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Abstract

Large shear deformations can induce structural changes within crystals, yet the microscopic
kinetics underlying these transformations are difficult for experimental observation and
theoretical understanding. Here, we drive shear-induced structural transitions from square ([J)
lattices to triangular (A) lattices in thin-film colloidal crystals and directly observe the
accompanying kinetics with single-particle resolution inside the bulk crystal. When the
oscillatory shear strain amplitude 0.1 < v, < 0.4, A-lattice nuclei are surrounded by a liquid
layer throughout their growth due to localized shear strain at the interface. Such virtual melting
at crystalline interface has been predicted in theory and simulation, but have not been observed
in experiment. The mean liquid layer thickness is proportional to the shear which can be
explained by the Lindemann melting criterion. This provides an alternative explanation on
virtual melting.

Supplementary material for this article is available online
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1. Introduction

Structural transitions between two polymorphic crystals, such
as crystal—crystal (c—c) transitions, occur widely in metal-
lurgy, ceramics, and even the earth’s mantle, and they influ-
ence a broad range of applications in steel production and
functional materials processing [1]. Compared to simpler
transitions such as melting and crystallization, these trans-
itions lack a group—subgroup relation between the symmetries
of parent and product phases, which leads to transition kin-
etics with metastable intermediate structures that pose chal-
lenges for theory [2]. Subtle complexities arise from various
types of defects and stresses produced during the transition.
Unfortunately, since traditional x-ray diffraction and electron
microscopy cannot routinely follow in-situ microscopic kin-
etics in bulk solids at the atomic level, the kinetic pathway
mechanisms associated with structural changes remain poorly
understood and difficult to predict.

In practice, many structural transitions are driven by
mechanical deformation, e.g. olivine-spinel transformations
in mantle [2] and during fabrication of metals [1] and super
alloys [3]. As noted above, elucidation of such transitions,
driven by athermal anisotropic forces, are challenging for
theory and in-situ experiment. Thus, they have mainly been
studied by simulation [4—11] and via measurements of post-
mortem microstructures after unloading the strain [3]. The
present contribution addresses these limitations, employing
colloidal crystals composed of micron-size particles; the crys-
tals are readily deformed to drive structural transitions, per-
mitting in-situ observation of bulk kinetics with single-particle
resolution [12].

Micron-sized colloidal particles can be viewed as ‘big
atom’ because they have thermal Brownian motions and can
form various phases at thermal equilibrium [12-14]. Colloids
are outstanding model systems for phase transition stud-
ies because colloidal particles can be imaged directly by
optical microscopy and their thermal motions can be tracked
by image processing [15]. The simplest model of colloids
is the hard-sphere system which free energy F=U —TS =
—TS because the interaction potential energy U is zero. T
is temperature. Entropy S is mainly from the free-volume
entropy which depends on the volume fraction ¢, i.e. the
ratio of the volume of all spheres to the total volume of
the sample [12, 13]. In contrast to atomic systems domin-
ated by atomic interaction energy, hard-sphere-like colloids
are dominated by entropy and their phase behaviours are dic-
tated by ¢ [13, 16]. 1/¢ in colloids plays a role of effect-
ive temperature in atomic systems [13]. Colloid experiments
have provided important insights about structural transitions
brought about by variation of volume fraction [17, 18] and
particle interaction [19-25], and by application of electric
fields to stretch the lattice [26, 27]. To date, various features
of colloidal crystals in shear have been studied, including self-
assembly [28, 29], grain coarsening and reorientation [30—
34], grain boundary roughening [35], shear buckling [36] and
banding [37], melting and crystallization [38—40], crystal—
crystal transition [41]. However, the microscopic kinetics of

shear-induced crystal-crystal transitions remain unexplored
in experiment. Shear not only enhances particles’ motions
(i.e. effective temperature) but also drives the system out of
equilibrium. Such nonequilibrium phase transitions are poorly
understood. Here we observe distinct kinetics in different
shear conditions; moreover, observations of nuclei growth
provide first experimental evidence for strain-induced virtual
melting (i.e. melting below melting point) [42], predicted in
theory.

2. Methods

The colloidal crystals are composed of poly(N-iso-
propylacrylamide) (NIPA) microgel spheres in aqueous sus-
pensions. They are thermal-sensitive with short-range repul-
sions, whose phase behavior is very similar to that of hard
spheres [43]. The directly measured diameter of NIPA micro-
gel spheres from imaging has a small ambiguity due to the
diffraction and softness of the sphere. Therefore, the meas-
ured diameter o’ (7) is slightly linearly rescaled to an effective
diameter, o (T), so that the melting ¢, = 0.545 is the same as
those of the 3D hard spheres. Then, the freezing ¢y = 0.49 is
very close to 0.494 for hard spheres. [16,44]. As aresult, o (T),
changes linearly from 1.04 pm at 25 °C to 0.89 pm at 30 °C
(supplementary section 1). Our samples of NIPA spheres are
confined between two walls at high volume fraction. They self-
assemble into a cascade of crystalline phases as the effective
wall separation H/o increases [45-47]: monolayer triangular
(1A); bilayer square (20J); 2A\; ... n[d; nA lattices (n < 6).
Such phase behavior has been observed in colloids [17, 18,
48] and has been quantified in the phase diagram for hard
spheres by simulation [45-47] (supplementary figure S2(c)).
These crystals have distinct densities, thus transitions between
them are expected to be first-order. By decreasing the volume
fraction ¢, we can induce the n(J — (n — 1)A transition.

In our experiments, a circular area (7(60 pm)?, approxim-
ately 1.2 x 10* particles) in the interior of a large single crys-
tal domain of [J lattice is uniformly heated to be above the
O — A transition volume fraction ¢. (~0.58 at the corres-
ponding 7. = 28.0 £ 0.1 °C) and the ambient unheated area is
below it. Thus, application of oscillatory shear can drive the
homogeneous [J — A\ transition, but only in the heated area.
Here both the heating-induced volume-fraction decrease and
the shear-induced effective temperature increase facilitate the
transition.

A syringe pump is used to apply an oscillatory shear to the
colloidal crystal. It produces a Couette-like velocity profile in
the z direction (supplementary figures S1(b) and (c)). In such
thin-film crystals, all the defect structures, including disloca-
tions and interfaces, are the same for each layer. Thus, it is a
quasi-2D sample and the middle layer is typically observed. In
the interior of each crystal domain, the sliding velocity is also
uniform in the xy plane. The measured shear strain v oscil-
lates with an amplitude v, and a period of 2.4 s. Particles are
tracked by standard image analysis [15]. More experimental
details are in supplementary information section 1.
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Figure 1. Nucleation of 0 — A transition under ~ym = 0.3

(movie S3). Color bar for (a)—(d): dynamic Lindemann parameter Ly
(see supplementary information section 2.3). Scale bars: 5 pm.

(a) Dislocations (L) glide (white arrows) along the [01] or [10]
direction toward the pre-existing vacancy regions (dashed circles).
Shear direction is along the x axis. (b) A [10] dislocation combines
with a vacancy, resulting in a small liquid in the white Burgers loop.
(c), (d) The liquid nucleus grows and absorbs more dislocations. (e),
(f) A A lattice nucleates from the liquid and surrounded by a liquid
layer. The lattice distortion is indicated by white lines.

(g) A schematic of a growing A-lattice nucleus covered with a
liquid layer. (h) Size evolution of the whole nucleus (liquid + A
lattice) and its A-lattice part. (i) The effective nucleus diameters
detf = v/ nucleus area for the whole nucleus and for the A-lattice
part are linear, with ¢ with the same slope (dashed line) at # > 600 s.

3. Results

When ~, <0.1, the OJ crystal directly transforms to the
A crystal via a martensitic nucleation (supplementary
figures S7(a)—(d)). Under ultra-large shear strain with ~, >
0.4, the crystals become unstable and melt directly.

3.1 Nuclei surrounded by virtual melt under 0.1 < ~,, < 0.4

In the intermediate range of 0.1 < vy, < 0.4, the applied shear
stress readily generates defects, such as dislocations and
vacancies, and enhances their mobility (figure 1(a)) [1]. The
rapid coalescence of these defects triggers the nucleation of

a liquid phase; such a nucleus is shown with an unclosed
Burgers loop in figures 1(a) and (b). The nucleus grows and
absorbs more dislocations, which further opens the Burgers
loop (figures 1(b)—(d)). This effect is similar to disloca-
tion accumulation observed in a shear-induced crystal-to-
amorphous transition in NiTi alloys [3] and silicon [49], but it
is rarely observed in the nucleation process during c—c trans-
itions. In the present case, the disordered region is a liquid
rather than an amorphous solid, because particles actively
swap positions (movies S3, S4). Later, when the liquid nuc-
leus grows large, a small A\ lattice nucleates within the liquid
drop.

The nucleation process exhibits four stages: (1) For
t <200s, the liquid nucleus is subcritical in size; (2) For
200s < t < 525 s, a supercritical liquid nucleus is present with
subcritical A-lattice nuclei inside it. Most subcritical A-
lattice nuclei vanish and eventually one grows large; (3) For
525s <t < 600s, the A-lattice nucleus has passed its crit-
ical size and rapidly grows drawing particles from the liquid;
(4) For t > 600 s, the /A-lattice nucleus growth slows, and its
speed is essentially the same as that of the liquid-[J] inter-
face. This complicated growth with multiple phases cannot
be fit by a simple model in the early stages. However, in
stage (4), the area of the whole nucleus grows at a rate ot
(figure 1(h)); alternatively, the effective nucleus diameter,
degs < t (figure 1(i)). This behavior corresponds to interface-
reaction-limited growth described by Wilson—Frenkel law [1]:
nucleus growth is determined by the constant particle incor-
poration rate from the parent phase to the nucleus, and thus
the nucleus growth rate is proportional to nucleus perimeter
and diameter d.sf.

Afterwards, for > 600s, the deg of liquid and A-lattice
nuclei increase at the same rate (figure 1(i)); as a result,
a liquid layer with a constant mean thickness is essentially
sandwiched between the [0 and A lattices. Note however,
while the mean thickness is approximately constant, the local
thickness of the liquid ring strongly fluctuates for 600s < ¢ <
1000s. These fluctuations are likely due to nuclei coalescence,
which significantly redistributes the lattice strain (supplement-
ary figure S8). A liquid ring with a more uniform thickness is
observed during the latest stage, # > 1000 s, wherein the size of
the A\ lattice is much larger than mean liquid layer thickness
(figure 2(a) and movie S4). In this situation, the liquid ring can
reduce the interfacial strain energy. The interfacial strain arises
near the [(J-A\ interface but is absent near the liquid [42]. In
practice, strains often localize at crystalline interfaces or grain
boundaries [50]. Interestingly, under sufficiently strong shear
conditions, the strain energy can be large enough such that the
O-A interface melts to form a liquid. The local thickness of
the liquid layer is a constant for the interfaces along the shear
and fluctuates strongly for the interfaces perpendicular to the
shear direction because such interfaces tend to undergo a kin-
etic roughening process [35]. Nevertheless, the mean thickness
of the liquid is a constant (figure 1(i)). Since the bulk equilib-
rium phase (with lowest chemical potential) is the A\ crystal,
this liquid layer is an interfacial wetting layer [51, 52] that
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Figure 2. Shear-induced interfacial virtual melting. (a) Growth front of the nucleus in figure 1 at t = 1300 s. Particles are colored by &;.
Scale bar: 5 um. (b) Displacement vectors during 0.2 s for particles in (a). The images of a small fraction of liquid particles are blurry and
thus their displacements are not tracked. (c) Distribution profile of the maximum displacement Axy,. Insets: The local packing structure of
regular tetrahedron for the A lattice and square pyramid for the [J lattice. (d) The mean liquid layer thickness [ (circles) increases with .
The shear displacement gradient (diamonds) Axp, /1~ 0.11 £0.01 under different ym. (e), (f) Mean local strain tensor components for the

O and A lattices, respectively.

arises before the melting point is reached. This liquid-layer
formation phenomenon is often called virtual melting [42];
it is reminiscent of premelting [51] but is not an equilibrium
phenomenon.

The preexisting interface has an interfacial energy which
reduces the free energy barrier of melting. Thus, melting tends
to occur from interfaces [53, 54]. This mechanism can also
result in interfacial premelting below melting temperature [43,
51, 52]. This interfacial energy under no shear should be much
smaller than the interfacial strain energy under an external
shear. The shear-induced strain energy vanishes after the form-
ation of a liquid layer on the interface [8, 9]. Thus, the interface
melts when [5]

I Atiquid + Diiquia-0 + AGouiquia < T'a.o + e, (D

where I' is the interfacial energy, AGr_jiquiq is the free energy
difference between [J lattice and liquid, and ey is the strain
energy due to external shear. The above inequality can hold
under sufficiently large shear, i.e. a large enough e. Therefore,
the interfacial energy is minimized by forming a A-liquid
interface and a liquid-OJ interface (es vanishes in liquid).
However, Inequality (1) is based on free energies which
are not rigorously defined under a non-equilibrium shear.
Consequently, we provide an alternative mechanism in the
next section.

3.2. Mechanism of interfacial virtual melting

In the latest stage, the [J and A lattices slide with respect to one
another with different amplitudes (figure 2(b)). The particle
displacements along the shear direction, Ax, give rise to a dis-
placement gradient across the liquid layer (figure 2(b)). Ax(¢)
is oscillatory (supplementary figure S3(d)) as expected. The
gradient of Ax, across the 7 um liquid layer is 0.68/7 ~ 0.1
(figure 2(c)). Axp /1 is robust under different vy, (figure 2(d)).
Its value of 0.1 coincides with the Lindemann melting cri-
terion. The Lindemann melting criterion states that a crystal
begins to melt when Ly reaches a threshold value: melting
from free surface when Ly reaches 0.1 and from bulk when Ly
reaches 0.18 for many crystals [54, 55]. The Lindemann melt-
ing criterion has been demonstrated to hold well in equilib-
rium and non-equilibrium steady states [39, 43, 56]. L4 is the
ratio of the particle mean displacement amplitude to the lattice
constant. Ax, /I can be viewed as the shear-induced displace-
ment on each particle relative to a lattice constant (supplement-
ary figures S4(b) and (c)). According to the Lindemann melt-
ing criterion, melting occurs when Ax,, /I reaches a threshold
value. If the difference of the displacements between the [J and
A lattices concentrate into a thin layer of liquid with a large
Axp /1> 0.1, the strong friction at the liquid-crystal interface
would melt more crystal until Ax,, /I reaches the threshold of
Lindemann melting criterion of 0.1. Thus, a larger shear dis-
placement Ax,, will produce a liquid band with a thicker /,
and Axy,/l is a constant threshold value. Figure 2(d) further
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shows that virtual melting is absent at v, < 0.1. We attribute
this observation to fact that defect motions in the vicinity of the
O-A interface are sufficient to relax the system under weak
applied shear stress.

O and A lattices exhibit different shear moduli G,; in the
shear plane (the xz plane), which can induce a nonzero Axy.
Since the interlayer separation of the [J crystal is smaller than
that of the A crystal, i.e. the height of a pyramid is smaller
than a tetrahedron as shown in figure 2(c) inset. The longer
interplanar spacing corresponds to a softer shear modulus, i.e.
GXDZ > Gﬁ. Larger GEZ, in turn, is accompanied by smaller Ax,
as observed in figure 2(b).

Strain energy dominates under large v,. Thus we meas-
ured the lattice strain during the 0 — A transition (figure 2
and supplementary figures S5 and S8). The local strain tensor,
€, is determined by minimizing the mean square difference
in the non-affine deformation }~(d; — (&; +1)Dy)* [57, 58],
where dj; is the bond between particle i and its neighbor j, and
Dj; is the reference bond of d;; on a perfect lattice (supplement-
ary information section 2.4 and supplementary figure S5(a)).
For a quasi-2D sample, € contains three independent com-
ponents: the local shear strain, e = (12 + €21), and the uni-
axial strains, €, = €11, and €, = €5, along the x and y direc-
tions, respectively. These strains oscillate with the external
shear (figures 2(e) and (f)), reflecting the fact that both lat-
tices are periodically deformed. This behavior is quantitatively
confirmed by the directly measured oscillating lattice constant
(supplementary figures S3(b) and (c)). Since the driving shear
is along the x direction, ¢, oscillates with a larger amplitude
than €, in both lattices. The opposite phases between €, and ¢,
arise from the positive Poisson’s ratio of the colloidal crys-
tals. Because the mean values &,, < 0 for the [J lattices in
figure 2(e), the total volumetric strain &, = (&, +&,)/2 <0,
i.e. the [J lattices are compressed. This phenomenon creates
free volume to form liquid, facilitating virtual melting.

3.3. Shear-dependent nuclei orientations

The lattice orientation of the product phase strongly depends
on the magnitude of the shear strain. For small v, < 0.1,
the classic martensitic nucleation is featured with a fixed lat-
tice misorientation angle § = 15° (figure 3 blue box, supple-
mentary figure S7(d)). It is due to formation of dislocation
dipoles at the specific site of [ lattice (supplementary figures
I(e)—(h)), and therefore, independent of the shear direction.
Consequently, the orientation of nucleus lattice relative to the
shear direction, «, is random in this region.

By contrast, under intermediate shear (0.1 < vy, < 0.4), the
coalescence of vacancies and dislocations produces liquid nuc-
lei which then recrystallize into a A lattice surrounded by a
liquid ring. The liquid ring and A lattice subsequently grow
via diffusive nucleation. Such propagating solid—solid inter-
face with an intermediate liquid has been suggested by sim-
ulations [6, 7]. The A lattice orientation tends to align along
the shear [32, 33], i.e. « ~ 0, to minimize interlayer friction
(figure 3 red box), whilst € is random. « and 6 under dif-
ferent shear strains, summarized in figure 3, show that the
lattice orientation of the nucleus is dominated by the ambient
] lattice under weak shear, and by the shear direction under

15}
10}
>
5_
O 1 ‘ o O 10
0.0 01 02 0.3

Figure 3. Lattice misorientation angle 6 (diamonds) and shear
misalignment angle « (circles) under different vy, in 21 samples.

0 ~ 15° at small vy, (blue box); a < 8° at large ym (red box); 6 and
« are random under other conditions. For a A-lattice nucleus in a [
lattice, the possible ranges are 0 < 6 < 15° and 0 < o < 30°. The
empty and filled symbols are for (0 — A and 400 — 3A transitions,
respectively. Only 6 in the early-stage nucleation are shown. « is a
constant over time.

strong shears. Thus, the intermediate shear can facilitate the
formation of a single crystal [30, 32]. Increasing vy, even fur-
ther produces more liquid during the transition and eventually
induces melting when vy, > 0.4.

4. Discussion

Peng et al [17, 18] about the similar colloidal systems focused
on the initial critical nucleus formation stage without oscil-
latory shear because their later supercritical nucleus growth
stage is normal: the growth front is a dry crystal—crystal inter-
face in [17, 18] instead of a liquid band shown here. We focus
on the later supercritical nucleus growth stage under shear
and observe the following new results: (1) The growth front
is a liquid band which experimentally confirms the theoret-
ical prediction of virtual melting in [42] for the first time. (2)
The liquid layer has a constant mean thickness / under a fixed
shear strain amplitude v, (figure 1(i)); (3) [ increases with
vm (figure 2(d)); (4) The relative displacement per layer coin-
cide with the Lindemann melting criterion, which provides an
alternative explanation to virtual melting (figures 2(b)—(d));
(5) The lattice orientation of product phase is neither random
as in [17], nor a special angle of 45° in [18], but depends on
shear direction and the lattice orientation of the parent phase
(figure 3). Additionally, the initial nucleation stage under shear
exhibits an unclosed Burgers loop (figures 1(a)—(f)) which is
different from that without shear in [17].

Many structural transitions in nature and industry are
shear-induced, but their kinetics have not been experimentally
observed at the single-particle level before. We directly
visualize such process using a colloidal system and observed
the virtual melting at the growth front. Shear-induced virtual
melting at the crystalline interface has been predicted on the
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basis of stress relaxation [4-9, 42, 59]. It has been mainly
studied in simulations [4—11], and was confirmed indirectly
in experiment at the PbTiO; surface [60] and Al-Fe inter-
face [50]. In [50], the observed amorphous nano-layer at the
interface was shown to be a liquid instead of an amorph-
ous solid via simulation [50]. The lack of single-particle-level
experimental observations has contributed to a limited under-
standing of the kinetic mechanisms underlying virtual melt-
ing. In our work, single-particle-level kinetics of virtual melt-
ing has been observed. The theory for virtual melting in [42]
is not quantitatively tested because surface tension and strain
energies are difficult to measure in colloidal crystals. Instead,
our measurements provide an alternate explanation for the vir-
tual melting on the basis of Lindemann melting criterion.

Different shear moduli of the two neighboring lattices could
induce a shear displacement gradient across the interface. For
samples under different shears, the ratio of the shear dis-
placement across the interface to the liquid layer thickness
is a constant with a value that is approximately the same
as the Lindemann threshold for melting. This novel mechan-
ism should similarly hold for grain boundaries in polycrystals
and interfaces between two crystals in either 2D or 3D. For
example, the shear-induced virtual melting is also observed
at grain boundaries of a 35-layer polycrystals (movie S5). In
addition, a transient liquid layer on a migrating grain bound-
ary in strained aluminum polycrystals has been observed in
a simulation [61]. Thus, virtual melting could generally arise
and exist at interfaces under a sufficient shear, and could play
an important role in shear-induced amorphization of covalent
crystals [49, 62], metals and alloys [3]. Severe plastic deform-
ations can also produce amorphous solids or amorphous-
crystalline composites as super alloys [3]. However, little is
known about their formation kinetics under strong shear, in
large part because microscopic in-situ measurements in bulk
are not available. Virtual melting induced by severe plastic
deformation is difficult to observe because liquids rapidly
crystallize or vitrify when the post-mortem sample is observed
with the unloaded strain. The observed virtual melting sug-
gests that plastic deformation may melt grain boundaries
in polycrystals, which subsequently vitrify into amorphous
regions after the stress is unloaded during fabrication of super
alloys. In addition, the measured relations between two lat-
tice orientations and the shear direction under different shear
strains cast light on controlling lattice orientations in polycrys-
tal fabrication.
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