with no special lighting setup. We do not make
any changes to the reference schematics. The types of perturbations we use in
the data augmentation includes zoom, rotation, shear, and position (width and
height) shift. We emphasize that here we use data augmentation to create our
initial full dataset, in contrast to the typical setting in computer vision where
data augmentation should only be used in training. The perturbations to the
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camera image given by data augmentation correspond to artificial new “exper-
iments” of different camera setups. To prevent data leakage, we separate the
training, validation, and test sets by reference schematic. The final dataset con-
sists of 16400 training, 560 validation, and 560 test images, where 41 underlying
schematic images are used in the training data, and 8 schematic images each
were used for validation and test.

To create defective image pairs, we match the camera image from one ref-
erence image with a different reference schematic. Since all of the images corre-
spond to perfect non-defective prints for their true corresponding schematic, we
can precisely localize the “defects” in the defective image pairs by comparing
the camera image’s true reference schematic with the given new schematic. To
generate the training, validation, and test sets, we first randomly select either
one underlying schematic for non-defective examples, or two different underlying
schematics for defective examples. Then we randomly pick corresponding camera
images from among the perturbed variations in our augmented dataset. We note
that it is important to balance the dataset between defective and non-defective
pairs; otherwise the trained model tends to predict the presence of some defects
even for non-defective pairs.

5 Results

Table 1 shows the results of different change detection methods, as well as an
ablation study on the Semi-Siamese and transfer learning components of our
approach, on our generated vertical line dataset. Note that due to the imbalance
between classes in this dataset, the under-extrusion class was the most difficult to
correctly identify. We report the Fl-score for each class, as well as the averaged
macro Fl-score. Our Semi-Siamese model with initialization was able to achieve
significantly higher performance than the other methods on identifying under-
extrusion. Even without initialization, using all of the same hyperparameters for
handling the imbalanced dataset, the Semi-Siamese model outperformed other
methods including BIT. In Figure 4, we provide both visual and quantitative
comparisons of each method on several example pairs of images. Compared to

Table 1: Performance comparison on the vertical line dataset. Note that due to
the imbalance between classes in this dataset, the under-extrusion class was the
most difficult to correctly identify.

Method Accuracy macro |no-defect|over-extrusion|under-extrusion
F1l-score| F1-score F1l-score F1l-score

ChangeNet 0.9842 0.5646 0.9920 0.6431 0.0588
DTCDN 0.9572 0.7613 0.9772 0.6970 0.6097
BIT 0.9957 0.9267 0.9978 0.9555 0.8268
Unet 0.9774 0.7155 0.9884 0.6859 0.4722
Semi-Siam (w/o init)| 0.9962 0.9406 0.9981 0.9709 0.8529
Siamese (w/ init) 0.9658 0.6652 0.9823 0.4629 0.5503
Semi-Siam (w/ init) | 0.9972 0.9517 0.9986 0.9503 0.9061
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Table 2: Performance comparison on the Wuhan dataset [1]. DTCDN results are
from Ref. [23] since it was difficult to reproduce the high performance without
modifications, as also noted in [23].

H Method ‘ Precision‘Recall‘ I0U ‘Fl—scoreH
ChangeNet 0.6555 | 0.6326 | 0.5232| 0.6420
DTCDN* 0.6742 | 0.6536 | 0.5492| 0.6629

BIT 0.6678 | 0.6859 | 0.5564 | 0.6759

Semi-Siam (w/ init)| 0.6714 |0.7247|0.5659 | 0.6905
Siamese (w/ init) 0.6571 | 0.6833|0.5476 | 0.6681
Semi-Siam (w/ init)| 0.7306 |0.7263|0.6113| 0.7284

Table 3: All training times are based on 200 epochs (not including pre-training
the GAN in the case of DTCDN, and pre-training the U-Net in the case of Semi-
Siamese with initialization) on the vertical line dataset on a 4-GPU workstation.

“ Method [ Training [ Setup [ Prediction H
ChangeNet 178.14 h 1797.155 ms 423.406 ms
DTCDN GAN:36.74 h GAN: 1577.17 ms | GAN:10410.228 ms
U-Net++:56.28 h |U-Net++:150.958 ms|U-Net++:490.128 ms
BIT 105.39 h 569.835 ms 342.935 ms
U-Net 19.34 h 136.563 ms 213.76 ms
Semi-Siam (w/o init) 48.31 h 206.847 ms 419.283 ms
Siamese (w/ init) 36.83 h 179.195 ms 408.974 ms
Semi-Siam (w/ init) Sen[i:SNiz.ﬁ.ié.gl b 206.847 ms 419.283 ms

existing methods, in most cases our model is able to capture the defect locations
more precisely and with less noise.

Table 2 shows the results of different change detection methods (including an
ablation study similar to above) on the benchmark Wuhan dataset, and Figure 5
provides visual and quantitative comparisons of each method on sample pairs of
images. We note that visually, our Semi-Siamese model with initialization is able
to better reproduce the smooth shape of the ground truth mask. In the second
case where the macro Fl-score of DTCDN and BIT outperform our method,
the key difference is the detection of a change in a round region in the top left
quadrant. While this is not labeled in the ground truth, on close inspection one
can see that this is not necessarily inconsistent with the SAR image.

In addition to being more accurate, our method is comparatively simpler and
more lightweight. From Table 3, we can see that our model takes signficantly
less time to train than ChangeNet, DTCDN, and BIT.



Semi-Siamese Change Detection 11

i
I
| |[
I
§ i i i |
."; Reference i(a) F1:0.3324 (b)F1:0.9307 (c)F1:0.5135 (d)F1:0.6590
(T
o 3 [illal g it )
|| HH H‘ i | ‘ ‘ |
i
Camera !(e) F1:0.4657 (f)F1:0.7852 (g) F1:0.8690 Ground Truth
il NINIn I I
Q 1 ‘ \w
3 : | I
U 1 " . mll |
E  Reference | (a)F1:0.5256 (b) F1:0.8755 (c)F1:0.5948 (d)F1:0.6771
— |
° Lt i
E “ ~ “ 1 “ W ‘ ]‘ " ‘
ol
. ‘
l AR | A
Camera | (e) F1:0.5832 (f) F1:0.8361 (g)F1:0.9364 Ground Truth
; |
L 1 ‘ | T "‘
2 ‘ ’ | ’ ﬁ | ‘ | | ‘
8 i il NI
% Reference i(a) F1:0.6067 (b)F1:0.9253 (c) F1:0.7214 (d)F1:0.6517
Q |
e " II | 1\ TR |
1 ] |
U ‘ i ‘I‘ l il { ' | . ’ ' | \
Camera i (e) F1: 0.7139 (f) F1: 0.9541 (g) F1:0.9574 Ground Truth
I
|
I
i (M.
! | f ’
[ | |
o ! \ |
& | L
g Reference | (a) F1:0.3863 (b) F1:0.9572 (c) F1:0.7579 (d) F1:0.6978
=1 i
© Vo ‘ \"‘||\
m i | | |
! ;
Camera j(e)Flz 0.6582 (f) F1: 0.9476 (g) F1:0.9861 Ground Truth

Fig.4: Visual and quantitative (macro F1-score) comparison of different models
on the vertical line dataset. The methods from (a)-(g) are (a) ChangeNet, (b)
BIT, (¢) DTCDN, (d) U-Net, (e) Siamese model with initialization, (f) Semi-
Siamese model without initialization, (g) Semi-Siamese model with initializa-
tion. White, red and green correspond to no defects, over-extrusion, and under-
extrusion, respectively.
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Fig.5: Visual and quantitative comparison of different models on the Wuhan
dataset [1]. The methods from (a)-(f) are (a) ChangeNet, (b) DTCDN, (c) BIT,
(d) Siamese model with initialization, (e) Semi-Siamese model without initializa-
tion, and (f) Semi-Siamese model with initialization. DTCDN results are from
Ref. [23] as it was difficult to reproduce the high performance without modifica-
tions, as also noted in [23].

6 Conclusions

We have developed a new deep learning-based method for change detection where
(i) a camera image is being compared against a desired schematic rather than
another camera image, and (ii) perturbations to the camera angle and lighting
do not need to be pre-corrected, and coregistration is not necessary. This novel
Semi-Siamese model can be applied to obtain precise in situ pixel-wise defect
localization for each layer of a 3D print, enabling rapid detection of internal
defects, ensuring the quality of 3D printed parts and saving time and material
costs. While an acknowledged limitation of this method is that it does not di-
rectly handle defects in the z-direction in a single layer, due to the ability to
observe each printed layer at various perturbed camera angles, large z-direction
defects in the top layer will likely project onto the 2D camera image in such a way
as to appear as in-plane defects. Robust handling of these types of z-directional
defects will be explored in future work.

Defect detection for 3D printing is an important industrial challenge that
to the best of our knowledge is being addressed with change detection tech-
niques for the first time in this work. The key benefit of utilizing the change
detection framework is that it is not necessary to pre-define the desired print
schematic, nor to have a large set of annotated data for each defect type. Our
model is capable of detecting defects in a few seconds with more than 90%
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accuracy, and performs better than many different more complicated state-of-
the-art approaches: ResNet-based Semi-Siamese models with shared encoders
(ChangeNet), generative adversarial network (GAN)-based models (DTCDN),
and transformer-based models (BIT), on not only our custom 3D printing dataset
but also on the benchmark heterogeneous change detection Wuhan dataset. The
simplicity of our model makes it possible to easily achieve good performance
on new problems - it is only necessary to pre-train a U-Net (or other encoder-
decoder backbone) and then transfer learn from that onto the Semi-Siamese
architecture. The robustness of our algorithm to camera angle and lighting per-
turbations while enabling domain adaptation, as well as its lower training data
requirements, will enable flexibility for utilizing this model in different industrial
settings.
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