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ABSTRACT Vision Transformers are renowned for their accuracy in computer vision tasks but are
computationally and memory expensive, making them challenging to deploy on resource-constrained edge
devices. In our research paper, we introduce a revolutionary approach to designing energy-aware dynamically
prunable Vision Transformers for use in edge applications. Our solution denoted as Incremental Resolution
Enhancing Transformer (IRET), works by the sequential sampling of the input image. However, in our
case, the embedding size of input tokens is considerably smaller than prior-art solutions. This embedding
is used in the first few layers of the IRET vision transformer until a reliable attention matrix is formed.
Then the attention matrix is used to sample additional information using a learnable 2D lifting scheme only
for important tokens and IRET drops the tokens receiving low attention scores. Hence, as the model pays
more attention to a subset of tokens for its task, its focus and resolution also increase. This incremental
attention-guided sampling of input and dropping of unattended tokens allow IRET to significantly prune its
computation tree on demand. By controlling the threshold for dropping unattended tokens and increasing the
focus of attended ones, we can train a model that dynamically trades off complexity for accuracy. Moreover,
using early exiting our model is capable of doing anytime prediction. This is especially useful for real-word
energy-sensitive edge devices, where accuracy and complexity could be dynamically traded based on factors
such as battery life, reliability, etc.

INDEX TERMS Computer vision, deep learning, pruning, vision transformer.

I. INTRODUCTION
Recent advancements in deep learning and GPU capabil-
ities [12] have significantly improved computer vision’s
detection and prediction. A major innovation is the use of
transformer models, first for Natural Language Processing
(NLP) in 2017 and later for visual tasks [7]. Visual trans-
formers, especially those developed by Google Brain in 2020,
have outperformed traditional CNNs in accuracy, especially
with large datasets. However, their high computational
and memory requirements pose challenges for edge device
deployment [32], [78], primarily due to their reliance on
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complex global attention mechanisms andMLPs. To mitigate
these demands, various strategies like multi-scale processing,
token dropping, early prediction, softmax elimination, and
efficient attention approaches have been researched. These
approaches are summarized in Section III. While these solu-
tions address certain aspects of the computational challenges,
they fall short of fully optimizing context-aware computation.
The main contributions of this paper are as follows:
1) This paper introduces a novel context-aware

approximation technique for dynamic pruning of
computational trees in transformer models, diverging
significantly from existing methods. We identify an
underutilized potential in transformers for context-
based approximation, which we argue can greatly
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FIGURE 1. (Left): Overall structure of original Visual Transformer (ViT) in [10]. (right): Encoder solution used in ViT, illustrating the implementation
details of Multi-Head Self Attention (MSA) from h scaled dot-product attention units.

enhance their efficiency withminimal accuracy impact,
broadening their application scope.

2) We present the Incremental Resolution Enhancing
Transformer (IRET), a transformative model architec-
ture that employs attention-based input sampling.

3) Utilizing learnable 2D lifting schemes, IRET processes
three input samples incrementally, thereby building
contextual awareness early. This architecture allows
IRET to use temporal attention scores for two key
functions: a) forget: discarding unattended tokens, and
b) focus: selectively enhancing the embedding size of
attended tokens by merging existing features with new
ones from a 2D lifting scheme output.

This approach mirrors human visual perception, starting
with a broad context understanding and then focusing on
more pertinent image aspects. IRET thus uses minimal infor-
mation initially for context comprehension, subsequently
concentrating on key image tokens through incremental
sampling while ignoring less relevant ones. The remainder
of the paper is structured as follows: Section II covers
background information. Section III reviews related work.
Section IV details the IRET architecture. Section V presents
experimental evaluations. Finally, Section VI concludes the
paper.

II. BACKGROUND
Fig. 1. (left) shows the Visual Transformer (ViT) [10]
architecture, and Fig. 1. (right) captures the structure of its
encoder layer. In ViT the input image is split into fixed-size
patches by reshaping the image x 2 RH⇥W⇥C into a sequence
of flattened 2D patches xp 2 RN⇥(P2.C). The (H ,W ) is the
image resolution, C is the number of channels, (P,P) is the
image patch resolution, and N = HW/P2 is the number
of patches. The attention mechanism used in the encoder is
scaled dot-product attention suggested in [56]. The inputs
are queries Q and keys K of dimension dk , and values V
of dimension dv. The encoder is designed to linearly project

the queries, keys, and values h times with different learned
linear projections to dk , dk , and dv dimensions, respectively.
As shown in Fig. 1(right), each encoder layer uses h scaled
dot-product attention heads. Scaled dot-product attention
heads compute the matrix in Eq. 1 yielding dv-dimensional
output values that are later concatenated and projected. The
Multi-Head Self Attention (MSA), the function of which
is captured in Eq. 2, allows the model to jointly attend
to information from different representation subspaces at
different positions. Similar to BERT’s class token [9], ViT
prepends a learnable embedding to embedded patches (z00 =
xclass), whose state at the output of the encoder (z0L) serves as
the image representation y. Layernorm (LN ) is applied before
and residual connections after every block.

Attention(Q,K ,V ) = Softmax(QKT /
p
dk )V (1)

MSA(Q,K ,V ) = Concat(headi, . . . , headh)WO, (2)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

The Visual transformer function is captured using equa-
tions 4 through 7:

z0 = [xclass; x1pE; x2pE; . . . .; xNp E] + Epos,

E 2 R(P
2.C) ⇥ D,Epos (4)

z0l = MSA(LN (zl�1)) + zl�1, l = 1 . . . L (5)
zl = MLP(LN (z0l)) + z0l, l = 1 . . . L (6)

y = LN (z0l ) (7)

The classification head is attached to z0L and implemented
by an MLP with one hidden layer at pre-training and
one linear layer at fine-tuning. 1-Dimensional Position
embedding is added to the patch embeddings to retain
positional information. In a similar vein, DETR [4] exploits
a pure transformer to create an end-to-end object detection
framework. Taking a different approach, DeiT [55] enhances
ViT by introducing the distillation token, and leverages a
teacher model to decrease the necessary training data.
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FIGURE 2. Timeline illustrating the proposed Multi-Scale Vision Transformer architectures [13], [17], [23], [34], [40], [60], [61], [75], [81], [82].

III. RELATED WORKS
Several studies have focused on reducing the high computa-
tional complexity of vision transformers, resulting in models
with similar accuracy but lower complexity. This section
offers a brief overview of these approaches.

A. MULTISCALE VIOSN TRANSFORMERS
A widely adopted strategy for addressing the computational
complexity of vision transformers is pyramid-style process-
ing. This technique processes input images at multiple scales,
effectively capturing both coarse and fine contextual informa-
tion [13], [42], [44], [68]. Fig. 2. provides a summary of the
key approaches within this category. Numerous models have
successfully implemented this strategy, including: Pyramid
Vision Transformer (PVT) [60], Swin Transformer [40],
Multi-scale Vision Transformer (MViT) [13], PVT v2 [61],
and Wave-ViT [75].

PVT takes in detailed image patches to effectively capture
fine-grained information for high-resolution representation.
PVT employs a pyramid structure that gradually reduces in
size, helping manage computational complexity in deeper
layers. The authors introduce a spatial-reduction attention
layer, which plays a role in conserving resources during
computation.

The Swin Transformer introduces a hierarchical
transformer architecture that utilizes shifted windows for
representation computation. This approach ensures linear
computational complexity with respect to image size. The
model’s early stages involve the processing of small patches,
with the gradual merging of neighboring patches in deeper
layers. The Swin Transformer adopts a shared key set among
patches within the same window, effectively mitigating
latency concerns associated with earlier sliding window-
based self-attention methods.

MViT incorporates several channel-resolution stages, each
serving a distinct purpose. In the initial layers, the model

operates at an elevated spatial resolution coupled with a con-
strained channel dimension. As the network delves deeper,
spatial resolution diminishes while channel dimensions
expand significantly. This ingenious design culminates in the
formation of a feature pyramid, effectively encompassing a
comprehensive spectrum of features across different scales.
PVT v2 offers reduced computational complexity while

preserving local image continuity. Additionally, the model
features a flexible position encoding scheme. In the Wave-
ViT, they utilize a down-sampling technique based onwavelet
transforms and integrate it with self-attention learning. In this
architecture, the wavelet block plays a central role. It employs
Discrete Wavelet Transform (DWT) to process the key and
value inputs separately, dividing them into four distinct
subbands. These subbands are then stacked together, followed
by a convolutional operation that maintains locality within
each subband. The output of this convolutional layer feeds
into both the multi-head attention and inverse DWT layers.
While multi-scale designs effectively capture contextual

information at various resolutions, they typically rely on fixed
embedding dimensions and lack mechanisms for incremental
refinement or adaptive token management. Our proposed
solution addresses these gaps by employing smaller initial
embedding dimensions that incrementally increase based on
attention-driven sampling, enabling dynamic refinement of
resolution as the model processes the input. Additionally,
our approach incorporates token pruning guided by attention
scores, ensuring that computational resources are focused on
the most relevant features. This integration of context-aware
approximation with incremental resolution enhancement
complements existing multi-scale methods.

B. PATCH AND TOKEN PRUNING
Numerous studies have highlighted the sparse nature of
attention matrices within transformer models and identified
instances of token redundancy that don’t significantly con-
tribute to final predictions. Building upon these observations,
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FIGURE 3. Timeline illustrating the proposed token and patch pruning approaches for transformer architectures [14], [19], [26], [31], [37], [38], [41], [48],
[63], [73], [74], [76].

various strategies have been introduced to trim these redun-
dant tokens and enhance efficiency [5], [25], [28], [39],
[59], [67]. Unlike convolutional models, transformers can
leverage unstructured pruned inputs to their advantage. The
proposed techniques for token pruning can be classified
into two primary categories: static pruning and dynamic
pruning techniques. Certain methods apply a consistent
approach across different types of inputs. Other techniques
adapt their strategies based on the specific characteristics
of different inputs. Rao et al. [48], introduced DynamicViT.
This approach centers around enhancing the transformer
architecture by integrating a predictive module into specific
layers. The purpose of this module is to forecast the
importance score assigned to each token. Consequently,
tokens with lower scores undergo a hierarchical pruning
process. This strategy entails disconnecting tokens that have
been pruned from the remaining tokens within the attention
matrix. This task is achieved using the Gumbel-Softmax
masking strategy.

Wang et al. [63] demonstrated a correlation between the
complexity of input images and the required number of
tokens for accurate predictions. This suggests that simpler
images can be accurately predicted using fewer tokens. They
introduced DVT, a sequential transformer model designed to
process images with varying token counts. In their approach,
the concept of early exiting is utilized. This involves
halting computation if accurate predictions are achieved,
thereby bypassing the use of models with higher token
counts. To optimize the utilization of upper-level transformer
models and prevent computational inefficiencies, they reused
features and relationships.

Kim et al. [26], introduced Learned Token Pruning (LTP).
This approach involves dynamically removing tokens that
are deemed less significant. This determination is made
by utilizing a threshold value, which the model learns

independently for each layer. Xu et al. [74] proposed an
approach called Evo-ViT in which they introduced the
concept of slow-fast updating. This involves employing
separate computational pathways to update tokens based
on their informational relevance. This way, informative and
uninformative tokens are processed differently, helping to
maintain the spatial structure of the data during updates.
Liang et al. [31] proposed EViT, which utilizes a token
reorganization strategy for detecting attentive tokens while
merging inattentive ones into a singular token. The unique
feature of this model is its independence from the necessity
of a fully trained ViT. Nevertheless, adjusting the target
ratio would still mandate retraining the model. Fayyaz et al.
[14] presented ATS, a distinctive module referred to as a
differentiable and parameter-free Adaptive Token Sampler.
This module facilitates the dynamic selection of tokens
from input images based on attention scores, allowing for
variability in the number of chosen tokens for each image.
ATS can be seamlessly incorporated into a pre-trained model
to enhance its performance. Liu et al. [37] established
that employing a technique known as PatchDropout, which
involves the random omission of input image patches, enables
efficient training of standard ViT models at high resolutions.
This method achieves a significant reduction of at least 50%
in both FLOPs and memory consumption on typical datasets
with natural images.
Meng et al. [41] introduced AdaViT, a framework that

autonomously determines the utilization of patches, self-
attention heads, and layers within ViT. The core innovation
involves integrating a lightweight multi-head subnetwork
(referred to as the decision network) into each transformer
block of the backbone network. This auxiliary network learns
to predict binary choices concerning patch embedding incor-
poration, self-attention head engagement, and block omission
across the network. Yin et al. [76] introduced A-ViT, which

VOLUME 13, 2025 27911



B. S. Latibari et al.: Optimizing Vision Transformers: Unveiling ‘Focus and Forget’

FIGURE 4. Timeline of proposed early exiting approaches for transformers [3], [11], [15], [21], [33], [52], [53], [63], [70], [71], [72], [83], [84].

involves an adaptive inference mechanism. This mechanism
intelligently stops the computation process for various tokens
at different depths, focusing computational resources only
on tokens that contribute significantly to discrimination. This
approach dynamically adjusts the allocation of computation
resources. A-ViT integrated with high-performance hard-
ware. This is facilitated by the removal of paused tokens from
ongoing computations, resulting in enhanced computational
efficiency. The entire halting process can be acquired through
the model’s existing parameters.

These methods effectively reduce computational com-
plexity but are not without challenges. Many approaches
rely heavily on retraining or manual parameter adjustments,
which limits their scalability and adaptability. Static methods
often lack contextual awareness, whereas dynamic methods
can introduce significant overhead or fail to maintain spatial
and semantic coherence. Our proposed architecture bridges
these gaps by incorporating a context-aware approxima-
tion mechanism with incremental resolution enhancement.
Unlike static approaches, it dynamically adjusts embedding
dimensions and utilizes token pruning based on attention
scores, ensuring computational resources are dedicated to
the most informative tokens. Additionally, the token pruning
mechanisms discussed in this subsection seamlessly integrate
with our model, boosting its efficiency and adaptability.

C. EARLY TERMINATION
Earlier, scholars introduced the concept of anytime prediction
in the realm of computer vision. Multiexit architectures
can be created from deep neural networks by introducing
branches that exit early after certain intermediate layers.
This transformation enables the inference process to adapt
dynamically, which proves beneficial for IoT applications
with strict latency demands. These applications often face
fluctuating communication and computation resources [3].
Building upon this idea, certain studies have extended this
approach to transformers, effectively striking a favorable
balance between prediction speed and accuracy. Elbayad et al.

[11] introduced a depth-adaptive transformer in which
predictions occur at different network stages, with net-
work length and computation adjusting according to input
sequences. They trained the decoder using aligned and mixed
methods, examining sequence-specific versus token-specific
depth prediction approaches. Xin et al. [70], revealed that
different layers of BERT exhibit varying behaviors, with
some layers being redundant. As a solution, they introduced
DeeBERT, which enables samples to exit earlier through
off-ramps to improve efficiency. Zhou et al. [83], introduced
a solution known as Patience-based Early Exit (PABEE),
which involves incorporating an internal classifier within
each layer of a pretrained language model (PLM). This
approach is designed to halt the model’s inference process
when the internal classifier’s accuracy remains consistent for
a predetermined period, effectively mitigating unnecessary
processing. Sun et al. [52], constructed an ensemble model
that utilized internal classifiers. This approach capitalizes
on the internal classifiers being trained for predictions
on the same task. They introduced a voting strategy that
leverages predictions from all preceding internal classifiers.
This strategy aids in determining both the optimal timing for
exiting the process and the corresponding label assignment.
Li et al [30] introduced an approach aimed at expediting
the inference process of a pre-trained sequence labeling
model. The proposed methodology includes two distinct
components: SENTEE, which operates at the sentence level
and enables early exiting in sequence labeling, and TOKEE,
an early-exit mechanism functioning at the token level.
LeeBERT [84] introduces a training approach in which every
exit learns not only from the final layer but also from each
other. In the BERxiT paper [71], the focus was on rectifying
drawbacks in earlier early exit methods for BERT. These
methods were restricted to classification tasks and couldn’t
fully leverage BERT’s potential due to limited fine-tuning
strategies. The solution introduced was a ‘‘learning-to-exit’’
module, extending early exits to diverse tasks and enhancing
BERT’s utilization.
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FIGURE 5. Softmax complexity reduction approaches in transformers [6], [27], [35], [46], [51], [65], [80].

He et al. [21], presented Magic Pyramid (MP) which
utilizes token pruning for width-wise computation reduction
and incorporates early exit strategies to address depth-wise
computation reduction, ultimately leading to improved
efficiency in model inference. Liao et al. [33] presents a
solution for global early exits, utilizing information from
both preceding and subsequent layers to facilitate the exit
process. The Dynamic transformer [63] was introduced
as an approach aimed at automatically determining the
optimal number of tokens necessary for processing each
input image. This was accomplished by utilizing a series of
interconnected transformers, with each one accommodating
an increasing number of tokens. Throughout the testing
phase, these transformers were sequentially activated in an
adaptable fashion. In essence, the inference process would
conclude once a prediction of sufficient confidence was
generated. In this study [3], seven distinct designs for early
exit branches are introduced, which can be integrated into
ViT backbones. By conducting comprehensive experiments
involving tasks such as image classification and crowd
counting - the latter involving regression, it is demonstrated
that these architectures offer valuable options for striking a
balance between classification accuracy and inference speed,
depending on the specific task.

To conclude this subsection, we emphasize that the early
termination mechanisms discussed here offer a variety of
strategies for balancing computational efficiency and pre-
dictive accuracy. In our proposed architecture, classification
heads have been integrated into the IRET model to facilitate
real-time predictions, providing an inherent mechanism
for early exits. Furthermore, the diverse early prediction
techniques reviewed can be seamlessly incorporated into our
framework.

D. SOFTMAX COMPLEXITY REDUCTION
The softmax operation in transformers is a major computa-
tional bottleneck, especially with longer sequences. It relies
on costly exponential functions, and achieving numerical
stability often involves extra steps. Efforts to speed up,

approximate, or eliminate softmax have been made [6], [27],
[51], [57]. Choromanski et al. [6] proposed Performers,
for estimating regular full-rank-attention transformers with
linear space and time complexity. Unlike traditional methods
that rely on priors like sparsity or low-rankness, performers
employ fast attention to approximate softmax attention
kernels. This enables scalable and efficient modeling of atten-
tion mechanisms beyond softmax, addressing the quadratic
complexity challenge of conventional transformers.
Koohpayegani et al. [27] presentd SimA, an attention block

that replaces the softmax layer with L1-norm normalization,
simplifying attention to matrix multiplications. SimA main-
tains comparable accuracy to state-of-the-art transformer
variants like DeiT, XCiT, and CvT while removing the
computational overhead of Softmax.
Stevens et al. [51] introduced Softermax, an optimized

softmax algorithm designed for hardware efficiency. Soft-
ermax integrates base replacement, low-precision softmax
computations, and an online normalization calculation.
By leveraging the fine-tuning principles of transformer-
based networks, they apply Softermax-aware fine-tuning
to minimize accuracy loss without imposing additional
training burdens. Furthermore, they provided insights into
the microarchitecture required for implementing Softermax
in an inference accelerator. Qin et al. proposed cosFORMER,
which leverages non-negativity and a non-linear re-weighting
scheme in the softmax attention matrix to create a linear
transformer [46].
The softmax overhead reduction methods discussed pro-

vide efficient alternatives to traditional softmax, improving
scalability and accuracy. By integrating these techniques into
our proposed model, we can further decrease computational
overhead and enhance performance.

E. NOVEL ATTENTIONS
The computational challenge of quadratic complexity in
self-attention has long been a prominent obstacle when
applying the models to tasks in computer vision. A pri-
mary research focus in enhancing the efficiency of vision
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FIGURE 6. Attention optimization approaches for transformer models [16], [18], [22], [24], [36], [43], [45], [54], [58], [62], [66], [69], [77].

transformers involves the reduction of computational costs
associated with self-attention modules [2], [29], [47],
[50], [79].

In Flatten Transformer, the focused linear attention
module addresses the computational complexity issue of
self-attention by introducing a module that combines high
efficiency with expressiveness [16]. CrossFormer and its
enhanced version, CrossFormer++, explicitly leverage fea-
tures of different scales, while addressing issues such as
self-attentionmap enlargement and amplitude explosion [62].
EfficientViT introduces a new building block and cascaded
group attention module to improve memory efficiency and
computational redundancy in transformer models, achieving
a commendable trade-off between speed and accuracy [36].
FasterViT [18], a hybrid CNN-ViT neural network amalga-
mates the swift local representation learning of CNNs with
ViT’s global modeling capabilities. Within FasterViT, the
Hierarchical Attention (HAT) technique efficiently breaks
down the quadratic complexity of global self-attention
into multi-level attention mechanisms, effectively curtail-
ing computational costs. By harnessing efficient window-
based self-attention, individual windows are endowed with
dedicated carrier tokens, fostering both local and global
representation learning. HiLo [45] encodes high frequen-
cies using local window self-attention and captures low
frequencies through global attention within the input feature
map.

Castling-ViT [77] tackles the challenge of enabling
ViTs to efficiently learn both global and local con-
text during inference. It uses linear-angular attention and
masked softmax-based quadratic attention during training
and switches to linear-angular attention alone during infer-
ence. The framework employs angular kernels for query-key
similarity, simplified by decomposing them into linear terms
and high-order residuals, and incorporates modules like
depthwise convolution and masked softmax attention to
efficiently learn global and local information.

The attention computation reduction methods discussed
here provide innovative solutions to address the quadratic
complexity of self-attention while preserving accuracy.
Integrating these techniques into our proposed model can
further enhance its efficiency, enabling it to handle complex
tasks with reduced computational overhead and improved
scalability.

IV. IRET: PROPOSED METHOD
To adapt vision transformers for resource-constrained
devices, reduce their computational and memory require-
ments, and address the shortcomings of previous solutions
discussed in the previous section, we introduce IRET.

A. ARCHITECTURE OF IRET
The high-level architecture of IRET is shown in Fig. 7. The
innovation in IRET is the ability to focus on attended tokens
in addition to forgetting unattended tokens.
As illustrated in Fig. 7, IRET replaces several transformer

encoder layers with IRET encoders. The architecture of an
IRET encoder is shown in Fig. 8. IRET encoder pre-processes
the tokens for token dropping and token focusing before
performing the encoding. More specifically, similar to prior
work in [14] and [48], IRET performs the token dropping
based on CLS token attention scores, dropping tokens with
low attention scores to prune the computational tree.
However, as illustrated in Fig. 8 IRET also has an

attention-based mechanism for an incremental sampling of
the input image using an ‘‘attention-based focusing’’ module.
The focusing module received a new sample of the input
image using a learnable 2D-lifting scheme in [49] that is
shared across IRET layers. Details of the 2D-lifting scheme
will be explained later. We refer to this input image sample
as a sub-band sample. Each generated sub-band is then
divided into patches with a 1-to-1 mapping relationship to
input image patches. Based on the attention-score of input
(existing) tokens, the token focusing module then decides for
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FIGURE 7. The IRET architecture processes input through four sampling steps: initially with a scaled low-pass filter and then three times using
learnable 2-D lifting schemes. With each IRET layer, the embedding size of each token increases as it assimilates additional information.
Concurrently, before each IRET layer, less-attended tokens are dropped. Therefore, each IRET layer has dual roles: discarding unattended tokens and
focusing on attended ones through extra sampling. The transformer encoder’s increasing size visualizes the growth in embedding size at each IRET
encoder.

FIGURE 8. The IRET layer architecture utilizes the CLS token to identify unattended tokens, employing a token dropping method to remove them.
Additionally, it determines which tokens require more focus based on the CLS token. This process involves filtering patches from the input sample
created by the 2D lifting scheme, projecting these patches into new embeddings, and then concatenating new information to enhance the existing
token embeddings. By enlarging the embedding size, IRET increases focus on attended tokens.

each patch in the newly sampled sub-band to be ignored or
forwarded to the layer. If the corresponding token coming
from the previous encoder has an attention score above the
desired threshold, the token is deemed useful and is subjected
to embedding. The embedded information for each sub-band
that corresponds to an attended token is concatenated to the
embedding of that token, increasing the embedding size,
which is analogous to improving focus on that part. The
size of each encoder layer in Fig. 7 corresponds to the
embedding size of its token. Using this illustration, as shown
in Fig. 7, each IRET encoder layer (shown in blue) increases
the embedding size (shown in dark blue), while each regular
transformer encoder layer maintains the embedding size.

B. INPUT SAMPLING PROCEDURE
To obtain input image samples for incorporation into IRET
layers, we investigated three methodologies: 1. Utilizing
the original input, 2. Employing DWT subbands, and 3.
Adopting a learnable sampling approach known as the

2D-lifting Scheme. The outcomes obtained through these
various sampling approaches are thoroughly examined and
detailed in Section V, shedding light on the efficacy and
impact of the chosen sampling methods on the overall
performance of the model.
Original Input- In this experiment which is the baseline,

we feed the downsampled original input three more times to
the model using the IRET layers. The goal of this experiment
is to check the ability of the model to learn new features from
the new embedded samples of the original input.
DWT Subbands- An alternative sampling approach

involves the utilization of Discrete Wavelet Transform
(DWT). Numerous investigations have harnessed the capabil-
ities of DWT within the realm of computer vision to augment
diverse facets of image analysis and processing. DWT,
a mathematical technique adept at decomposing signals
or images into their fundamental frequency components,
provides a unique pathway for feature extraction, represen-
tation, and manipulation. We employ DWT to produce four
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FIGURE 9. The Architecture of Learnable 2D Lifting Scheme. It receives the original image and learns four
output samples. S1, S2 and, S3 are used in the architecture of IRET.

subbands of images, each sized 112*112, denoted as LL,
LH, HL, and HH. Due to the LL subband containing a
greater entropy of information, it is assigned to the initial
layer. Simultaneously, the LH, HL, and HH subbands are
sequentially inserted into the subsequent IRET layers for
further processing. This distribution ensures an effective
utilization of the information content across the layers of the
model.

2D-lifting Scheme- The architecture of the 2D-lifting
scheme [49] used in the IRET layer is shown in Fig. 9. The
lifting scheme is designed to take a signal, denoted as x, as its
input and produce two key outputs: the approximation sub-
band (c) and the details sub-band (d) of the wavelet transform.
The process of designing this lifting scheme involves three
distinct stages: Splitting the signal, Updater, and Predictor.
Eq. 8 through 10 describes the functionality of these stages.
The predictor and updater components are implemented
using CNN layers. Each CNN consists of two layers: the first
layer uses a kernel size of 1⇥3 (for horizontal processing) or
3⇥1 (for vertical processing) and employs a ReLU activation
to enhance non-linear representations. The second layer uses
a 1⇥1 convolution with a tanh activation to stabilize the range
of outputs. The signal x is partitioned into two components in
splitting stage: an even component and an odd component.
The even component consists of all the values located at even
positions in the sequence and in the update operation is often
used as the basis for creating the approximation sub-band
c, which captures the low-frequency details of the signal.
The odd component consists of all the values located at odd
positions in the sequence and in the prediction operation
is used to derive the detail sub-band d , which captures the
high-frequency details of the signal.

xe[n] = x[2n], xo[n] = x[2n+ 1], x : input signal (8)

c[n] = xe[n] + U (xoLU [n]), U (.) = update operator (9)

d[n] = xo[n] � P(cLP [n]), P(.) = prediction operator
(10)

The loss function of learnable updater and predictor is defined
as.

Loss(P) = 6n(P(cLP [n]) � xo[n])2 (11)

Loss(U ) = 6n(U (xLUo [n]) � (xo[n] � xe[n]))2 (12)

For the predictor, the loss function minimizes the mean
squared error between the predicted and actual odd samples
and the updater’s loss function minimizes the error in
approximating the difference between the odd and even
components.
The initial convolutional layers extract discriminative

features from the data before downsampling. This is done
using two sequences of convolution, batch normalization, and
ReLU with a kernel size of 3 ⇥ 3.
It’s important to note that to minimize overhead, a portion

of the 2D-lifting scheme is shared across IRET encoder
layers. Nonetheless, each IRET encoder layer is fed by a
unique segment of the 2D-lifting scheme, ensuring it receives
a distinct sample. Additionally, this 2D-lifting scheme is
designed to be learnable, enabling its integration and training
alongside the rest of the model in an end-to-end manner.
During the training phase, the lifting scheme is trained as an
integral component of the IRET architecture. This approach
allows each IRET layer to adaptively incorporate new and
unique features, differentiating them from previous sampled
information for each token.
To maintain the positional information of patches in

newly sampled images we employ a position embedding
layer to add this data to their embedding. Prior to adopting
learnable layers, we explored different sampling techniques
for the input image, like DWT, using each sub-band as a
separate input to the feature encoding layer. However, our
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FIGURE 10. The IRET layer features two main functions: attention-based token dropping and focusing.
It eliminates unattended tokens using attention scores to simplify computation and enlarges the embedding
size for attended tokens with extra features from a 2-D lifting scheme. This process, akin to human brain
focusing, allows IRET to selectively prioritize certain tokens, thereby boosting accuracy and lowering
computational complexity.

findings indicated that a learnable lifting scheme, which
learns features based on model loss and trained alongside the
main model, yields the highest accuracy.

Also, note that the input to IRET is a scaled version of
the input image. For example, input to the embedding layer
of DeiT is a 224 ⇥ 224 pixel image. For IRET, we take
a scaled 112 ⇥ 112 pixel image as input and also reduce
the embedding size of the first layer from 384 to 192.
subsequently in each IRET layer (that in the variant shown
in this proposal is positioned in layers 4, 5, and 6, the
embedding size of features is increased from 192 to 294,
348, and 384 respectively bringing in additional 102, 54,
and 36 embedding dimensions with each added IRET layer.
Starting with a smaller embedding size and working with a
smaller embedding size in the first 6 layers of the IRET layers
allows a significant reduction of the computation. Byworking
with a smaller embedding size, IRET first decides where
to look for information in the input image. As the attention
scores highlight the importance of various input tokens, then
IRET layers stop processing unattended tokens, and more
importantly, bring in additional details for the features in
attended tokens.

Fig. 10 visualizes the pre-processing function for token
dropping and token focusing in an IRET encoder layer. The
attention threshold, which is predefined, plays a crucial role
in determining the tokens to be dropped or focused. In the
left part of the figure, the attention matrix is depicted, with
the first row highlighted in red corresponding to the CLS
token. This token is essential for classification in the last
layer of transformers, as its attention to other tokens reflects
their importance. The attention scores in the CLS row are
what we use in IRET to decide if a token is to be forgotten
(drop) or focused by bringing additional information through
the use of a 2D-lifting scheme. In the right part of the
figure, the token dropping process is illustrated. At the first
layer, tokens with attention scores below the predefined
threshold are dropped. In the subsequent layer, the remaining
tokens are concatenated with their corresponding tokens

from the 2D-lifting scheme. This process increases the
embedding dimension, enabling the model to focus more on
these tokens, which is visualized by a clearer token at the
end.
Fig 11 is another visualization of the token dropping

and focusing concept in an IRET encoder. As illustrated,
each IRET layer increases the details of each token with a
high attention score (this is visualized by increasing image
resolution, but in reality, this is achieved by increasing
embedding size), while dropping the unattended tokens.

C. IMPROVED EARLY PREDICTION THROUGH MULTI-EXIT
ARCHITECTURE IN IRET
As explained in section III, early termination is one of
the proposed methods for expediting model prediction.
We have further investigated and incorporated this feature
to enhance the speed of IRET. As depicted in Fig. 12,
various input images present distinct content and pose
challenges, showcasing classification tasks with varying
levels of complexity. Therefore, our goal is to formulate
the IRET with multiple exit options, enabling it to perform
early classification after each encoder layer. The decision
to advance to the next encoder level is based on how sure
the model is about its prediction and our predetermined
confidence threshold. This formulation additionally enables
the application of IRET in low-power and real-time systems.
Fig. 13 depicts the real-time behavior of the IRET system,

wherein themodel’s execution is halted based on a predefined
deadline. Consequently, the model adjusts its complexity
by reducing the number of layers when faced with tighter
deadlines, and conversely, it utilizes more layers when more
time is available for computation. In scenarios with low-
powermodels, computations can be halted to adhere to energy
constraints.

It’s crucial to consider that the energy constraints play a
pivotal role in determining at which layers IRET concludes its
operations. This variability stems from the diverse number of
skip computations influenced by context-aware computation
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FIGURE 11. In IRET, the ‘forget and focus’ concept hinges on CLS token attention values. Tokens with attention below a threshold are dropped
(‘forget’), while those above the threshold see increased embedding size (‘focus’) via a 2D-lifting scheme. The concept of focus is shown by
increased resolution.

FIGURE 12. IRET exit behavior in low-power and energy aware system.

FIGURE 13. IRET exit behavior in real-time system.

and patch elimination, especially when dealing with different
images. Figure 14 shows the overview of muti-exit IRET.
Extra heads are added to the model after each encoder layer
from layers 4 to 12. Classification before the first 3 layers is
not useful because the model has more understanding after
the 3 first layers.

V. EXPERIMENTS
Our model was developed based on the Facebook DeiT [55]
small model with hard distillation, utilizing the Timm
library [64]. We conducted our experiments on the Ima-
geNet dataset [8] using Nvidia A100 as the training
platform.
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FIGURE 14. The IRET multi-exit architecture. Employing MLP heads at layers 4 to 12 enables the model to make early predictions, effectively bypassing
the need for computations in subsequent layers. This strategic approach enhances efficiency and accelerates decision-making in IRET.

To explore the most effective input sampling strategies,
three distinct approaches were evaluated. These experiments
aimed to address the challenge of balancing computational
efficiency with model performance by identifying a sub-
sampling mechanism that retains essential information while
reducing redundancy. The performance of each sampling
method was assessed using top-1 accuracy metric. Accuracy
was defined as the proportion of correctly classified images
over the total test set.

The experimental results demonstrated that the
2D-lifting scheme significantly outperformed the other meth-
ods, emerging as the most effective and impactful sampling
approach. This scheme was designed to dynamically adapt
the subsampling process to capture and preserve essential
image features, enabling improved learning by the IRET
layers.

For the first sampling mechanism, we simply fed the
downsampled image to IRET layers as well Fig. 15a shows
the results. In implementing the second sampling approach,
the Pytorch Wavelet library was utilized [1]. However, this
method proved to be ineffective as the model struggled
to learn from subsequent samples introduced to the IRET
layers. Consequently, no notable improvement in accuracy
was observed following the insertion of LH, HL, and HH
subbands. The result of this method is illustrated in Fig. 15b.

These two sampling experiments served as motivation to
adopt a trainable subsampling approach. By doing so, the
model can gain valuable information from the inputs to the
IRET layers, potentially enhancing its learning capabilities.

A learnable approach for subsampling images, such as
the 2D-lifting scheme discussed, introduces adaptability and
flexibility into the subsampling process. Unlike fixed or
predetermined subsampling methods, a learnable approach
allows the model to dynamically adjust and optimize the
subsampling strategy during training. Learnable subsampling
enables the model to adapt its sampling strategy based on

the specific characteristics and requirements of the given
task. Different tasks or datasets may benefit from different
subsampling patterns, and a learnable approach allows the
model to learn the most effective strategy for the task at hand.
Moreover, Images often contain complex relationships and
structures that may vary across different regions. A learnable
approach allows the model to capture and exploit these intri-
cate relationships during subsampling, potentially leading to
the extraction of more relevant and discriminative features.
Also, traditional subsampling methods may discard certain
information during the downsampling process. A learnable
approach has the potential to minimize information loss by
intelligently selecting which details to retain or discard based
on the model’s learning experience. In essence, a learnable
subsampling approach empowers the model to actively par-
ticipate in the decision-making process, learning and refining
its subsampling strategy during training. This adaptability
can lead to more effective feature extraction, better task
performance, and improved generalization capabilities. Each
sample focuses on acquiring insights into a distinct aspect of
the image, thereby introducing new features to enhance the
model’s understanding.
The final model inputs are 112 ⇥ 112 pixels, with IRET

layers receiving 112 ⇥ 112 sub-bands generated by the 2D-
lifting scheme [49]. To enhance trainability, we integrated
three additional classification heads, each corresponding to
a CLS token of an IRET layer. These heads contribute to the
total classification error during backpropagation, accelerating
the training of the IRET layer and 2D-lifting scheme. These
heads are removed post-training for inference. Training lasts
for 300 epochs or until accuracy plateaus. Data augmentation
included randomly omitting information from the 2D-lifting
scheme to assess IRET’s incremental learning capability.
We evaluated IRET’s performance in four scenarios: 1) Using
only the input image, 2) Adding the first sub-band sample to
the first IRET layer, 3) Incorporating two sub-band samples
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FIGURE 15. Top-1 accuracy of the IRET for different input sampling mechanisms and different combinations of inputs. In each experiment,
we have tested four combinations: Only the downsampled input I , downsampled input plus one sample I + S1, downsampled input plus
two samples I + S1 + S2, and downsampled input plus three samples I + S1 + S2 + S3. (a) Original downsampled input is given to the IRET
layers. (b) DWT is used to generate the samples. (c,d) 2D Lifting mechanism is used for sample generation for DeiT small and tiny
respectively. (e) Comparing the top1 accuracy of all the experiments using all samples as input.

TABLE 1. IRET’s accuracy, FLOP count, and parameter count based on various attention thresholds in the IRET layer, which affect token dropping and
focusing.

in the first and second IRET layers, and 4) Including all three
sub-band samples.

Fig. 15c presents the top-1 training accuracy of IRET
across these scenarios. The figure shows IRET’s proficiency
in incremental learning, with diminishing accuracy gains

upon adding more sub-band samples. The first sub-band’s
addition notably boosts accuracy, but subsequent samples
yield lesser improvements. This observation made us limit
the number of IRET layers. The embedding size distribution
across sub-bands also affects incremental learning rate
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FIGURE 16. Change in accuracy and flop count as a function of attention threshold for token dropping and
token focusing.

FIGURE 17. Token dropping of layers with pruning policy based on different threshold values. For smaller
threshold values, the model drops fewer tokens.

and final accuracy. As shown, the model’s top-1 accuracy
improves from 67.5% to 75.93%, 77.52%, and 78.12% with
the addition of new information extracted from sampled sub-
bands. We have also developed the IRET-tiny using DeiT
tiny model. Fig. 15d shows the IRET-tiny accuracy using
lifting-scheme with the top-1 accuracy close to 70%. Finally,
in Fig. 15e, the top-1 accuracy of the experiments is compared
when they receive all samples. This serves as evidence of the
superiority of the DeiT small model and the utilization of the
2D lifting scheme.

As mentioned above, the IRET layer facilitates a dynamic
balance between computational complexity and model accu-
racy. In the realm of approximate computing, the ideal
scenario is achieving a substantial reduction in computational
complexity with only a minor impact on performance.

IRET exemplifies this by enabling dynamic observation of
such trade-offs. The token dropping and focusing attention
threshold in each IRET layer is the control knob for this trade-
off. The threshold could be different for each IRET encoder.
However, for simplicity in this study, we apply a uniform
attention threshold across all IRET layers, leaving detailed
exploration of threshold variations for future research.
Table 1 presents the top-1 and top-5 accuracy, FLOP

count, and parameters of IRET under various attention
thresholds for token dropping and focusing. The IRET’s
parameter count remains constant at 17.24M, but attention
thresholding reduces the number of parameters actively used
by discarding those related to dropped tokens. It’s important
to differentiate between used parameters and those loaded
from memory, as data movement depends on the hardware
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FIGURE 18. Visualizing forget and focus with attention threshold of 0.0004 for samples from the ImageNet dataset.

accelerator’s architecture, including buffer sizes andmapping
solutions. Reduction in used parameters leads to decreased
data movement in the hardware accelerator, which we plan
to explore further in future work. Fig. 16 visualizes how
increasing the threshold size effectively prunes the model
with minimal impact on accuracy. This balance is achieved
by the token-dropping module reducing complexity and the
focusing module maintaining accuracy.

Fig. 17 presents the average pruning results across different
threshold values, illustrating how the number of dropped
tokens varies within each layer, as averaged over the
ImageNet test set. This figure demonstrates the sensitivity
of our pruning strategy to the attention threshold. In the
IRETmodel presented in this paper, there are 3 IRET encoder
layers. As illustrated, by increasing the pruning threshold, the
number of dropped tokens in each layer and total number
of dropped tokens increases. In the extreme case, with the
attention pruning threshold of 3E-3, as illustrated in this
figure, 109 tokens are dropped in layer 4 (IRET layer 1), 61 in
layer 5, and 15 in layer 6. In this case, from table 1, the top-1
accuracy of 71.11 and top-5 accuracy of 88.97 is achieved by
focusing on only 13 tokens.

Fig. 18 showcases the practical impact of our pruning
strategy on individual samples. This figure visually compares
the original token distribution with the pruned results at
different layers, emphasizing how the model selectively
focuses on the most critical tokens. The visualizations
provide a clear depiction of how irrelevant or less important
tokens are gradually removed as the layers progress, allowing
the model to allocate more resources to the most informative
regions.

Fig. 19 illustrates the trade-off between computational
complexity and accuracy for IRET, comparing it to prior
art solutions. Increasing the attention threshold in IRET
leads to a gradual decline in accuracy but with a significant

reduction in computational complexity. It’s crucial to note
that the data points for ATS [14], DeiT [55], ResNet [20],
and AdaVIT [41] represent different models. For ResNet,
the accuracies correspond to models with varying depths
from 18 to 152 layers. DeiT and ATS models differ in
embedding sizes (384, 318, 258, 192), meaning each point
reflects a distinct model architecture optimized for specific
accuracy. In contrast, all IRET data points are derived from
the same architecture, starting with an embedding size of
192 and incrementally increasing it through the IRET encoder
layers to 294, 348 and 384 respectively. The variations
in IRET’s FLOP count and accuracy are due to different
attention thresholds for token dropping, assumed uniform
across all layers in this study. Adjusting these thresholds
layer-wise in IRET, with incremental increases, could further
enhance accuracy.

It is also worth noting that in IRET, token focusing
and dropping occur in layers 4, 5, and 6 (IRET layers),
whereas in ATS, token dropping is applied in all layers
past the third encoder. Combining IRET and ATS could
potentially yield higher accuracy. This approach, alongside
the exploration of various thresholds, learnable thresholds,
and the integration of ATS with other pruning techniques,
will be a focus of our future work. As shown, IRET
initially has slightly lower accuracy than ATS and DeiT
without token dropping. However, with the implementation
of the Focus concept and increased token dropping, IRET
achieves better accuracy than ATS and DeiT at similar FLOP
counts for higher attention thresholds. IRET’s consistent
architecture and the FLOP reduction achieved solely through
threshold control, coupled with its superior accuracy in lower
FLOP count regions, positions it as an efficient solution
for edge applications balancing accuracy with computational
complexity, enabling its use in energy and latency-sensitive
applications.
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FIGURE 19. Comparing the tradeoff between accuracy and flop count in IRET with that of prior art
solutions. Adopting the concept of Focus allows the IRET to enjoy a gentler drop in accuracy while
increasing the attention threshold used for token dropping and focusing.

TABLE 2. IRET with multi-head architecture Top-1 accuracy of heads.

TABLE 3. IRET with multi-head architecture GFLOPS count based on different confidence threshold.

A. MUTIHEADED IRET ENERGY-AWARE BEHAVIOR
Table 2 shows the Top-1 accuracy of MLP heads for different
variants of IRET. As you can see from head7 we have an
acceptable prediction accuracy for all variants of IRET, so the
model gives us the possibility to do the prediction earlier,
especially for simple images, and avoid the computation of
final layers of the model and save power and energy. For the
real-time scenario, with a preset deadline, the model can do
the prediction with high confidence and meet the deadline.

The proposed multi-headed architecture provides an energy-
effective solution. This means that for some applications
using this architecture, we can do earlier predictions when
we reach the desired confidence level. We have tested the
effect of different confidence values on IRET. Fig. 20 shows
the behavior of the IRET variant with attention threshold =
0.0004 based on different confidence values. As the figure
shows for smaller confidence values like 60 the model can
do the prediction for all the images using heads 4-6 so the
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FIGURE 20. The effect of different confidence thresholds on the
multi-exit IRET. The attention threshold is 0.0004.

computation of the reset of layers is skipped. The dark orange
color shows the percentage of classified images using the
current head and the light orange shows the percentage of

FIGURE 21. The effect of different attention thresholds on the multi-exit
IRET. The confidence threshold is 70.

classified images in the previous layers. But these predictions
are based on the confidence threshold so not all of the images
are classified correctly. The dark gray shows the percentage
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of the correctly classified images in each head and the light
gray shows the percentage of the correctly classified images
in previous heads. By increasing the confidence threshold
the ability of the model to do the prediction in earlier layers
decreases and the models switch to later layers for prediction
so the computation requirement of the model and as a result
of that the energy requirement of it increases by increasing
the confidence. Moreover, the gap between the images
classified in each head and the number of correctly classified
images in each head decreases. Fig. 21 shows the effect of
different Attention threshold values for a constant confidence
threshold = 70. By increasing the Attention threshold more
tokens drop so the model needs more layers to extract the
features and do the classification. In both experiments, some
of the images remain unclassified. The gap between 100 and
the last bar shows the number of remaining images that are
not classified. Table 3 shows the flop count of the different
variants of multi-head IRET based on different confidence
values. For smaller confidence values the GFLOPS of the
model reduces significantly. With a smaller confidence value,
the model can perform the prediction at an earlier head
and avoid the rest of the computation. However, increasing
confidence needs more understanding of the image features
by the model and more number layers and as a result more
computation.

VI. CONCLUSION
In this study, we introduced the IRET encoder, a novel
encoder layer that not only drops unattended tokens but
also enhances the model’s focus on attended ones using
incremental input sampling and increased embedding size.
IRET transformer, constructed using a mix of IRET and
basic transformer encoders. Based on the choice of attention
threshold for token dropping and token focusing, IRET allows
us to trade accuracy for computational complexity. The
IRET’s ability to focus on attended tokens using incremental
input sampling allows a more graceful degradation in
accuracy in the result of dropping tokens compared to
prior art solutions. Notably, its computational complexity is
modulated through attention threshold adjustments, rather
than changes in embedding size or model architecture.
The combination of this unique feature alongside early
exiting renders IRET ideal for applications requiring a
balance between accuracy, energy efficiency, and latency
considerations.

While IRET offers promising advancements, there are
areas for further improvement. Future work will explore
incorporating token pruning mechanisms, such as mixing
IRET with ATS, to enhance accuracy. Additionally, we aim
to investigate new attention computation methods to further
optimize performance. To address practical implementation
challenges, we plan to pursue a hardware-software co-design
approach, exploring both the hardware and algorithmic
aspects to make IRET more efficient and scalable across
diverse deployment scenarios. Moreover, we plan to leverage
the IRET architecture for tasks that demand high-resolution

inputs or involve datasets with limited structural regularities.
We will assess its performance and fine-tune it to ensure
optimal functioning for these specific applications.
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