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10.1 Introduction

The history of manufacturing is accompanied by the evolution of the role that
manufacturing data plays, from a passive information carrier in the early days to an
indispensable value enabler in the 21st century.

10.1.1 Data-enhanced decision-making

Since the inception of the first industrial revolution in the 18th century, marked by
mechanization of human labors, the face of manufacturing has undergone several
transformative shifts, as shown in Fig. 10.1 (Deane, 1979). The subsequent Industry
2.0 in the early 20th century introduced the use of electricity and assembly lines,
which is widely considered the birth of “mass production” (Hu, 2013). Industry 3.0
in the late 20th century saw the invention of computers and industrial robots, repre-
senting the start of automation in manufacturing (Yao & Lin, 2016).

The manufacturing industry entered Industry 4.0 at the beginning of the 21st
century, an era that promises the synergistic fusion of the digital and physical
worlds (Zhong, Xu, Klotz, & Newman, 2017). Industry 4.0 is typified by the
deployment of cyber-physical production systems (CPPS) (Monostori et al., 2016)
and digital twins (DT) (Schleich, Anwer, Mathieu, & Wartzack, 2017) that lean
heavily on real-time sensor data, Internet-enabled edge/cloud computing, and data
analytics algorithms. In Industry 4.0, sensing data, which has long been an underuti-
lized coproduct of manufacturing, has taken the center spot (Gao, Wang, Helu, &
Teti, 2020). With the advances in data analytics algorithms, especially deep learn-
ing (DL) (Lecun, Bengio, & Hinton, 2015), manufacturers have the effective tools
to extract, analyze, and utilize the rich information embedded in data collected
from the shop floor such as high-speed time series, images, and videos to establish
data-driven association to the manufacturing tasks of interest, without being con-
strained by the limitations of manufacturing domain knowledge.

Data-driven CPPS and DT have already shown proficient in real-time machine con-
dition monitoring, root cause analysis of functional failures (Zhao et al., 2019), and pre-
dicting future evolution of machine performance (Wang, Zhao, & Addepalli, 2020).
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Figure 10.1 Industrial revolutions and manufacturing paradigm shifts.

Source: Modified from Gao, R. X., Wang, L., Helu, M., & Teti, R. (2020). Big data analytics
for smart factories of the future. CIRP Annals, 69 (2), 668—692. https://doi.org/10.1016/j.
¢irp.2020.05.002.

For example, one-dimensional (1D) and 2D convolutional neural networks (CNNs)
have demonstrated excellent capability to extract fault-related features from either
waveform or time-frequency images of machine vibration data and thereby,
enabling detection of various machine faulty types and their respective severity
levels (Wang, Ananya, Yan, & Gao, 2017). As another example, recurrent neural
network (RNN) and its variants, such as long short-term memory (LSTM) and
gated recurrent units (GRU), have shown to be useful in parsing sequential patterns
underlying machine performance degradation (Zhang, Wang, Yan, & Gao, 2018).
The sequential analysis capability has seen its wide usage for degradation progno-
sis for engine, bearing, gearbox, and machining tools. Additionally, researchers
have developed methods to integrate data-driven methods with physical domain
knowledge, which not only allows data to enhance the physical understanding of
the machine health status, but also uses physical knowledge to ensure the gener-
alizability and robustness of data-enhanced decision-making (Wang, Li, Gao, &
Zhang, 2022). Furthermore, various techniques for data-driven model interpretation
have also been developed such that the prediction logic of DL can be verified
against domain knowledge to ensure the reliability of data-enhanced decision-mak-
ing in critical manufacturing applications (Grezmak, Zhang, Wang, Loparo, &
Gao, 2020). Data-enhanced decision-making for diagnosis and prognosis facilitates
the early discovery and prediction of machine functional failure, which provides
the basis for manufacturers to optimize maintenance strategy and reduce failure-
induced machine downtime and production interruption.
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Beyond machine diagnosis and prognosis, advances of sensing technologies,
computational infrastructure, and DL algorithms have also ushered in new
manufacturing paradigms in Industry 4.0, such as human—robot collaboration
(HRC) (Wang et al., 2019) and additive manufacturing (AM) enabled by data-
enhanced decision-making (Wang, Tan, Tor, & Lim, 2020). For example, RNN has
shown the capability of parsing the complex sequential patterns underlying human
action and motion trajectory data. Coupled with probabilistic analysis and uncer-
tainty quantification, they provide the basis for prediction of future human action
and motion and for mitigation of uncertainty-induced robot mis-triggering that are
critical to ensuring robot to achieve robust and safe collaborative action, such as
part/tool handover (Zhang, Liu, Chang, Wang, & Gao, 2020). In AM, data-driven
methods such as CNN and RNN have demonstrated exceptional performance in
identifying abnormal printing conditions and extracting melt pool geometry based
on image or time series data from vision sensors (Mehta & Shao, 2022; Zhang,
Hong, Ye, Zhu, & Fuh, 2018). By combining these methods with process physics
such as the law of heat transfer, temperature distribution, and thermal history can
be accurately predicted (Liao et al., 2023). These advances pave the way for subse-
quent development of data-enhanced optimization and control algorithms and
broader deployment of this manufacturing process.

Collectively, data-enhanced decision-making has demonstrated a high level of
accuracy, automation, and adaptability in connected and optimized manufacturing
systems in Industry 4.0 as compared to the precedent industrial revolutions. As
manufacturing enters the dawn of Industry 5.0, the industry builds upon the
advances in Industry 4.0 and is experiencing another paradigm shift, with a renewed
emphasis on human-centric processes (Xu, Lu, Vogel-Heuser, & Wang, 2021). This
transition is driving the need for decision-making systems that can integrate human
domain knowledge with data-enhanced decision-making, thereby blurring the lines
between human and machine capabilities (Virkkunen, Koskinen, Jessen-Juhler, &
Rinta-aho, 2021; Wang et al., 2022; Zhang, Liu, & Gao, 2022).

10.1.2 Challenges in data management

The advent of Industry 5.0, distinguished by its focus on human-centricity as one of
the core values (Fig. 10.2), is predicted to result in a continual surge in data vol-
ume, variety, and complexity within the manufacturing sector (Xu et al., 2021).
This multifaceted data environment poses significant difficulties for data manage-
ment (Siddiga et al., 2016), notably in the domain of data curation. Industry 5.0
posits that manufacturing processes and machines are likely to grow more complex,
encompassing various data types such as time series, images, videos, and text. This
increased intricacy and data heterogeneity produce challenges in maintaining data
quality and meaningful interpretation.

For instance, time series data collected from machines and processes are often
contaminated by a range of noise sources, while images and videos deployed for
quality control or fault diagnosis are directly influenced by aspects such as illumi-
nation conditions or camera perspectives, exacerbating the difficulties of handling
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Figure 10.2 Core values of Industry 5.0.

Source: From Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and
Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, 61,
530—535. https://doi.org/10.1016/j.jmsy.2021.10.006.

diminished signal-to-noise ratio (SNR). Thus to ensure the effectiveness and robust-
ness of data-driven decision-making, data denoising techniques are of importance to
augment the accuracy and robustness of the decisions based on these data (Yan &
Gao, 2012).

Moreover, the human-centric paradigm of Industry 5.0 requires the capacity to
understand and interpret the relevance of data, in relation to the corresponding
manufacturing context, where data annotation assumes a pivotal role. By appending
semantic labels and contextual details to the data, data annotation assists in bridging
the gap between raw data and human comprehension, rendering data more
interpretable and accessible to human operators and decision-makers. However,
automated data annotation remains a challenge due to the inherent complexity
within data types such as images and text. The datasets investigated in the pub-
lished studies often do not require specific labeling effort due to the fact that typi-
cally examined scenarios, such as faults in the inner or outer race of a rolling
bearing, are prelabeled and integrated into the testing equipment prior to data col-
lection. In contrast, in realistic manufacturing scenarios, structural faults or anoma-
lies are not prelabeled as they are not known in advance, and hence, must be
inferred from the gathered data a posteriori (Zhao et al., 2019).

Further, Industry 5.0 underscores a more personalized approach to manufactur-
ing, with the intention to cater to individual customer’s demands (Xu et al., 2021).
This “mass personalization” can result in imbalanced datasets, where certain classes
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of data are overrepresented, while others are underrepresented. The imbalance can
distort decision-making algorithms, resulting in biased outcomes that do not accu-
rately represent the true variability across different data categories that are of inter-
est. While such data imbalance has already started to pose challenges in
applications like machine fault diagnosis in Industry 4.0, where gathering extensive
data from faulty machines for algorithm training is often infeasible due to safety
and economic considerations, Industry 5.0 is envisioned to intensify this data cura-
tion challenge. Consequently, data balancing techniques, which aims to produce a
uniform representation of all classes in the dataset, are becoming crucial in Industry
5.0 (Zhang, Chen, et al., 2022).

In addressing these issues, the manufacturing research community is placing
increasing emphasis on establishing data curation methods to improve data quality
and provide meaningful semantic annotations. This involves developing data
denoising techniques to alleviate data noise contamination, establishing generative
models to discern the underlying data patterns and synthesize samples for small or
imbalanced datasets, and automating the data labeling and contextualization process
through semantic data annotation to facilitate human comprehension.

Over the years, researchers have investigated machine learning (ML)-based data
curation methods, which commonly consists of a feature extraction step (e.g., prin-
cipal component analysis) and a classification or regression step (e.g., support vec-
tor machine [SVM]) (Stavropoulos, Bikas, Sabatakakis, Theoharatos, & Grossi,
2022). The increase in complexity of manufacturing-related data has posed chal-
lenges for traditional ML techniques that rely on empirical knowledge for manual
feature extraction (Zhao et al., 2019). Advancement in DL over the past decade has
inspired researchers to explore its potential for data curation. The DL techniques
are characterized by automated feature learning and have shown especially suited
for handling images (Wiederkehr, Finkeldey, & Merhofe, 2021) and texts (Thomas
& Sangeetha, 2020) that are expected to permeate the manufacturing industry. This
chapter provides an overview of several key techniques in DL-based data curation,
highlighting breakthroughs in data denoising, annotation, and balancing, which
have shown effective in extracting information from noisy, unannotated, and imbal-
anced datasets to improve human comprehension and support the next generation of
intelligent manufacturing. The remainder of this chapter is arranged as follows:
Section 10.2 will delve deeper into the latest advances in data denoising, data anno-
tation, and data balancing facilitated by DL techniques. Section 10.3 will present
the manufacturing applications of these methodologies, followed by a discussion on
the remaining challenges and opportunities in Section 10.4, and conclusions in
Section 10.5.

10.2 Data curation techniques

Data, the coproduct of manufacturing, encapsulates pivotal information reflecting
the dynamics of manufacturing processes and machines, forming the basis for data
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analytics and decision-making. Advancements in sensing have resulted in an
increasing volume of data acquisition in manufacturing environments. This surge in
data volume, variety, and complexity brings to light obstacles in addressing data
quality issues such as noise contamination and imbalanced and unannotated data.
Ensuring the effectiveness of data analysis necessitates that these challenges are
addressed. The subsequent sections delve into these techniques, with a particular
emphasis on those that are DL-based.

10.2.1 Data denoising

The process of data denoising is crucial to augment the SNR in data, which pro-
vides the basis for uncovering critical information (such as machine fault character-
istics) from background noise. Data denoising has long been an active research
field with commonly utilized techniques such as local geometric projection (LGP)
(Yan & Gao, 2012), empirical mode decomposition (EMD) (Liu, Gao, John,
Staudenmayer, & Freedson, 2013), wavelet transform (Wink & Roerdink, 2004),
and stochastic resonance (SR) (Zhao, Yan, & Gao, 2013).

The method of LGP maps data into a high-dimensional phase space, for which
an orthogonal projection decomposes useful information and noise into different
subspaces. During the reconstruction stage, only information for the subspaces con-
taining relevant information is used and thereby, eliminating the noise components
(Yan & Gao, 2012). Specifically, the projection is computed using the most signifi-
cant eigenvectors from singular value decomposition. The intuition is that these
eigenvectors captures the majority of data variance, which commonly reflects useful
data information rather than the pattern-less data noise. LGP does not assume
knowledge a priori about the characteristics of noise contamination, making it more
adaptive to data as compared to traditional filter-based methods. Researchers have
reported an improvement of 10 dB in SNR for the application of fault diagnosis.

With EMD, time series data is decomposed into a set of intrinsic mode functions
(IMFs), with each representing a dominant frequency in the data at different scales
(Liu et al., 2013). Using metrics such as the mutual information ratio (MIR), the
suited range of IMFs can be determined, and the cutoff point is commonly chosen
as the one that leads to the highest increase in MIR. Intuitively, this represents the
threshold where valuable data information is captured by the IMF, as noise cannot
induce large information gain.

Different from LGP and EMD that are generally performs on raw waveforms,
wavelet transform is a time-frequency technique. The main idea of wavelet-based
method is to threshold small coefficients in wavelet time-frequency spectra before
data reconstruction using the inverse wavelet transform. The underlying assumption
of wavelet-based data denoising is that the useful data information is associated
with large wavelet coefficients (Wink & Roerdink, 2004). The cutoff threshold in
this approach is typically determined based on metrics such as data variance (Gao,
Sultan, Hu, & Tung, 2010). An 8x improvement in SNR of bearing’s vibration data
has been demonstrated in Holm-Hansen, Gao, and Zhang (2004) using the wavelet-
based method.
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The objective of SR is to amplify a critical frequency (such as a fault character-
istic frequency) via the interaction between the data and a bistable system (Zhao
et al., 2013). It is found that the addition of time series to the bistable system’s
input results in amplified critical frequency at the system’s output if the system’s
“switch” frequency is tuned to match the critical frequency (Collins, Chow, &
Imhoff, 1995). The SR-based method has demonstrated accurate extraction of fault-
related frequency that was previously undetectable, and it can be utilized in a broad
range of critical frequency extraction applications. More recently, DL-based data
denoising methods have emerged that leverage the pattern recognition capability of
neural networks.

Denoising autoencoder (AE). One of the most widely used methods is denois-
ing AE (Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010). An AE network
structure commonly involves an encoder and a decoder for data feature extraction.
The encoder usually features network layers with reducing layer size, with the
structure inverted to serve as the decoder. By minimizing the discrepancy between
the input to the encoder (raw data) and the output of the decoder (reconstructed
data), the information in the middle layer, which can have a much smaller dimen-
sion than the raw data, is considered a feature of the data. The denoising AE builds
upon the AE structure and introduces one change: it uses noise-contaminated data
as the input and tries to reconstruct the clean data. This allows the denoising AE to
learn, given contaminated data, what it means by “data noise” using simulated
examples where the ground truth clean data is available. Denoising AE also pro-
vides very flexible configurations to adapt to different data types by using different
network layers, such as convolutional layers for images and recurrent layers for
time series. However, one major limitation with denoising AE is that its training
requires ground truth samples, which can be difficult to obtain in realistic
manufacturing settings.

Noise2Void (N2V). To tackle the limitation of denoising AE, the technique of
N2V has been developed with the primary objective of using a modified convolu-
tional layer for image denoising (Krull, Buchholz, & Jug, 2019). Different from
standard convolutional layers that analyze the images region falling with its neu-
ron’s receptive field for feature extraction, N2V leverages the convolution operation
to predict the pixel intensity value in the middle of the receptive field, while
excluding it from the input to the convolution operation. The intuition is that only
when the network learns to predict the data part of the pixel rather than the noise
part would the prediction error be minimized. Compared with denoising AE-based
approach, N2V can be directly trained using the noise-contaminated image of inter-
est as long as the independent noise assumption is satisfied, without requiring any
additional training data.

10.2.2 Data annotation

Data annotation is the practice of associating data with relevant contextual details
in an appropriate semantic format, based on how the data was acquired. One partic-
ularly critical type of data is image data, which provides rich spatial information
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not contained in time series and is increasingly essential in data analytics in
manufacturing (Gao et al., 2020). However, labeling and annotating regions of
interest (ROIs) in these images, which often indicate vital machine, process, and
product conditions, pose challenges due to the absence of effective techniques for
deciphering abstract image patterns. Conventional approaches, such as thresholding,
have been broadly employed with the aim to segregate ROIs from other regions by
setting a pixel intensity threshold (Clijsters, Craeghs, Buls, Kempen, & Kruth,
2014). Yet, these techniques operate under assumptions that often do not hold true
in real-world scenarios. For example, change of lightning conditions can signifi-
cantly alter the pixel intensity in a captured image and requires frequency calibra-
tion of the threshold. Additionally, thresholding requires that the pixels from
different ROIs of interest in the image have no overlapping intensity range, which
often does not hold.

One of the early DL-based solutions is fully convolutional network (FCN),
which exploits the image analysis capabilities of CNN (Long, Shelhamer, &
Darrell, 2015). The FCN structure consists of an encoder (composed of convolu-
tional layers and pooling layers), which extracts essential information from the
input image pertinent to semantic annotation, and a decoder, which generates an
annotated image corresponding to the input image through sequential upsampling
operations and a classification layer (similar to AE structure). Different from stan-
dard CNN whose output is the image-level classification, FCN carries out pixel-
level classification, namely, each pixel will be classified into semantic ROIs of the
image through a softmax function in the classification layer. Over the past years,
several semantic annotation techniques that leverage FCNs have been developed,
among which U-Net (Ronneberger, Fischer, & Brox, 2015) and mask region-based
convolutional neural networks (RCNN) (He, Gkioxari, Dollar, & Girshick, 2017)
are the most widely adopted.

Fig. 10.3 shows the underlying network structure of U-Net, designed symmetri-
cally to match the encoder layers with the progressive upsampling layers in the
decoder. The corresponding layers in the encoder and the decoder are also con-
nected through skip connection to more effectively pass gradient of the error during

Skip Connections

S W
Input Encoder Decoder Output Ground Truth

Figure 10.3 Structure of U-Net.
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training stage (Lei et al., 2019). In contrast, the mask RCNN operates by first focus-
ing on small regions potentially containing ROIs using a region proposal network,
before proceeding with FCN-based semantic annotation (He et al., 2017). The anno-
tated image can then serve, not only diagnostic purposes (e.g., surface defect diag-
nosis, tool wear evaluation), but also provide input to DL models for predictive
tasks by extracting information from the ROIs, like area and geometric features.

Beyond semantic segmentation which aims to extract the complete boundaries
among different ROIs, image annotation can also be carried out through ROI
detection, which assigns ROI-specific bounding boxes to surround each instances
of ROIs, rather than determining the exact boundary of each. One of the most
widely used concepts for ROI detection is single-shot detector (Liu et al., 2016).
This method allows to adapt the existing, standard CNN structure as the backbone
for ROI detection, as shown in Fig. 10.4. The main idea is to: (1) utilize feature
maps in each layer of the CNN as a grid of the same size to cover the input image,
and (2) use each grid cell to predict a fixed number of bounding boxes and the
types of the surrounded ROIs. Specifically, each prediction from a grid cell con-
sists of a vector describing the relative distances between the center of the pre-
dicted bounding box and the center of the grid cell, the changes in the width and
height of the bounding box relative to the grid cell dimension, and a set of scores
each of which indicating how likely there would be an ROI surrounded by the
bounding box that belongs to one of the candidate ROI types. The scores then
pass through a softmax function to obtain the predicted ROI type. As the CNN
structure goes deeper, the size of the feature maps becomes smaller and the grid
changes from “fine” to “coarse” effectively allowing multiscale ROI analysis and
annotation.

31 conv. layer

Standard

CNN
a CNN kernel
~=1 55— &

Single
Shot

Detector

Image with ground Grid from *fine” to
truth bounding boxes “coarse”

Figure 10.4 Image annotation based on single-shot detector.



298 Manufacturing from Industry 4.0 to Industry 5.0

With more recent development of natural language processing and large lan-
guage models, semantic annotation and labeling of text data are gaining increased
interest (Otter, Medina, & Kalita, 2021). The critical challenge that text annotation
faces in manufacturing contexts, such as maintenance logs or inspection reports,
lies in transforming text (e.g., English words) into computable representations with-
out sacrificing their relationship at semantic level. For example, semantically simi-
lar words in the representation space should be closer, while semantically opposite
words in the representation space should be separated by a larger distance. One fre-
quently explored technique to achieve such text representation is embedding, such
as word2vec, which uses similarity computed based on dot-product to ensure the
semantically meaningful distribution of the words in the representation space
(Mikolov, Chen, Corrado, & Dean, 2013).

With text represented by embedding, a variety of DL-based language models can
then be trained to convert relevant texts into interpretable labels useful for diagnos-
tic and prognostic purposes (Thomas & Sangeetha, 2020). Several advanced, pre-
trained language models, such as transformers and its variants, have also surfaced.
The fundamental idea of transformer is to replace the recurrent part of the RNN
with attention module. The intuition is to lift the limitation in RNN that information
can only flow in one direction and uses attention module to learn the relationship
among different words in a free and adaptive manner to the tasks of interest.

10.2.3 Data balancing

Data balancing ensures the availability of data representing each semantic data cate-
gories of interest (e.g., different machine fault types) and the reduction of learning
bias induced by potential data imbalance (Zhang, Li, Gao, Wang, & Wen, 2018).
Balanced dataset is traditionally crucial for tasks such as fault diagnosis (Santos,
Maudes, & Bustillo, 2018). However, manufacturing constraints make collecting
data in a balanced manner impractical as it would require manufacturers to deliber-
ately operate machines under faulty conditions. The problem can be exacerbated in
Industry 5.0 where “mass personalization” can lead to significant data imbalance.
One commonly deployed strategy is to synthesize data that captures the characteris-
tics of the real ones, with the objective of increasing the sample size and reduce
data imbalance.

Early developed approach for data synthesis commonly relied on data interpola-
tion. For example, the method of synthetic minority oversampling technique or
SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) operates by first selecting a
minority class sample and one of its neighbors at random. Then, SMOTE generates
a synthetic sample as a convex interpolation between the two chosen samples.
SMOTE performs well in the scenario when the data is of low dimension, such as
process parameters and machine settings. However, it is shown to be limited in cap-
turing complex characteristics exhibited by high-dimensional data, such as high-
speed time series or images (Kozjek, Vrabic, Kralj, & Butala, 2017). With the
advances of DL, more systematic data synthesis techniques have emerged that have
drastically improved the quality of the synthetic data to support data analytics.
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The first development is the variational autoencoder (VAE) (Kingma & Welling,
2014). Different from the denoising AE, the objective of VAE is not to find a
numerical mapping that maps any noise-contaminated input to its clean version.
Instead, VAE learns a distribution underlying certain category of data (e.g., a spe-
cific machine fault type), such that new data can be synthesized from this underly-
ing distribution. In practice, the distribution is often assumed to be Gaussian, and
the objective of VAE training is to determine the distribution mean and variance
through the technique of variational inference. However, one of the main limitations
of VAE is that the training is supervised by the mean reconstruction error of the
input data. As a result, the synthetic data often show to be smoothened, without
high-frequency details (such as clear lines). This challenge was addressed with the
invention of generative adversarial network (GAN) (Goodfellow et al., 2020).

The fundamental structure of a GAN includes two primary components: a gener-
ator and a discriminator. Its primary objective is to enable the generator to trans-
form random samples from a known distribution into synthetic samples that closely
mirrors real ones. The discriminator, on the other hand, evaluates the performance
of the generator by distinguishing between “real” and “generated” data. More spe-
cifically, the discriminator operates by randomly choosing real or generated syn-
thetic data and outputs a scalar value indicating the likelihood of the input data
being “real.” Meanwhile, the generator strives to create synthetic data that closely
resembles real ones, effectively tricking the discriminator. The culmination of this
training process is a state of equilibrium where the discriminator is no longer capa-
ble of differentiating between real and generated data, and the generator ceases to
improve its data output as it no longer gets feedback from the discriminator. When
the GAN reaches this stage, the generator can produce high-quality synthetic data
that can be used to increase the number of samples in underrepresented classes,
thus resolving issues related to dataset imbalance.

10.3 Toward Industry 5.0: application highlights

The goal of data curation is to continuously improve data quality to ensure effec-
tiveness of data analytics to support data-enhanced decision-making. In this section,
several applications in manufacturing that have benefited from data curation techni-
ques are presented.

10.3.1 Machine diagnosis and prognosis

Data-enhanced machine diagnosis involves mapping fault-related data features to the
corresponding machine fault types or severity levels. To create a data-driven fault
diagnosis model, a large number of training samples are generally required to repre-
sent all candidate machine conditions. However, in real-world manufacturing shop
floor, production schedule and safety procedure prevent the collection of faulty data,
resulting a training dataset that is often biased toward normal machine conditions.
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Recently, GAN-based faulty data synthesis methods have been developed,
which has shown great potential to alleviate the data imbalance issue for machine
diagnosis. For example, the effectiveness of GAN has been demonstrated for syn-
thesizing faulty motor data, such as those associated with broken rotor bar or
motor bearing fault at the inner race and outer race (Lee, Jo, & Hwang, 2017).
To demonstrate the effectiveness of GAN as the imbalance level varies, the
authors evaluated the GAN-based method by investigating different ratios of data
imbalance between the normal and faulty samples. The network structure of the
GAN (i.e., generator and discriminator) consists of fully connected layers. Once
trained, the data synthesized from the generator serves as input for motor fault
diagnosis using a multilayer perceptron (MLP). The authors have shown that the
GAN-based data synthesis method achieved higher fault recognition accuracy as
compared to SMOTE-based approach in a consistent manner across different
imbalance ratios.

While the discriminator in the standard GAN only serves the purpose of distin-
guishing real data from synthetic ones, researchers have extended its capability by
incorporating machine fault diagnosis directly into its function (Shao, Wang, &
Yan, 2019). In this work, an auxiliary classifier GAN has been developed, as show
in Fig. 10.5, which not only aims to synthesize vibration signal from faulty motors,
but also allows to carry out the fault diagnosis directly. Both the generator and the
discriminator are in the form of 1D CNNs, which allows to evaluate the sequential
pattern in vibration waveform data. The authors evaluated the developed method
using six different motor conditions, including normal, inner race bearing fault,
unbalanced rotor, stator winding defect, bowed rotor, and broken rotor bar.

i

Generator

Generator

/——_t—\
(l(label)) (z(noise))

Figure 10.5 Auxiliary classifier GAN. GAN, Generative adversarial network.

Source: From Shao, S., Wang, P., & Yan, R. (2019). Generative adversarial networks for
data augmentation in machine fault diagnosis. Computers in Industry, 106, 85—93, https://
doi.org/10.1016/j.compind.2019.01.001.
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The GAN-based method has led to significantly higher diagnosis accuracy as com-
pared to 1D CNN trained using imbalanced dataset. A similar method has been
developed by Wang et al., in which the GAN-based method has been shown effec-
tive for gearbox fault diagnosis (Wang, Wang, & Wang, 2018).

The field of fault diagnosis has also benefited from recent advancements in text
annotation techniques. One study (Chen, Zhu, Zeng, & Jia, 2021) introduced a
novel approach that utilizes bidirectional encoder representations from transformers
(BERT), a pretrained language model based on transformer, to extract fault-related
details directly from text documents. This method attached a LSTM and conditional
random field (CRF) (Huang, Xu, & Yu, 2015) to BERT, which serve as the task
model that takes as input the BERT-extracted text features and carries out text
annotation. Through extensive experimentation, this approach demonstrated super-
ior performance compared to the method using LSTM + CRF alone with annota-
tion accuracy as evaluation metric for various annotation categories, such as
“equipment,” “fault,” “cause,” and “solution.”

Besides machine diagnosis, prognosis involves forecasting the evolution of
machine performance from the current step until the functional failure, which is
critical for optimizing predictive maintenance and reducing unexpected machine
downtime (Gao et al., 2015). In general, data-driven models for prognosis consists
of learning the mapping that associates historical trajectory of machine performance
to its performance in a future time step. One limitation in creating these data-driven
models is the requirement of run-to-failure training sequences, which requires delib-
erate running a machine until its failure and can raise safety issues. Similar to data
synthesis in machine diagnosis, this limitation has shown to be well addressed using
GAN-based method for run-to-failure data synthesis.

For example, GAN-based method has been investigated for bearing degradation
prognosis (Khan, Prosvirin, & Kim, 2018). In this work, the evolution of bearing
condition is represented as the temporal progression of the root mean square of its
vibration signal. The authors demonstrated high resemblance between the degrada-
tion trajectories synthesized by GAN and the run-to-failure data collected from the
real experiment, indicating GAN as a viable approach to tackle the challenge of
run-to-failure data for data-driven prognosis modeling.

In Hou, Xu, Zhou, Yang, and Fu (2020), a hybrid approach based on GAN and
LSTM for remaining useful life (RUL) prediction has been developed. Distinct
from standard GAN-based approach, the data synthesis function of GAN is utilized
in this work to improve the quality of the feature extracted from the sequential data
for RUL prediction, rather than synthesizing additional training sequences.
Specifically, the generator is formed as an AE, and its training is guided by a dis-
criminator that is based on 1D CNN. The latent feature learned using the GAN is
then mapped to RUL using a LSTM. The training of the GAN and LSTM is guided
by two objectives: improving data synthesis based on the latent features and the
prediction accuracy of RUL. After training, the encoder of the generator and the
LSTM are directly used to take an ongoing sequence as input and predict its RUL.
The authors demonstrated that the developed method has led to a reduction in RUL
prediction error of up to 15% as compared to the previous state-of-the-art.
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10.3.2 Quality inspection

Traditionally carried out with time-consuming manual procedure, process and prod-
uct quality inspection, especially estimation of tool condition and detection of sur-
face defect using image-based sensing, has benefited significantly from DL-enabled
image annotation over the past years. This is due to the capability in techniques
like CNN that is far superior at extracting and assembling low-level local image
features into task-related high-level patterns as compared to the non-DL methods.

In Miao, Zhao, Sun, Li, and Yan (2021), a U-Net based approach has been
developed with the objective of segmenting wore regions in cutting tool. One chal-
lenge that semantic segmentation of tool wear faces is that the tool worn region
often accounts for a very small portion of the whole image of the cutting tool. As a
result, there can be significant data imbalance between the regions with normal tool
condition and the wore tool region. To resolve this issue, the authors investigated a
Matthews Correlation Coefficient—based loss function that dynamically accounts
for the data imbalance during network training. The developed U-Net has shown to
achieve over 95% accuracy in tool wear annotation. A similar work has been
reported in Xia et al. (2022), where U-Net has been successfully utilized for drilling
bit wear annotation. One of the contributions of this work is the design of a
squeeze-excitation (SE) block for the U-Net, leading to a SE-U-Net structure. The
SE block, consisting of a convolutional layer, a global maximum pooling layer,
scale blocks, jump paths, allows to explicitly find the corresponding relationship
between low-level and high-level features during learning process and improves
performance of tool wear annotation. The effectiveness of the developed method is
validated using experimental investigation.

In Wiederkehr et al. (2021), FCN has been investigated for grinding tools surface
condition characterization. The objective is the accurate segmentation of individual
grains on the grinding tool surface from the background (i.e., bond). The accurate
characterization of grain patterns, as shown in Fig. 10.6 provides the basis for pro-
cess optimization, reduction of tool wear, and avoidance of chatter to achieve
desired surface topology. In this work, the decoder part of the standard FCN is
enhanced through a modified deconvolutional network by connecting to the corre-
sponding layers in the encoder through skip connections (similar to U-Net). The
authors also augmented dataset through data preprocessing using transformations
such as rotation, cropping, and flipping. Experimental evaluation has shown that
the developed FCN can achieve close to 100% grain segmentation accuracy.

In addition to tool wear annotation, the other successful application of image
annotation is for surface defect detection in AM. As the AM process is dictated by
a large number of influential factors, from material properties, powder sizes, to
laser power and printing speed, surface defect has been one of the major issues that
hampers broader application of AM. In Scime, Siddel, Baird, and Paquit (2020), the
authors investigated surface anomaly detection and evaluation for laser fusion,
binder jetting, and electron beam fusion, using DL-based image annotation techni-
ques. The surface anomalies investigated in this work include spatter and recoater
streaking, etc. Similar to (Xia et al., 2022), a U-Net structure has been used as the
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Figure 10.6 Images of: (A) measured depth information; and (B) the corresponding
segmentation mask.

Source: From Wiederkehr, P., Finkeldey, F., & Merhofe, T. (2021). Augmented semantic
segmentation for the digitization of grinding tools based on deep learning. CIRP Annals, 70
(1), 297—-300. https://doi.org/10.1016/j.cirp.2021.04.051.

backbone DL model, and it is further enhanced in this work using multistream anal-
ysis that operates at different image scales. Experimental evaluation has shown that
the developed method can enable real-time defect detection in AM at an image res-
olution of up to 3672 X 5496 pixels. The authors also demonstrated improved defect
ROI segmentation accuracy as compared to that of previous state-of-the-art. A simi-
lar work has been investigated in Jin, Zhang, Ott, and Gu (2021) for overextrusion
detection in the fused filament fabrication AM process.

In addition to the AM processes, an image annotation method based on mask
RCNN has been developed for solder joint inspection (Wu, Gao, & Xu, 2020). The
objective of this work is to locate, segment, and classify solder joint regions simul-
taneous as it is critical to ensure quality of the manufactured printed circuit board
(PCB). One challenge the authors face is the lack of training solder joint images in
general, and the solution they come up with is the method of transfer learning.
Specifically, a pretrained network established using large-scale “common objects in
context” dataset has been adapted for annotation of solder joint on PCB. In total,
four different joint defect conditions are evaluated. The mask RCNN has shown to
achieve 100% condition recognition accuracy and 97.4% joint defect segmentation
accuracy. Mask RCNN has also been investigated for weld pool annotation in weld-
ing, which provides the basis for welding process control to ensure performance of
the welded product (Xia et al., 2020).

Other than image ROI annotation, image denoising techniques have also been
investigated to support defect inspection. In Dey et al. (2021), the authors utilized
the N2V method for denoising of images captured by scanning electron microscope.
In this work, the authors builds N2V on top of the U-Net structure and evaluated
the method to support defect detection on circuit pattern in the lithography process.
They compared the power spectral density of both the original noisy and denoised
images and noted that the low-frequency component, which is directly related to
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the actual morphology of the circuit feature, is unaltered before and after denoising.
This indicates that the information content of the denoised images was not degraded
by the N2V approach, unlike the other existing approaches such as the Gaussian
filtering.

Beyond CNN-based methods, RNN and its variant such as LSTM have also
played an important role in quality inspection. For example, in Stavropoulos,
Sabatakakis, Papacharalampopoulos, and Mourtzis (2022), a quality assessment sys-
tem for robotized resistance spot welding has been developed. The system relies on
effective analysis of video image sequence from infrared camera and used LSTM
for welding quality identification. The authors also made a comprehensive perfor-
mance comparison between the LSTM and other ML methods such as SVM and
artificial neural network, with LSTM achieving both the highest true positive and
true negative rates among all ML methods.

10.3.3 Human—robot collaboration

In the realm of human-centric Industry 5.0, a fundamental element is the integration
of industrial robots into assembly processes, where humans and robots share a
workspace and work together to perform tasks that involve direct contact (Wang
et al., 2019). This collaborative approach deviates from the traditional assembly
setup, where humans and robots are strictly separated for safety reasons and per-
form their tasks sequentially. By embracing HRC, assembly operations can become
more flexible and efficient.

For successful implementation of HRC, it is crucial to enable robots to monitor
the workspace, interpret the context of collaboration based on sensing data, and
respond accordingly. To achieve this, extensive research has been conducted on rec-
ognizing and predicting human actions. These efforts serve as the foundation for
robots to comprehend the required parts or tools for subsequent operations.
However, the current research landscape still has limitations when it comes to rec-
ognizing, localizing, and grasping specific parts or tools in an appropriate manner.
Previous studies on HRC have rigidly predefined the placement of parts and tools,
and research focused on robotic object grasping has primarily emphasized the out-
come (success or failure) rather than distinguishing between different object types.
Given that the positions and orientations of parts and tools are not static over time
and collaborative operations like object handover may necessitate specific grasping
orientations, semantic image data annotation becomes a critical factor in enabling
the robot to understand and assist HRC at a human-like level.

One of the early works involves the development of an object detection method
(Zhang, Liu, Huang, & Gao, 2022). This method leverages the concept of single-
shot detection, allowing the utilization of pretrained CNN as the computational
backbone. The object detection algorithm extracts the desired position and orienta-
tion of the robotic arm end-effector for object grasping, which are then fed into a
MLP to predict the corresponding robotic arm joint angles. Through evaluation in a
collaborative testbed assembly case study, the object detection method has



Efficient data management for intelligent manufacturing 305

workspace || N S A
Input image Single-shot object detection based on CNN Detected parts/tools of interest

Part/Tool needed for subsequence operation

Figure 10.7 Object annotation for robotic grasping and HRC. HRC, Human—robot
collaboration.

demonstrated reliable annotation of parts and tools of interest, without inducing
false identifications for previously unseen objects, as shown in Fig. 10.7.

10.4 Discussion and outlook

The advancement of manufacturing drives companies to enhance the quality of data
captured from diverse manufacturing processes and transforming it into valuable
insights for optimization. Nevertheless, there remain several gaps in data curation
that must be resolved to effectively harness the potential of data analytics in realiz-
ing the future’s intelligent manufacturing. This section outlines four recommenda-
tions for future research.

Uncertainty quantification. Ensuring the reliability of data analytics relies
heavily on the quantification of uncertainty in data (Fujishima et al., 2016). DL
algorithms inherently lack the incorporation of data uncertainty in their analysis,
and research on uncertainty quantification has not been reported in the context of
DL-enabled data curation. This scarcity of research poses a challenge when
attempting to implement algorithms developed in academic settings into critical
applications on the factory floor. In such industrial settings, analysis and prediction
outcomes that lack uncertainty quantification of data itself cannot be deemed realis-
tic or trustworthy. Although some uncertainty quantification techniques for DL
models have emerged recently, such as Bayesian DL, they still require further
refinement and development to establish more rigorous and universally applicable
approaches.

Physics-informed curation. While researchers have made strides in integrat-
ing neural networks with physics by directly incorporating pertinent physical
knowledge into data analytics models to ensure their alignment with physical
laws (Zhang et al., 2022), the application of physics-informed learning in data
curation remains largely unexplored. For certain data curation tasks, such as data
denoising, leveraging the understanding of the underlying physics governing noise
formation can significantly enhance denoising performance. Recently, hybrid
denoising methods have been conceptualized (Tian et al., 2020), capitalizing on
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both the pattern recognition capabilities of DL and the physical insights into noise
contamination. These methods begin by constructing a contamination model based
on knowledge about the contaminants. This model acts as a guide for data denois-
ing, ensuring that only the clean data consistent with the model is recovered,
thereby improving SNR in a physically meaningful manner. Since retrieving clean
data from a contaminated version generally poses an ill-posed problem, the solu-
tion must be regularized to align with prior knowledge about the data itself. This
regularization process leads to an iterative Bayesian approach that alternates
between optimization steps to satisfy both the contamination model and the prior
knowledge about the data.

Handling unlabeled data. While pretraining DL models using large-scale public
dataset have demonstrated the potential in generalizing manufacturing settings via
model refinement through the use of only a small amount of labeled manufacturing
data to alleviate the challenge of scarcity of labeled data (Fredriksson, Mattos,
Bosch, & Olsson, 2020), the method can be challenging as pretrained DL models
are not available for many manufacturing applications. Recent advances of unsuper-
vised and semisupervised learning (Okaro et al., 2019; Zeiser, Ozcan, van Stein, &
Bick, 2023) have shown solutions to tackle the challenge. For example, GAN,
which is an unsupervised method and has been utilized to learn the data-underlying
pattern and synthesize new data samples, has been investigated to address the lack
of labeled quality data for anomaly detection (Zeiser et al., 2023) in AM. Also,
semisupervised learning, which learns simultaneously from labeled and unlabeled
dataset, has been successfully implemented for AM fault detection (Okaro et al.,
2019). Future investigation of unsupervised and semisupervised methods using a
variety of manufacturing applications will further contribute to resolving the data
labeling limitation.

Small data problem. In Industry 5.0, while data volume and variety is expected
to continue to grow, the small data problem will also continue to occur for applica-
tions such as machine fault diagnosis and process quality inspection, due to the cost
and safety concerns associated with data collection on a faulty machine. The lack
of sufficient training data will lead to performance degradation of DL-based cura-
tion such as annotation of defect from process images. The generative method
described in Section 10.2.3 can help alleviate this problem by synthesizing high
fidelity data samples. Beyond generative method, other methods such as federated
learning (FL) has also been increasingly investigated (Mehta & Shao, 2022). The
concept is to allow different data owners (e.g., small- and medium-sized manufac-
turers) contribute to the creation of a global DL model by computing a local update
of relevant model parameters based on its own data. The local updates are then
aggregated by a central server to train a global model. Since only model parameters
instead of customer data are shared across the data owners, data privacy in FL is
preserved. Despite its potential, several research questions on FL remain open, such
as understanding the convergence behavior of the FL algorithm, as well as its capa-
bility in handling heterogeneity in data and task. Future research to answer these
open questions in FL can further advance the state-of-the-art in handling small data-
sets to achieve more robust data curation for Industry 5.0.
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10.5 Conclusions

While the convergence of sensing, computation, and data analytics has provided
unprecedented opportunities to advance human-centric manufacturing for Industry
5.0, the complexity associated with data and the resulting low data quality have
posed significant challenges to the effectiveness of data analytics algorithms for
optimization of manufacturing processes with human-in-the-loop. To improve data
quality, the topic of data curation has been comprehensively reviewed in this chap-
ter, with focus on the aspects of data denoising, annotation, and balancing that
directly affect the performance and reliability of data analytics. Typical manufactur-
ing applications that were enabled by these techniques are highlighted to explain
how these techniques are utilized in practical scenarios. As the manufacturing
industry enters the era of Industry 5.0, data curation techniques and industrial case
studies can facilitate adoption and optimization of human-centric systems in intelli-
gent manufacturing.
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